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Dr. Edouard Léopold Davin, Land-Climate Dynamics, IAC, ETH edouard.davin@env.ethz.ch

Dr. Jean-Marie Be�ems, APND, MeteoSwiss, jean-marie.be�ems@meteoswiss.ch

Date: May 31, 2018
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Acknowledgements

Picture on titlepage by Johannes Senn, 48,3625313, 8,2463943

�anks to my supervisors for their help, encouragement and dedication

�anks to Yi�ach Ziv and Ma�hieu Leclair for the simulations

�anks to Joel, John, Christoph, Sarah, Judith, Moritz for their insightful comments

�anks to D26.1 for the endless supply of schoggi





Abstract

�e bene�ts of coupling the atmospheric model COSMO to an advanced land surface

model has been demonstrated in the context of climate simulations. Especially for mid-

latitude heat waves happening on the time-scale of several weeks, which are strongly am-

pli�ed by soil moisture temperature feedbacks, land-atmosphere interactions play a key role.

Correctly representing radiative and surface �uxes during such events is thus of crucial im-

portance for reliable weather forecasting and risk prevention.

�is study aims to further investigate the added value such of an advanced surface rep-

resentation in the context of numerical weather simulations of summer heat extremes. For

this purpose, (1) COSMO with the land surface model TERRA and (2) COSMO coupled to the

Community Land Model (CLM) are compared to assess their performance in the anomalously

hot European summers of 2003, 2006 and 2015.

Overshooting sensible heat production at the expense of evapotranspiration in COSMO-

TERRA is consistent among all summers and induces a 1-2 K warm bias in COSMO-TERRA.

Additionally, with increasing vegetation density, COSMO-TERRA shows decreasing perfor-

mance in latent heat estimation, calling for a review of the evapotranspiration parameter-

isations. COSMO-CLM su�ers from biases of the same direction but smaller magnitude as

COSMO-TERRA, but its results are more aligned with evaluation datasets. A simple statisti-

cal benchmark outperforms both models in latent heat estimation. �e superior surface �ux

representation in COSMO-CLM, however, does not translate into temperature. COSMO-CLM

temperatures are especially hampered by a consistent 2-3 K cold bias in radiative tempera-

tures, most severe for daily maximum temperature. �e extremeness of the three summers,

in contrast, is represented best in COSMO-CLM. Indices measuring the danger of the extreme

conditions for human health show overall large di�erences among indices in dangerous con-

ditions, calling for further investigation.

COSMO-CLM is disadvantaged by sharing the parameter tuning of COSMO-TERRA. Fur-

thermore, an outdated aerosol climatology in COSMO introduces a known cold bias especially

in the Mediterranean. A further investigation of both models with an improved aerosol cli-

matology and a tuning tailored to COSMO-CLM could alleviate performance of COSMO-CLM

and could answer remaining questions. In addition, it would be interesting to assess whether

the recent developments of the new COSMO-TERRA version 5.05 could partially remove iden-

ti�ed de�ciencies in the standard COSMO-TERRA version.

In conclusion, this master thesis has shown the importance of land surface processes for

the correct prediction of summer hot extremes at the weather time scale. �e results could

help illuminate potential pathways towards the development of be�er predictions of such

events in Europe.
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1 Introduction

Summer heat extremes pose a considerable threat to European citizens. A prolonged heatwave

not only causes immediate e�ects such as heat-related deaths and health risks (Kovats and Hajat,

2008), but also intermediate e�ects on infrastructure and agriculture (e.g. Fink et al., 2006, COPA

COGECA, 2003, respectively). �e record summer heat in 2003 (Beniston, 2004, Schär and Jen-

dritzky, 2004), for example, caused a total excess mortality of more than 70,000 deaths (Robine

et al., 2008) and a economic loss of 13 Billion Euros across Europe (De Bono et al., 2004).

With the projected impact of regional climate change, an exacerbation of heat extreme events

is looming on the horizon: European summer heat spells will likely increase in frequency, in-

tensity and duration by the end of the 21st century (Beniston et al., 2007, Ko� and Ko�, 2008).

�e intensity of extreme temperatures increases more than a simple shi� of mean temperatures

would suggest (Beniston et al., 2007). Seneviratne et al. (2016) found a 40% stronger warming

for extreme temperatures in the Mediterranean compared to global average temperature change.

Especially in the densely populated Mediterranean region and in low-level southern Europe, fre-

quency and duration of heat extremes increase faster and health-related impacts are more severe

than in northern parts of Europe (Fischer and Schär, 2010).

�e disproportionally high change in extreme temperatures over Europe and the increase in heat

extreme frequency can potentially be explained by an increased variability in interannual tem-

peratures (Schär et al., 2004, Vidale et al., 2007), which is mainly a�ributed to land-atmosphere

feedbacks (Seneviratne et al., 2006, Vidale et al., 2007).

1.1 �e Role of Land Processes in Regional Climate

�e land surface interacts through several processes with the atmosphere, a�ecting regional

weather and climate. �e albedo of the ground determines the amount of shortwave radiation

absorbed by the ground. Absorbed energy is stored and gradually released back to the atmosphere

through warming of air (sensible heat), emission of longwave radiation and evapotranspiration

of water (latent heat). �e energy budget at the surface can thus be described with

SWnet + LWnet = LHnet + SHnet +GHFnet (1)

with net shortwave radiation SWnet and net longwave radiation LWnet determining the amount

of energy absorbed in the ground, which is divided into net latent heat �ux LHnet, net sensible
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heat �uxSHnet and ground heat �uxGHFnet (in the following without the subscript) by processes

taking place in the soil and vegetation.

Heat storage in the ground is important on diurnal time scales, where part of the absorbed energy

is stored during day and released during night, dampening diurnal temperature ranges. �is e�ect

similarly takes place on seasonal timescales.

�e latent heat �ux links the energy and water budget of the land surface. �rough stomatal

conductance and assimilation rates, vegetation and soil moisture content determine the amount

of latent heat released into the atmosphere. �e soil acts as a sink for precipitation and source for

evapotranspiration. �e slow-changing nature of soil moisture leads to the soil moisture memory

e�ect, where integrated precipitation over several months determines the current soil moisture

content. In a transitional climate regime, where evapotranspiration is not limited by available

energy, soil moisture constrains evapotranspiration (Seneviratne et al., 2010), hence the partition

between sensible and latent heat and thus has an in�uence on local temperature.

�rough this soil-moisture temperature feedback, the land surface is coupled with the atmosphere.

Low soil moisture distorts the ratio of incoming radiation fed back to the atmosphere towards

less latent heat and more release of sensible heat in transitional soil moisture regimes (Ferranti

and Viterbo, 2006). �erefore, a precipitation de�cit in spring can amplify summer temperatures

by degrading the soil moisture and allowing for more sensible heat to be released by the sur-

face in summer. �is coupling is especially high during large-scale anticyclonic regimes, where

atmospheric circulation is low (�esada et al., 2012), and when the soil moisture regime is transi-

tional (Seneviratne et al., 2010). �esada et al. (2012) followed that ampli�cation of heat extremes

through the soil-moisture temperature feedback is conditional of two features: (1) when anticy-

clonic weather prevails and (2) dry conditions in winter and spring degrade soil moisture content,

shi�ing local conditions to a transitional soil moisture regime.

Simulations have shown an ampli�cation of heat extremes by strong soil moisture coupling in

most of the recent European heatwaves (Fischer et al., 2007a, Jaeger and Seneviratne, 2011). With

climate change, transitional soil moisture regimes are expected to cover also northern areas of Eu-

rope (Seneviratne et al., 2006) and projected soil moisture drying increases extreme temperatures

over Europe in simulations until 2100 (Seneviratne et al., 2013).

�e importance of land surface processes for heat extremes over Europe demonstrates the urgency

for european weather services to correctly include land-atmosphere feedbacks into their numer-

ical weather prediction models to assure precise forecast and representation of heat extremes.
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1.2 Land Surface Models and�eir Current De�ciencies

However, the current numerical weather prediction model (NWP model) COSMO-TERRA of the

Swiss Federal O�ce of Meteorology and Climatology (MeteoSwiss) lags behind more advanced

land surface schemes. For regional climate models (RCMs), the bene�ts of coupling an atmo-

spheric model to an advanced land surface model (LSM) has already been demonstrated in the

context of climate simulations: Davin et al. (2011) compare MeteoSwiss’ COSMO-TERRA with

COSMO-CLM, where the land surface model TERRA is replaced by the Community Land Model

version 3.5 (CLM) for climate simulations, i.e. on lower temporal (monthly) and spatial (50 km)

resolution than NWP models (Beware of the di�erent terminology used in this study: COSMO-

CLM is referred to as COSMO-CLM
2
, COSMO-TERRA is COSMO-CLM). �ey found improved

�ux partition in COSMO-CLM compared to COSMO-TERRA, which particularly in summer en-

hanced representation of temperature, precipitation and cloud cover (Davin et al., 2011).

CLM and TERRA di�er in their structural complexity of representation of land surface processes.

�e manifold biological and ecological processes taking place on the land surface in vegetation

and soil cannot be represented in LSMs from �rst physical principles, but rather need careful pa-

rameterisation reasoned by sound knowledge of the processes involved. Most prominently, CLM

directly simulates stomatal conductance and photosynthesis and can therefore loosely be cate-

gorised as third generation LSM (a�er classi�cation from Sellers et al., 1997). In contrast, TERRA

belongs to the earlier – second generation – LSMs using empirical relationships to estimate evap-

otranspiration. Furthermore, CLM allows for more detailed representation of the land surface, for

example by explicitly modelling di�erent vegetation types and allowing them to coexist on one

grid cell.

Davin et al. (2016) show that COSMO-CLM outperforms COSMO-TERRA and other RCMs in

2-meter mean, minimum and, most pronounced, maximum temperature. �ey demonstrate that

these improvements largely stem from a be�er representation of �uxes, including evapotranspi-

ration. �ey furthermore conclude that improvements of land surface schemes in RCMs are likely

to mend current known RCM de�ciencies.

A similar study for both models on higher temporal (hourly) and spatial (6.6 km) resolution (i.e.,

in ”weather mode”) has not yet been conducted. Especially during hot summer extremes, surface

�uxes are known to have a large impact on temperature (Donat et al., 2017) and be�er representa-

tion of surface �uxes has shown to be central for model performance improvement (Davin et al.,

2011). Correctly representing the land surface in NWP models is thus both of crucial importance

for reliable weather forecasting and, at the same time, a promising pathway towards substantial

model performance improvements.
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1.3 �e Summer Heat Extremes of 2003, 2006 and 2015

2003, 2006 and 2015 list among the top ten of the record-breaking heat events over Europe since

1950 and are the subset thereof that took place in Central Europe (Russo et al., 2015). �e three

summers show the largest temperature anomalies across Europe since 1910, together with the

2010 Russian-centered heatwave (NOAA, 2018). In the following, they are shortly characterised

with the help of Figure 1.

2003 was the ho�est ever recorded summer in Central Europe (Luterbacher et al., 2004). Garcı́a-

Herrera et al. (2010) summarize that ”an anomalously persistent northerly displacement of

the Atlantic Subtropical High” led to prounounced heat waves in June and August. During

the �rst two weeks of August, this high slowly advanced towards north-east (Figure 1),

leading to record-breaking temperatures over most of Central Europe. On 14th
of August,

for the �rst time since beginning of August, no temperature record was broken (Garcı́a-

Herrera et al., 2010). Fischer et al. (2007b) state that the warm and dry spring anomaly

preceeding the event degraded soil moisture across Europe far below multiyear averages.

In sensitivity experiments they �nd that surface temperature anomalies would have been

reduced by 40% when prescribing climatological soil moisture.

�e 2006 heatwave was located more northerly than the 2003 heatwave, a�ecting especially

Germany and its neighbouring countries (Rebetez et al., 2009). It was primarily active mid-

July (Figure 1), where a persistent Omega Blocking disabled zonal �ow (Rebetez et al., 2009).

2006 was more anomalous than 2003 in terms of area a�ected, and low soil moisture is likely

to have contributed to the severity of the event (Rebetez et al., 2009).

In 2015, four heat waves from June throughout September (Sippel et al., 2016) marked the year

as second-warmest in the Central European domain investigated by (Orth et al., 2016). A

northward displacement of the jet stream towards the end of the summer led to a successive

pa�ern of recorded heat waves: In south-western Central Europe, temperatures were high-

est beginning of June, while south-eastern and north-eastern Central Europe experienced

their main heat extremes in July and August, respectively (Figure 1, Sippel et al., 2016).

�roughout summer 2015 a record precipitation de�cit of 31% below mean precipitation

resulted in the summer being the driest since 1904. �e subsequent anomalously large soil

moisture de�cit was lower than in any other 21st century european summer (Orth et al.,

2016).
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Figure 1: Day of seasonal temperature record for 2003, 2006 and 2015 expressed as day where

maximum Tmax,3d,2m was reached throughout JJA of respective year in the domain of the simula-

tions. Tmax,3d,2m is the 3-day running mean daily maximum temperature at 2-meters in the EOBS

dataset.

