

WG3b activities at Deutscher Wetterdienst

TERRA development goals

- Multi-level snow model
- Subgrid heterogeneity TILE approach
- Implementation of new EXTPAR data sets MODIS, HWSD
- Revision of rainfall interception and surface water storage

More TERRA development goals

- Rough consideration of soil heat conductivity Revision of soil heat condictivity approach
- → Model difficulties to capture snow processes in forests Improved snowvegetation interaction
- Difficult to use the COSMO model below 1km resolution Need of highresolution orography data for COSMO-resolutions below 1 km.
- Initialisation of soil moisture -> Assimilation of soil moisture from remote sensing products
- Rough approximation of vegetation state
- → Model extensions Soil model forcing with atmospheric data for model development purposes
- → Sea-ice/Lake-ice with snow, urban model

Improvements in the multi-layer snow model

E. Machulskaya

Problem: too low temperatures in the "multi-layer" model at nights

Solution: switch to single-layer model where ground heat flux is "almost implicit" (anyway, it makes no sense to resolve the vertical temperature profile in snowpack of 1 mm) In the official code since 4.27.

Bug fix: ground heat flux was lost if single-layer model is switched on (very thin snowpack) – minor bug

Bug fix: in the case of partial snow cover, latent heat flux due to rain freezing was added not only to the snow surface heat balance, but to the heat balance of soil surface (free of snow) too. However, if soil temperature is above freezing point, this flux is zero over snow-free soil (rain is not freezing) – in some situations can be important <u>Not yet in the official code, will be soon.</u>

Coarse approximation of subgrid inhomogeneities – TILE approach

E. Machulskaya, J. Helmert, M. Köhler, D. Reinert, G. Zängl

TERRA no-Tiles

TERRA Tiles

Land-use data for tile fractions

GlobCover 2009

#		z0	pcmx	laimx	rd	rsmin	snowalb snowtile	
1	1	0.07,	0.9,	3.3,	1.0,	120.0,	-1.0, 1., & ! irrigated croplands	
2	&	0.07,	0.9,	3.3,	1.0,	120.0,	-1.0, 1., & ! rainfed croplands	
3	&	0.25,	0.8,	3.0,	1.0,	120.0,	-1.0, 1., & ! mosaic cropland (50-70%) - vegetation (20-	50응)
4	&	0.07,	0.9,	3.5,	1.0,	100.0,	-1.0, 1., & ! mosaic vegetation (50-70%) - cropland (20-	50응)
5	&	1.00,	0.8,	5.0,	1.0,	250.0,	0.38,-1., & ! closed broadleaved evergreen forest	
6	&	1.00,	0.9,	6.0,	1.0,	150.0,	0.31,-1., & ! closed broadleaved deciduous forest	
7	&	0.15,	0.8,	4.0,	2.0,	150.0,	0.31,-1., & ! open broadleaved deciduous forest	
8	&	1.00,	0.8,	5.0,	0.6,	150.0,	0.27,-1., & ! closed needleleaved evergreen forest	
9	&	1.00,	0.9,	5.0,	0.6,	150.0,	0.33,-1., & ! open needleleaved deciduous forest	
10	&	1.00,	0.9,	5.0,	0.8,	150.0,	0.29,-1., & ! mixed broadleaved and needleleaved forest	
11	&	0.20,	0.8,	2.5,	1.0,	150.0,	-1.0, 1., & ! mosaic shrubland (50-70%) - grassland (20-	50응)
12	&	0.20,	0.8,	2.5,	1.0,	150.0,	-1.0, 1., & ! mosaic grassland (50-70%) - shrubland (20-	50응)
13	&	0.15,	0.8,	2.5,	1.5,	120.0,	-1.0, 1., & ! closed to open shrubland	
14	&	0.03,	0.9,	3.1,	0.6,	40.0,	-1.0, 1., & ! closed to open herbaceous vegetation	
15	&	0.05,	0.5,	0.6,	0.3,	40.0,	-1.0, 1., & ! sparse vegetation	
16	&	1.00,	0.8,	5.0,	1.0,	150.0,	-1.0,-1., & ! closed to open forest regulary flooded	
17	&	1.00,	0.8,	5.0,	1.0,	150.0,	-1.0,-1., & ! closed forest or shrubland permanently floo	odea
18	&	0.05,	0.8,	2.0,	1.0,	40.0,	-1.0,-1., & ! closed to open grassland regularly flooded	
19	&	1.00,	0.2,	1.6,	0.6,	120.0,	-1.0,-1., & ! artificial surfaces	
20	&	0.05,	0.05,	, 0.6,	0.3,	120.0,	-1.0, 1., & ! bare areas	
21	&	0.000	2,0.0,	0.0,	0.0,	120.0,	-1.0,-1., & ! water bodies	
22	&	0.01,	0.0,	0.0,	0.0,	120.0,	-1.0,-1., & ! permanent snow and ice	
23	&	0.00,	0.0,	0.0,	0.0,	250.0,	-1.0,-1. / !undefined	

