Status report of COSMO–LEPS: operational implementation

Andrea Montani

ARPA-SMR Regional Meteorological Service, Bologna, Italy

COSMO Workshop, Geneve, 26 – 28 May 2003

COSMO-LEPS (developed by ARPA-SMR)

What is it?

- It is a Limited—area Ensemble Prediction System (LEPS), based on Lokal Modell and developed within COSMO (COnsortium for Small—scale MOdelling, which includes Germany, Greece, Italy, Poland and Switzerland).

• Why?

- The horizontal resolution of global–model ensemble forecast systems is limited by computer time constaints and does not allow a detailed description of mesoscale and orographic–related processes.
- The forecast of heavy precipitation events is often inaccurate (in terms of both location and intensity) after the short–range;

COSMO-LEPS project

⇒ combination of the advantages of global–model ensembles with the high resolution details gained by the LAMs, so as to identify the possible occurrence of **intense** and **localised** weather events (heavy rainfall, strong winds, temperature anomalies, snowfall, . . .);

generation of COSMO-LEPS in order to improve the short to medium-range forecast (48 $h < \Delta t < 120~h$) of the so-called "severe weather events".

Methodology

COSMO-LEPS super-ensemble

- \Rightarrow use three consecutive (12-hour lagged) ECMWF ensembles so as to generate a **superensemble** with 153 members, which can explore a wider part of the "unstable phase space"; \Rightarrow 12-00-12 configuration ("YOUNGEST EPS" ready by 1 UTC); **LM runs end by 4 UTC**;
- \Rightarrow COSMO-LEPS products get to weather services in time to be used (up to day N + 4).

Ensemble-size reduction technique

COSMO-LEPS operational suite @ ECMWF (since 4/11/2002)

```
get_pl_00
                           get_pl_12
                 pre
                           cluster
                           lokal_member_1
                                                    retrieve_ec \rightarrow int2lm \rightarrow align_date \rightarrow lokal
                           lokal_member_2
                                                    retrieve_ec \rightarrow int2lm \rightarrow align_date \rightarrow lokal
cosmoleps
                           lokal_member_3
                                                    retrieve_ec \rightarrow int2lm \rightarrow align_date \rightarrow lokal
                 lokal
                           lokal_member_4
                                                    retrieve_ec \rightarrow int2lm \rightarrow align_date \rightarrow lokal
                           lokal_member_5
                                                    retrieve_ec \rightarrow int2lm \rightarrow align_date \rightarrow lokal
                           post_proc_lokal
                           archive_ecfs
                 post
                           send
                                                    send_to_arpaemr
                                                    send_to_dwd
```

.

COSMO-LEPS domain

- $\Delta x \simeq 10$ km (306 \times 258 = 78948 grid points); 32 vertical levels; time-step: 60 sec;
- forecast length: 120 h; elapsed time \approx 58 min (84 "tasks" of ECMWF IBM);
- \forall LM run, total CPU time \approx 120h.

LM output

probabilistic products:

- prob of 24h rainfall exceeding 20, 50, 100, 150 mm (fc +24-48, 48-72, 72-96, 96-120);
- prob of 72h rainfall exceeding 50, 100, 150, 250 mm (fc +0-72, 24-96, 48-120);
- prob of 24h snowfall exceeding 1, 5, 10, 20 "cm" (fc +24-48, 48-72, 72-96, 96-120);
- prob of UVmax_{10m} in 24h above 10, 15, 20, 25 m/s (fc +24-48, 48-72, 72-96, 96-120);
- prob of $Tmax_{2m}$ in 24h above 20, 30, 35, 40 0 C (fc +18-42, 42-66, 66-90, 90-114);
- prob of $Tmin_{2m}$ in 24h below -10, -5, 0, +5 0 C (fc +18-42, 42-66, 66-90, 90-114);

deterministic products; for each LM run:

- rainfall (fc +24-48, 48-72, 72-96, 96-120);
- MSLP, Z700, T850 (fc+36; fc+60, fc+84, fc+108).
- \rightarrow **meteograms** (T_{2m} , tp, 10m wind speed).

COSMO-LEPS meteogram for Geneve

LM archiving

Per the time-being, COSMO-LEPS products are archived on ECFS (ECMWF File System);

in June, migration to MARS (\rightarrow ECMWF GRIBEX will be modified).

Per each LM run, the following fields are archived:

$$\mathsf{Tmax}_{2m}$$
 (p6, p12, p18, . . . , p120)

$$Tmin_{2m}$$
 (p6, p12, p18, . . . , p120)

$$UVmax_{10m}$$
 (p6, p12, p18, . . . , p120)

Case study: flood event in Northern Italy

Observed precipitation from 24/11 12UTC to 25/11/2002 12UTC

COSMO-LEPS probability maps: $tp_{24h} > 100$ mm; VT: 25/11 12UTC

Future developments

- 2 test suites are running: 10-member cluster analysis (using 3 EPS); • 5-member cluster analysis using 2 EPS (102 members); - prepare new probabilistic products (CAPE, instability indices, . . .); - post-process and disseminate also model levels (no more disk space problem at ECMWF); - implement dissemination to Greece and Poland (and Switzerland?); - use ECACCESS for file transfer? - switch anyway to 10-member COSMO-LEPS next year (more units devoted to COSMO-LEPS)? -