1.4 Objectives

In the light of the severity of these heat extremes and their link to soil moisture conditions, there

are ongoing e�orts in the COSMO consortium to evaluate and improve land surface processes

representation in COSMO in the framework of the COSMO Priority Task TERRA NOVA (see

Be�ems, 2017, Ziv, 2017).

However, as compared to a climate model in the study of Davin et al. (2016), in weather models

the urge to improve land surface representations is perceived smaller. Since weather models are

running at most a couple of days, and with the initial conditions being regularly refreshed, the

state of the land surface can in principle be corrected on the basis of observations. Furthermore, in

the time frame of several days, especially soil moisture with its integrated nature does not change

much.

Nevertheless, we argue this argumentation oversees the fact that data assimilation is especially

challenging for soil conditions, since horizontal heterogenity is high and the number of in-situ

measurements low. An improved surface model is hence also bene�cial to data assimilation qual-

ity and at the same time can potentially increase forecast quality of NWP models in the same

order of magnitude than for RCMs shown by Davin et al. (2016).

Consequently, in this study we aim to investigate the added value of advanced surface represen-

tation to a numerical weather prediction system. For this purpose, two instances of the COSMO

model are compared to assess their performance: (1) MeteoSwiss’ COSMO is using the second

generation LSM TERRA, and (2) COSMO-CLM with the third generation land surface scheme

CLM. Both models are running for the anomalously hot European summers of 2003, 2006 and
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2015 and on the high temporal (hourly) and spatial (6.6 km) resolution characteristic to NWP

models.

Evaluation of weather forecast with COSMO-TERRA is usually con�ned to point-wise comparison

with available meteorological station data. �is study, in constrast, exploits increasingly available

gridded datasets over the Central European domain.

�e focus is on evaluating how the two models perform in calculating both surface temperatures

and �uxes as compared to available observations to prioritise possible developments of COSMO-

TERRA and pinpoint towards the main di�erences of the two models.

2 Methods

COSMO is a non-hydrostatic, fully compressible limited-area atmospheric model suitable for cli-

matological and meteorological time scales and a broad range of spatial scales (Doms et al., 2011).

It is developed and maintained by the Consortium for Small-scale Modelling (COSMO). �e atmo-

spheric model prognostically estimates horizontal and vertical wind components, pressure pertur-

bation, temperature, speci�c humidity, cloud water content, turbulent kinetic energy (TKE) and

the speci�c water content of rain and snow (Doms et al., 2011). Horizontal coordinates are de�ned

on a rotated geographical grid and vertical coordinates are along generalized terrain-following

height. A second-order leapfrog scheme is used for time integration (Doms et al., 2011).

2.1 Model Experiment

COSMO-TERRA and COSMO-CLM simulations are performed on hourly time resolution over

Central and Southern Europe for a common period of November until end of August in 2003,

2006 and 2015 at a spatial resolution of 6.6 km. Modelled temperatures and �uxes are subsequently

compared to evaluation datasets where available.

COSMO-POMPA version 5.0 run in hindcast mode (i.e., no data assimilation) was used. To pro-

vide lateral boundary conditions including sea surface temperatures, simulations are nested into

ECMWF reanalysis data of the respective years, with a relaxation zone of 15 points in each cardi-

nal direction – this relaxation zone is removed for analysis. Initial conditions are obtained from

COSMO Reanalysis (Ziv, 2017). COSMO-CLM has arbitrary values assigned to the soil moisture, in

COSMO-TERRA soil moisture is taken from MeteoSwiss operational archives at the beginning of

the simulation. �erefore, all simulations start in November of the previous year to provide a two-

month spin-up for soil moisture initialisation. To ensure maximum comparability between both
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models, the parameter tuning of COSMO-TERRA is also used for COSMO-CLM, i. e. COSMO-

CLM is not individually tuned.

2.2 TERRA vs CLM

�e two models di�er in their LSM. It provides the lower boundary conditions for the COSMO

atmospheric model. �e LSM TERRA (see Schrodin and Heise, 2001, Grasselt et al., 2008), is

used in the current NWP models of the German Weather Service (DWD) and MeteoSwiss within

the COSMO Consortium (see h�p://www.cosmo-model.org). �e Community Land Model (CLM)

version 4.0 is developed by the National Center for Atmospheric Research of the USA (NCAR)

and considered a state-of-the-art LSM (Davin et al., 2011).

Calculating mass and energy �uxes between atmosphere and land using stability and roughness

length formulations in the atmospheric model COSMO requires the knowledge of temperature

and relative humidity at the ground (Doms et al., 2011). �ese two variables are provided by

the LSM. Additionally, CLM also computes parts of the turbulence scheme. In the following,

the most relevant aspects of the two LSMs regarding this thesis are outlined. Table 1 provides an

overview of the points discussed below. See Doms et al. (2011) (TERRA) and Oleson and Lawrence

(2013) (CLM) for a complete description of the LSMs and Davin et al. (2011) for a more detailed

comparison. See Smiatek et al. (2008) and Lawrence and Chase (2007) for details on the surface

input �elds of TERRA and CLM, respectively.

Surface Heterogenity: TERRA has no sub-grid scale heterogenity, apart from dividing the grid

cell into bare soil and vegetated area through the plant cover fraction. CLM uses a tile ap-

proach, where every grid cell can be populated by di�erent land types (e.g. glacier, lake,

vegetated land, etc.). �e vegetated land type can consist of several plant functional types

(PFTs) coexisting in one grid cell. 15 PFTs plus bare soil are available, with their character-

istic physiology and structure, e.g. their rooting depth.

Soil properties: TERRA has 8 soil layers and a total soil depth of 15.24m. Eight soil types are

distinguished with their characteristic hydraulic properties, heat capacity and heat conduc-

tivity (data from the Food and Agriculture Organization of the United Nations (FAO) Digital

Soil Map of the World). Each grid cell is inhabited by one soil type.

CLM has 15 soil layers. �e �rst 10 soil layers are inhabited by soil speci�ed by color, texture

and organic ma�er density and reach down to 3.43m. �e last 5 soil layers are de�ned as

bedrock and only thermally, not hydrologically, active. Furthermore, CLM accounts for sub-

grid horizonal and vertical heterogenity of the soil (data from the International Geosphere-

Biosphere Programme (IGBP) Global Soil Data Task 2000).
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Table 1: Summary of the comparison of the main di�erences between TERRA and CLM.

Feature TERRA CLM

Surface Heterogenity No tile approach Tile approach, PFTs, vertical soil

heterogenity

Soil properties 8 soil types, one per grid cell, no

vertical soil heterogenity

Gradients of soil texture, color

and organic ma�er content, sub-

grid and vertical heterogenity

Vegetation structure Foliage-like vegetation rep-

resented by LAI and rooting

depth

Vegetation represented by PFTs,

with own temperature and inter-

ception reservoir

Stomatal conductance

and Photosynthesis

Empirically estimated from radia-

tion, soil water content, temper-

ature and speci�c humidity a�er

Dickinson (1984)

Stomatal conductance directly

modelled as in Collatz et al.

(1991) and photosynthesis a�er

Farquhar et al. (1980)

Hydrology Only gravitational drainage TOPMODEL-based approach, soil

water interaction with ground

water included

�ermal Processes 8 thermally active soil layers,

vegetation in�uence on radiative

(ground) temperature neglected

15 thermally active soil layers,

distinction between vegetation

temperature and ground temper-

ature

Radiative Fluxes Estimated on grid-scale from tem-

perature and albedo.

Distinction between canopy / sur-

face radiative �uxes and di�use /

direct solar radiation

Turbulent Fluxes TKE-based scheme Monin-Obukhov similarity
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Vegetation structure: Vegetation in TERRA is represented by external input �elds of leaf area

index (LAI) and rooting depth (data from the Global Land Cover map for the year 2000

(GLC2000)). �e LSM internally prescribes a simple seasonal cycle on the LAI. Additionally,

plant cover fraction per grid cell is de�ned. Vegetation in TERRA is of foliage-like nature

and does not have its own heat budget, water budget or temperature.

In contrast, in CLM vegetation composition and structure is directly modelled. Initial �elds

specify the fractional cover of each land unit, the fractional cover of each PFT per gridcell,

along with stem area index (SAI) and LAI per month, canopy top height, canopy bo�om

height and root fraction per soil layer (data from MODIS satellite products). Mechanisms

including the structure (e. g., sunlit and shaded vegetation), thermal processes (e. g., ac-

counting for vegetation and canopy temperature) or water storage (e. g., interception reser-

voir) of the vegetation are included.

Stomatal conductance and Photosynthesis: Vegetation in TERRA excerts biophysical control

on evapotranspiration via the empirical stomatal conductance model of Dickinson (1984).

Stomatal conductance is estimated by a stomatal resistance factor rs. It depends on radi-

ation, soil water content, temperature and speci�c humidity. Plant transpiration is subse-

quently a function of the fraction of ground covered by vegetation, potential evaporation

and rs.

CLM models stomatal conductance and photosynthesis explicitly. It employs the stomatal

conductance model of Collatz et al. (1991), which was �rst applied in a model by Sellers et al.

(1996), and photosynthetic carbon assimilation for C3 plants is modelled as in Collatz et al.

(1991) (modi�ed a�er Farquhar et al., 1980). C4 plants are also parameterised a�er Collatz

et al. (1992) and Dougherty et al. (1994). Fluxes are subsequently calculated as weighted

mean of all PFTs.

Hydrology: TERRA and CLM solve the Richards equation in 8 and 10 active soil layers of vari-

able depth, respectively. �e hydrological processes in both models include interception

and evapotranspiration at the surface, in�ltration into the soil, capillary and gravitational

transport between soil layers as well as subsurface and surface runo�. A comprehensive

snow modeling is also included, but not covered here.

While in TERRA water drained from the last soil layer disappears from the model, in CLM

a groundwater model is included allowing for interaction between groundwater and soil

moisture. �e TOPMODEL approach based on Beven et al. (1984) for runo� parameterisa-

tion used in CLM takes water table depth and topography into account.

�ermal Processes: Both TERRA and CLM solve the heat conduction equation between all soil

layers. In TERRA, heat capacity depends on the soil type and the water content, but heat
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conductivity only on the average water content of the soil. �e lower boundary condition

is a prescribed constant climatological value, and on the �rst soil layer the atmospheric

forcing is applied. �e surface temperature Trad is the mean temperature of the �rst soil

layer, solved with the heat conduction equation. Foliage temperature is assumed to be equal

to surface temperature and vegetation does not in�uence the surface energy balance, nor

does it shade the ground. T2m is calculated to compare with observations.

Heat conductivity and capacity in CLM depend on soil texture, soil organic content and

water content. CLM distinguishes between ground temperature Trad – the result of solv-

ing the heat conduction equation for the uppermost soil layer – vegetation temperature

Tv, surface temperature Ts and diagnostically estimated 2-meter temperature T2m. Vege-

tation temperature Tv is iteratively solved from the radiation budget. Ts is de�ned as the

mean temperature in the air and stems from heat conductance from vegetation, ground and

canopy air into the atmosphere.

Radiative �uxes in TERRA are estimated on grid-scale from temperature and albedo. CLM dis-

tinguishes between canopy and ground radiative �uxes. Furthermore, di�use and direct

solar radiation is di�erentiated, in�uencing availibility of light for photosynthesis in sunlit

and shaded areas of the canopy.

Turbulent �uxes in TERRA are estimated with a TKE-based scheme and are simulated in the

atmospheric part of the model. CLM comes with its own scheme based on Monin-Obukhov

similarity which is used additionally to the one provided by COSMO.

2.3 Evaluation Datasets

�e models are compared to gridded evaluation datasets of radiative temperature Trad and 2-

meter temperature T2m in K , radiative �uxes (longwave LW and shortwave SW radiation) and

surface �uxes (latent heat LH and sensible heat SH) in Wm−2
(see Table 2). Precipitation is also

evaluated, but since model agreement is good (see Supplementary Figure A9), it is not included

in the analysis.

�e EOBS dataset (see Haylock et al., 2008) provides gridded estimates of daily mean, minimum

and maximum temperature as well as precipitation over Europe on a 0.1
◦

resolution and daily

basis. It is interpolated from irregularly located meteorological stations across Europe.

�e Satellite Land Surface Temperature dataset (SLST) provides hourly measured land surface

temperature (LST) over Southern and Central Europe at a resolution of 5.5 km. �e dataset is de-

veloped at MeteoSwiss (currently unpublished, for methodology see Duguay-Tetzla� et al., 2015).

With the high resolution available in the SLST dataset, that is even higher than model resolution,
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Table 2: Gridded evaluation datasets used in this work, their resolution and extent in both space

and time and the variables they provide.

Abbrev. Variables temporal spatial Reference

resolution extent* resolution extent

EOBS T2m,max daily all 0.1
◦

Europe Haylock et al. (2008)

T2m,mean all

T2m,min all

SLST Trad hourly all 5 km C. Europe, similar to

Africa** Duguay-Tetzla� et al. (2015)

GLEAM LH daily all 0.25
◦

global Martens et al. (2017)

WECANN LH monthly 2015 1
◦

global Alemohammad et al. (2017)

SH

CERES LW daily all 1
◦

global Wielicki et al. (1996), DOI

SW

* summers covered (2003/2006/2015)

** Central European domain seen by geostationary satellite, see e.g. Figure 12

small-scale di�erences between models and evaluation datasets can be observed and analysed.

