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1 On experimental design

The mixed-layer simulations use a 50-meter, fixed-depth
mixed layer ocean, with atmospheric infrared transmis-
sivity based on 280 ppm COs for the preindustrial run,
and 560 ppm for the doubled-COs run. The imposed-SST
simulations have an infrared transmissivity approximating
present-day COq values.

A number of strategies for high-dimensional optimiza-
tion problems with computationally-expensive black-box
functions (1; 2; 3; 5) may be suitable for climate model-
ing, so we briefly expand on choices made in the present
work and related possibilities.

There is a large literature on variations of experimental
design for approximating experimental results with fitted
functions, termed response surfaces, for problems with rel-
atively few design variables (6) and relatively low dimen-
sional output quantities. Because climate models must
deal, at least in initial exploration stages, with a larger
number of parameters, the scaling of the experiment de-
sign with the number of parameters N is significant. A
number of response surface strategies, designed to have
properties such as protection against aliasing from higher
order terms, have poor scaling properties (3). The min-
imum number of climate model runs required to fit the
quadratic in Eq. 2 of the main text is 2N + N(N —1)/2 in
addition to the standard case which will commonly act like
a center point in the experiment design. In our results, the
standard error for simulation ensembles does not change
strongly as a function of parameter (see, e.g., the spread
of the ensemble in Fig. 1d of the main text). Thus a larger
ensemble or longer run at the standard case can be used
to establish the minimum ensemble size and simulation
length to be used for a desired level of accuracy in the
random error of estimation at each of the other points in
parameter-space. For brevity, consider the case where for
normalized parameter axes p; min lies at -1, the standard
case at 0 and pt; max at 1, although moderately uneven axes
present no problem.

The most obvious way of carrying out the minimum set
of runs, known as a minimum-point or saturated design,
is a Koshal design for fitting a second-order model. Ax-
ial runs at three levels (-1,0,1), also known as star points,
yield a;, b;; while b;; require one point per plane of pa-
rameter combinations, for instance (u;, ;) = (1,1), with
all other parameters 0. It is obviously desirable to have
additional points for improved estimation, for testing fit,
etc., referred to as an unsaturated design. A compari-
son in (7) finds desirable properties for a Koshal design
augmented by 20-40% additional random points. Other,

more complex, near-saturated designs exist (6). The re-
sults presented here with off-diagonal b;; use RMS fits
to values from all four corners of each pairwise parame-
ter plane (where one is used in the Koshal design). For
N = 3,4 or 5 this corresponds to a Box-Behnken (8) de-
sign if the axial points are not used.

We use verification runs along lines in parameter space
for ease of displaying the accuracy of the fit graphically,
a nontrivial consideration at this exploration phase for
climate models. However, it also corresponds to initial
stages of a particular high-dimensional model representa-
tion (HDMR) algorithm known as cut-HDMR (3) which
could prove useful for altering the quadratic metamodel if
a particular subset of directions proved more highly non-
linear.

Because obtaining the off-diagonal quadratic coefficients
is of order N2 even for a minimum-point procedure, a
screening phase is important. That is, computation of the
off-diagonal b;; should in practice be done for a subset N’
of directions that a first screening step indicates to be sig-
nificant in both sensitivity and nonlinearity. The form of
the problem here differs from many response surface ap-
plications in which a scalar or low-dimensional vector is
being fit, or from cases in which the objective function
is being fit directly, in that the objective functions re-
constructed from the high dimensional vector fields have
quadratic terms arising from the linear terms of the meta-
model. For many combinations of parameter direction and
climate variable, the parameter dependence may be ap-
proximated as linear, and the concern is to guard against
modifications of a;a; terms by b;; terms, as opposed to
fundamentally depending on quadratic fit terms for the
optimization. For the changes under global warming, the
concern is whether quadratic terms alter the predicted
change substantially in any particular region or variable
that humans care about. In testing for nonlinearity, the
criterion for conducting additional simulations should be
based on the most non-linear variable to be assessed with
the output.

