TERRA Incognita: Why we should care about the hydrological cycle in COSMO

APN Info

2020-01-28

Daniel Regenass, Linda Schlemmer, Oliver Fuhrer, Jean-Marie Bettems, Chistoph Schär

A C Institute for Atmospheric and Climate Science

Hydrological state of the soil matters.

Similar patterns in high resolution simulations

Leutwyler et al. 2017

Vergara et al., in preparation

 $\rm T_{_{2M}}$ Bias Plots by Jesus Vergara

Outline

- Introduction
- Validation Approach and Data
- Results from TERRA Standalone Runs
- Evapotranspiration in Coupled Runs

TERRA Basics

Fig.: COSMO Documentation Part II

21.87 m

Testing a new groundwater and runoff formulation

- 1D Richard's equation (K, D)
- Zero flux bottom boundary condition
- Mass conserving flux corrections (limit K and QG to avoid overflow and overdepletion)
- Exponential decrease of hydraulic conductivity (K) with depth, scaled with root depth (Decharme, 2006)
- Surface Runoff (QS) due to infiltration (I) excess or saturation excess
- Diagnostic ground runoff (QG) from water table, proportional to K_{sat} and gradient of orography.

(See Schlemmer et al., 2018 for implementation details)

 \rightarrow **Testing** within **TERRA ML** – **standalone**, forcing with **1 km** MeteoSwiss analyses (2010-2012, run 3x to ensure equilibration)

Common validation approaches have a scale gap.

Point

https://icdc.cen.uni-hamburg.de

50 km

LandFlux-EVAL Dataset: Mueller et al., 2013

Bridge the gap with hydrological methods.

Catchment water balance

Mass conservation yields:

```
dS/dt = P - Q - E
```

dS/dt: Terrestrial storage change (soil moisture, lakes, deep groundwater reservoirs)

- **P:** Precipitation
- Q: Runoff
- E: Evapotranspiration
- → Aggregate everything to monthly timescales (no routing)

Data to close the water balance

Mass conservation yields:

$$dS/dt = P - Q - E$$

- P: Precipitation MeteoSwiss Analyses
- *Q*: Runoff Measurements by the FOEN
- E: Evapotranspiration MODIS MOD16A2 (Running et al., 2017)

dS/dt: Terrestrial storage change (soil moisture, lakes, deep groundwater reservoirs) Residual

Water balance example (Thur 1713 km²)

Precipitatio	on — Evapotranspiration	n
Runoff	dS/dt	

Apply mass balance validation to 3 model versions.

Parameterization	REF	MOD	INFIL
Hydrology (inner layers)	Standard TERRA, Free Drainage, No dependence of runoff on orography	Schlemmer et al. (2018), Groundwater, Slope dependent runoff generation	Schlemmer et al. (2018), Groundwater, Slope dependent runoff generation
Infiltration	Standard TERRA, available pore space calculated at beginning of timestep.	Standard TERRA, available pore space calculated at beginning of timestep.	Infiltration treated as flux to first layer, included to FCT implementation

NOTE: In all versions hydraulic conductivity decreases exponentially with depth!

Water balance examples

Error time series

Validation Summary: Runoff

Runoff Bias [mm/month]

Catchment	REF	MOD	INFIL
Broye (417 km ²)	3.27	<mark>9.92</mark>	7.06
Ergolz (261 km²)	-8.61	<mark>28.4</mark>	16.0
Mentue (105 km²)	12.3	<mark>14.6</mark>	13.3
Thur (1713 km ²)	-14.1	<mark>18.3</mark>	<mark>5.89</mark>

Venoge (228 km²) -5.38 -6.03 -6.51

Validation Summary: Runoff

Runoff Bias [mm/month]

Catchment	REF	MOD	INFIL
Broye (417 km ²)	3.27	<mark>9.92</mark>	7.06
Ergolz (261 km²)	-8.61	<mark>28.4</mark>	16.0
Mentue (105 km²)	12.3	<mark>14.6</mark>	13.3
Thur (1713 km ²)	-14.1	<mark>18.3</mark>	5.89
Venoge (228 km ²)	-5.38	-6.03	<mark>-6.51</mark>

Standardized Taylor diagram

Preliminary Results from Coupled Runs

MOD	REF
Schlemmer et al. (2018) soil hydrology	Standard soil hydrology
itype_evsl = 4 (Resistance)	itype_evsl = 3 (Noilhan & Planton 1989)
Bottom layer of soil hydrology @8m	Bottom layer of soil hydrology @ 4m
tkhmin = 0.35	tkhmin = 0.4
tkmmin = 1.0	tkmmin = 0.4

The Budyko Framework

E_{ACT}: Actual Evapotranspiration

 E_{POT} : Potential Evapotranspiration (Energy Equivalent R_{NET})

P: Preciptiation

Not more evapotranspiration than precipitation!

Not more latent heat release than available energy (by net radiation)

The Budyko Framework

E_{ACT}: Actual Evapotranspiration

E_{POT}: Potential Evapotranspiration (Energy Equivalent R_{NET})

P: Preciptiation

Not more evapotranspiration than precipitation!

Not more latent heat release than available energy (by net radiation)

Approximate limiting cases with nonparametric (Budyko) or parametric (many others) functions

COSMO consistent with Budyko curve for CH

Differences visible for Mediterranean.

MOD in better agreement with Budyko curve.

To be continued ...

- Water balance validation shows some improvement i.e. for
 INFIL
- INFIL available for COSMO 6.0 (implementation in ICON by LINDA(?))
- Still room for improvement ...
- Coupled simulations show benefit of Schlemmer et al. (2018) hydrology for dry(er) regions.

 \rightarrow What is the exact impact on the atmosphere (PBL growth, convection, wind systems)? Link to NWP!

Thank you!

daniel.regenass@env.ethz.ch

ETH zürich

A C Institute for Atmospheric and Climate Science

