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The ‘Terra-Incognita’ of turbulence modellingJournal of Geophysical Research: Atmospheres 10.1029/2019JD030317

Figure 3. Schematic description of simulation regimes as a function of Δ∕l, where Δ is the filter scale and l is the scale
of the energy containing structures. Also shown is an estimate of typical model grid spacings. The horizontal cross
sections are taken from Figure 2.

Navier-Stokes equations subject to an averaging or filtering operation. The mean quantities after filtering
(𝑓 ) are often interpreted as representing the most probable state of the atmosphere assuming that the distri-
bution of possible subfilter states is reasonably regular. Turbulence parameterizations for such models are
often based on an ensemble average (Mellor & Yamada, 1982): that is, an average over an infinite number
of possible independent realizations of the flow. More generally, the averaging operator is assumed to fulfill
Reynolds assumption (Stull, 1988; e.g., g𝑓 = ḡ𝑓 , where f and g are functions and 𝑓 denotes the average of f ).

An alternative to ensemble averaging is to consider the filtering to be a time or space average. This approach
is taken, for instance, when researchers average LES output data in order to characterize turbulent statistics
(Couvreux et al., 2010; Siebesma & Cuijpers, 1995; see also sections 2.1 and 2.4) and to develop mesoscale
parameterizations (e.g., Rio et al., 2010). If a spatial averaging scale is sufficiently large as to sample many
eddies then there is often no practical difference between ensemble and spatial averaging. However, for a
grid scale that is hectometric the form of the assumed averaging operator becomes crucial.

Using a space-time filter at scales of the gray zone of turbulence, model output fields should become turbu-
lent, and partially resolved turbulent structures appear (cf. Figure 2). Such outputs represent one possible
state of the atmosphere on the filtered scales. Real-scale experimental data represent only one possible state

Figure 4. Functions showing the partition of the total TKE etotal into
resolved (eres) and subgrid (esbg) parts, as a function of Δx∕(zi + zc)
(from Honnert et al., 2011): eres∕etotal is in warm colors and esbg∕etotal is in
cold colors. A similarity relation was found to hold in the CBL at altitudes z
between 0.05zi and 0.85zi.

of the atmosphere also, and this would likely differ from the model state
even if one were to have a perfect model.

2.3. Transition From Subgrid to Resolved Turbulence
As discussed above, turbulence in the CBL gray zone is partially resolved.
Using LES data, the partitioning of turbulent energy into that which is
subfilter and that which is resolved can be computed for a given filter. The
partition will depend upon the filter scale and the size of the turbulent
structures. Honnert et al. (2011) considered such partitions for TKE and
turbulent fluxes across the transition from the LES converging regime to
the mesoscale limit in cases of free dry and cloudy CBLs. The partition
function was scaled using the similarity parameter Δx∕(zi + zc) with Δx
being the coarse-graining filter scale. Figure 4 shows such a transition
curve for the TKE. The approach has also been extended to other types of
ABL (Shin & Hong, 2013).

The transition curve for the partitioning of turbulent quantities across
scales has become widely used as a reference tool and a test bed for
the development and testing of parameterizations for the CBL gray zone
(Boutle et al., 2014; Efstathiou & Beare, 2015; Ito et al., 2015; Malavelle
et al., 2014; Shin & Hong, 2015; Shin & Dudhia, 2016).

Honnert et al. (2011) evaluated the behavior of a state-of-the-art
mesoscale model (Méso-NH) in the CBL by comparing simulations at
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The ‘Terra-Incognita’ of turbulence modelling

Partially-Resolved Boundary-Layer Turbulence Simulations

the second moment of the TKE power spectrum, with the aim of separating the effects of
different subgrid models and advection schemes.

2 Method

Figure 1 illustrates our approach of using the TKE power spectrum (Se) to define the grey zone.
From that spectrum we identify three key length scales. The peak of the spectrum is given by lp
and is typically controlled by the largest eddies of the turbulence, for example the boundary-
layer depth. For a horizontal wavenumber (k) above that of the largest eddies, the ideal
spectrum follows the inertial sub-range and varies as the well-established k−5/3 Kolmogorov
law (Davidson 2004). Above a certain wavenumber, the spectrum of the simulation will
typically have more dissipation than that associated with the Kolmogorov law. In the vicinity
of the dissipation scale (ld), above wavenumber 2π/ ld, the simulation’s spectrum deviates
increasingly from the ideal k−5/3 spectrum. Note that ld does not need to lie at the turning
point from the ideal spectrum as in the schematic; however it does need to change in response
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Fig. 1 A schematic showing the TKE spectrum (Se) against horizontal wavenumber (k) for a simulation (black
line) and an ideal k−5/3 law (grey line). The length-scales annotated are: the spectral peak (lp), the dissipation
length scale (ld) and the filter width ("f ). Illustrations of these are given for: a a large-eddy simulation, b a
simulation in the grey zone
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§ LES : Clear inertial subrange of turbulence
§ Grey zone : No clear separation of scales

