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The ICON-EPS
operational suite ( since 18th January 2018 )

• 40 Member

• Global, 40 km   /   ICON-EU Nest, 20 km

• 00/12 UTC  +180h /  06/18UTC  +120h

• 03/09/15/21 UTC  +30h     Boundary Conditions for COSMO-D2-EPS

• Perturbing physics tuning parameters      fixed during the forecast

• Initial perturbations by global EDA (LETKF)

www.dwd.de

-> ICON database reference manual

M. Denhard, A. Rhodin, J. T. Ambadan, H. Anlauf, A. Fernandez del Rio, A. Cress, 

G. Zängl, H. Frank, T. Hanisch, C. Primo, 

F. Fundel, M. Buchhold, R. Potthast

ICON-EPS

http://www.dwd.de/
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Verification against

analysis

ECMWF-EPS

ECMWF-EPS (spread)

ICON-EPS vs LETKF

ICON-EPS vs LETKF (spread)

ICON-EPS
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 Spread / Skill =>  1

+24h

Z500

ICON-EPS

Verification against analysis states



Resolution of the Spread

ICON-EPS 4

Leutbecher, M., 2009:

Diagnosis of Ensemble Forecasting Systems, 

ECMWF

MAD := spread
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Linear Regression Model

Barker (1991) 

Scherrer et al. (2004) 

Grimit and Mass (2007) 

Eckel et al. (2012) 

van Schaevbroeck and Vannitsem (2016)
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ECMWF-EPS

ICON-EPS
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Verification against analysis states
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April 2019, NH, Synop

ECMWF-EPS

ICON-EPS

Verification against observations

Felix Fundel, based on feedback files

CRPS

Spread/Skill

RMSE
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Conclusion

 Analysis verification: 

 ICON-EPS is over-dispersive (spread/skill => 1)

 the spread has almost no resolution

 Verification with observations: 

 ICON-EPS is under-dispersive (spread/skill => 1)

 some more spread than ECMWF-EPS

Initial perturbations in the global ICON-EPS do not provide

useful estimates of the short range forecast error
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Differences between ICON-EPS and ECMWF-EPS

 Forecast in the ICON-EPS are not centered on the best analysis

(EnVar)

 Ensemble Data Assimilation (EDA)

Covariance Inflation in LETKF at DWD

 multiplicative factor (0.9 to 1.5) 

 additive Inflation (+0,25Bclim) 

 relaxation to the prior“ (0.75) Zhang et al. (2004) 

 SST random perturbations 1°K, correlations of 100km/1000km and 1 day

Randomly pertubed observations in EDA at ECMWF (4Dvar)

 Singular Vector initial perturbations
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Leutbecher and Lang (2014) QJRMS:

Can this happen, if perturbations in EDA and SPPT are of random nature and the

ensemble size is limited to 50?

 LETKF optimizes the relation between forecast - and observation error variances, such that the long

range forecast error of the ensemble mean is a minimum.

 LETKF cycles do not require growing perturbations, but it is important to keep a certain level of variance

in the analysis ensemble.   =>  variance inflation

 Hamill and Whitaker (2011): “What Constrains Spread Growth in Forecasts Initialized from Ensemble 

Kalman Filters?”

 Background error variances and

co-variances do not relate

to a specific set of perturbations

EDA schemes lack mechanisms

for systematically exploring the

error growth potential of the analysis ensemble perturbations.

„The reason d‘etre for singular vector perturbations would vanish, if the EDA, together with the

representation of model uncertainties, generated enough variance in the space spanned by

the leading singular vectors“

dx

dy

perturbationsvar(dy)

var(dx)
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Singular Vector (SV) perturbations

o Orthonormal system of perturbation vectors pinned to a state x in the state

space of the forecast model which describes the expansions and contractions

in the neighbourhood of x such that the 1st SV is in line with the fastest 

growing direction.

o Model Property only (no observations involved)

o Expensive !

J. Winkler, M. Denhard, B. Schmitt, 2020: Q J R Meteorol Soc. 2020;146:225–239.

Krylov Methods for Adjoint-free Singular Vector 

based perturbations

transient
trajectory

q1

q2

A

growing or

shrinking

errors



… by first order Taylor approximation of perturbation dynamics

q(t) =  L(t:0) q(0) , 

Growth rate of perturbations:

q(𝑡)
2

q(0)
2

=
( L q(0) )∗ L q(0)

q∗ 0 q 0

estimate Eigenvalues and Eigenvectors of the symmetric matrix

A = L∗ L

adjoint linear

… by estimation of A using a Krylov subspace of dimension m<<n

with the Lanczos algorithm

Approximate SV …

n x n

Lanczos-SV

0
0

m x m

The classical way to estimate SV:
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The Krylov subspace Km based on a n x n matrix A which acts on a vector q is defined by

Km (A, q)  =  span{ q, Aq, …, Am-1q }        m << n

Orthogonalisation of the Krylov vectors leads to Q = (q1, q2, …, qm),  which is an orthonormal basis of

Km (A, q). Projection of A on the Krylov subspace gives

Q*  A  Q     =   H

ICON-EPS

Arnoldi

(new!)