Satellite-derived land surface temperature measures Trad as temperature resulting from the sur-

face energy balance directly at the land surface (Trigo et al., 2015). It can be interpreted to be the

same as the radiative temperature Trad (additionally Tv in CLM) in both LSMs.

Note the di�erent nature of missing data in SLST: While the other datasets report missing values

where the earth’s surface is covered by oceans or measurements failed, SLST additionally reports

any value missing that is covered by clouds at the time of image capture. �is results in a pa�ern

of missing values that is di�erent for each hourly image, making it necessary to weight daily or

monthly averages by the number of valid values in this time frame for each pixel (see Table 3).

�e GLEAM dataset (see Martens et al., 2017) is a model estimating evapotranspiration from re-

mote sensing products on daily basis and a resolution of 0.25
◦
. It provides an evapotranspiration

estimate in mm day−1
, which is converted to Wm−2

with the following formula:

LH [Wm−2] = −LH [mm day−1] Lwρw
1

3.6× 10e6 ∗ 24
(2)

where Lw is the latent heat of vaporisation of water in [J kg−1] and ρw is the density of water in

[g m−3]. �e minus converts the dataset to the COSMO sign convention.

https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDAY_L3.004A
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Additionally, we use the WECANN estimates for latent heat and sensible heat (see Alemohammad

et al., 2017) derived from employing an arti�cial neural network on available meteorological vari-

ables, especially solar-induced �uorescence. It provides monthly estimates of the surface �uxes

on a 1
◦

resolution.

An observational ground heat �ux estimate is calculated by using Equation 1.1 combining sev-

eral evaluation products, once with latent heat from GLEAM and once with latent heat from

WECANN:

Gobs,1 = LWnet,CERES + SWnet,CERES −Hnet,WECANN − LEnet,GLEAM (3)

Gobs,2 = LWnet,CERES + SWnet,CERES −Hnet,WECANN − LEnet,WECANN (4)

with all �uxes in Wm−2
and de�ned positive towards the surface. Note since ground heat �ux

is calculated as a residual, it also includes heat storage into vegetation. For comparison with

standard procedures performed at DWD to verify COSMO-TERRA performance, we additionally

compare modelled ground heat �uxes to the meteorological station in Lindenberg, Germany (see

COSMO webpage).

Finally, satellite-derived observations on net shortwave and longwave radiation at the ground are

obtained from the CERES dataset (see Wielicki et al., 1996).

Even though soil moisture plays a crucial role in land surface processes in�uencing local weather

(see Section 1.1), observational data of soil moisture in su�cient coverage and quality is lack-

ing (Seneviratne et al., 2010). �is problem is exacerbated by the high spatial heterogenity of

soil moisture (Seneviratne et al., 2010), hampering spatial interpolation of cost-intensive point

measurements in the ground. Soil moisture satellite products have su�cient spatial coverage,

but with microwave sensors, soil penetration is low and does usually not reach root zone. Grav-

ity based methods currently have coarse resolution and cannot distinguish between water from

soil, groundwater, lakes, snow or vegetation (Seneviratne et al., 2010). Since in this study grid-

ded observations of high spatial resolution are necessary, we do not include an observational soil

moisture dataset in our analysis. However, we can compare root zone soil moisture of the LSMs.

2.4 Analysis Methods

When assessing the performance of LSMs, there are three di�erent principle routes. Following

the framework of Best et al. (2015), we distinguish between comparison, evaluation and bench-

marking.

http://srnwp.cosmo-model.org/view/observations/Lindenberg
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Comparing di�erent models allows to identify advantageous features of one model over an-

other. In the light of uncertainty on how to parameterise an individual process best, it

allows ranking of parameterisations and feature implementations and gives insight where

model improvement is possible (Best et al., 2015). Errors systematic among models can be

de�ned as development priorities. However, by comparing models and subsequently en-

hancing them, they get more alike, but not necessarily more like observations (Best et al.,

2015). Furthermore, comprehensive models can not naturally bridge the gap between under-

standing a simulation process and understanding the physical process that is approximated

with this simulation (Held, 2005).

Evaluating models is comparing models against available observations. �is is typically done

especially with NWP models, not only for long-term development, but also for real-time ad-

justment of of current forecasts to observations (data assimilation). However, a parametrisa-

tion of a certain process more aligned with observations does not necessarily lead to a more

accurate representation of the process (Knu�i et al., 2013). Furthermore, especially with the

heavy parameterised processes on the land surface, observationally available variables are

di�cult to be matched with model variables, since de�nitions may vary. For example, the

land surface temperature in the SLST dataset is the temperature ”seen” by the satellite of the

land surface. It is debatable whether this temperature is be�er compared with the radiative

temperature Trad de�ned below vegetation in CLM, since it directly results from the radia-

tion budget, or Tv. Where vegetation is present in CLM, Trad is covered by vegetation and

Tv should, in principle, be the temperature ”seen” by the satellite. Another example where

evaluating models is di�cult is the soil moisture of the root zone, crucial for land surface

atmosphere coupling.

Benchmarking is a third route, where an a priori performance expectation is de�ned and the

models ability to beat it is assessed. For example, the degree of utilizing available informa-

tion of the model can be measured with a simple statistical model (Best et al., 2015). �e

underlying argument is as follows: While a benchmark model, for example a linear regres-

sion on selected variables, has no information about processes involved and uses li�le input

data, a LSM has an exhaustive degree of information on vegetation state, soil state as well

as water and energy budgets. �is additional information, if assiduously utilized, should

enable the LSM to outperform a statistical model. Especially in the context of hot summers

where land surface coupling is high and soil moisture legacy from spring becomes impor-

tant, LSMs should pro�t from their additional knowledge of the state of the land surface. It

is important to note that, in this context, the statistical benchmark model should not be seen

as a competitor or possible replacement of the LSM. Although �ne-tuned statistical models

are able to beat models of land surface, a parameterisation closely aligned to the physical

processes observed are be�er at representing extreme cases (see Best et al., 2015) and have
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Figure 2: Division of the domain along the 45
◦

latitude. �e subdomains are in the following called

Northern European and Southern European domain.

more room for improvement in future model developments. �e benchmark model thus

solely measures information utilization of the LSMs.

2.4.1 Evaluation and Comparison

Evaluation datasets were regridded on COSMO output using bilinear interpolation, where a point

on the regridded evaluation dataset is only valid if none of the four input points is masked. Both

model and evaluation datasets were additionally masked where less than 95% of the model pixel

was land in either TERRA or CLM land cover input �elds. In agreement with COSMO convention,

all �uxes towards the surface are de�ned positive. �e domain is divided along the 45
◦

latitude

into a Northern European domain and a Southern European domain (see Figure 2).

Aggregation to daily averages is weighted by the number of valid data points considered, e.g.

for the SLST dataset, each daily mean is weighted by the number of hourly measurements it

consists of. Monthly aggregated data is �rst aggregated daily, where applicable, and averages

are also weighted by the number of valid (sub-daily) data points. Correct aggregation is ensured

by calculating the weighted average on each aggregation step, which is constant throughout the

aggregation steps when the weights are correct.

We apply a suite of statistical metrics (see Table 3) to evaluate model forecast with observations

for all variables listed above (Section 2.3). �is set of metrics informs over bias, error magnitude,

correlation and shared variability of models with evaluation datasets and gives a broad overview

over model performance for each variable. �e metrics are weighted for number of valid mea-

surements in the considered time period. For an overview of the biases of the model, MBE is

calculated for monthly maps in summer 2015. Additionally, the representation of heat extremes

in both models is estimated by applying a set of absolut heat indices (see Table 3). Absolute indices

ensure comparability between models and observations and between di�erent regions. Also, due
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to the limited model run time, no relative extreme measures (e.g. comparing to a 30-year mean)

can be used.

Especially for Weather Services, correctly forecasting dangerous conditions for humans is impor-

tant. �us an additional, comprehensive set of human comfort indices is applied on both models

to examine the implications of the reported model bias on exposure of humans to dangerous heat

events. �ese human comfort indices estimate apparent temperature by taking into account not

only temperature, but also relative humidity and wind speed to determine temperatures felt by

humans. �e set consists of apparent temperature (AT), HUMIDEX and HI from Buzan et al.

(2015), AT105F from Fischer and Schär (2010) and the Flanders Heat Stress Index from Wouters

et al. (2017). �e thresholds for discomfort and danger exposed to humans di�er between the

indices, but have been set so that indices exceed their limits for ”dangerous” conditions.

2.4.2 Benchmark Experiment

Best et al. (2015) and Abramowitz et al. (2008) showed that LSMs are unable to outperform well

calibrated simple statistical models in scores describing the mean and the standard deviation of

the distribution. However, there is hope for the extremes of the distribution (Best et al., 2015). To

benchmark both models and analyse their capabilities in utilising information, a simple statistical

model is set up to estimate latent heat �ux from net shortwave radiation and precipitation pro-

vided by COSMO-TERRA. �is latent heat �ux is subsequently compared to the estimates of both

models.

We employ precipitation and net shortwave radiation since they are the major contributing atmo-

spheric factor to evapotranspiration. Incoming shortwave radiation is unfortunately unavailable

in the current runs, therefore we use net shortwave radiation instead. Note that this already in-

cludes the shortwave radiation emi�ed by the land surface, and is therefore a small information

advantage to the statistical model. We found the di�erence of using COSMO-TERRA vs COSMO-

CLM precipitation and shortwave radiation minor and took the COSMO-TERRA variables as an

arbitrary choice. For training the model, we use latent heat estimations from GLEAM because of

the higher temporal resolution compared to WECANN. �e model is trained on the summer 2006

and latent heat is estimated for the summers 2003 and 2015.

A K-means-algorithm divides the domain in 11 clusters according to their similarity regarding

precipitation and shortwave radiation (Figure 3a). �e algorithm minimizes within-cluster sum-

of-squares, for a given number of clusters, by iteratively se�ing centroids of the clusters in the

parameter space and moving them towards lower inertia (Mac�een, 1967). For each cluster,

an individual linear ridge regression is trained, where the regularization parameter is found via

cross-validation. �e number of clusters is determined by calculating the silhoue�e score for each
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Table 3: Statistical metrics applied to evaluate forecast of models with observations, where m
refers to model data, o to observations and w to their respective weights. Summation over N can

happen temporal, spatial or over both dimensions. BV is the best possible value for each metric.

Name BV Formula Notes

Root Mean Square Error 0 RMSE =

√∑N
i=1w (mi − oi)2

N

Mean Bias Error 0 MBE = mw − ow where mw and ow are

the weighted averages

over N of model and

observations, respec-

tively

Mean Absolute Error 0 MAE =
1

N

∑N
i=1w |mi − oi|

Standard deviation — sx =

√
1

N

∑N
i=1w (xi − x)2 with x as observation

or model

Pearson coe�cient 1 R =

∑N
i=1w (mi − m̄)(oi − ō)

Nsmso

Regression slope 1 β =

so
sm
R

Determination Coe�cient 1 R2

Summer Days — No. of days T2m,max > 25◦C

Hot Days — No. of days T2m,max > 30◦C

Tropical Nights — No. of days T2m,min ≥ 20◦C

CHT — No. of days T2m,max > 25◦C and

T2m,min > 20◦C
adapted from Fischer

and Schär (2010)
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(a) clusters (b) silhoue�e scores

Figure 3: Setup of the statistical benchmark model: (a) the domain divided into 11 clusters of

similar points by a K-means-algorithm and (b) the calculated silhoue�e score of each number of

cluster. In (b), apart from clustersize 2 which divides the domain into ocean and land, clustersize

11 is a local maximum and therefore used for the statistical model. �e shading is the area between

the 0.25-percentile and the 0.75-percentile of the silhoue�e score estimated 50 times with a batch

size of 1000.

number of clusters and taking the maximum score between three and 40 clusters. We se�le on this

range since the global optimal silhou�e score is achieved for cluster size two, dividing the domain

into land and ocean, and cluster sizes above 40 are increasingly computationally expensive.

3 Results

�e model output is evaluated with gridded evaluation datasets as described in Section 2.3 where

available, otherwise a comparison of the two models is performed. �e results are structured

as follows: First, the �ux partition of both models at the surface in the summers is examined.

Second, the temperature biases are characterised and the di�erence between the two temperature

estimates is shown. An overview over model performance regarding mean and extreme indices

in all included variables is then given and �nally, the implications for humans from these results

are shown by examining human comfort indices results of both models.

3.1 Surface Energy Balance

�e absorbed energy at the surface in the LSMs is partitioned into longwave radiation, sensible

heat �ux, latent heat �ux and ground heat �ux. �is partition is sensitive to LSM structure and

parameterisation and di�ers among models. In the following, we examine the surface energy par-

tition of both models and state di�erences between models compared to the evaluation datasets.
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3.1.1 Latent and Sensible Heat

COSMO-TERRA overestimates sensible heat �ux throughout the domain except its eastern bound-

aries and the Alps. In 2015, the overestimation happens most severely in July (Figure 4a) in West-

ern Europe, where biases are more than three times larger than in June for latent and sensible

heat, taking values larger than 20 Wm−2
. �is is also the place and time where the major heat

event of 2015 took place (Sippel et al., 2016). �e overestimation of sensible heat follows the spa-

tial pa�ern of the overestimation of latent heat, i.e. where too much sensible heat is released at

the same time too li�le latent heat produced.