Index list generatio	on - number d	of tile	es: 3
Number of land point	s in domain	1:	95219
Number of sea points	in domain	1:	231996
Number of lake point	s in domain	1:	465
Number of points in	tile 1:	95219	
Number of points in	tile 2:	65854	
Number of points in	tile 3:	51090	

Number of land points in domain	2:	46060
Number of sea points in domain	2:	32929
Number of lake points in domain	2:	183
Number of points in tile 1:	46060	
Number of points in tile 2:	31125	
Number of points in tile 3:	26519	

Advanced ICON version of TERRA-TILES

- Efficient usage of dominant land-use fractions
- Extensive usage of index lists
- Avoid computation of non-existent land-use classes
- Allows treatment of snow in own tiles
- Treatment of different soil profiles feasible

TERRA Tiles

TERRA Tiles

Advanced soil data sets – HWSD data

J. Helmert, E.-M. Gerstner, G. Smiatek

Retrieval of TERRA soil properties Option I

clay

0.507

442

6.74

peat

0.863

106

-5.97

Retrieval of TERRA soil properties Option II

Soil data set Pedotransfer functions physical properties **Fractions of** f sn bw Fractions of sand, Sno sand, silt, clay, silt, clay, organic matter; soil bulk organic matter; density soil bulk density **TERRA SVAT** model EXTPAR COSMO

Advanced albedo data sets – MODIS data

F. Brenner

Soiltype based albedo

MODIS albedo

COSMO-EU experiment

COSMO-EU experiment – model skill

CONSORTIUM FOR SMALL SCALE MODELING SNOO Deutscher Wetterdienst Wetter und Klima aus einer Hand

experimen	t mont	h in 2012	8777_04	8777_05	8777_06	8777_07	8777_08
RMSE (all elements)	00 UTC	Deutschland	-0,84	-0,73	-0,81	-0,32	-0,36
Global Skill	00 UTC	Westeuropa	0,14	-0,13	0,24	-2,11	-0,89
	00 UTC	LM2M0	0,18	-0,11	-0,01	0,35	0,39
	12 UTC	Deutschland	-0,81	-0,48	-0,4	-1,45	-1,19
	12 UTC	Westeuropa	-0,34	-0,16	0,34		-0,92
	12 UTC	LM2M0	-0,09	0,15	0,15	-0,25	-0,23
RMSE (all elements)	00 UTC	Deutschland	-1,58	0,19	-1,43	-2,22	-0,67
temperature (2m)	00 UTC	Westeuropa	-0,59	0,56	0,5	0,88	-2,38
	00 UTC	LM2M0	-0,66	-0,33	-0,55	-0,85	-1,14
	12 UTC	Deutschland	-0,96	0,43	-1,15	-1,85	-2,09
	12 UTC	Westeuropa	-0,04	-0,11	0,43	0,77	-0,43
	12 UTC	LM2M0	-0,63	-0,3	-0,88	-1,12	-1,74