(Beare, 2014)

A new grey-zone definition (Beare, 2014)
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The ‘Terra-Incognita’ of turbulence modelling

§ Evolving turbulence scales
§ Different in BL – clouds
§ Varying in time-space 
§ Partially resolved 
    entrainment /detrainment

During the diurnal cycle the simulation enters multiple grey-zones

zi



Convection evolution in hectometric models

Late spin-up

§ Late spin-up
§ Inaccurate representation of the BL 

Misrepresenting turbulence scales 

zi



Convection evolution in hectometric models

No clear shallow Cu stage

§ Missing shallow convection stage
§ A moistier and cooler BL

Misrepresenting turbulence scales 

zi



Convection evolution in hectometric models

‘Blobby’ deeper convection

§ ‘Blobby’ convection
§ Non-monotonic behavior
§ Lack of entrainment-mixing

zi



Cloud scales in hectometric models

(Hanley et al, 2015)

§ Closure problem
§ Very sensitive to subgrid 

turbulence length scales 
§ UM produces smaller storms
§ Tuning not an option 

Cloud Morphology (Radar - Unified Model Comparison)
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The prognostic turbulent transport equations

§ Subfilter θ flux (fi) conservation equation
Gradient 
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Dynamic High-Order turbulence modelling

First-order closure
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Dynamic High-Order turbulence modelling
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∂ūi
∂x

∂θ̄

∂x
+

∂ūi
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Turbulence length scales across the grey zone

Δ

l

LES

Mesoscale (RANS)

(l  ~ Δ)

(l  ~ Λ)

(Wyngaard 2004; Honnert 2011; Boutle et al. 2014)



Convection evolution in hectometric models

§ Dissipation scale to diagnose the grey zone

(Honnert et al. 2020)

zi

zi
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Dynamic Turbulence Modelling

§ Scale similarity between resolved 
and subgrid eddies

§ Use smallest resolved fluxes to 
diagnose the subgrid scales 



Dynamic Turbulence Modelling
Germano Identity

τij : subgrid stress tensor 
  (Turbulence model)

˜

Lij = ˜̄uiūj − ˜̄ui ˜̄ujLij = T(αΔ)
ij − τ̃ij

τij = −l2|S|Sijfm(Ri)

hi = −l2θ|S|
∂θ

∂xi
fh(Ri)



Dynamic Turbulence Modelling
Germano Identity
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LBA Case study

UM SMAG UM LocASD

Hydrometeor evolution

MONC LES

(ql + qs + qi + qg)



LBA Case study
Deep Cu (t = 6 h)

qs



LBA Case study
Shallow Cu (t = 3 h)

Δx = 400 m

Δx = 200 m

Δx = 800 m

SMAG LocASD

Liquid water 
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Cloud base
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LBA Case study (BL representation) 
Dry CBL (t = 1.5 h)

§ SMAG BL lacks non-
local mixing

§ Lack of entrainment 
restricts ventilation of 
vapour



LBA Case study

Shallow Cu (t = 3.0 h) Deep Cu (t = 6 h)Dry CBL (t = 1.5 h)



LBA Case study
Dynamic length scales Deep Cu (t = 6 h)

Momentum Scalar

z 
(m

)



LBA Case study

Turbulent Diffusivity
(where qhydro.ge.10e-5)

Deep Cu (t = 6 h)

§ LocASD-SMAG maintain 
strong KM in cloud

§ LocASD clips KH negative 
values in cloud (counter 
gradient fluxes) 



Countergradient fluxes - Leonard terms

Deep Cu

MONC LBA Simulations 
Δx = 400 m

Coarse-grained LES
SMAG

Dyn SMAG

Dyn SMAG + Leonard

(Efstathiou et al. 2024)

τθ3 Leonard terms



Summary

§ The grey zone might stalling further improvement of NWP at hectometric scales
§ Fundamental assumptions behind conventional schemes are no longer valid
§ Full transport equations - Closure length scales not known

§ Dynamic approach to derive closure parameters
§ Adapts to the evolving resolved flow field in time and space
§ Dynamic Smagorinsky relaxes the need for a clear inertial subrange
§ Ability to better represent the BL and cloud development in the near-grey-zone
§ Usability limit when the flow is poorly resolved (deep grey zone)

§ Examine impact of extra production terms in connection to the dynamically derived 
closure parameters