COSMO-CLM shows the same sign of bias for latent and sensible heat, but overall lower magni-

tudes. �e overall mean bias is less than 6 Wm−2
. Additonally, �ux estimation errors do not rise

in July in COSMO-CLM.

GLEAM and WECANN overall agree regarding sign, magnitude and pa�ern of the bias for latent

heat (Figure 4c, e and d, f), giving more con�dence to the assessment. �ey disagree mostly in

Central Europe of COSMO-CLM runs, where underestimation of latent heat is less in GLEAM than

in WECANN. Errors in GLEAM are smaller than in WECANN, but RMSEs are mostly similar, sug-

gesting more canceling of biases spatially in GLEAM. We a�ribute this higher spatial variability

of biases in GLEAM to its higher spatial resolution.

�e magnitude of the di�erence in COSMO-CLM and COSMO-TERRA surface energy balance

(Figure 5) is shown in the evaporative fraction (EF) throughout the summer. �e average evap-

orative fraction gives the di�erence in partitioning the available energy in the three summers

between models. �e evaporative fraction EF is calculated as:

EF =
LH

LH + SH
(5)

�e two available observational estimates show similar evaporative fraction throughout summer

2015: EF is around 50%. EF in COSMO-CLM closely aligns to observations for 2015 in terms of

magnitude, and shows similar evolution for the two other summers, where no observations are

available. In contrast, COSMO-TERRA evaporative fraction distinctively departs from observa-

tions at the beginning of July in all summers in the Southern European domain and drops to

around 40%, where it stays throughout summer. �is drop is most pronounced in 2015 where the

major heat wave was recorded for the majority of the domain (Sippel et al., 2016).

�is drop in latent heat production is not accompanied by decreasing soil moisture of the top 10

cm soil layers in TERRA (Figure 6). Soil moisture anomaly in summer is similar among models

(Figure 6), but absolute values di�er. COSMO-TERRA is constantly drier than COSMO-CLM in
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the top 10 cm of soil, where the majority of the roots is located in TERRA.

In summary, COSMO-CLM has smaller �ux at the surface biases of the same direction. COSMO-

TERRA �ux partition at the surface departs from both COSMO-CLM and observations at the be-

ginning of summer and follows a di�erent pathway throughout summer. Both latent heat obser-

vations agree well, while WECANN is unfortunately only available in 2015, stripping the oppor-

tunity to examine evaporative fraction for other summers than 2015. Coastal regions and the Alps

show a di�erent behaviour than the spatial average (see Section 4.5).

�e higher the plant cover (expressed as LAI) in COSMO-TERRA, the larger is the error in the

latent heat estimation (Figure 7a). A similarly strong correlation is not visible for COSMO-CLM

(Figure 7b) or other combinations of variables and vegetation properties in both COSMO-CLM

and COSMO-TERRA (not shown).

3.1.2 Ground Heat Flux

Ground heat �ux is considerably underestimated in both models (Figure 4g and h), by on average

around 30 Wm−2
in COSMO-CLM and around 35 Wm−2

, while absolute �uxes in both models

are only around 15 Wm−2
. �e underestimation is most severe in COSMO-TERRA in Southern

Spain. �e underestimated heat storage capacity in the ground in both models intensi�es towards

summer (Figure 8a and b): ground heat �ux is negative or close to zero throughout January and

starts to get positive in February. �e seasonal cycle of ground heat �ux is larger in COSMO-CLM

than in COSMO-TERRA, leading to lower bias compared to the evaluation data. However, both

models are more similar to each other than to the observations. �e single years show departures

from this behaviour in single outlier events, which are most common in January.

To investigate this striking di�erence between models and observational estimate, both models are

additionally compared ground heat �ux in 5 cm depth at the meteorological station in Lindenberg,

Germany. For that purpose, the pixel in both models which contains the measurement station is

extracted and compared to the observations at the station (Figure 8c). In contrast to the gridded

ground heat �ux estimate, ground heat �ux at Lindenberg station has a smaller magnitude than

in the models on the seasonal time scale (Figure 8c).

Note that the vegetation at Lindenberg is grassland, while the model pixel extracted is only 53%

grassland in TERRA and 17% grassland (43% crop) in CLM, hampering comparison between the

observations and modeled �uxes. Note furthermore that the pixel containing the Lindenberg

station is usually masked in this analysis, because there are lakes in the vicinity of the station that

decrease the land fraction of the pixel to a value lower than 0.95.
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COSMO-TERRA - EVAL COSMO-CLM - EVAL

06/2015 07/2015 08/2015 06/2015 07/2015 08/2015

(a) WECANN: sensible heat �ux (b) same as (a)

(c) WECANN: latent heat �ux (d) same as (c)

(e) GLEAM: latent heat �ux (f) same as (e)

(g) OBS1: ground heat �ux (h) same as (g)

[Wm−2]

Figure 4: Monthly mean bias (model minus observations) in daily mean (a, b, c, d) sensible heat�ux

(e, f) latent heat �ux and (g, h) ground heat �ux for COSMO-TERRA (a, c, e, g) and COSMO-CLM

(b, d, f, h) as compared to the WECANN dataset (a, b, c, d), the GLEAM dataset (e, f) and the

observational ground heat �ux derived from WECANN sensible heat and GLEAM latent heat

estimates (g, h) for JJA 2015. Positive values indicate overestimation of the �ux in models. RMSE

and MBE for each month are printed on the maps. Data where no measurements are available in

observations are excluded.
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(a) Southern European domain (b) Southern European domain

Figure 5: Mean daily evaporative fraction in COSMO-TERRA, COSMO-CLM and observations

averaged over (a) the Southern and (b) the Northern European domain for JJA in 2003, 2006, 2015

and the average of the three summers. Observational evaporative fraction has two estimates,

one with latent heat from GLEAM and sensible heat from WECANN (OBS1) and a second one

with both variables from WECANN (OBS2) (see Equations 3 and 4). Note that the observational

evaporative fraction can only be computed for 2015, since the WECANN dataset does not stretch

back to the other summers. CHANGE TITLE

(a) Southern European domain (b) Northern European domain

Figure 6: Mean daily root zone soil moisture (0 - 10 cm depth) COSMO-TERRA and COSMO-CLM

averaged over the (a) Southern and (b) Northern European domain for JJA in 2003, 2006, 2015 and

the average of the three summers.
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(a) (b)

percentage

Figure 7: Dependency of the RMSE in the latent heat estimation of (a) COSMO-TERRA and (b)

COSMO-CLM on the mean LAI. Daily values are integrated over the whole domain and JJA 2015.

3.1.3 Mean Diurnal Cycle of Fluxes

Net shortwave radiation in both models is comparable (Supplementary Figure A8a, b and Fig-

ure 9), with COSMO-TERRA having on average higher shortwave radiation throughout Europe.

Longwave radiation is overestimated compared to observations (Supplementary Figure A8c, d)

but similar among models (Figure 9). �e partition into the surface �uxes (sensible heat, latent

heat and ground heat �ux) on sub-daily time scales is where the main di�erences between the

two models start to show.

In the Southern European domain, overall larger �ux magnitudes lead to larger di�erences. Ad-

ditionally, here the impact of the di�erence in the evaporative fraction is higher: COSMO-TERRA

produces more sensible heat, and less latent heat than COSMO-CLM. �is behaviour is strikingly

consistent between years, more than between models (Figure 9). Over the whole domain, the

residual ground heat �ux is larger in COSMO-CLM: the LSM stores more heat in the ground dur-

ing day and releases the majority in a distinctive event in the early a�ernoon (Supplementary

Figure A10).

Diurnal cycles of both models at Lindenberg are comparable to mean diurnal cycles over the whole

domain in terms of shape and magnitude (Figure 10). Sensible heat �ux in models is overstimated

and latent heat is underestimated compared to Lindenberg (Figure 10b, c). �is is in agreement

with results for our gridded datasets, but in contrast to the �ndings from Schulz and Vogel (2017).
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(a) Southern European domain

(b) Northern European domain

(c) Lindenberg

Figure 8: Domain averaged ground heat �ux over (a) the Southern European, (b) the Northern

European domain and (c) of the model point at Lindenberg as daily averages for the �rst half of

the three years. Note that an observational ground heat �ux estimate is only available for 2015

and a full seasonal cycle is not available since model runs do not cover all months.
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(a) Southern European domain (b) Northern European domain

Figure 9: Di�erence of mean diurnal cycle of net shortwave radiation (SW ), net longwave ra-

diation (LW ), net latent heat (LH) and net sensible heat (SH) at the surface between COSMO-

TERRA and COSMO-CLM (COSMO-TERRA - COSMO-CLM) averaged over the (a) Southern Eu-

ropean and (b) Northern European domain for JJA in 2003, 2006 and 2015. Note that in agreement

with the COSMO convention, �uxes towards the surface are de�ned positive. Positive values thus

denote more positive �ux towards the surface in COSMO-TERRA, while negative values denote

more positive �ux towards the surface in COSMO-CLM. For mean diurnal cycle of both models

separately see Supplementary Figure A10.

Lindenberg shortwave and longwave radiation are comparable to model estimates (Figure 10a and

Supplementary Figure A13, respectively).

Ground heat �ux in both models exhibits a strong diurnal cycle of around 250Wm−2
in COSMO-

CLM and 150 Wm−2
in COSMO-TERRA, while the diurnal cycle at Lindenberg is around 50

Wm−2
at maximum (Figure 10d). Ground heat �ux at Lindenberg reaches its daily maximum

two to three hours later than in the models and does not show a global minimum in the a�ernoon

as COSMO-CLM does. However, we expect ground heat �ux to be dampened and delayed at the

depths measured at Lindenberg, so comparing the magnitude of both �uxes is challenging. A

scaling of the ground heat �uxes of both models to the depth of observations in Lindenberg was

unfortunately outside of the scope of this master thesis.



25 3.1 SURFACE ENERGY BALANCE

(a) Shortwave radiation (b) Latent heat �ux

(c) Sensible heat �ux (d) Ground heat �ux

Figure 10: Comparison of diurnal cycle of (a) shortwave radiation, (b) latent heat �ux, (c) sensible

heat �ux (g) ground heat �ux and longwave radiation (Supplementary Figure A13) at the Linden-

berg station and the two models at the associated model pixel averaged over the summer months

for the three summers. �e respective observational daily estimate is included (red line). Note

furthermore that ground heat �ux at Lindenberg is measured in 5 cm depth.
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3.2 Model Temperature Bias

Temperature bias for both 2-meter temperature and radiative temperature agrees among models,

but in comparison to the two available evaluation datasets bias is di�erent.

3.2.1 2-Meter Temperature

Similarly to latent heat, sensible heat and ground heat �ux, both models show a bias that is broadly

similar in sign, but di�erent in magnitude (Figure 11) when evaluated against EOBS. Observed

temperature biases at 2 meters re�ect the partition of the energy at the surface in both models:

�e warm bias in COSMO-TERRA is in line with an excess of sensible heat release at the cost of

too li�le latent heat production.

2-Meter mean temperature in COSMO-CLM is best of all the variables and models shown in

this plot, with in small scale, patchy biases and an MBE around 0.5 K . Larger biases only

appear in the Alpine region. COSMO-TERRA overestimates daily 2-meter mean tempera-

ture over almost the whole domain by about 1 K , except for small regions especially in the

northern coastal area of Spain, southern Italy and the higher Alpine regions.

2-Meter minimum temperature has the largest bias in both COSMO-TERRA and COSMO-

CLM. It is consistently overestimated throughout the domain. COSMO-TERRA is up to 2K

too warm, while COSMO-CLM has mostly smaller biases of around 1.5 K .

2-Meter maximum temperature agrees less between models. COSMO-CLM mostly underes-

timates 2-meter maximum temperature, especially on the Iberian Peninsula and north of

the Alps. In COSMO-TERRA, there is no uniform bias in space or time. �e eastern part of

the domain is underestimated, while overestimation occurs over the rest of the domain. In

June TERRA is overall too cold, while in July and August it is too warm.

2-Meter diurnal cycle: Largely overestimated 2-meter minimum temperature combined with

underestimated 2-meter maximum temperature in parts of the domain translates into a re-

duced diurnal cycle of 1-2K of similar magnitude both models as compared to observational

products (Figure 11g).