The fact that the bjjuip;, ¢ # j term integrates to
zero across a symmetric parameter domain has implica-
tions for the question of whether nonlinearity affects multi-
model ensemble averages, and thus for aspects of the de-
sign of Sensitivity Model Intercomparison Project (Sens-
MIP). Ideally, in averaging an ensemble distributed across
the parameter domain D, one would like to assign a prob-
ability density function as a function of parameter, p(u),
so the estimated average response could be evaluated as
Jp p(11)Addp, where A¢ is the metamodel of the change
under global warming, expanded as in Eq. 2 of the main



text. Assigning p is challenging; if one is forced, for lack of
more specific information, to assume that each parameter
value in a symmetric feasible range has an equal probabil-
ity of being correct, i.e., uniform p, then the contributions
associated with b5, © # j integrate to zero. The same
applies for any p symmetric in g. It is thus the b;;u? terms
(provided by an order N procedure) that provide the first
estimate of how nonlinearity will affect the multi-model
ensemble mean.

Also worth considering is that the results of the meta-
modeling procedure may be to focus attention on possible
revisions of a particular parameterization, so information
about changing a single parameter can aid interpretation.
It may often be the case that climate modeling groups al-
ready have runs that change a single parameter at a time.
Thus while some classic screening strategies focus on runs
at a fraction of the corners of a hypercube in parameter
space, an appealing simple screening strategy is to use the
standard case plus two axial points in each parameter di-
rection. These 2N simulations, potentially using shorter
simulations or smaller ensembles can thus be used to elim-
inate variables from the b;; estimation if a;, b;; are small.

Carrying out optimization on the resulting metamodel,
the fit with or without off-diagonal b;; can be updated by
least-squares estimates of the coefficients as subsequent
ensembles of simulations are performed at points chosen
based on the optima of the initial fit. Because these points
are close to optima, they tend to improve the fit in regions
of parameter space that are likely to be important. If the
quadratic metamodel is insufficient to provide a good fit
over the entire domain, limiting to a smaller trust region
is an established strategy.

2 Computational cost and feasibility of a SensMIP

For estimation of the quadratic metamodel, there are two
major factors in the computational cost. First, the O(N?)
problem for the number of coefficients to be evaluated, cor-
responding to the minimum number of parameter points at
which evaluations are required, where N is the number of
parameters. This is vastly less costly at large N than the
O(s") cost that would be incurred by brute-force sampling
at density s, and can be somewhat reduced by screening
procedures, but is still substantial. Second, there is a fac-
tor associated with reducing estimation error associated
with natural climate variability. For estimation of climate
means at each of a given set of parameter points, the re-
quired ensemble size or number of years of simulation (for
timescales longer than typical autocorrelation times of the
variable of interest) scales as O(e~2) where € measures the
desired standard error. The number of years required to
achieve a given level of accuracy will depend on the cli-
mate variable of interest, and can be estimated from the
standard case simulation.

Some back-of-the-envelope examples provide a sense of
the size of the computational problem. For N = 30, 20, 10,
5 the minimum points in addition to the standard case are
2N 4+ N(N — 1)/2=60+435, 40+190, 20+45, 10+10. For
reference, a brute-force sampling with three levels, scaling
as 3V, would yield roughly 2x10, 3x10°, 6x10* and 243
points, respectively. For the example of 10 parameters, the
minimum of 65 points would be augmented by verification
points by at least 40%, but even if doubled or quadru-
pled, the number of points remains of order 102, and can
likely be reduced by screening. The substantial reduction
relative to the order 10* points used in (4) potentially
brings such computations from the realm of the extraor-
dinary to one that can be done by multiple groups. The
computational savings does depend on the conjecture that
many parameter directions can be usefully represented by
quadratic nonlinearity for climate variables of interest. If
worse-than-quadratic nonlinearity is encountered in a sub-
set of directions, computational resources can be focused
on these; conversely, a subset of linear directions identified
in screening can decrease the cost.

