Measuring the value of precipitation forecasts in hi-res NWP

with a user-oriented score

François Bouttier and Hugo Marchal, Météo-France/CNRM NHESS preprint : https://egusphere.copernicus.org/preprints/2024/egusphere-2023-3111/

- deterministic Arome-France, dx=1.4km (+ ongoing work at dx=500m)
- 17-member Arome EPS ensemble dx=1.4km, range 3-48 h
- vs obs: 1-km precip analyses (radar + gauges)

Method : ensemble post-processing

- → *impact model :* select space & time scales + weight false alarms vs non-detections
- → application : rain threshold exceedance:
- convert ensemble output into binary forecasts using calibrated neighbourhood & probability thresholding
- score for high-impact events: F2 (allows ~4 x more FAs than NDs)

DWD hecto workshop, 5-7 Feb 2024

Drawbacks of usual NWP scores

- deterministic HSS, CSI, ETS, ND, FA... : require tuning a quantile or prob threshold to handle EPS
- CRPS, Brier, etc : too abstract for most end users, do not indicate which prob thresholds to use
- ROC, Economic Value : for users that calibrate the forecasts themselves. Collapse for rare events.

Evaluation metric used here :

- 1. max-neighbourhood "NMEP" post-processing of ensemble members (+dressing)
- 2. objective optimization of Popt prob threshold on past forecast archive : "optimal forecast scenario"
- 3. forecast scores vs full resolution observations using ETS and F2 metrics

Popt Probability threshold optimization

- (neighbourhood radius is optimized in parallel)
- includes ensemble calibration

Results on heavy rain events : (6h accum > 40mm)

- F2-score is optimum at radius ~30km and prob Popt ~ 0.18
- quite stable wrt intensity so equivalent to using 82%-quantile as reference scenario
- EPS is a bit better than deterministic models (when using near-optimum settings)

BUT Popt is quite different with light rain or other user objectives (ex. BSS, CSI, HSS, ETS)

¢

ΜΕΤΕΟ

FRANCE

scores=f(ProbThreshold) bases=2023060121:2023063021:24 steps=9:21:12 N17R30D20T40K00-prec6 ref(dashed):aro antilprec6U30

raw ProbThreshold

Sensitivity study of Popt tuning and implied forecast performance

Case of 20 juin 2023 (frontal)

Case of 22 May 2023 (weakly forced thunderstorms)

Case of 16 Sep 2023 (orographically forced heavy Mediterranean event)

The globally optimum neighbourhood is too large for this event type -> need adaptive neighbourhood post-processing Arome deterministic obs F2-optimal quantile for heavy rain Antilope obs rr6h end=202309160600 mb00 prec6 202309152100+0900 PE prec6(mm) 202309152100+0900 Q82R30(PE) 4 (mm) – 900.0 (mm) - 900.0 000 300.0 300.0 300.0 200.0 200.0 00.0 150.0 150.0 150.0 100.0 00 0 100.0 75.0 75.0 50.0 50.0 50.0 30.0 30.0 30.0 20.0 20.0 20.0 10.0 10.0 10.0 5.0 5.0 2.0 2.0 1.0 0.5 0.1 0.1 0.0 0.8 8.0 0.6 ... 0.8 . 0.2 0.4

Next steps

Target :

- apply to a 500-m AROME ensemble for nowcasting
- 0-6h range, updated hourly
- emphasis on heavy thunderstorm and flash flood events

Problems :

- demonstrate value over a larger, lower-resolution ensemble
- need assimilation to fit obs/clouds better
- too expensive ! Use some AI downscaler to emulate the 500-m model ?