Figure 13a shows that this behaviour of large warm bias at night and smaller cold bias at day is

consistent throughout the three summers, happens both in Northern and Southern Europe and

is similar between models. However, the diurnal cycle in COSMO-CLM and COSMO-TERRA

have shi�ed biases: COSMO-CLM is colder during day and night than COSMO-TERRA in the
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COSMO-TERRA - EOBS COSMO-CLM - EOBS

06/2015 07/2015 08/2015 06/2015 07/2015 08/2015

(a) 2-meter maximum temperature (b) same as (a)

(c) 2-meter mean temperature (d) same as (c)

(e) 2-meter minimum temperature (f) same as (e)

(g) 2-meter diurnal temperature range (h) same as (g)

[K]

Figure 11: Monthly mean bias (model - observations) in (a, b) daily maximum 2-meter temperature,

(c, d) daily mean 2-meter temperature, (e, f) daily minimum 2-meter temperature and (g, h) diurnal

2-meter temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, e) as compared

to the EOBS dataset for JJA 2015. RMSE and MBE for each month are printed on the maps. Data

where no measurements are available in EOBS are excluded. See Appendix for bias maps of 2006

(Supplementary Figure A3) and 2003 (Supplementary Figure A2).
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COSMO-TERRA - SLST COSMO-CLM - SLST

06/2015 07/2015 08/2015 06/2015 07/2015 08/2015

(a) radiative maximum temperature (b) radiative (ground) maximum temperature

(c) radiative mean temperature

(c) radiative mean temperature

(d1) radiative ground temperature

(d2) radiative vegetation temperature

(d) same as (c)

(e) radiative minimum temperature (f) radiative (ground) minimum temperature

(g) radiative diurnal temperature range (h) radiative (ground) diurnal temperature range

[K]

Figure 12: Monthly mean bias (model - observations) in (a, b) daily maximum radiative tempera-

ture, (c, d) daily mean radiative temperature, (e, f) daily minimum radiative temperature and (g, h)

diurnal radiative temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, h) as

compared to the SLST dataset for JJA 2015. For evaluation with COSMO-CLM, the CLM variable

ground temperature is used in all plots except (d2), where vegetation temperature is shown addi-

tionally for comparison (see Section 2.2 for distinction). Points are stippled where the uncertainty

of the satellite measurement is larger than the reported bias at this point. RMSE and MBE for each

month are printed on the maps. Data where no measurements are available in SLST are excluded.

Note that this especially includes all data points where cloud cover was detected by the satellite.

See Appendix for bias maps of 2006 (Supplementary Figure A5) and 2003 (Supplementary Figure

A4).



29 3.2 MODEL TEMPERATURE BIAS

(a) 2-meter temperature (b) same as a

(c) radiative temperature (d) same as c

Figure 13: Mean diurnal cycle of (a, b) 2-meter temperature and (c, d) radiative temperature of

COSMO-TERRA, COSMO-CLM and available observations averaged over the Southern European

domain (a, c) and Northern European domain (b, d). Observations for 2-meter temperature are

daily EOBS data, where mean, maximum and minimum temperature per day is recorded, and

SLST data for radiative temperature, which provides hourly output. Note that data where no

measurements are available in the observations are excluded, i.e. sampling only cloud-free data

in c and d.
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Northern and Southern European domain. Furthermore, the daily minimum and maximum 2-

meter temperature in COSMO-CLM occur on average one hour later in both subdomains.

COSMO-CLM performs be�er in terms of 2-meter minimum and mean temperature, because it

is colder than COSMO-TERRA, while COSMO-TERRA represents 2-meter maximum temperature

be�er, because it is warmer than COSMO-CLM. �ese overall trends have departures especially in

the Alps and coastal regions (see Section 4.5) but show, considering the extent and the variability

in terms of land surface throughout the domain, striking spatial similarity.

3.2.2 Radiative Temperature

A second evaluation of modelled temperature was performed with the SLST dataset (Figure 12).

Note the SLST dataset records radiative temperature, which is di�erent from 2-meter tempera-

ture. �e radiative temperature of the SLST dataset was compared to Trad in COSMO-TERRA

and to Trad and Tv in COSMO-CLM (see Section 2.2). For Tv, only daily mean temperature out-

put is available. Note furthermore that the satellite data only provides measurements where no

cloud cover is present, i.e. the following results only sample cloud-free conditions (as seen by the

satellite).

�e results of the comparison with SLST for COSMO-CLM do not mirror the �ndings in the �uxes

and for 2-meter temperature: the models do not agree in the sign of their biases. COSMO-CLM

is on average too cold while COSMO-TERRA shows be�er mean and maximum temperatures

representation because it is warmer. RMSEs of both models are of similar range for all variables,

but COSMO-TERRA o�en outperforms COSMO-CLM in 2015.

Radiative mean temperature bias is overall positive in Western France, the British Islands,

Northern Italy and parts of Hungary and overall negative on the Iberian Peninsula and

in the Alps (Figure 12c). In COSMO-TERRA, mean temperature shows canceling biases be-

tween maximum and minimum temperatures and has the smallest errors among all radiative

temperature variables.

Both COSMO-CLM mean temperature variables have higher RMSE than COSMO-TERRA.

Trad is colder than SLST radiative temperature except for parts in northern France and the

British Islands, on average around 2 K . Tv shows similar pa�erns, with overall higher

under- and overestimation, on average more than 2 K too cold.

Radiative minimum temperature: Nigh�ime temperature bias di�ers among models. COSMO-

TERRA is on average 1 K too warm at night, while COSMO-CLM is 1 K too cold at night

over the whole domain. Figure 13c and d shows a similar bias for Northern and Southern

Europe.
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Radiative maximum temperature in COSMO-CLM and in COSMO-TERRA is especially largely

underestimated on the Iberian Peninsula (see also the Southern subdomain in Figure 13c).

In Northern Europe (see Figure 13d), there is li�le warm bias at day for both models. �e

underestimation is larger in COSMO-CLM than in in COSMO-TERRA. RMSEs are similar

in both models, indicating spatially compensating errors in COSMO-TERRA.

Radiative diurnal cycle: Underestimated daytime temperatures and overestimated nigh�ime

temperatures in COSMO-TERRA lead to a considerable and consistent reduced diurnal cycle

of up to 3 K over almost all the domain.

For COSMO-CLM, we see a mixed picture of diurnal temperature range performance: While

especially in central Spain and north of the Alps the diurnal cycle is too small, coastal areas

in Spain and the Alps have an overestimated diurnal temperature range.

For both models (see Figure 13b), the most prominent bias is a considerable 3-4 K cold bias

in the models during day in Southern Europe.

Between summers, the models behave consistent in all discussed variables (see Figure 13). SLST

provides an error estimate of the measured radiative temperature. In Figure 12 points are stippled

where the uncertainty of the measurement is higher than the reported bias between model and

observation. As this is only happening in regions where bias is small and changing its sign, it

gives us con�dence for the reported bias.

3.2.3 2-Meter Temperature vs. Radiative Temperature

Comparing results for 2-meter temperatures and radiative temperatures turns out to be chal-

lenging. Both temperature variables show a cold bias of COSMO-CLM as compared to COSMO-

TERRA. �is cold bias, however, is bene�cial to model performance compared with EOBS but de-

grades model performance compared to SLST. �us, COSMO-CLM outperforms COSMO-TERRA

at 2 meters except for maximum temperatures, and COSMO-TERRA outperforms COSMO-CLM

for radiative temperatures, except for minimum temperatures.

When comparing to EOBS, the biases are smaller and variables tend to have overall similar biases.

When comparing to SLST the biases are larger, o�en cancel each other out and the spatial pat-

terns in which this happens is consistent among variables, but not similar to the pa�erns in Figure

11. Higher spatial variability in radiative temperatures most likely stems from higher spatial and

temporal resolution of the SLST dataset, allowing for more regional di�erences to be displayed.

Higher temporal variability in radiative temperature on sub-daily timescales comes from the dif-

ferent nature of the two variables: Since temperature ranges at 2 meters are already dampened,

radiative temperature exhibits a larger diurnal cycle than 2-meter temperature.
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3.3 Scores for Mean and Extreme Indices

An overall veri�cation of both models is given by applying a suite of metrics for mean and ex-

treme indices. COSMO-CLM has smaller errors, larger correlation and similar variability in the

�uxes compared to the evaluation datasets. However, this improved representation of radiative

and surface �uxes does not translate into the temperatures, where a more complex picture arises

(Figure 14).

Radiative and Surface Fluxes: Over all three summers, COSMO-CLM consistently has smaller

errors in and larger correlation when representing �uxes (Figure 14). �e only exception

is sensible heat, where values in COSMO-TERRA correlate be�er with WECANN observa-

tions. Ground heat �ux estimates and shortwave radiation estimates have the largest errors.

For shortwave radiation estimates, this is expected since they also take the largest absolute

values. �e correlation of shortwave radiation, independent of the absolute values, indi-

cates similar performance than in the other �uxes. COSMO-TERRA variability in �uxes

is considerably higher than observed, while COSMO-CLM is closer to observations. For

COSMO-CLM this especially boosts its β value. R2
values show low proportion of variance

explained in the �uxes, especially latent heat in GLEAM and ground heat �ux.

Temperatures have be�er correlation than �uxes in both models. �is is not surprising, since

models are tuned to get temperatures right. In terms of error scores, COSMO-CLM outper-

forms COSMO-TERRA at 2 meters except for maximum temperatures, and COSMO-TERRA

outperforms COSMO-CLM for radiative temperatures, except for minimum temperatures.

�e di�erences between the two models regarding minimum temperature, however, are

within the range of variability between the three years. Trad in COSMO-CLM is a be�er

estimate for radiative temperature than Tv. Correlation measures paint a di�erent picture:

2-Meter minimum temperature has be�er correlation in COSMO-TERRA. Di�erences for

radiative temperature are within the variability range of the three years. All di�erent cor-

relation metrics show the same model preference. Overall best performance is achieved in

mean temperatures. COSMO-CLM shows more similar variability compared to EOBS, but

less similar variability compared to SLST. Maximum radiative temperature is more variable

in observations than in models and thus gets a boost for β.

A bias map of the latent heat estimated by the benchmark is shown in Figure 15. Note that the

benchmark was trained with GLEAM data from summer 2006, so the comparison is favored to-

wards GLEAM. �e tiles produced by the K-means-algorithm (see Figure 3b) can be spo�ed eas-

ily. �e K-means-algorithm divides the domain into clusters of geographically close points. �e

benchmark therefore does not show physically consistent behaviour along the tile borders. How-

ever, this is not the purpose of this experiment (see 2.4.2 for further discussion).
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Figure 14: Performance metrics with all evaluation datasets available. Measures are calculated for

daily values in JJA of 2015 and 2003. 2006 is le� out since no benchmark is available in this year.

For Trad,mean,SLST , hatched bars are comparison to Tv and unhatched bars for Trad in COSMO-

CLM. For WECANN, only 2015 is available. Black thick lines indicate the best value of each

measure. Errorbars indicate the di�erence between the two years. Plot is also available for all

three summers (Supplementary Figure A14), and individually for the Southern (Supplementary

Figure A15) and Northern European doman (Supplementary Figure A16). For similar analysis in

climate mode see Supplementary Figure A17.
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BM - EVAL

06/2015 07/2015 08/2015

(a) BM - WECANN

(b) BM - GLEAM

[Wm−2]

Figure 15: Monthly mean bias (benchmark - observations) in daily mean latent heat �ux as com-

pared to the WECANN dataset (a) and the GLEAM dataset (b) for JJA 2015. RMSE and MBE for

each month are printed on the maps. Data where no measurements are available in observations

are excluded. For a comparison of estimated �uxes in GLEAM, the models and the benchmark see

Supplementary Figure A11.
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�e benchmark is always be�er than COSMO-TERRA and COSMO-CLM only reaches similar

performance when compared to GLEAM. �e benchmark shows considerably lower variability

than observations. When this low variability is taken into account, as for example with β, the

benchmark far outperforms both models also compared to GLEAM. �e benchmark su�ers from

the same biases than both models: it underestimates latent heat and overestimates sensible heat.

In the beginning of summer it is more underestimated and starts to overestimate towards the end

of summer for GLEAM and WECANN on a lesser degree. �e errors are similar between months,

notably, it shows no error peak in July as COSMO-TERRA does.

�e benchmark outperforms both models when evaluated with WECANN and GLEAM. COSMO-

TERRA has considerably larger errors and less correlation compared to the benchmark, COSMO-

CLM is quite close to the benchmark.

�e improved performance regarding land surface energy balance in COSMO-CLM did not trans-

late into the temperatures, where a consistent cold bias of COSMO-CLM is hampering its per-

formance. However, when applying heat extreme indices on both models, COSMO-CLM shows

be�er performance.

Representation of heat extremes in both models agrees spatially with observations, but magni-

tudes di�er (Figure 16). High occurrence of extreme events in the summers occur on the Iberian

Peninsula, in low-altitude Italy and Western France. When only maximum temperatures plays

into the index, COSMO-CLM underestimates extreme event occurrence, while COSMO-TERRA

overestimates it. When additionally night-time temperatures are taken into account, the model

performance diverges: COSMO-CLM overestimates heat extreme occurrence less than COSMO-

TERRA, since it overestimates nigh�ime 2-meter temperatures less than COSMO-TERRA. In Sum-

mary, for indices depending solely on temperature, COSMO-CLM has be�er heat extreme repre-

sentation than COSMO-TERRA.

