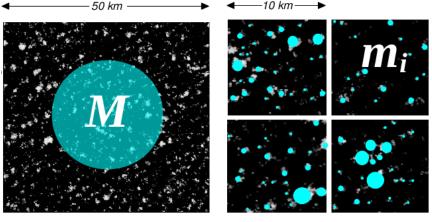


MODIS Aqua 20130505 A stochastic scheme to parameterise shallow convection

Maike Ahlgrimm, Mirjana Sakradzija, Daniel Klocke, Cathy Hohenegger, Axel Seifert...

How is this relevant to ensemble prediction?

- Parameterised convection typically produces too little spread in the EPS
- Difficult to add artificial perturbations that are physically consistent, situation-aware and persist in time


- Stochastic convection scheme is scale adaptive and produces perturbations to the convective tendencies that are consistent with the model state and the large-scale forcing
- → We hope: Scheme will produce sufficient spread that additional measures will be superfluous

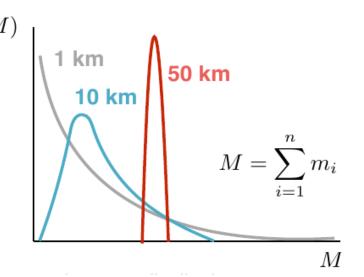
Basic concept:

1) Large-scale state **determines** convective activity at scales 50-100km, expressed as **cloud-base mass flux**

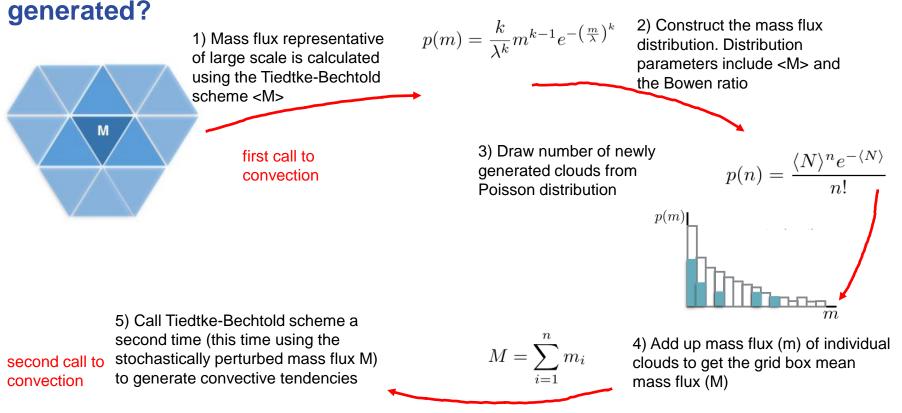
2) At higher resolution, grid box area **too small** to contain a complete ensemble of convective clouds -> mass flux no longer deterministic!

3) Predict **cloud ensemble properties**, then draw stochastic sample of clouds from distribution for each small grid cell

M: mass flux of the ensemble


mi: mass flux of an individual cloud

4) Average over individual clouds' mass flux in grid cell (m_i) is the "stochastically **perturbed mass flux**" used to calculate convective tendencies

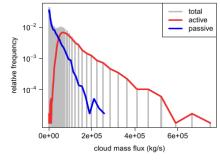


- The mass flux on large scales (where traditional assumptions are a good approximation) is determined with the classical parameterisation (Tiedtke-Bechtold/IFS)
- At individual grid points, a stochastic cloud p(M) ensemble is generated whose mass flux (averaged across larger scales) converges to that of the classical parameterisation
- → Bonus: The ensemble automatically adapts to the grid resolution. The smaller the grid spacing, the greater mass flux departures from the ensemble mean

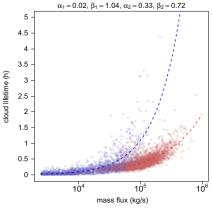
How is the cloud ensemble at a single grid point generated?

