Dear Jean-Marie and colleagues,

I would like to give you an update of the Mires implementation. Based on COSMO V5_5a_1, in October I have implemented the code from Alla to the unified (ICON) version of TERRA in the recent COSMO model. Thank you very much Inna and Alla for providing the revised version.

For the impact on the soil enery budget the Peters-Lidard et al. (1998) and Johansen (1975) parameterization of the soil heat conductivity has to switched on with itype_heatcond=3. An additional switch exist for the mires with

itype_mire=1 to activate the parameterization.

For first tests, a standalone run from Uli Schättler was used. It is based on a vv=12 hrs forecast in COSMO-D2 from 2017-07-25 12 UTC. I have produced some meteograms to check the behavior of the different versions (REF= plain V5_5a_1, MIRE_OFF = V5_5a_1 with MIRE code and itype_mire=0, MIRE_OFF = V5_5a_1 with MIRE code and itype_mire=1).

I expected an identical behavior of REF and MIRE_OFF and this seems to be the case. For MIRE_ON a clear signal is seen for the peat point in Spreewald (soil moisture W_SO and soil temperature T_SO), but also small changes for the non-peat gridpoint Lindenberg after some hours. I think this is due to impact of the mire points on the atmospheric circulation.

Furthermore a numerical experiment is running with data assimilation started in November for an actual period against a reference experiment.

Please find below the figures of the meteograms and do not hesitate to ask in case of questions.

Kind regards Jürgen

I used the following variables in the meteograms:

- SOBS solar budget
- CLCT total cloud cover
- T2M 2m-temperature
- TD2M 2m-dewpoint temperature
- LHFL latent flux
- SHFL sensible flux
- PRECIP precipitation
- W_SO in level 1 to 5
- T_SO in level 1 to 4

Peat point - Spreewald

Non-Peat point - Lindenberg-Obs

DR. Jürgen Helmert | Research and Development | Physical Processes Deutscher Wetterdienst | Frankfurter Str. 135 | 63067 Offenbach | Germany

Tel + 49 (0)69 80 62-2704 | Fax + 49 (0)69 80 62-3721 juergen.helmert@dwd.de

www.dwd.de/forschung

--

DR. Jürgen Helmert | FE14 | Physikalische Prozesse 069 80 62-2704 | juergen.helmert@dwd.de