Towards a framework for the validation of kilometer-scale land surface models

ICCARUS 2019 18.3.2019 Daniel Regenass, Linda Schlemmer, Oliver Fuhrer, Jean-Marie Bettems, Chistoph Schär

A C Institute for Atmospheric and Climate Science

Hydrological state of the soil matters.

Schlemmer et al., 2018

Testing a new groundwater and runoff formulation

- 1D Richard's equation (K, D)
- Zero flux bottom boundary condition
- Mass conserving flux corrections (move water excess upward and limit outgoing fluxes)
- Exponential decrease of hydraulic conductivity with depth (Decharme, 2006)
- **Diagnostic runoff** from water table, proportional to K_{sat} and gradient of orography.

(Schlemmer et al., 2018)

 \rightarrow Testing within TERRA ML – standalone, forcing with 1 km MeteoSwiss analyses (2010-2012, 2x to ensure equilibration)

Tuning: The dark side of modeling

$$Q \sim L_g^{-1} S_{ORO}$$

Q increases linearly with terrain gradient.

 L_{g}^{-1}, f_{D} : Inhomogeneity length scale, Decharme parameter (tuning parameter)

S_{ORO,} z_{root}: External parameter (or derived), heavily method dependend!

"Scale Gap" in common validation approaches.

https://icdc.cen.uni-hamburg.de

Trying to bridge the gap with hydrological methods.

Point

https://icdc.cen.uni-hamburg

Catchment

50 km

x-EVAL Dataset: Mueller et al., 2013

Catchment water balance

Mass conservation yields:

$$dS/dt = P - Q - E$$

dS/dt: Terrestrial storage change (soil moisture, lakes, deep groundwater reservoirs)

- P: Precipitation
- *Q*: Runoff
- E: Evapotranspiration

 \rightarrow Aggregate everything to monthly timescales (no routing)

Data to close the water balance

Mass conservation yields:

dS/dt = P - Q - E

dS/dt: Terrestrial storage change (soil moisture, lakes, deep groundwater reservoirs) Residual

P: Precipitation MeteoSwiss Analyses

Q: Runoff Measurements by the FOEN

E: Evapotranspiration MODIS (Running et al., 2017)

Budgets for prototype catchments: Broye (416 km ²), Ergolz (261 km²)

Storage change biases driven by runoff biases.

REF: TERRA 5.03, old hydrology, MOD: Schlemmer et al. 2018 Runoff formulation

Runoff bias attributable to surface runoff.

REF: TERRA 5.03, old hydrology, MOD: Schlemmer et al. 2018 Runoff formulation

(Surface) Runoff heavily dependent on infiltration.

REF: TERRA 5.03, old hydrology

MOD: Schlemmer et al. 2018 Runoff formulation

NODECHARME: No exponential decrease with depth for hydraulic conductivity (→ more infiltration excess!)

MODINFIL: Infiltration from v. 5.05 (Fix by G. Zängl), remove excess water at infiltration after timestep instead of before.

Assessing uncertainties in precipitation forcing and ET validation datasets

dS/dt: Terrestrial storage change (soil moisture, lakes, deep groundwater reservoirs) **Residual**

P: PrecipitationMeteoSwiss AnalysesMeteoSwissRhiresM monthly gridded (2km) precipitation (rain gauges)Q: RunoffMeasurements by the FOENError negligible

E: Evapotranspiration MODIS (Running et al., 2017) $dS/dt = o = P - Q - E \rightarrow E = P - Q$ (annual balance estimates)

Precipitation data reliable for chosen catchments

ET validation data: Magnitude seems right

But: What about inter-annual variability?

Estimated ET has substantially more inter-annual variability!

Overall: Substantial dry bias of MeteoSwiss analyses (precipitation forcing dataset)

Might be even worse, RhiresM is likely subject to rain gauge undercatch.

Overall: Large discrepancies in alpine catchments between estimated ET and MODIS ET

Likely: Rain gauge undercatch in RhiresM + coarse meteorological forcing for MODIS

Conclusions and outlook

- Validation and tuning of a new groundwater and runoff formulation (Schlemmer et al. 2018) still ongoing.
- Validation framework follows catchment water balances \rightarrow Flexible in scales
- Overall remaining uncertainties about forcing and validation datasets.
- But: Infiltration is crucial! Urge for a better parameterization.

Questions?

Thank you!

daniel.regenass@env.ethz.ch

A C Institute for Atmospheric and Climate Science