3.4 Human Comfort Indices

�e impact of heat extremes on humans does not only depend on temperature. Severity of heat-

waves can be approximated by the apparent temperature felt by humans, also depending on hu-

midity and wind speed. To investigate the implications for humans of the observed di�erences,

a set of human comfort indices is applied on both models (Figure 17). �ese measures include,

among temperature, also humidity and wind speed. �e la�er variables are not available in a

gridded dataset for the domain, therefore only a comparison of both models, not an evaluation

against observations, is possible here. �reshold exceedances are in the following called AT30

(for AT > 30
◦C), HI40 (for HI > 40

◦C) and HUMIDEX46 (for HUMIDEX > 46).
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Figure 16: Occurence of heat extremes over Europe for all three summers expressed as fraction of

days which classify as (a) summer days, (b) hot days, (c) tropical nights and (d) both hot day and

tropical night (CHT, see Fischer and Schär, 2010) in EOBS (upper panels), COSMO-CLM (middle

panels) and COSMO-TERRA (lower panels). (E) shows the Flanders heat index (from Wouters

et al., 2017) for the same time period (note di�erent unit). Titles of middle and lower panels are

RMSE of modeled heat extreme incidence with observations (upper panels).
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Areas o�en identi�ed as extreme in the heat extreme metrics in Section 3.3 do also o�en cross

thresholds of apparent temperature estimates. High human comfort indices are reported in the

southern half of the Iberian Peninsula and throughout low-altitude Italy. COSMO-TERRA and

COSMO-CLM share broadly the same pa�erns. Between indices, however, striking di�erences

arise. HI40 and AT105F detect high occurrence, amplitude and duration of heat extremes in the

Alpine region, a feature unknown to the other indices discussed. HUMIDEX is reporting far less,

but higher extreme events than the other indices. It is unitless, which means its amplitude is

not comparable to other indices. �e threshold set by the authors (see Masterton, 1979), however,

detects far less extreme events than the other indices for similar conditions. Amplitudes are similar

among human comfort indices except AT30.

Model di�erences for human comfort indices are local and small-scale. A clear signal only emerges

from AT30 events, which are more o�en, more prolonged and slightly warmer in COSMO-TERRA

especially on the Iberian Peninsula and in France. HI40 and AT105F, on the contrary, show lower

amplitudes in France for COSMO-TERRA. �e regions of disagreement are uniform across all

indices, and are at the same time the regions where high heat extremes are reported in the three

summers.

4 Discussion

�e results show di�ering model behaviour at the land surface in the three summers. In the fol-

lowing, the important points of both �ndings are expanded. �e di�erences in surface energy

partition in the two models are characterised and linked to observed temperature biases and LSM

structure. �e di�erences between the results for 2-meter temperature and radiative tempera-

ture are discussed. Furthermore, the representation of human comfort indices in both models is

compared and evaluated. And �nally, limitations and uncertainties in this study are discussed.

4.1 Surface Energy Balance

Both models overestimate sensible heat �ux and analogously underestimate latent heat �ux during

the summer months. �is behaviour explains the warm bias in both models when compared to

EOBS: �e ratio of sensible to latent heat is distorted towards too much sensible heat and too li�le

latent heat, warming the air at 2-meter level. While COSMO-CLM has the same sign of bias as

COSMO-TERRA, the magnitude is smaller and more similar between months.

�e misrepresentation of surface �uxes is three times higher in July in Western Europe for COSMO-

TERRA than in other months. �is coincides in time and space with the �rst major heat event
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(a) COSMO-TERRA

(b) COSMO-TERRA - COSMO-CLM

Figure 17: Magnitude of heat extremes exceeding human comfort thresholds over Europe for

all three summers expressed as fraction of days a�ected (upper panels), mean amplitude of heat

extremes (middle panels) and mean duration of heat extremes (lower panels) for (a) COSMO-

TERRA and (b) the di�erence between COSMO-TERRA and COSMO-CLM (COSMO-TERRA -

COSMO-CLM). For COSMO-CLM see Supplementary Figure A12. Indices used here are, from le�

to right, apparent temperature a�er Buzan et al. (2015), Heat Index, HUMIDEX and AT105F (see

Fischer and Schär, 2010).
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hi�ing Western Europe end of June to beginning of July (see Figure 1c) and initiates the depar-

ture of COSMO-TERRA evaporative fraction from observations and COSMO-CLM towards values

around 40%. In hot summers COSMO-TERRA overestimates sensible heat and, subsequently, tem-

perature. In contrast, the overestimation of sensible heat �ux in COSMO-CLM is constant in time

and COSMO-CLM is able to keep evaporative fraction at observed values. Davin et al. (2016) found

a similar drop in latent heat starting in June for COSMO-TERRA, suggesting a limited control of

vegetation on evapotranspiration in the beginning of summer and a subsequent anomalous dry

soil in summer. �ey used COSMO version 4.8, but Supplementary Figure A17 shows COSMO

version 5.0 has comparable results for both LSMs.

However, the soil moisture anomaly (as compared to values on the beginning of the year) in

the root zone in both LSMs is similar and can not explain the drop in evaporative fraction in

COSMO-TERRA. Nevertheless, COSMO-TERRA is on absolute values drier than COSMO-CLM,

possibly because of soil texture e�ects or the missing groundwater treatment. Soil moisture in

COSMO-TERRA might drop below �eld capacity for larger regions where it can not be used for

transpiration by the plants anymore or the empirical transpiration parameterisation in COSMO-

TERRA is biased towards underestimating transpiration for low soil moisture.

Its not intuitive why the superior �ux representation in COSMO-CLM did not translate into simi-

lar temperature scores. Since both models share the same tuning which is optimized for COSMO-

TERRA, this calls for a retuning of COSMO-CLM to redo the analysis and shows the importance

of model tuning. Improved temperature scores in COSMO-CLM a�er retuning would con�rm this

hypothesis.

�e benchmark latent heat estimate has be�er scores than both models, a considerable di�erence

when compared to COSMO-TERRA and a small di�erence when compared to COSMO-CLM. A

simple statistical model hence is able to outperform both models even in these extremely hot

summers. �is suggests information usage of both models can be considerably enhanced. �e

lower variability of the benchmark compared to GLEAM is a�ributed to the linear assumption of

the underlying statistical model, that cannot fully modulate observed variability.

Davin et al. (2016) found interannual summer temperature variability to be smaller in COSMO-

CLM and closer to observations and a�ributed this to the enhanced seasonal cycle of ground heat

�ux in COSMO-CLM, allowing for more energy to be stored in the ground in summer and released

in winter, dampening the seasonal cycle. �ey a�ribute this to the much deeper bo�om boundary

condition for thermal processes in CLM. In agreement with these results, we �nd that the daily

averaged ground heat �ux in COSMO-CLM exhibits a larger seasonal cycle.

However, the magnitude of the ground heat �ux estimated from evaluation datasets is 20 - 40

Wm−2
larger than the modelled �ux, while ground heat �ux at Lindenberg is smaller than mod-
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elled �ux. It would be advantageous to be able to directly obtain the ground heat �ux as estimated

by the model and not calculate it as a residual form all the other �uxes. �ere is no indication

to assume that the datasets used for the ground heat �ux estimate have accumulating biases, so

this di�erence remains unexplained. �e disagreeing variance, however, may stem from adding

the variance of di�erent datasets. Erratic peaks in ground heat �ux during winter in models and

evaluation estimate could result from snow melting e�ects.

When looking at sub-daily time scales, the shape of the diurnal cycle of the ground heat �ux

di�ers substantially among models. Ground heat �ux is estimated as a residual of all other �uxes:

Sensible heat �ux in COSMO-TERRA is on average over 100 Wm−2
larger than in COSMO-CLM,

especially in summer and the southern parts of Europe, while in COSMO-CLM more heat is stored

in the ground. �is larger sensible heat �ux in the morning leads to a smaller latent heat �ux

in the a�ernoon in COSMO-TERRA, when stores more heat in the ground. COSMO-CLM, in

contrast, releases much of is heat stored in the ground in the a�ernoon. Heat �ux into the ground

is thus larger in COSMO-CLM in the morning and heat �ux back into the atmosphere is larger

in the a�ernoon compared to COSMO-TERRA. Since the diurnal cycle of both models has more

similarity between years than between models, we argue this is a robust result.

�e release of ground heat �ux in COSMO-CLM in the a�ernoon is one possible explanation why

the temperature peak at 2 meters in COSMO-CLM is on average one hour later than in COSMO-

TERRA. Another reason could be that in COSMO and CLM are only coupled every 20mins, so

CLM experiences the temperature change in COSMO with a 20mins delay and adjusts the �uxes

at the surface accordingly, leading to a delayed diurnal temperature development.

�e ground heat �ux at Lindenberg is considerably smaller than the modelled ground heat �ux.

However, the comparison is hampered since ground heat �ux at Lindenberg is measured at 5 cm

depth, where we already expect considerable dampening of the signal. Furthermore, the vegeta-

tion in the models at Lindenberg is di�erent from the vegetation at the meteorological station,

restricting comparability of model and station data. However, when correcting for the measure-

ment depth and the vegetation at Lindenberg, Schulz and Vogel (2017) also found the modelled

ground heat �ux to be larger.

Comparing both models, Schulz and Vogel (2017) found an increased diurnal cycle in ground heat

�ux in COSMO-TERRA at Lindenberg, while in COSMO-CLM the �ux is smaller and closer to

observations. �ey argue missing shading from vegetation and missing vegetation heat budget

increase heat �ux into the ground in COSMO-TERRA. In CLM, with shading and vegetation tem-

perature introduced, this bias is smaller. With the new formulation of radiative ”skin” temperature

in COSMO-TERRA version 5.05 (see Section 4.5), these biases are expected to be reduced. How-

ever, in contrast to Schulz and Vogel (2017) we �nd an enlarged diurnal cycle in ground heat �ux
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in COSMO-CLM as compared to COSMO-TERRA at Lindenberg.

Sensible and latent heat �ux at Lindenberg show similar behaviour in both models than over the

whole domain. However, Schulz and Vogel, 2017 found the evaporative fraction at Lindenberg too

large, while our comparison with gridded datasets and Lindenberg data suggest underestimation

of evaporative fraction.

�e error in the latent heat estimation in COSMO-TERRA is scaling with the LAI, i.e. the more

vegetation in a grid cell prevails, the less accurate is the latent heat estimation in COSMO-TERRA.

COSMO-CLM does not show a dependency of latent heat misrepresentation with vegetation prop-

erties. Two candidate processes for this error in COSMO-TERRA exist: �e parameterization for

plant transpiration or the bare soil evaporation. Since available COSMO-TERRA output does not

distinguish between sources of latent heat �ux, this question cannot be answered in this thesis.

However, it is an interesting pathway to investigate. Both GLEAM and COSMO-CLM distinguish

between transpiration and evaporation, the availibility of comparable observations and model

output is therefore warranted.

�e di�erence between latent heat estimates of GLEAM and WECANN stems from their di�er-

ent spatial and especially temporal time resolution. WECANN only provides monthly estimates,

triggering be�er performance in models and benchmark as compared to GLEAM, since monthly

averages are easier to get right than daily averages.

Unfortunately, GLEAM, WECANN and the Lindenberg station do not provide error estimates, so

an assessment of measurement uncertainty in comparison to reported bias is not possible. �e

model runs, since not run as ensembles, do also not provide error estimates. However, when

comparing the di�erent summers, the results always agree more between summers than between

models, which gives con�dence for the reported model bias.

4.2 Temperature Bias

Warm bias of 2-meter mean temperature in COSMO-TERRA and COSMO-CLM has already been

shown for climate runs in di�erent model setups (Davin et al., 2016, Davin and Seneviratne, 2012,

Lorenz et al., 2012). Davin et al. (2016) also found the bias to be larger in COSMO-TERRA than

in COSMO-CLM. Daily average temperatures in both models are represented best, which is not

surprising since this is the temperature the models are tuned for.

Analogue to Davin et al. (2016), we �nd that COSMO-CLM outperforms COSMO-TERRA in 2-meter

mean and minimum temperature. However, for 2-meter maximum temperature, where Davin

et al. (2016) found the largest improvement in COSMO-CLM, we �nd COSMO-TERRA outper-
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forms COSMO-CLM because COSMO-CLM is too cold. Both models show a small cold bias dur-

ing the day. Observed maximum temperatures had higher anomalies than minimum temperatures

in July 2006 and summer 2003 (Rebetez et al., 2009), possibly challenging the capability of both

models to correctly simulate daily maximum temperatures.

Radiative temperature overestimation in Western France and the UK and underestimation in the

Mediterranean and in the Alps is consistent among summers (see also Supplementary Figures

A4 and A5). Both models show considerable 3-4 K cold bias during day in the Southern Euro-

pean domain. COSMO-CLM additionally is on average around 1 K colder than COSMO-TERRA.

Mean ground temperature and, more severly, mean vegetation temperature in COSMO-CLM have

widespread cold biases and cannot outperform the ground temperature from COSMO-TERRA.

