ETH zürich

Modelling the mountain boundary layer: Does higher resolution improve model performance? Brigitta Goger The Mountain Boundary Layer (MoBL) is very heterogeneous and complex

Image from Serafin et al. (2018)

The mountain boundary layer is a challenge for NWP Models

Rotach and Zardi (2007)

What can we improve in model set-ups?

Land-use → Change LU dataset?

ICON - Icosahedral Nonhydrostatic Model Set-up

Model Set-up

- 4 domains, one-way nesting, 80 vertical levels
- BC: IFS-HRES (Δx=9 km)
- IC: COSMO-1 Analysis (∆x=1 km)
- Model runtime 24 hours, init 00 UTC
- Shallow convection off
- Sensitivity Runs:
 - 1. GLOBCOVER vs. CORINE Land-use
 - 2. 1D TKE vs. 3D Smagorinsky closure

5 case studies: Aug 4 | Aug 14 | Aug 30 | Sept 13 | Sept 14

Observations of mountain boundary layer processes

Inn Valley, Austrian Alps

i-Box Turbulence flux towers

CROSSINN Campaign (Summer/autumn 2019)

LIDAR, Temperature profilers, etc.

Adler et al. (2021)

Why the thermally-induced valley wind circulation?

- Well-known mountain boundary layer phenomenon
- Boundary layer processes dominate, ideal for investigation of impact of land surface representation and/or turbulence parameterizations
- Valley is already well-resolved at $\Delta x = 1 \text{ km} \rightarrow \text{wind structure as well}$?

03 UTC - stable boundary layer

03 UTC - stable boundary layer

09 UTC - convective boundary layer

09 UTC - convective boundary layer

15 UTC shear-driven boundary layer

15 UTC shear-driven boundary layer

20 UTC - evening transition

20 UTC - evening transition

ETH zürich

Wind structure is very heterogeneous

Model validation (5 cases) - Valley floor and slope

Model validation (5 cases) - Valley floor and slope

Impact of surface representation (land use datasets)

CORINE

- year: 2018
- Δx =100 m
- land cover classes: 44
- Europe only

GLOBCOVER

- year: 2009
- Δx =300 m
- land cover classes: 22
- Global dataset (advantage!)

Valley floor: Wind Structure and Sensible Heat Flux

Model validation - GLOBCOVER vs CORINE

Model validation - GLOBCOVER vs CORINE

Impact of turbulence scheme

adapted from Honnert et al. (2011)

Turbulence schemes in ICON

- 1. 1D TKE-based scheme (Mellor-Yamada, M. Raschendorfer)
- 2. 3D Smagorinsky closure (A. Dipankar)

Turbulence in complex terrain

3D effects are already important at $\Delta x = 1 \text{ km}$ (Goger et al., 2018, 2019)

Diurnal cycle at valley floor - vertically pointing Lidar vs. Model

- Overestimated wind speeds at the hectometric range
- Delayed evening transition in the 3D Smagorinsky scheme

Diurnal cycle at valley floor - vertically pointing Lidar vs. Model

- Overestimated wind speeds at the hectometric range
- Delayed evening transition in the 3D Smagorinsky scheme

ETH ZÜRICH Brigitta Goger | 100m PHY-EPS Workshop | DWD, Offenbach am Main, Germany

Evening transition - co-planar Lidar vs. Model

 3D Smagorinsky scheme at 125 m is the only setup which simulates a qualitatively similar vertical velocity structure

Evening transition - co-planar Lidar vs. Model

 3D Smagorinsky scheme at 125 m is the only setup which simulates a qualitatively similar vertical velocity structure

Valley boundary layer structure (09 UTC)

Sensible heat flux at the valley floor

higher sensible heat fluxes in the 3D Smagorinsky scheme during 9-12 h (convective boundary layer)

Delayed Evening Transition in the 3D Smagorinsky scheme

The source of the differences is in the different surface exchange schemes!

