Learning the interpolator for snow depth and snow water equivalent

Let's describe S_d – measured snow depth, S_w – snow water equivalent from SNOW-E model.

The interpolator from set of points \vec{x}_j to set of points \vec{y}_j can be written as:

$$s_X(\vec{y}_j) = \sum_{i \in I_j} w_X(i, j) s_X(\vec{x}_i),$$

where I_j – set of influence points, $w_X(i,j) \ge 0$ – optimized weights, X = d, w.

For search optimal W_X we use the principle: the minimal MSE for interpolation to excluded station:

$$L(s_X)^2 = \frac{1}{N} \sum_{j=1}^{N} \left(s_X(\vec{x}_j) - \sum_{i \in I_j \setminus \{j\}} w_X(i, j) s_X(\vec{x}_i) \right)^2 \rightarrow \min_{w_X}$$

The interpolator takes into account the altitudinal zonality

We suggest then the snow quantity depends on the altitude over sea level *h*:

$$s_X(\vec{x}_j) = s_X(\vec{x}_i) \exp(c_X(h(\vec{x}_j) - h(\vec{x}_i))) + \varepsilon_{ijX},$$

where c_X – skew-symmetric function, \mathcal{E}_{ijX} – random noise.

Then we can consider the altitudinal depended interpolator:

$$s_{X}(\vec{y}_{j}) = \frac{\sum_{i \in I_{j}} \exp(\omega_{ij} + c_{X}(h(\vec{y}_{j}) - h(\vec{x}_{i}))) s_{X}(\vec{x}_{i})}{\sum_{i \in I_{j}} \exp(\omega_{X}(i, j))}$$

The simplest case: the exponential smoothing altitudinal depended interpolator:

 $\omega_{ij} = -\lambda d(\vec{y}_j, \vec{x}_i), \ c_X(\Delta h) = \alpha \Delta h, \text{ where } d(\vec{y}_j, \vec{x}_i) - \text{distance}, \ \alpha, \lambda > 0 - \text{optimized constants}.$

Optimization results: interpolate to excluded station

Model	Parameters	Depended subsample		Undepended subsample	
		01/09/2019-16/08/2020, cases: 228284		01/09/2020-14/11/2020, cases: 20618	
RMSE interpolation error*		$L(S_w)$, kg/m ²	$L(s_d)$, cm	$L(s_w)$, kg/m ²	$L(s_d)$, cm
$\omega_X = -\lambda d, \ c_X \equiv 0$	1	47.5	17.6	20.7	9.5
$\omega_X = -\lambda d, \ c_X = \alpha_X \Delta h$	3	47.4	17.6	20.6	9.5
$\omega_X = NN, \ c_X \equiv 0$	192	43.5	16.4	16.3	8.1
$\omega_X = NNN, \ c_X \equiv 0$	256	42.2	15.6	15.9	7.9
$\omega_X = NN$, $c_X = sNN$	387	42.9	16.3	16.2	7.9
$\omega_X = NNN, \ c_X = sNN$	451	41.4	15.4	15.0	7.4

Where: NN – neural network, depends on $d, \Delta h$. NNN – neural network, depends on $d, \Delta h$, $s_w(\vec{x}_i), s_h(\vec{x}_i)$, $sNN = f_{NN}(\Delta h) - f_{NN}(-\Delta h), f_{NN}$ – neural network.

^{*}We compare only nonzero amounts of snow: need to refine the snow mask using remote sensing of the Earth data.

Example: 2020/11/14 snow analysis

Conclusions

- 1. We offer the deep learning approach for interpolation the quantity of snow problem
- 2. We take into account the altitudinal zonality
- 3. The deep learned interpolator is more accurate and higher detailed then exponential smoothing
- 4. Our approach is easy extended: can take into account other geographical (quantity of forests, etc.) and other (time of year, first guess, etc.) parameters
- 5. The method needs to refine the snow mask using remote sensing of the Earth data

Thank you for attention!