(Craig and Cohen 2006; Plant and Craig 2008; Sakradzija et al. 2015, 2016)

Deutscher Wetterdienst


Wetter und Klima aus einer Hand

DWD


6

Distributions are based on LES studies Wetter und Klima aus einer Hand

(a) cloud rate distribution

(b) cloud lifetime

LES mass flux distribution has two modes:

active and passive Cu Is well-appoximated by a **mixed** Weibull distribution.

$$p(m) = \sum_{j=1,2}^{2} f_j \frac{k_j}{\lambda_j} \left(\frac{m_j}{\lambda_j}\right)^{k_j - 1} e^{-(m_j/\lambda_j)^{k_j}}$$

The lifetime of individual clouds depends on their mass flux – large clouds (with large mass flux) live longer. $\tau_i = \alpha_i m^{\beta_i}$

LES studies show that the difference between maritime and continental shallow convection is determined largely by the Bowen ratio.

Deutscher Wetterdienst

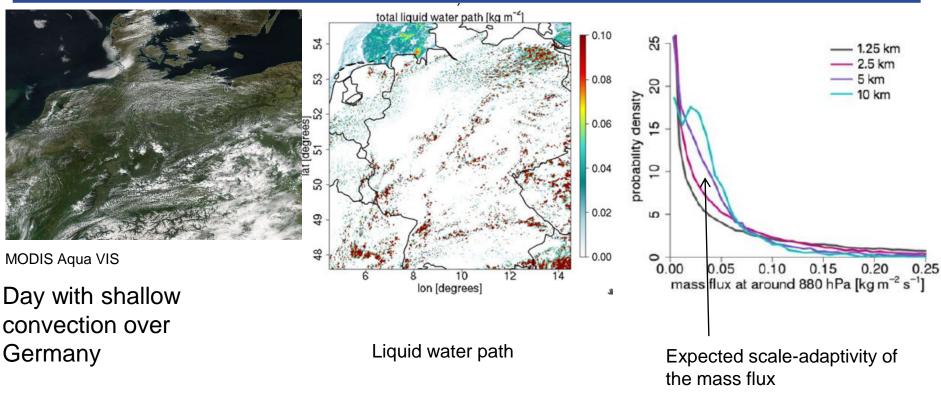
 \rightarrow lambda(B) k, beta constants from LES

Sakradzija und Hohenegger 2017

DWD

The mass flux of each individual cloud within the grid cell is tracked over time

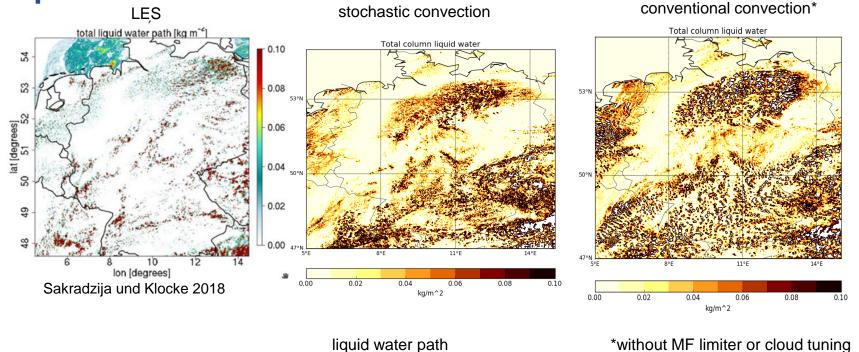
Important points in implementation


- → We still assume that the traditional closure and parameterization holds for large scales
- The scheme is scale-adaptive, but does not necessarily converge at LES resolution (i.e. mass flux concept may be inappropriate at scales of ~100m)
- ➔ Two convection calls are necessary
- Two "flavours" of the scheme: explicit stochastic or stochastic differential equations. The first needs lots of memory (keeps track of individual clouds), the second needs four additional prognostic variables (simple restart possible!)
- Tendencies are calculated using the normal convective closure, i.e. tendencies are entirely consistent with model state
- Perturbations depend on large-scale state e.g. no perturbations in non-convective areas, perturbations scaling with convection intensity in areas with convection.
- Mass flux limiters and resolution-dependent tuning parameters can (and must) be turned off for scheme to perform

