

High Resolution Modelling of Storm Events over the complex Alpine Terrain

Daniela Littmann¹, Alberto De Lozar¹, Chiara Marsigli^{1,2}, and Linda Schlemmer¹

¹ Deutscher Wetterdienst (DWD), Offenbach am Main, Germany

² Arpae Emilia-Romagna, Bologna, Italy

6 February 2024

- 1. Introduction
- 2. Model Setup
- 3. Experiments:
 - 3.1. Control Experiments3.2. Turbulence Test
- 4. Summary

1. Introduction

1. Mountain Boundary Layer

Figure 1: Schematically shown process of orographic uplift of moist air advection at rainy slope and sinking dry air mass at lee (Sarafin 2018).

Global-to-Regional-ICON Digital Twin (GLORI)

global-to-regional shortrange high resolution **Digital Twin** configurable on-demand based on the prediction capability of the **ICON** earth system model and the Data Assimilation Coding Environment DACE

0

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

2. Model Setup

- Fully compressible nonhydrostatic core
- Unified model system (climate & numerical weather prediction)
- From low resolution (~80 km) to high-resolution (~75 m)

No pole problem

2. The current Model Domain

TEA Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains -Programme and experiment Figure: Operational ICON-D2 domain, including a Nest over the Alps, the TEAMx domain ICON-CH1.

9

Figure 2: Meteorological stations used for the comparison to the model results. The colors show the mean error (ME) of the model for the temperature at 2m height above ground.

Model top	22 km				
Vertical level	65 full (66 half)				
Hor. grid scale	2 km, 1 km, 500 m*				
LATBC (at start)	Analysis (ICON- EU)				
Forecast restart	12 h				
Duration	36 h				
2-way-Nesting					
Model version 2.6.6					
* Not yet included in GLORI					

Parametrization

Orographic gravity wave drag ¹
double-moment ²
Turbdiff (TKE closure) ³
Turbtran (TKE extension) ³
TERRA ⁴

- Lott an Miller (1997) 1.
- 2. Seifert and Beheng (2006)
- З. Mellor and Yamada (1982), and Raschendorfer (2001)
- 4. Schrodin and Heise (2001), Schulz et al. (2016), and Mironov et al. (2012)

3. Experiments

3.1. Control Experiment

Time

3.1. Controll Experiment: Valley stations

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

Mean Error for May 2022 - ICON-D2 vs. ICON-CH1

Why are the results not improving?

 <u>Hypothesis I:</u> 3D terms are missing and become important by increasing the grid resolution

 <u>Hypothesis II:</u> Turbulence is now partly resolved and the parametrized turbulence need to be tuned down

Why are the results not improving?

 <u>Hypothesis I:</u> 3D terms are missing and become important by increasing the grid resolution

 <u>Hypothesis II:</u> Turbulence is now partly resolved and the parametrized turbulence need to be tuned down

Horizontal shear term (TKE source term):

$$q_{sh} = l_h^2 \sqrt{C^3 \alpha_m} \left[\sqrt{\hat{q}_{ij}^2 + \hat{q}_{ij-}^2 + c_1^2 \hat{q}_{ij+}^2} - c_1 \hat{q}_{ij+} \right]^s$$

$$C = 0.5$$

$$\alpha_m = 16.6$$

Boundary-Layer Meteorol (2018) 168:1-27 https://doi.org/10.1007/s10546-018-0341-y

RESEARCH ARTICLE

The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

Brigitta Goger¹ · Mathias W. Rotach¹ · Alexander Gohm¹ · Oliver Fuhrer² · Ivana Stiperski¹ · Albert A. M. Holtslag³

$$\begin{aligned} \hat{q}_{ij} &= \left(\partial_j \hat{u}_i + \partial_i \hat{u}_j\right) \\ \hat{q}_{ij-} &= \left(\partial_i \hat{u}_i - \partial_j \hat{u}_j\right) \\ \hat{q}_{ij+} &= \left(\partial_i \hat{u}_i + \partial_j \hat{u}_j\right) \end{aligned}$$

<u>Symbols:</u>

2

() CrossMark

Stability factor

 α_m Momentum variance factor

 α_{hs} Length scale factor for hori. shear

- l_h Effective horizontal length scale
- Δx Horizontal grid spacing
- *Ri* Gradient Richardson number
- $f(q^2)$ TKE correction function

3.2. Turbulence Test - Hypothesis I

Mean Error for May 2022 – ICON-CH1

ightarrow The adjustments in the horizontal shear term has no significant impact on ICON-CH1

Why are the results not improving?

- <u>Hypothesis I:</u> 3D terms are missing and become important by increasing the grid resolution
 - \rightarrow Horizontal shear term has no significant impact on ICON-CH1
- <u>Hypothesis II:</u> Turbulence is now partly resolved and the parametrized turbulence need to be tuned down

3.2. Turbulence Test - Hypothesis II

Vertical wind speed at 10m [ms⁻¹]

3.2. Turbulence Test - Hypothesis II

Calculated energy spectra from ICON-D2 and ICON-D1 for the nested domain

Credit: Philipp Zschenderlein

With increasing horizontal resolution, more small-scale turbulence is resolved and the turbulent mixing length scale, as well as the minimum turbulent diffusion coefficient for heat need to be adjusted:

Turbulent diffusion coefficient:

$$K_h = l S_h \sqrt{2e}$$

Turbulent mixing length scale:

 $l = \frac{\kappa Z}{1 + \frac{\kappa Z}{l_0}} \qquad \begin{array}{l} Blackadar\\ (1962)\end{array}$

<u>Symbols:</u>

6.2.2024

 K_h : Turb. diff. coeff., l: Turb. mix. length scale, S_h : Stability function, e: Turb. kin. Engergy, z: Height, κ : von Karman constant, l_0 : Asympt. length scale

<u>Table 1:</u> Overview of the namelist switches set by default (control) and the adjusted settings of the asymptotic length scale parameter (turlen), as well as the minimum value of the turbulent exchange coefficient (khmin) and without any convection scheme (noconv).

Parameter	control	turlen	khmin	noconv
l ₀ (m)	500	300	500	500
K_{h_min}	0.75	0.75	0.01	0.75
convection	shallow	shallow	shallow	none

3.2. Turbulence Exchange - Hypothesis II Deutscher Wetter und Klima aus einer Hand

Mean Error for May 2022 – ICON-CH1

 \rightarrow Low sensitivity of the turbulent mixing length scale

23

DWD

Bonus

Deutscher Wetterdienst

Frequency Bias for May 2022 – ICON-CH1

 \rightarrow Switching of the convection schemes does not improve the precipitation

4. Summary

4. Summary

- With increasing resolution small-scale processes are getting resolved
 → Bias of the near surface temperature and of wind speed increase
- Changes in the TKE length scale parameter have no significant impact
- Using no convection scheme shows larger bias in the precipitation
 → Low sensitivity of the model
- More suficicated changes in horizontal shear needed?
 Implementation of Leonard-Term?

Appendix

turbulent velocity scale $q := \sqrt{2e}$.

44.00N

15.00E

CLCL [%]

0

10.50E

12.00E

13.50E

A.2. Cloud cover (800 hPa) in ICON-CH1

7.50E

6.00E

9.00E

5. May 2022 – 20 h