Consider a scenario that begins with screening 30 pa-
rameters, of which a plausible subset exhibits quadratic
nonlinearity. If one can accept five times the standard er-
ror seen in Figs. 1 and 2 in the main text, 10 year runs
might be used for screening. This would imply 600 sim-
ulated years for 2N screening runs in the 30 parameter
case (plus a comparable length of spin-up toward equilib-
rium in coupled cases). Assuming 10 parameters prove
important, an additional 450 years would be required for
a first estimate of 45 off-diagonal b;;. Prior to estimat-
ing these, a metamodel based on the 2N points can indi-
cate which corners are likely to be closest to optima. If
we further suppose that of the 10 key parameters, 5 di-
rections have significant nonlinear interactions with each
other, then in addition to 20 axial points for the 10 direc-
tions, there will be 10 points for b;; for which longer runs
are desired. If one accepts double the standard error seen
here (assuming similar model properties and an interest
in similar precipitation variables), an additional 50 years
of run is required at each of these 30 points (spin-up does
not have to be repeated), i.e., 1500 years of simulation,
plus a certain percentage of verification points. The im-
plied resources are substantial but feasible for a common
class of climate model. Furthermore, the arguments in
the previous section suggest that some estimates of non-
linearity useful for assessing multi-model averages can be
obtained from just the axial points, which may assist pri-
oritization of resources. Additional accuracy is nontrivial;
for instance roughly 13,000 simulated years were used for
4 parameters for the imposed-SST runs here to assess the
apparent smoothness. Fortunately, there is likely to be
enough similarity among models that once a certain prop-
erties are established at high accuracy for some cases, less



costly estimates can be used routinely.

One can compare a design with relatively long simula-
tions at a limited number of points to a space-filling design
such as a Latin hypercube with many more points, but in
which computational limitations imply much shorter runs.
Designs with more points can help to guard against sys-
tematic error, or to test metamodel assumptions if ran-
dom error is small. In the application here, computa-
tional limitations will tend to imply larger random error at
each point as more points are used, making it difficult to
evaluate whether the underlying surface is approximately
smooth. Nonetheless, if the quadratic metamodel is a rea-
sonably good representation of the parameter dependence,
similar estimates should result from various designs. The
key point is not a particular design, but practicality of esti-
mating quadratic metamodels. The metamodel approach
can be used to compare parameter space dependence, even
for modeling centers that have used different approaches
to the placement of simulations in parameter space.

Different climate models do not have identical parame-
ters, although they each have parameters that affect simi-
lar physical processes, so the model intercomparison ques-
tions need to be phrased accordingly. While here we ad-
dress only feasibility, rather than precise set up of a sensi-
tivity model intercomparison, examples of targets include
the following. In the main text, questions regarding re-
gional climate change patterns were raised, focusing on
the example of precipitation change. A systematic sensi-
tivity study as a function of parameter within each model
permits the questions of the degree of nonlinearity of the
parameter dependence to be evaluated, as opposed to the
ensemble-of-opportunity afforded by a set of different mod-
els whose parameter relationship is not known. An assess-
ment of which climate variables exhibit strong nonlinear-
ity in response to parameters affecting particular sets of
physical processes, such as the representation of moist con-
vection affecting precipitation distributions, would permit
more accurate statements regarding multi-model ensem-
ble averages. This, with an assessment of the degree to
which the relative smoothness of the parameter depen-
dence seen in the main text holds among climate models,
would permit caveats on the use of quadratic metamodels
to be established. Each model’s feasible parameter do-
main establishes an uncertainty estimate on regional cli-
mate change response, and a comparison of these ranges
among models is of interest. Assuming the metamodel-
ing approach appears sufficiently accurate when applied
to the parameter dependence of climatological variables,
as well as to the parameter dependence of changes un-
der global warming, the optimization procedures applied
to the metamodel under normal climate might assist in
constraining the parameter range (or probability density
function) to be used in forming best estimate averages
of climate change. In addition to regional climate change

questions, the long-standing question of global-average cli-
mate sensitivity (4; 9) could be addressed from the same
runs.

3 On the analytic solutions

In the main text Eq. 2 is written with a summation con-
vention that corresponds to the matrix form

¢ = psta + p a+ 1 by (1)

where p = (p1,...un)T, a = (a1,...an)? are vectors over
the parameter set and b is an N by N matrix with ele-
ments b;;. Is worth reiterating that each element a;, b;;
is itself a high dimensional vector over space and season.
This notation gives the quadratic term in the main text
Eq. 2 as Ef\il Z;vzl bijpip; with b;; = by, rather than
the more traditional sum Ef\il Zjv:z b} piptj which corre-
sponds to the actual number of degrees of freedom, with
bi; = 2bji, 1 # ]

In this notation, the derivation of the gradient of a
square-error objective function is just V,f = Vuf<(q~5 —
¢obs)2> = <2(¢_¢0bs)(a+2bp’)> = <2[¢err+aT:U/+O(M2)](a+
2bp)) which to first order in p gives Eq. 3-5 of the main
text. If the notation with b}; were used, terms in b;; would
appear with differing factors of 2 than terms in b;j, i 7.