Underestimation of daily maximum radiative temperature is most pronounced on the Iberian

Peninsula. We a�ribute this to the outdated aerosol climatology of Tanre et al. (1984) in COSMO,

overestimating Saharan dust in�ux into the Mediterranean and subsequently underestimating

shortwave radiation by more than 35Wm−2
(Zubler et al., 2011). �e di�erence in aerosol optical

depth between the climatology of Tanre et al. (1984) and observations is especially large on the

Iberian Peninsula (see Zubler et al., 2011, Figure 1b, f). An underestimation of shortwave radia-

tion in both models has already been found by Davin et al. (2016) and a smaller underestimation

is visible here for the Mediterranean area (see Supplementary Figures A8, A6 and A7). A perfect

LSM would therefore show a consistent cold bias, most severe on the Iberian Peninsula. Updating

this climatology in the COSMO version used for weather forecast should therefore be a priority

in COSMO development to examine whether the constant cold bias in COSMO-CLM is partly due

to this aerosol treatment.

�e mean diurnal cycle of temperatures in both models is reduced in similar magnitude. Daily

maximum temperatures at 2 meters are too small in both models over the whole European domain,

with COSMO-CLM having colder temperatures than COSMO-TERRA.

For radiative temperatures, the reduced diurnal cycle stems from a large (on average 5 K) cold

bias during the day in southern Europe. Pronounced cold biases in modelled surface temperatures,

when compared to satellite-retrieved land surface temperature estimates, are known (see Zheng

et al., 2012, Garand, 2003) and a�ributed to misrepresentation of �uxes at the surface, mainly

stemming from simplistic model parameterisation of radiative temperature and li�le knowledge

of land cover and soil properties (Trigo et al., 2015). Trigo et al. (2015) also found this feature to

be most prominent in semi-arid regions, similar to our analysis where we �nd cold bias mostly in

Southern Europe (see Figure 13c, d).

Schulz and Vogel (2017) argue an updated, increased soil resistance in the bare soil evaporation

introduced in COSMO version 5.05 could substantially reduce this bias by reducing latent heat
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�ux during the day and therefore increasing daily maximum temperatures. Additionally, a more

realistic leaf phenology increases LAI in spring and autumn and so would also enhance latent heat

�ux. �ey �nd these improvement enhance daily maximum temperatures when compared to the

Lindenberg station. However, since we �nd the latent heat �ux to be underestimated in COSMO-

TERRA and smaller than in COSMO-CLM, we do not expect this new bare soil evaporation scheme

to improve the results. Our results counteract the ones found in Schulz and Vogel (2017), calling

for a more in-depth analysis.

Both models are too warm at 2 meters at night over the whole European domain. �is feature is

known for COSMO and also common among other RCMs (Davin et al., 2016). Misrepresentation

of nigh�ime strati�cation is a candidate process for this nocturnal warm bias.

Nigh�ime bias in radiative temperatures di�ers among models, COSMO-CLM is too cold and

COSMO-TERRA too warm. Schulz and Vogel (2017) also found a reduced nocturnal warm bias

of radiative temperature in COSMO-CLM compared to COSMO-TERRA and a�ributed it to the

smaller ground heat �ux they found in COSMO-CLM at Lindenberg. However, since ground heat

�ux at Lindenberg and throughout the domain is larger in COSMO-CLM than in COSMO-TERRA

in this study, we cannot argue similarly. A new ”skin” conductivity formulation introduced in

COSMO-TERRA version 5.05 has shown to signi�cantly reduce ground heat �ux and subsequently

nigh�ime warm bias at Lindenberg (Schulz and Vogel, 2017). Smaller ground heat �ux into the

ground during day and warming the air during night was similarly achieved by reducing con-

ductivity of the vegetation ”skin” in a di�erent LSM in Trigo et al. (2015). Integrating the new

COSMO-TERRA version into the ground heat �ux analysis of this study is crucial to shed more

light on the discrepancies between the results of this study and the experiments in Schulz and

Vogel (2017).

Although daily maximum temperature at 2-meters is be�er represented in COSMO-TERRA, the

representation of maximum-temperature-only heat extreme indices is similar in both models. �is

suggests a be�er performance of COSMO-CLM with extreme maximum daily temperatures. With

indices also considering nigh�ime temperatures, COSMO-CLM is outperforming COSMO-TERRA

since it overestimates nigh�ime temperatures less. Night-time temperatures have shown to also

be an important variable to weather-related deaths (Poumadère et al., 2005). �erefore COSMO-

CLM has an advantage here, since it outperforms COSMO-TERRA when nigh�ime temperatures

are taken into account.

Potential SLST retrieval errors are included in the SLST dataset. In Figure 12 pixels where the

retrieval error of the SLST estimate is larger than the reported bias are stippled. �is happens

only in areas where the bias is close to zero, giving con�dence to the assessment of the reported

areas of large biases.
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4.3 Limitations of Radiative Temperature Evaluation

Radiative temperature and 2-meter temperature are two distinctively di�erent temperature vari-

ables. Radiative temperature represents the temperature of the land surface heated up by incoming

radiation and is directly estimated by surface energy partition. Radiative temperature therefore

exhibits a larger diurnal cycle, easily reaching up to 50K during a hot day and cooling up fast once

insolation has stopped. Additionally, the SLST dataset only samples cloud-free conditions, where

higher temperature amplitudes are expected. 2-Meter temperature, on the other hand, shows a

more smooth diurnal cycle.

�e inconsistencies among biases of both temerature variables shown in Section 3.2.3 can stem

from the de�nition of both temperatures in the model or inconsistencies in the observational

datasets. Results from the comparison with EOBS agree well with already published literature (see

for example Davin et al., 2016), but the interpolation of irregularly distributed and partially sparse

observational data does not come without limitation. Uncertainty in interpolated values increases

with distance to the next measurement stations and the complexity of the terrain (Haylock et al.,

2008).

Model veri�cation with satellite-derived land surface temperature measurements has shown to be

challenging (see Zheng et al., 2012, Garand, 2003, Wang et al., 2014) because of simplistic radiative

temperature de�nitions in models and disagreement in land cover between model and observa-

tions. In COSMO-TERRA, SLST comparison is hampered by the fact that Trad is de�ned below the

vegetation, i.e. without in�uence of the vegetation. In CLM, two temperatures are available for

comparison (Trad and Tv, see Section 2.2). In contrast, Trigo et al. (2015) use a LSM that de�nes

”skin” temperature of the LSM above vegetation for vegetated areas and directly on the bare soil

for unvegetated areas. Such a de�nition of LSM ”skin” temperature is more readily comparable

to satellite-retrieved land surface temperature estimates.

Satellite-derived land surface temperatures have also shown to have a larger error with higher

temperatures (see Duguay-Tetzla� et al., 2015, Figure 4b), a feature common also for similar

datasets (Heidinger et al., 2013). Duguay-Tetzla� et al. (2015) estimate the error in summer to

be 3-4 K , comparable to the magnitude of the bias reported in this study.

�e SLST dataset only samples cloud-free conditions. Cloud cover in model is not necessarily the

same as in SLST, but not available for analysis. In this analysis, only points clouded in the satellite

data are removed from analysis. Where cloudy conditions in the model prevail, but the satellite

sees cloud-free sky, higher temperature amplitudes are measured by the satellite. However, we

performed a sensitivity test by repeating the analysis with model data only considered where the

cloud cover fraction is below 20% for the year 2003 – the only year where the cloud cover variable

is available in model output – and see li�le di�erence (see Figure A19). We therefore argue the
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cloud cover in model and SLST is similar and has negligible e�ect on our results.

Additionally, the satellite data gives instantaneous values at each full hour, while model data

reports the average of the previous hour at each full hour. With fast-changing conditions occuring

in the hour before, these two variables do not represent the same conditions. Furthermore, the

uncertainty of the satellite measurement increases towards the edge of the observational disk

visible by the satellite that is located in a geostationary orbit on the equator. Since we do not see

an increase in error towards Northern Europe, we argue this e�ect is negligible.

4.4 Heat Extreme Representation

Limitations and inaccuracies of human comfort indices are discussed (see for example Buzan et al.,

2015), but especially heat extremes combined with high humidity are known to have impact on

human health (McGregor et al., 2015). �erefore it is inherently important to look beyond tem-

perature to measure heat stress for humans. Even if, for example in simple indices with COSMO-

TERRA, extremeness is overestimated, while underestimation would be more dangerous, it is still

important to get these indices correct since it is crucial for models to not be right for the wrong

reasons.

We cannot evaluate model performance for human comfort indices, since observations are lack-

ing. Variability is high among human comfort indices and agreement low, which we a�ribute to

their substantially di�erent de�nitions hampering comparison between indices. HI40 and AT105F

show higher apparent temperatures in France for COSMO-CLM. In contrast, AT30 events occur

more o�en, are more prolonged and slightly warmer in COSMO-TERRA especially on the Iberian

Peninsula and in France. AT30 has overall lower amplitudes, since wind-speed is taken into ac-

count explicitly and considerably lowers apparent temperature estimates. A troublesome feature

is that indices disagree most in areas with high reported apparent temperatures.

�e detection of large-scale heat extremes for HI40 and AT105F in the Alps stems from the re-

ported humidity, which in the summers in on average is above 80% around the Alpine region

in both models (see Supplementary Figure A18). We argue HI and AT105F both are linearly re-

gressed estimates of apparent temperature and include relative humidity in a quadratic fashion.

When relative humidity is large and temperatures are low, as in the Alpine region, these indices

weigh relative humidity at the expense of temperature, leading to the detection of heat extremes

under low temperatures. Such indices are therefore not suitable for domains with considerable

orograhy.



4 DISCUSSION 46

4.5 Limitations and Uncertainties

Models o�en disagree with observations in the Alpine region and in coastal areas. For the coastal

areas, we a�ribute this to small inconsistencies in the land mask of models and observations.

Since observed variables change sharply at the land-sea border, errors are large when one datasets

assumes the area to be land and the other ocean. �is is visible for example in Figure 11.

In regions of high topography as in the Alps, both evaluation datasets and models need alti-

tude correction. �e lower the resolution in the model, the lower are mountains in the model.

EOBS depends on station data and the representativeness of the station on the surrounding area

decreases with increasing complexity of the terrain. �e EOBS interpolation algorithm more ran-

domly smoothes between stations in the Alps compared to less orographic terrain (Hofstra et al.,

2010). SLST corrects for atmospheric conditions using ERA-Interim height, whose low resolution

also underestimates Alpine topography. Furthermore, satellite observed temperature sees shad-

ing of mountains in areas of high topography. �ese uncertainties are not represented in the error

estimate of SLST. Only if both evaluation dataset and model assume the same height at a point

in areas of large topography, the estimates can be correctly compared. We therefore exclude re-

sults in the Alpine region from our analysis assuming measurement and comparison errors to be

considerable.

Apart from challenges in mountaneous regions, each evaluation dataset comes with its own un-

certainties. Except from SLST, none of the other evaluation datasets has an error estimate included

in this analysis. However, seeing similar results in the three years gives us con�dence the reported

biases are robust for hot summers.

In the proposal of this master thesis, several objectives were outlined that did not �nd their way

into this thesis. �is has several reasons. From twelve planned model runs, only six were �nished

in time to be incorporated in this master thesis. Originally, COSMO-TERRA was planned to be

run not only in the currently-used version 5.0, but also in the newly developed version 5.05, both

with the the tuning of 5.0 and a new tuning for 5.05 for all three summers.

However, COSMO-TERRA version 5.05 release was delayed to February this year (see release

note), too late to perform the model runs to be included here. COSMO-TERRA 5.05 includes new

developments on bare soil evaporation and ”skin” temperature formulation which are important in

the context of hot summers. A follow-up project is therefore necessary to assess the improvements

of these newly implemented features for land surface representation in COSMO. �e overarching

TERRA-NOVA project is elongated until the end of 2018 to allow for the project to �nish the

standard veri�cation of the new COSMO-TERRA version 5.05.

Furthermore, the standard veri�cation from MeteoSwiss is missing due to delays from the TERRA-

http://www.cosmo-model.org/content/model/releases/histories/cosmo_5.05.htm
http://www.cosmo-model.org/content/model/releases/histories/cosmo_5.05.htm
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NOVA project. �e veri�cation of both models with standard statistical measures (see Table 3)

therefore had to be performed from scratch with the available datasets.

Additionally, some variables were missing in the output. Radiative temperature comparison could

not take into account cloud cover in the model, since the cloud cover variable was not available in

the model runs. One available run with cloud cover could be used for sensitivity testing, showing

that the di�erence is small (see Supplementary Figure A19). Incoming shortwave radiation was

not available for the benchmark experiment, which is why we used net shortwave radiation in-

stead. Tv in CLM was only available on daily, not hourly timesteps. �e analysis steps that were

hampered by missing output variables from the �rst batch of runs could be redone in a possible

follow-up project to ascertain the uncertainties involved with these �ndings.

Because of this additional workload and the delayed runs of the two models compared in this

thesis, the last objective on sensitivity analysis of parameterisations was dropped. A follow-up

project could perform these tasks and also incorporate runs with the new COSMO-TERRA version

5.05 as well as the standard veri�cation of MeteoSwiss.