A   Q     =     Q H +   e H = hessenberg matrix

n x n
0

m x mm x m

A   hermitian => A* = ALanczos

A   Q     =     Q D +   e D =  tridiagonal matrix

n x n
0

0

m x mm x m
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Arnoldi-SV

ICON-EPS

Jens Winkler, Michael Denhard, Bernhard Schmitt

Approximate SV …

A qj ~ F( x + qj ) – F( x )

… by non-linear predictions from the orthonormal

basis vectors {qj} of Q,

… by avoiding the adjoint integration 

(not solving an „equivalent eigenvalue problem“) …

… by a Krylov Subspace of dimension m<<n,

(see QJRMS 2020;146:225–239)

… what requires the calculation of the Singular Vectors of H

and not its Eigenvectors.

[U; S; V ]   svd (H)

0

reference trajectory

Arnoldi

F
q1(0)

q2(0)

q1(t)

A

L

0
m x m
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final Perturbations P

[U; S; V ]   svd (Hm,m)

qj=1 chose initial perturbation vector ( =>  K1 (A, q) )

for j = 1 :  m do

end for loop

~ O( m2 x n )~ O( m x n )

w  LT L qj

aj   qj
T w

w  w −  qj aj − qj-1 bj-1

bj = |w|  

qj+1 =
w
bj

w  F( x + qj(0) ) – F( x )

for i = 1 : j  do

hi, j  qi
T w

w  w −  qi hi, j

end for

hj+1, j = |w|  

qj+1 =
w

hj+1, j

Lanczos Arnoldi

[l, V ] = eig(D)

P = Qn,m Vm,m

Gram-Schmidt 

orthogonalisation

Prediction step

Construction of

subspace model

extend Krylov space

( =>  Kj+1 (A, q) )



14ICON-EPS

Mean exponential one step growth rates

EIM-SV =   Evolved Increment Matrix singular vectors

BAP =   Block Arnoldi Perturbations

BAP-R =   random initial perturbation vector

BAP-R i.j =  i initial vectors and j iteration loops

(a) BAP-R i = 1 

(b) BAP-R i = 3 

(c) BAP-R i = 5

Fxxxxx
dt

dx
iiiii

i   1112
Lorenz96 with F = 8 and N=50
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 Experiments at ECMWF

 implement the Arnoldi algorithm in the IFS

 run 3 experiments

1. Reference with classical Lanczos SV

2. Arnoldi SV using the linear version of the IFS

3. Arnoldi SV using the full non-linear IFS model

 Arnoldi SV for the short range in the ICON-EPS

 Strong localisation of SV calculations

 Reduce computational costs by caclulating Block Arnoldi SV (BAP) based on 

the background ensemble from the LETKF cycle

(optimisation time Dt=6h)

 set perturbations by randomly combining the leading SV‘s

 determine subspace of growing perturbations

(norm independent, because different norms generate different basis systems but 

describe the same subspace)

Conclusions & Outlook

ICON-EPS
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Representing Model Error in Weather and Climate Prediction:   
Buizza (1999); Berner, Shutts, Leutbecher & Palmer (2009) 

„Stochasticity should be introduced only where

appropriate and not in every part of the model

physics, otherwise physical meaning is lost.“

SRNWP workshop on physical parametrisation and

ensemble prediction 18-20 June 2013, Madrid Spain

ICON-EPS
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Additional Material
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from   “Initial Uncertainties in the EPS (I)”, ECMWF Training Course, 2010,  by Martin Leutbecher

The structure of singular vectors depends on the choice of the norm, in 

particular the initial time norm.

 An enstrophy norm at initial time penalises perturbations with small spatial scales, 

the initial SVs are planetary-scale structures.

 A streamfunction variance norm at initial time penalises the large scales and 

favours sub-synoptic scale perturbations.

 With a total energy norm at initial time, the energy spectrum of the initial SVs is 

white and best matches the spectrum of analysis error estimates from analyses 

dierences (Palmer et al. 1998)

 The Hessian of the cost function of a variational assimilation scheme 
provides an estimate of the inverse of the analysis error covariance matrix. (see 

Barkmeijer et al. (1998, 1999), Lawrence et al. 2009). This metric can account for 

spatial correlations of the initial errors and for the inhomogeneity of the observing 

network. Disadvantage: computationally much more expensive.



Perturbation methods  Lorenz-63

 Random pert.
✚ 1st SV
✖ 2nd SV
 BV 

Initial point

After 1 time unit

by Linus Magnusson
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