When the Hessian has a negative eigenvalue, or the
positive curvature is too weak, boundary solutions occur.
When it is known which parameter boundary the solution
lies on (determined numerically, from inspection of the
gradient or from the eigenvector), the modification of the
analytic solution comes from replacing gy = BN max D
the derivation above—where for definiteness the relevant
parameter has been defined to be uy and the boundary
solution assumed to occur at the positive end of its range.
Thus V. f = (2[(derr + NN max) + aT,LL + O(M2)][a +
2(biN N max) + 2bp)) where p, a and b have all been re-
duced from dimension N to N — 1 by dropping elements
associated with py.

Thus the solution for interior points in the N — 1 other
dimensions is given by

Vuf = g+Au=0, (2)
g9, = 2<ai¢err + ai(bgrr + a;‘¢err> (3)
Aij = Aji =2({aiaz) + 2(bijderr)), (4)

where ¢, = aN/iNmax IS the correction to the error by
linear changes in g?) due to pn being at its boundary value
and a, = 2b;NUN max comes from similar corrections to
the gradient. Changes proportional to pn max in Hessian
terms are of order u? in the gradient and thus are ne-
glected, so the elements of the Hessian remain the same
as in Eq. 5 of the main text. The Hessian no longer has
a negative eigenvalue due to omission of the associated



parameter direction (with the caveat that the eigenvector
must be closely enough aligned with one parameter direc-
tion that the boundary value is known). Extensions to
more than one boundary value point should be obvious.
The analytic solution is thus useful even in presence of
a direction of negative curvature, such as occurs for the
convective relative humidity parameter.
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Figure 1: Root-mean-square (RMS) error relative to
NCEP reanalysis of the ensemble mean AGCM precipita-
tion similar to Fig. 1 of the main text, but for departures
from annual average and comparing June-Aug. (JJA) to
Dec.-Feb. (DJF). For clarity, the ordinate is shifted, with
DJF values given by the left y-axis, JJA values by the right
y-axis. The RMS error reconstructed from the quadratic
metamodel and from its linear counterpart are shown for
each. Parameters are given on the abscissa. The vertical
size of the symbols gives the two standard error estimation
range for the ensemble mean.

4 Seasonal dependence

All the quantities of interest are evaluated as a function
of season. To emphasize this, a particular season (June-
August) is used in the main text. Although there is no
guarantee that parameter dependence should be similar
among seasons, Fig. SI-1 shows that many of the impor-

tant features tend to be reproduced. RMS error based on
the departure of the precipitation field from its annual av-
erage is shown to make it clear that the similarity occurs
within the parameter dependence of the seasonally varying
signal. In other words, the similarity of the seasonal curves
is not due simply to the contribution of the annual average,
since this is removed. Overall, there is also a similarity in
the curvature properties between the seasonal cycle shown
here, and the total precipitation RMS error seen in Fig.
1 of the main text. For instance, the negative curvature
for the convective relative humidity parameter is robust
in these different measures. Indeed the magnitude of the
quadratic terms and the sign of their contribution to the
curvature is the same for both seasons in each parameter.
When the seasonal dependence is qualitatively consistent
as seen here, objective functions that sum over seasons (in
addition to spatial averaging) are reasonable. Within a
metamodeling, multi-objective framework the additional
information that comes from seasonal objective functions
has little cost.
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Figure 2: As in Fig. SI-1 but for RMS error relative to the
CMAP precipitation data set (for departures from annual
average for each season).

Fig. SI-2 evaluates the dependence on the data set used
as the observed reference. In the main text, all verification
quantities were taken from the NCEP reanalysis data set



for consistency among climate variables. Observational
estimates can differ substantially, especially for precipita-
tion, so we test also against the Climate Prediction Center
Merged Analysis of Precipitation (CMAP) (10). Despite
regional differences among the two data sets, the prop-
erties such as curvature of the RMS objective function,
direction of slope and in most cases approximate location
of the minima on parameter axes are similar in comparing
Fig. SI-1 and Fig. SI-2. In the gustiness parameter, despite
similarity of shape of the objective function, a shift in the
minimum occurs that would be significant for quantitative
optimization. Inclusion of objective functions evaluated
with respect to different data sets is straightforward in
a metamodeling framework. Overall properties including
the relative smoothness in parameter space appear to be
robust.
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