• Realistic surface exchange and land-use representation are essential for the hectometric scale

Summary – ICON at the hectometric range

Impact of...

- 1. Δx : vertical structure, slope station
- 2. Land-use: more realistic sensible heat fluxes, improves evening transition
- 3. Turbulence scheme: Changes are more related to the surface transfer scheme, detailed ABL representation at Δ x=125 m with LES closure

Preprint at arXiv Goger and Dipankar, 2023: "A critical evaluation of the added value of increased horizontal resolution in the hectometric range on the simulation of the mountain boundary layer" https://arxiv.org/abs/2311.05528

Overall Conlusions - Model validation at hectometric range

Does the model produce the right fields for the right reason?

- Well-resolved topography and land use are essential! \rightarrow surface fluxes
- Be aware of the length scale of the processes you want to simulate to give your model a "chance" to perform well
- · High-resolution simulations require high-resolution observations

Would you like to evaluate your model?

- CROSSINN Campaign (2019) available!
- TEAMx Pre-campaign (2021) available!
- TEAMx campaign (2025)

Thank you! Questions?

Simulations were performed within

References I

- Adler, B., et al., 2021: CROSSINN: A Field Experiment to Study the Three-Dimensional Flow Structure in the Inn Valley, Austria. **102 (1)**, E38 E60, doi:10.1175/BAMS-D-19-0283.1.
- Goger, B., M. W. Rotach, A. Gohm, O. Fuhrer, I. Stiperski, and A. A. M. Holtslag, 2018: The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley. *Boundary-Layer Meteorol*, **168** (1), 1–27, doi:10.1007/s10546-018-0341-y.
- Goger, B., M. W. Rotach, A. Gohm, I. Stiperski, O. Fuhrer, and G. de Morsier, 2019: A New Horizontal Length Scale for a Three-Dimensional Turbulence Parameterization in Mesoscale Atmospheric Modeling over Highly Complex Terrain. *J. Appl. Meteor. Climatol.*, **58** (9), 2087–2102, doi:10.1175/JAMC-D-18-0328.1.
- Honnert, R. and V. Masson, 2014: What is the smallest physically acceptable scale for 1D turbulence schemes? *Front. Earth Sci.*, **2 (27)**, 5, doi:10.3389/feart.2014.00027.
- Honnert, R., V. Masson, and F. Couvreux, 2011: A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale. J. Atmos. Sci., 68 (12), 3112–3131, doi:10.1175/JAS-D-11-061.1.
- Rotach, M. W. and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. *Q. J. R. Meteorol. Soc.*, **133 (625)**, 937–948, doi:10.1002/qj.71.

- Serafin, S., et al., 2018: Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain. *Atmosphere*, **9 (3)**, 102, doi:10.3390/atmos9030102.
- Wagner, J. S., A. Gohm, and M. W. Rotach, 2014: The Impact of Horizontal Model Grid Resolution on the Boundary Layer Structure over an Idealized Valley. *Mon. Wea. Rev.*, **142** (9), 3446–3465, doi:10.1175/MWR-D-14-00002.1.

Land use in ICON at 1 km (Extpar file)

0.8

ETH zürich

Brigitta Goger | 100m PHY-EPS Workshop | DWD, Offenbach am Main, Germany

Feb 5-7, 2024 31

10

Land use in ICON at 125 m (Extpar file)

Valley boundary layer structure (03 UTC)

Valley boundary layer structure (09 UTC)

ETH zürich

Valley boundary layer structure (15 UTC)

ETH zürich

Valley boundary layer structure (20 UTC)

ETH zürich

Feb 5-7, 2024 36

Averaged time series - valley floor

Averaged time series - slope

ETH ZÜRICH Brigitta Goger | 100m PHY-EPS Workshop | DWD, Offenbach am Main, Germany

Turbulence Structure - spatiotemporal analysis

ETH ZÜRICH Brigitta Goger | 100m PHY-EPS Workshop | DWD, Offenbach am Main, Germany