

Using doppler lidar measurements to evaluate the representation of the boundary layer in highresolution numerical models

Natalie Theeuwes¹, Steven Knoop²

- 1. R&D Weather and climate modelling KNMI, the Netherlands
- 2. R&D Observations and data technology KNMI, the Netherlands

Motivation

- Evaluation of sub-km modelling
- Need for high density observations
- Towards turbulence-permitting modelling need for boundary-layer observations

Royal Netherlands Meteorological Institute

Clouds – case on 31 August 2023

Aqua satellite ~13:30 – worldview (<u>https://worldview.earthdata.nasa.gov/</u>) Royal Netherlands Meteorological Institute

Operational forecast @ 2.5 km

150-m forecast

Clouds – case on 31 August 2023

Aqua satellite ~13:30 – worldview (<u>https://worldview.earthdata.nasa.gov/</u>) Royal Netherlands Meteorological Institute

Search data

dne

DATA PORTAL

Location			
💡 Palaisea	u ×		Ŧ
Show all sit	es		
Date			
2024-02-03		~	\rightarrow
Product			
Select			Ŧ
Show expe	rimental p	roducts	

Instrument

Select Variable Select View in data search \rightarrow

Visualisations for 3 February 2024

Visualise data

Palaiseau CHM 15k ceilometer 🗹 (Volatile)

Non-screened attenuated backscatter coefficient

Palaiseau HATPRO microwave radiometer 🗹 (Volatile)

comparison view O

Cabauw, the Netherlands

Scanning Doppler lidar @ Cabauw

- > WindCube200S (Leosphere/Vaisala)
- > Remote sensing of wind (*but also aerosol and clouds*)
- > Installed April 2021
- > Maximum range 14 km (*but within boundary layer*)
- > Resolution: 25m/50m/75m/100m
- > 3D-scanning
 - Wind profiling (DBS)
 - Azimuth scans (PPI)
 - Elevation scans (RHI)
 - (Vertical) stare

Wind profiles

Doppler Beam Swing (DBS)

$$u = \frac{V_0 - V_{180}}{2\cos\theta}; v = \frac{V_{90} - V_{270}}{2\cos\theta}$$

horizontal wind speed = $\sqrt{u^2 + v^2}$

wind direction = $\arctan(v/u)$

vertical velocity = V_v

Vertical velocity

Vertical stare

- *Most* of the time
- Frequency 1 Hz
- Vertical resolution 75 or 100 m
- June 22 to August 21, 2022

LES vs NWP

- 16 July 2022
- Both models centred around Cabauw
- HARMONIE-AROME:
 - 90 levels
 - Δx=Δy=100 m
 - No shallow-convection scheme
 - Nested in 500 m HARMONIE, nested in 2.5 km HARMONIE
- Large eddy simulation (DALES)
 - 160 levels
 - Δx=Δy=19 m
 - Using dynamical tendencies from 2.5 km HARMONIE
 - Periodic boundary conditions

Large eddy simulation (DALES) (a) 19m resolution

Height (m)

HARMONIE-AROME (a) 100m resolution

Comparison of the vertical velocity

$$w^* = \left[\frac{g}{T_{\nu}} z_i \overline{w' \theta_{\nu'}}\right]^{1/3}$$

$$w^* = \left[\frac{g}{T_{\nu}} z_i \overline{w' \theta_{\nu'}}\right]^{1/3}$$

$$w^* = \left[\frac{g}{T_{\nu}} z_i \overline{w' \theta_{\nu'}}\right]^{1/3}$$

$$w^* = \left[\frac{g}{T_{\nu}} z_i \overline{w' \theta_{\nu'}}\right]^{1/3}$$

Royal Netherlands Meteorological Institute

Comparison of the vertical velocity

$$w^* = \left[\frac{g}{T_{\nu}} z_i \overline{w' \theta_{\nu'}}\right]^{1/3}$$

Scaled variance + add parameterised part

Distribution of vertical velocity

$$w^* = \left[\frac{g}{T_v} z_i \overline{w' \theta_{v'}}\right]^{1/3}$$

Does not always work

What's happening here?

Royal Netherlands Meteorological Institute

Velocity variance comparison

- Dates: 1 July 21 August 2022
- Lidar: σ_w^2 over 1 hr (temporal)
- DALES: σ_w^2 over domain (spatial)
- Simple PBLH detection: Mixing height where $\sigma_w^2 > 0.1$

Summary

- Lot of potential in doppler lidar measurements
- Combination with other remote sensing measurements
- LES valuable tool next to comparison of observations and NWP

Summary

- Lot of potential in doppler lidar measurements
- Combination with other remote sensing measurements
- LES valuable tool next to comparison of observations and NWP
- > Much more to explore!

