

Natural Environment Research Council

IĂI

University of Exeter

High-Fidelity Weather Forecasts in the Grey Zone of Convective Turbulence

Georgios Efstathiou Department of Mathematics and Statistics University of Exeter

University of Exeter: Dimitar Vlaykov, Bob Beare

M

University of Reading: Peter Clark, Bob Plant (Department of Meteorology)

The 'Terra-Incognita' of turbulence modelling

The 'Terra-Incognita' of turbulence modelling

- LES : Clear inertial subrange of turbulence
- **Grey zone** : No clear separation of scales

A new grey-zone definition (Beare, 2014)

The 'Terra-Incognita' of turbulence modelling

- Evolving turbulence scales
- Different in BL clouds
- Varying in time-space
- Partially resolved entrainment /detrainment

During the diurnal cycle the simulation enters multiple grey-zones

- Late spin-up
- Inaccurate representation of the BL

Late spin-up

Misrepresenting turbulence scales

- Missing shallow convection stage
- A moistier and cooler BL

No clear shallow Cu stage Misrepresenting turbulence scales

- 'Blobby' convection
- Non-monotonic behavior
- Lack of entrainment-mixing

'Blobby' deeper convection

Cloud scales in hectometric models

- Closure problem
- Very sensitive to subgrid turbulence length scales
- UM produces smaller storms
- Tuning not an option

(Hanley et al, 2015)

The prognostic turbulent transport equations

(Wyngaard 2004)

$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$$

Dynamic High-Order turbulence modelling

First-order closure

First-order closure + Leonard terms (Mixed Model)
(Level 2 + tilting terms)
Level 2.5/3

$$l_f \left(2 \frac{\partial \bar{u}_i}{\partial \bar{\theta}} - 2$$

$$f_i = -l^2 \left| \bar{S} \right| \frac{\partial \bar{\theta}}{\partial x_i}$$

 $f_i = -l^2 \left| \bar{S} \right| \left(\frac{\partial \bar{\theta}}{\partial x_i} - \delta_{i3} \gamma_{\theta} \right)$

 $f_{i} = -l^{2} \left| \bar{S} \right| \frac{\partial \bar{\theta}}{\partial x_{i}} + C \frac{(\gamma \Delta)^{2}}{12} \left(\frac{\partial \bar{u}_{i}}{\partial x} \frac{\partial \bar{\theta}}{\partial x} + \frac{\partial \bar{u}_{i}}{\partial y} \frac{\partial \bar{\theta}}{\partial y} \right) \qquad f_{i} = 3 \frac{l_{f}}{(2e)^{1/2}} \left(-f_{j} \frac{\partial \bar{u}_{i}}{\partial x_{j}} - \tau_{ij} \frac{\partial \bar{\theta}}{\partial x_{j}} + \delta_{i3} \frac{g}{\theta_{0}} \tau_{\theta \theta} \right)$

 $\gamma_{\theta}:$ countergradient term

Dynamic High-Order turbulence modelling

 γ_{θ} : countergradient term

Turbulence length scales across the grey zone

(Wyngaard 2004; Honnert 2011; Boutle et al. 2014)

Dissipation scale to diagnose the grey zone

Dynamic Turbulence Modelling

- Scale similarity between resolved and subgrid eddies
- Use smallest resolved fluxes to diagnose the subgrid scales

Dynamic Turbulence Modelling

Germano Identity

$$L_{ij} = \widetilde{\bar{u}_i \bar{u}_j} - \widetilde{\bar{u}}_i \widetilde{\bar{u}}_j = T_{ij}^{(\alpha \Delta)} - \widetilde{\tau}_{ij}$$

 au_{ij} : subgrid stress tensor (Turbulence model)

$$\tau_{ij} = -l^2 |\overline{S}| \overline{S}_{ij} f_m(\text{Ri})$$

$$h_i = -l_{\theta}^2 |\overline{S}| \frac{\partial \theta}{\partial x_i} f_h(\text{Ri})$$

Dynamic Turbulence Modelling

Germano Identity

$$L_{ij} = \widetilde{\bar{u}_i \bar{u}_j} - \widetilde{\bar{u}}_i \widetilde{\bar{u}}_j = T_{ij}^{(\alpha \Delta)} - \widetilde{\tau}_{ij}$$

 au_{ij} : subgrid stress tensor (Turbulence model)

$$\tau_{ij} = -l^2 \overline{S} \overline{S}_{ij} f_m(\text{Ri})$$
$$h_i = -l^2_{\theta} \overline{S} \overline{S} \overline{S}_{ij} f_h(\text{Ri})$$

Hydrometeor evolution $(q_l + q_s + q_i + q_g)$

MONC LES

LBA Case study (BL representation)

Dry CBL (t = 1.5 h)

- SMAG BL lacks nonlocal mixing
- Lack of entrainment restricts ventilation of vapour

Turbulent Diffusivity (where q_{hydro}.ge.10e⁻⁵)

- LocASD-SMAG maintain strong K_M in cloud
- LocASD clips K_H negative values in cloud (counter gradient fluxes)

(Efstathiou et al. 2024)

Summary

- The grey zone might stalling further improvement of NWP at hectometric scales
- Fundamental assumptions behind conventional schemes are no longer valid
- Full transport equations Closure length scales not known
- Dynamic approach to derive closure parameters
 - Adapts to the evolving resolved flow field in time and space
 - Dynamic Smagorinsky relaxes the need for a clear inertial subrange
 - Ability to better represent the BL and cloud development in the near-grey-zone
 - Usability limit when the flow is poorly resolved (deep grey zone)
- Examine impact of extra production terms in connection to the dynamically derived closure parameters