

TERRA

Soil Vegetation Atmosphere Transfer across Models and Scales

COSMO/CLM/ART - User Seminar, WG3b, March 2015

Demand for ICON soil model developments results from COSMO/GME

drawbacks of the scheme

TERRA Tiles

Demand for ICON soil model developments results from COSMO/GME

drawbacks of the scheme

Demand for ICON soil model developments results from COSMO/GME

drawbacks of the scheme

- TILE approach
- Multi-Layer Snow model
- Improved soil heat conduction
- Improved snow cover diagnostics
- Advanced look-up table for land-use parameters
- Exponential root density profile

TERRA – Status

- lnd nml ntiles = 1
- lmulti snow = .false.
- itype heatcond = 2
- idiag snowfrac = 2
- lsnowtile = .false.
- lseaice = .true.
- llake = .true.
- itype lndtbl = 3
- itype root = 2

- TILE approach implemented
- Multi-Layer Snow model improved
- Improved soil heat conduction
- Improved snow cover diagnostics
- Advanced look-up table for land-use

parameters

Exponential root density profile

Stronger coupling between TERRA, data assimilation and surface transfer scheme

 TILE approach in data assimilation Snow analysis (Multi-Layer-Snow) + TILEs COST-ES1404 Snow

TERRA – Outlook

Working Group 3

- Review of DA methods for
- combining remote sensing with in-situ measurements
- including national measurement networks

Last updated: 16 May 2014

Follow COST on 🕒 🛅 🛃 🚟 8+1

Stronger coupling between TERRA, data assimilation and surface transfer scheme

 TILE approach in data assimilation Snow analysis (Multi-Layer-Snow) + TILEs COST-ES1404 Snow Resolved roughness layer for canopy Consideration of ambient humidity in plant stomatal resistance

Stronger coupling between TERRA, data assimilation and surface transfer scheme

- TILE approach in data assimilation Snow analysis (Multi-Layer-Snow) + TILEs
- COST-ES1404 Snow
- Resolved roughness layer for canopy
- Consideration of ambient humidity in plant stomatal resistance
- Improved physiographic data (SRNWP collaboration)
- Common interface (JSBACH,CLM, Veg3d) and offline mode

Revised Infiltration

- COSMO-DE changed land-use data set 20120418
- Enhanced LAI in GlobCover increased evapotranspiration
- Problem: dry out of root zone soil possible
- Shutdown of latent heat flux
- Solution: Enhanced infiltration parameterization
- Experiment start 2013040100 5 months assimilation
- Full experiment start 2014051000 for summer 2014 V5.0.1.1

Revised infiltration

FRAC W SO - PWP [%] LV 5 2013082300 Imk DWD mean: 2.98 std: 3.90 min: -0.00 max: 28.80

Revised infiltration

$$I'_{max} = \begin{cases} 0 : T_{sfc} \leq T_0 \\ : T_{sfc} > T_0 \end{cases}$$
(10.5)

$$K_w(w_l) = K_0(z) exp \left[K_1(w_{PV} - \bar{w}_l) / (w_{PV} - w_{ADP}) \right] \\ K_0(z) = K_{0,c} e^{-f(z-d_c)} Profile of sat. hydr. conductivity, Decharme (2006) \\ NORM. SOIL HYDRAULIC CONDUCTIVITY \end{cases}$$

Revised infiltration CDE- domain average

FRACTIONAL SOIL MOISTURE 2014

Revised infiltration CDE- domain average

Revised infiltration CDE- Verification

Revised infiltration CDE- Verification

CONSIDERING FOR SMALL SCALE MODELING Deutscher Wetterdienst Wetter und Klima aus einer Hand

1. A. I.

Revised infiltration CDE- Verification

CSMO Deutscher Wetterdienst Wetter und Klima aus einer Hand

CONSORTIUM FOR SMALL SCALE MODELING

Revised infiltration CDE-Verification

1.62

ଚ୍ଛି 0.43 ଅ

<u>e</u>____

		0.41	0.40	0.38	0.36	0.31	0.23	0.13	0.01	-0.00
Spatic	0.12	0.39	0.38	0.36	0.34	0.29	0.22	0.12	0.02	-0.00
	0.08	0.37	0.37	0.35	0.33	0.28	0.21	0.12	0.02	0.00
	0.03	0.36	0.36	0.34	0.31	0.27	0.20	0.11	0.02	0.00
		0.1	0.2	0.5	1 Thresh	2 ald (mr	5 n/12h)	10	20	50
		201	40510	UP 96 -201	97 - 4091(ROUT	INE G	erman IC W:	9 006_	018
	1.62	201 0.01	40510 0.01	0.00	97 — 4091(0.00	ROUT RUN -0.00	INE G : 00U 0.01	-0.01	9006_ 0.00	018
	1.62 0.82	201 0.01 0.01	40510 0.01 0.00	0.00 0.00	97 – 4091{ 0.00 0.00	ROUT RUN -0.00 0.01	0.01 0.01	-0.01	9 0.00 0.00	018
(deg)	1.62 0.82 0.43	201 0.01 0.01 0.01	40510 0.01 0.00 0.00	0.00 0.00 0.00 0.01	97 – 4091(0.00 0.00 0.00	-0.00 0.01 0.01	0.01 0.01 0.01	-0.01 -0.00 0.00	9006_ 0.00 0.00 -0.00	0.00

		0.1	0.2	0.5	1	2	5	10	20	50
	0.03	0.00	0.01	0.01	0.00	0.00	0.00	0.00	-0.00	0.00
Spatial scale	0.08	0.00	0.01	0.01	0.00	0.00	0.00	0.00	-0.00	0.00
	0.12	0.00	0.01	0.01	0.00	0.00	0.00	0.00	-0.00	0.00
	0.23	0.01	0.01	0.01	0.00	0.00	0.00	0.00	-0.00	0.00
(deg)	0.43	0.01	0.00	0.01	0.00	0.01	0.01	0.00	-0.00	0.00
	0.82	0.01	0.00	0.00	0.00	0.01	0.01	-0.00	0.00	0.00

AV: 0.00 0.1 0.07 0.04 0.02 0.01 -0.01 -0.02 -0.04 -0.07 -0.1

Threshold (mm/12h)

TERRA

Soil Vegetation Atmosphere Transfer across Models and Scales

ICON-Meeting, Hamburg, 2015

Revised infiltration CEU- SMA increments

Running time

Revised infiltration CEU- Verification

Revised infiltration CEU- Verification

Revised infiltration CEU- Verification

CONSIDENT FOR SMALL SCRIE MODELING Deutscher Wetterdienst Wetter und Klima aus einer Hand