Rainfall interception and surface water storage

J. Helmert and Gerd Vogel

- Precipitation interception and surface water storage are significant components of the surface water balance
- Processes at the beginning of the sequence of land surface hydrological processes
- Interception loss due to evaporation of intercepted water accounts for 10-48% of the gross precipitation (Hörmann et al., 1996)
- Substantially impact the partitioning of precipitation between infiltration, evapotranspiration, and runoff

 \rightarrow Neglection of the water interception in GME (and COSMO)

 $W_{i,mx} = 1.E-6m$

- \rightarrow Interception treated as a fixed sequence of evaporation, percolation, runoff rather than a balance equation
- Separation of precipitation questionable
- → Alternative solution: Balance equation Deardorff, 1978 (e.g., SURFEX)

$$\frac{\partial W_r}{\partial t} = vegP - (E_v - E_{tr}) - R_r; \quad 0 \le W_r \le W_{r,\max}$$

Conception

→ Bucket approach for interception and surface water store

$$\frac{\Delta W_i}{\Delta t} = I + E_i - D$$

 $\frac{\Delta W_p}{\Delta t} = D + (1 - \sigma_v)P_r - I_g + E_p$

Conception

$$\begin{split} & \frac{\Delta W_i}{\Delta t} = I + E_i - D \\ & I = \sigma_v (P_r + P_{snow}) \text{ , T_sfc > T_melt} \end{split}$$

$$\begin{split} E_i &= \sigma_v E_{pot} \left(\frac{W_i}{W_{i,mx}}\right)^{2/3} \\ \sigma_i &= \left(\frac{W_i}{W_{i,mx}}\right)^{2/3} \begin{array}{l} \text{Ratio of wet canopy} \\ \text{Deardorff, 1978} \end{split}$$

$$D = \frac{W_i - W_{i,mx}}{\Delta t}, \quad W_i > W_{i,mx}$$

 $W_{i,mx} = 0.0002 LAI \quad [m \ H_2O]$ Dickinson, 1984 (e.g. SURFEX)

Conception

20120602 20120604 00 UTC 00-23h Falkenberg/D

2 – 4 June 2012 Falkenberg $W_{i,mx} = 0.0002LAI$ [m H_2 O]

"T"

2 – 4 June 2012 Falkenberg $W_{i,mx} = 0.0004LAI$ [m H_2 O]

CONSORTIUM FOR SMALL SCALE MODELING DWD **Deutscher Wetterdienst** Wetter und Klima aus einer Hand

2 – 4 June 2012 Falkenberg $W_{i,mx} = 0.0006LAI \text{ [m } H_2\text{O]}$ Deutscher

CE 00000 LGS

measurement

--- CE 09026 LGS

measurement

--- CE 09026 LGS

CE 00000 LGS

measurement CE 00000 LGS

SYNOP stations for verification

CEU-EXP verification #9025 01.06.-31.08.2012

CEU-EXP verification #9025 01.06.-31.08.2012

鋣

CEU-EXP verification #9025 01.06.-31.08.2012

1.62	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.06	0.00	
0.62	0.00	0.00	0.00	0.01	0.02	0.01	0.00	0.03	0.00	
0.43	0.00	0.00	0.00	0.01	0.02	0.01	-0.00	0.02	0.01	FSS AV: 0.0
0.23	0.00	0.00	0.01	0.01	0.02	0.01	-0.00	0.02	0.01	
0.12	0.00	0.01	0.01	0.01	0.02	0.01	-0.00	0.01	0.00	
0.08	0.00	0.00	0.01	0.01	0.02	0.01	-0.00	0.01	0.00	
0.03	0.00	0.01	0.01	0.01	0.02	0.01	-0.00	0.01	0.00	

Usage of the interception store in TERRA

- leads to more realistic hydrological cycle
- reduction of dewpoint depression bias more water vapour in the boundary layer
- reduction of warm T2m-bias
- impact on cloudiness and precipitation feedback effects

