Adapting the convection scheme for the grey zone

Wim de Rooy, Natalie Theeuwes, Pier Siebesma, Louise Nuijens, Alessandro Savazzi, Charlotte Raven, Emily Gleeson

Fundamental question: Processes become partly resolved, what to do?

Among relevant schemes:

• convection

≥ 500m

cloud

Total turbulent transport (convection and turbulence) in the grey zone

h+h_c is an estimate of the relevant (dominant) scales

Boundary layer height h or h+h_c as an estimate of the scales

Harmonie-Arome: h or $h+h_c$ Very simple: Termination height moist and/or dry updraft. Moist \leftrightarrow dry \rightarrow New possibilities! Decrease Mass flux with $f(\Delta x/h)$ (Lancz et al. 2018) But Separately for dry (h) and moist (h+h_c)

Simple shallow convection case with HARMONIE-AROME

500x500m² resolution total cloud cover

Satellite

2.5km run (conv. on)

1.0

0.8

0.6

0.4

0.2

5

• First impression: scale aware scheme behaves as expected: In-between convection on and off

EUREC4A Field campaign: Investigate cloud organization

Gravel

EUREC⁴A, the Field Study, aims at advancing understanding of the interplay between clouds, convection and circulation and their role in climate change. It is a European initiative that, together with a US contribution through a ATOMIC, constitutes a cap-stone study in support of the World Climate Research Programme's Grand Science

Flowers

EUREC⁴A, the Field Study, aims at advancing understanding of the interplay between clouds, convection and circulation and their role in climate change. It is a European initiative that, together with a US contribution through > ATOMIC, constitutes a cap-stone study in support of the World Climate Research Programme's Grand Science

EUREC⁴A, the Field Study, aims at advancing understanding of the interplay between clouds, convection and circulation and their role in climate change. It is a European terefa eu/#carousel-example-generic US contribution through > ATOMIC, constitutes a cap-stone study in support of the World Climate Research Programme's Grand Science

LES coarse graining for EUREC4A (containing all kind of conditions)

group 1 unorganized
group 2 in-between
group 3 (very) organized

Boundary layer height often not a good indicator for scale size!

Meso-scale organization Horizontal scales

What to do? Precipitation \leftrightarrow Organization Chicken \leftrightarrow Egg

Alessandro Savazzi et al., 2023 JAS: Momentum Transport in Organized Shallow Cumulus Convection

Satellite

Vertical (resolved) velocity at 750m height

Another illustration h is not always suitable: Harmonie-Arome at **2.5km** resolution: open cell convection case.

PBL height is small compared to Δx but still at this resolution and with default configuration signs of resolved convection !

Harmonie-Arome at 2.5km resolution: open cell convection case.

Satellite

cloud cover 0.8 0.6 0.4 U 0.2 0.0

Some organization in cloud structures but too little and related to that underestimation of precipitation

Model at 2.5km starts to resolve convection (indicated by resolved vertical velocity) but too little \rightarrow continuous leaking of instability by convection scheme

Khain et al., AR 2021 introduced shut down convection parameterization if w>w_threshold:

Implementation: In every grid point shut down convection where |w|>w_threshold =f(grid size)

Impact of shutting down convection scheme if |w| > wthreshold at 2.5km

satellite cloud

Clearly more organization with w-threshold

Also, more precipitation, in better agreement with radar (not shown)

Impact of w-threshold at 500m. Simple shallow convection case

scale aware MF + Wthresh

no MF

noshallowMF_LINEAR_SURFNEBUL.TOTALE_2022071600_forecast+0008

0.8

0.0 TOTALI

SURFNEBUL

0.4

0.2

0.0

Unrealistic patterns without convection scheme Clearly visible at e.g. +8h forecast.

Absent with other options

Suitable value for w_threshold?

- Should depend on grid size
- Guideline by LES? (many cases)

Conditional sampling in LES: Mean convective w

Charlotte Raven

Long term verification runs at 750m and 2.5km with convection scheme options

- Shutting down shallow convection completely is worst option
- W-threshold option reveals underestimation non-local mixing in dry PBL (most clearly at 2.5km)

If w > w_threshold: dry and moist convection are shut down.

But should we shut down dry convection based on w_threshold?

Dry convection is associated with smaller scales → only turn off moist convection (w_thresholdmoist option)

Emily Gleeson

Open cell case at 2.5km including wthreshold_moist option

Wthreshold_moist (only moist updraft are shut down) in-between ref and wthreshold

Impact dry updraft is increased CIN and building up moisture near inversion

Movies open cell case 2.5km resolution: Beginning, increased stratus with wthreshold_moist

Discussion, outlook

- Work in progress!
- LES are an important tool to develop scale-awareness in our models
- Shutting down shallow convection for resolutions ≥ 500m seems sub-optimal
- PBL height often not suitable as measure of scales. Honnert type of scale aware convection scheme is not enough.
- W-threshold(moist) is a promising approach to support model to build up resolved convection. If the model starts build up convection, it should!
 Exclude stratosphere diagnosing w>w_threshold
- Separate treatment dry and moist convection provides more options.

Discussion, outlook

- No shallow convection at too low resolution: Model builds up huge instability (no means to consume it) and than "explodes" → artificial structures, too heavy precipitation
- Shallow convection at too high resolution: Continuous leaking of instability. Model cannot build up resolved convection itself (enough).
- Is there still a need for scale aware convection (type Honnert) if we use w_threshold? Yes: Scale aware active before w_threshold (influences build up instability).

Danke, fragen?

www.cloudappreciationsociety.org