The Global-to-Regional ICON Digital Twin GLORI

High-resolution ensemble forecasts

100m PHY-EPS Workshop | 5-7 February 2024

Zahra Parsakhoo, Chiara Marsigli, Christoph Gebhardt

Alpine Twin Setup

Outline of the talk

\rightarrow The goal of the GLORI Digital Twin is to provide weather forecast for applications like floods, energy and health. It is based on the ICON model and the DACE data assimilation
\rightarrow Both data assimilation and forecasts are based on ensembles

\rightarrow This work focuses on the development on ensembles for the regional domains, at a resolution on $1 \mathrm{~km}->500 \mathrm{~m}$
\rightarrow We would like to adapt and further develop model perturbation for this scale

Overview of the experiments

Convection permitting ensemble experiments with 1 -moment /2-moment microphysics scheme, with

- only shallow convection parameterization,
- also deep convection parameterisation, but only gray zone tuning: Tiedtke-Bechtold convection scheme in 'grayzone deep convection' mode
> 1-moment microphysics scheme
> 2-moment microphysics scheme
Seifert and Beheng (2006): A two-moment microphysical parameterization for mixed-phase clouds was developed to improve the explicit representation of clouds and precipitation in mesoscale atmospheric models. The scheme predicts the evolution of mass as well as number densities of the five hydrometeor types cloud droplets, raindrops, cloud ice, snow and graupel.

Two-way nesting	
Horizontal grid resolution	2 km (ICON-D2), 1km (TeamX)
Upper boundary	22 km
Vertical levels	90
LAT-BC	Forecasts (ICON-EU)
Perturbed initial conditions	KENDA (ICON-D2-EPS)
Forecast duration	24 h starting on 2022062100
Forecast restart	6 h
Ensemble members	20
Microphysics	1 mom or 2mom
Turbulence	TURBDIFF
Land	TERRA
Standard	

Parent domain: ICON-D2

Configuration of the experiments

\checkmark 2mom microphysics scheme
\checkmark Latent Heat Nudging (LHN)

Experiments: A2 and B2

exp ID	Convection parameterization	Shallow convection parametrised	Deep convection partly parametrised (grayTuning)		
A2	$2 \mathrm{~km} \& 1 \mathrm{~km}$	2 km	1 km	2 km	1 km
B2	ON	\checkmark	\checkmark	X	X
	ON	X	\checkmark	\checkmark	X

Configuration of the experiments

\checkmark 2mom microphysics scheme
 \checkmark Latent Heat Nudging (LHN)

Experiments: A2 and B2

$\checkmark 1$ mom microphysics scheme X Latent Heat Nudging (LHN)

Experiments: A1 and B1

exp ID	Convection parameterization	Shallow convection parametrised	Deep convection partly parametrised (grayTuning)		
A2, A1	$2 \mathrm{~km} \& 1 \mathrm{~km}$	2 km	1 km	2 km	1 km
B2 , B1	ON	\checkmark	\checkmark	X	X

Radar data (total precipitation accumulated 00-18UTC)

Det. / 2mom @ 18 fc lead time

Radar data

- Both experiments forecast less rain than observation.
- Shallow-conv-only (\exp A2) forecasts relatively more rain than grayTuning (exp B2)
- Max. rain location forecast is shifted w.r.t. obs.

Exp. A2 (only-shallow-conv.) @ 18 fc lead time

Exp. B2 (conv.+grayTuning) @ 18 fc lead time

Ens. Mean \& Spread @ 18 fc lead time

Ensemble Spreäd

Det. @ 18 fc lead time
Comparing 1 mom \& 2 mom microphysics schemes

Verification against Synoptic data

- $2 m o m$ Experiments produce more realistic clouds (smaller bias)
- Shallow-conv-only forecasts precipation slightly better
Shallow-only

A1: shallow-only with 1 mom
A2: shallow-only with 2 mom
B1: conv.+grayTuning with 1 mom
B2: conv.+grayTuning with 2 mom

Det. / 2mom @ 18 fc lead time Comparing 2 km vs. 1 km
A2 Shallow Conv. only

2 km

Further analyses need to be done to investigate the performance of the model at 1 km res. locally

Summary

\rightarrow Shallow-conv-only experiment (A2, A1) forecast is slightly better in generating rain,
\rightarrow Experiments with $2 m o m$ microphysics produce more realistic clouds than 1 mom ,
\rightarrow However, 2 mom and 1 mom are not significantly different in generating rain,
\rightarrow In this case, there is no significant difference in precipitation between 1 km and 2 km in the south of Germany

Det. / 2mom@ 18 fc lead time | 1km

A2 Shallow Conv. only

Radar data

- Both experiments forecast less rain than observation.
- Only-shallow-Conv.-Par. (exp A2) forecast relatively more rain than conv.-par+grayTuning (exp B2).

筌

筌

Ens. Mean \& Spread @ 18 fc lead time \| 1 km