Case study: 2013-05-05

Deutscher Wetterdienst Wetter und Klima aus einer Hand

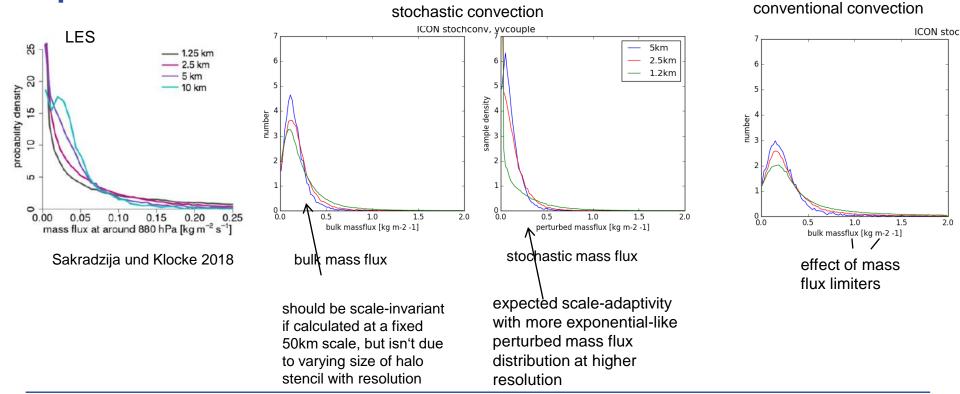
DWD



ICON LES reference

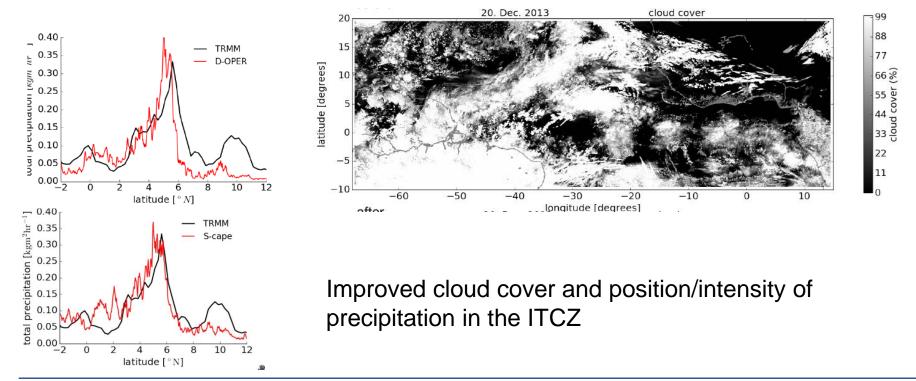
Stochastic convection scheme is able to

reproduce characteristics of LES



Stochastic convection scheme is able to

reproduce characteristics of LES



Works for maritime convection, Atlantic

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

Cooperation mit Mirjana Sakradzija, Fabian Senf (Daniel Klocke, Leonhard Scheck)

DWD

&nwp_phy_nml

lstoch_conv = .false.	! explicit stochastic scheme
lstoch_sde = .true.	! stochastic differential equations
lvvcouple = .false.	! use vertical velocity criterion to disallow shallow Cu parameterisation
<pre>lvv_shallow_deep = .false. ! use vv to differentiate between shallow/deep convection</pre>	
	(default: use cloud depth)
lrestune_off = .true.	! switch off resolution-dependent tuning in convection scheme
luse_poisson = .true.	! draw from Poisson distribution, default (alternative: Gauss)
/	
&io_nml	
inextra_3d = 2	! 3D extra variables
/	

To enable piggy-backing: set lpassive in mo_nwp_conv_interface.f90

- → Two "flavours" now quite consistent
- ➔ Testing so far largely in hindcast mode
- → SDE probably more suitable for use in EPS since the state of the stochastic convection can be saved for restart with only 4 prognostic variables (rather than having to save the entire explicit cloud ensemble state)
- → Currently performing further evaluation to assess performance

