Project Proposal

Reducing the uncertainty on regional and local climate induced by land-atmosphere feedbacks

Dr. Merja Tölle

Dept. of Geography, Merja.Toelle@geogr.uni-giessen.de

Current status

- Bias in amplitude of annual and diurnal cycle in surface temperature (and T2M)
- Too cold in summer and during day
- Too warm in winter and during nighttime
- Inter-annual phenology not captured accurately
- This leads to a bias in the surface turbulent fluxes, and thus to a bias in the land-atmosphere coupling

Land use change impact on future climate

Probability density function during the vegetation period

Reduced climate change signal of Tmax due to increases in bioenergy regions.

Tölle et al. 2014

Project Outline

- Anticipated duration: 36 months (2 PhD)
- Reduce uncertainty introduced by land-atmosphere feedbacks on seasonal, inter-decadal, and climate time scales
- Consideration of land surface complexity on fine spatial scales:
 - Transient anthropogenic land use changes (-> seasonal forecast)
 - Account for heterogeneous land cover including winter and summer crop (-> daily forecast)
 - Dynamic vegetation that accounts for seasonal influences (-> daily and seasonal forecast)

Further consideration

- Relate albedo to phenology (plant cover, leaf area index)
- Account for land use dependent permanent wilting point
- Stomatal conductance as in Ball and Berry (1991) depending on CO₂ uptake (light, temperature), spec. humidity, CO₂ mole fraction
- Or Jarvis-type approach
- ICON-LAM
- What else?
- ...