5 Conclusions

Overshooting sensible heat production at the expense of evapotranspiration in COSMO-TERRA is

consistent among all hot summers. COSMO-CLM has biases of similar sign, but smaller magnitude

for land surface �uxes during summer heat extremes. Additionally, COSMO-TERRA increases in

error of latent heat estimation with LAI and summer heat, while COSMO-CLM is more robust.

�is reduces trust in COSMO-TERRA during hot summers, pinpointing towards structural LSM

de�ciencies in the representation of transpiration by plants or bare soil evaporation in the LSM

TERRA. Since observational datasets on evaporation and transpiration are available (see Martens

et al., 2017) and can be distinguished in CLM, it is possible to further investigate which of these

processes in TERRA is responsible.

�e statistical benchmark is able to outperform both models in latent heat estimation with regard

to error and correlation. �e di�erence is most pronounced for COSMO-TERRA. Such benchmark

experiments give new valuable insights of information usage of the LSMs and disclose leeway in

model improvements.

Enhanced surface energy balance representation in COSMO-CLM did, quite non-intuitively, not

translate into a be�er temperature representation. COSMO-CLM is constantly colder than COSMO-

TERRA, most pronounced in the Mediterranean. �is cold bias is bene�cial to model performance

compared with EOBS, but degrades model performance compared to SLST. COSMO-CLM out-
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performs COSMO-TERRA at 2 meters except for maximum temperatures, and COSMO-TERRA

outperforms COSMO-CLM for radiative temperatures, except for minimum temperatures. �e

models share a model tuning tailored to COSMO-TERRA, an advantage over COSMO-CLM. Re-

running both models with an individual tuning for each model could potentially li� de�ciencies

of COSMO-CLM and reduce discrepancies to the results found in Davin et al. (2016) in climate

mode.

Additionally, a substantial cold bias by the outdated aerosol treatment in COSMO of Tanre et al.

(1984) is induced, overestimating Saharan dust in�ux into the Mediterranean and subsequently

severly underestimating incoming shortwave radiation (Zubler et al., 2011). With this aerosol

treatment in place, a perfect LSM would still show a persistent cold bias, most pronounced in the

summer. Implementing a more realistic aerosol treatment (e.g. Tegen et al., 1997) could enhance

performance especially of COSMO-CLM. A possible follow-up project with a new aerosol treat-

ment, individual model tunings and additional output variables could resolve remaining questions.

Summer heat extremes can be dangerous to human health. Correctly representing their impact

on humans does not only include taking daily maximum temperatures into account. �e impact

on human health also depends on daily minimum temperatures (Poumadère et al., 2005) and hu-

midity (McGregor et al., 2015). COSMO-CLM outperforms COSMO-TERRA for simple indices of

temperature extremes although temperature representation is hampered. Human comfort indices

show mostly larger values for COSMO-CLM, but have troublesome disagreement especially in

areas where heat is extreme. Comparison to observations is necessary here, but was not possible

in this work because of missing relative humidity estimates.

�e seasonal cycle of ground heat �ux in both models is underestimated compared to gridded

observations but overestimated on seasonal and diurnal time scales compared to the meteoro-

logical station at Lindenberg, Germany. �e seasonal cycle of sensible heat �ux is overestimated

and the seasonal cycle of latent heat is underestimated compared to Lindenberg (in agreement

with �ndings over the whole domain, but in disagreement with Schulz and Vogel, 2017). Ground

heat �ux in COSMO-CLM is larger than COSMO-TERRA on seasonal cycles (in agreement with

Davin et al., 2016) and on diurnal cycles both on domain average and at Lindenberg station (in

disagreement with Schulz and Vogel, 2017). Disagreeing results when comparing to station data

and gridded data are troublesome and call for a further investigation, especially since LSM devel-

opment largely relies on veri�cation with station data.

Replacing COSMO-TERRA with COSMO-CLM for weather forecast at DWD and MeteoSwiss is

not planned, since control on LSM development would be stripped (CLM is maintained at NCAR)

and the highly resolved surface input �elds required for CLM are di�cult to obtain at the high

1 km resolution of their forecast model.
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However, planned improvements in parameterisation for COSMO-TERRA version 5.05 can be

evaluated using the results of this study. A new ”skin” temperature formulation, which should

reduce diurnal cycle in ground heat �ux to reduce nocturnal warm bias in COSMO-TERRA is

promising. We argue ”skin” temperature formulation is most important, along with changing the

aerosol treatment. A new resistance-based bare soil evaporation in COSMO-TERRA version 5.05

should reduce latent heat. However, we see underestimation of latent heat in COSMO-TERRA

on domain average. �is questions how this development would impact on overall model perfor-

mance.

Incorporating satellite-derived observations of land surface temperature into model veri�cation

and data assimilation is hampered by simplistic radiative temperature de�nitions in models and

disagreement on land cover between satellite and model (Trigo et al., 2015). A pronounced daytime

cold bias and a smaller nigh�ime warm bias in models is common when compared to satellite-

derived products (see Zheng et al., 2012, Garand, 2003) and a�ributed to a misrepresented surface

energy balance (Trigo et al., 2015).

We argue a biased surface energy balance most pronounced in COSMO-TERRA hampers compar-

ison with the SLST dataset, alongside considerable 3-4 K uncertainties in the observations that

are just li�le smaller than the observed bias in the models. Additionally, di�ering de�nitions of

radiative temperature between COSMO-TERRA, COSMO-CLM and SLST limit comparability. Es-

pecially in COSMO-TERRA, radiative temperature is independent of the vegetation layer, a major

simpli�cation which is planned to be partially li�ed by the new ”skin” temperature formulation

and a new phenology of COSMO-TERRA version 5.05.

Improvement in weather forecast by incorporating LST products has been shown for other models

(Orth et al., 2017). �eir high resolution and location directly at the land surface energy balance

can potentially have a huge impact on LSM performance, since surface energy balance is a cru-

cial feature of LSM performance and a measure of the land surface coupling that is especially

important during hot summers. �us, including LST products into future model development and

veri�cation is a crucial next step. Orth et al. (2017) even argue the utilization of LST products to

overcome model shortcomings could potentially help LSMs to �nally outperform well calibrated

statistical models, a limitation of LSMs also shown in this study. However, more physical parame-

terisations do not necessarily lead to model improvement. �is intrinsic trade-o� between model

development and model performance poses a challenge to model development, since a model can

always be right for the wrong reasons.
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Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C. (2007a). Contribution of land-atmosphere

coupling to recent European summer heat waves. Geophysical Research Le�ers, 34(6).

Fischer, E. M., Seneviratne, S. I., Vidale, P. L., and others (2007b). Soil Moisture–Atmosphere

Interactions during the 2003 European Summer Heat Wave. Journal of Climate, 20(20):5081–

5099.

Garand, L. (2003). Toward an Integrated Land–Ocean Surface Skin Temperature Analysis from the

Variational Assimilation of Infrared Radiances. Journal of Applied Meteorology, 42(5):570–583.

Garcı́a-Herrera, R., Dı́az, J., Trigo, R. M., Luterbacher, J., and Fischer, E. M. (2010). A Review

of the European Summer Heat Wave of 2003. Critical Reviews in Environmental Science and

Technology, 40(4):267–306.

Grasselt, R., Schue�emeyer, D., Warrach-Sagi, K., Ament, F., and Simmer, C. (2008). Validation of

TERRA-ML with discharge measurements. Meteorologische Zeitschri�, 17:763–773.

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M. (2008). A

European daily high-resolution gridded data set of surface temperature and precipitation for

1950–2006. Journal of Geophysical Research: Atmospheres, 113(D20):D20119.

Heidinger, A. K., Laszlo, I., Molling, C. C., and Tarpley, D. (2013). Using SURFRAD to Verify

the NOAA Single-Channel Land Surface Temperature Algorithm. Journal of Atmospheric and

Oceanic Technology, 30(12):2868–2884.

Held, I. M. (2005). �e Gap between Simulation and Understanding in Climate Modeling. Bulletin

of the American Meteorological Society, 86(11):1609–1614.

Hofstra, N., New, M., and McSweeney, C. (2010). �e in�uence of interpolation and station net-

work density on the distributions and trends of climate variables in gridded daily data. Climate

Dynamics, 35(5):841–858.

Jaeger, E. B. and Seneviratne, S. I. (2011). Impact of soil moisture–atmosphere coupling on Euro-

pean climate extremes and trends in a regional climate model. Climate Dynamics, 36(9-10):1919–

1939.



Knu�i, R., Masson, D., and Ge�elman, A. (2013). Climate model genealogy: Generation CMIP5 and

how we got there: CLIMATE MODEL GENEALOGY. Geophysical Research Le�ers, 40(6):1194–

1199.

Ko�, B. and Ko�, E. (2008). Heat waves across Europe by the end of the 21st century: Multire-

gional climate simulations. Climate Research, 36.

Kovats, R. and Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of

Public Health, 29:41–55.

Lawrence, P. J. and Chase, T. N. (2007). Representing a new MODIS consistent land surface in the

Community Land Model (CLM 3.0). Journal of Geophysical Research, 112(G1).

Lorenz, R., L. Davin, E., and Seneviratne, S. (2012). Modeling land-climate coupling in Europe: Im-

pact of land surface representation on climate variability and extremes. Journal of Geophysical

Research (Atmospheres), 117:20109.

Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H. (2004). European Seasonal

and Annual Temperature Variability, Trends, and Extremes Since 1500. Science, 303(5663):1499–

1503.

Mac�een, J. (1967). Some Methods for Classi�cation and Analysis of Multivariate Observations.

MULTIVARIATE OBSERVATIONS, page 17.

Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto,

D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C. (2017). GLEAM v3: satellite-based land

evaporation and root-zone soil moisture. Geosci. Model Dev., 10(5):1903–1925.

Masterton, J. M. (1979). Humidex: A Method of �antifying Human Discomfort Due to Exces-

sive Heat and Humidity, by J.M. Masterton and F.A. Richardson. Ministere de l’Environnement.

Google-Books-ID: qzPbOAAACAAJ.

McGregor, G. R., Bessemoulin, P., Ebi, K., and Menne, B. (2015). WHO | Heatwaves and health:

guidance on warning-system development. http://www.who.int/globalchange/
publications/heatwaves-health-guidance/en/. Last checked on May 30,

2015.

NOAA (2018). Climate at a glance: Global time series. https://www.ncdc.noaa.gov/
cag/global/time-series. Last checked on May 31, 2015.

Oleson, K. W. and Lawrence, D. M. (2013). Technical Description of version 4.5 of the Community

Land Model (CLM). NCAR Technical Note, page 434.

http://www.who.int/globalchange/publications/heatwaves-health-guidance/en/
http://www.who.int/globalchange/publications/heatwaves-health-guidance/en/
https://www.ncdc.noaa.gov/cag/global/time-series
https://www.ncdc.noaa.gov/cag/global/time-series


Orth, R., Dutra, E., Trigo, I. F., and Balsamo, G. (2017). Advancing land surface model development

with satellite-based Earth observations. Hydrology and Earth System Sciences, 21(5):2483–2495.

Orth, R., Zscheischler, J., and Seneviratne, S. I. (2016). Record dry summer in 2015 challenges

precipitation projections in Central Europe. Scienti�c Reports, 6:28334.

Poumadère, M., Mays, C., Mer, S. L., and Blong, R. (2005). �e 2003 Heat Wave in France: Dan-

gerous Climate Change Here and Now. Risk Analysis, 25(6):1483–1494.

�esada, B., Vautard, R., Yiou, P., Hirschi, M., and Seneviratne, S. I. (2012). Asymmetric European

summer heat predictability from wet and dry southern winters and springs. Nature Climate

Change, 2(10):736–741.

Rebetez, M., Dupont, O., and Giroud, M. (2009). An analysis of the July 2006 heatwave extent in

Europe compared to the record year of 2003. �eoretical and Applied Climatology, 95(1-2):1–7.

Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Gri�ths, C., Michel, J.-P., and Herrmann,

F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus

Biologies, 331(2):171–178.

Russo, S., Sillmann, J., and Fischer, E. M. (2015). Top ten European heatwaves since 1950 and their

occurrence in the coming decades. Environmental Research Le�ers, 10(12):124003.

Schrodin, R. and Heise, E. (2001). �e Multi Layer Version of the DWD Soil Model TERRA lm.

COSMO Technical Report, 2:1–16.

Schulz, J.-P. and Vogel, G. (2017). An improved representation of the surface tem-

perature including the e�ects of vegetation in the land surface scheme TERRA.

http://www.cosmo-model.org/content/tasks/workGroups/wg3b/
docs/TERRA improvements 201703 jps.pdf. Last checked on May 30, 2015.

Schär, C. and Jendritzky, G. (2004). Climate change: Hot news from summer 2003. Nature,

432(7017):559–560.
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6 Appendix

COSMO-TERRA - GLEAM COSMO-CLM - GLEAM

06/2003 07/2003 08/2003 06/2003 07/2003 08/2003

(a) (b)
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(c) (d)

[Wm−2]

Figure A1: Monthly mean bias (model - observations) in daily mean latent heat �ux for COSMO-

TERRA (a, c) and COSMO-CLM (b, d) as compared to the GLEAM dataset for JJA 2003 (a,b ) and

2006 (c, d). Positive values indicate overestimation of the �ux in models. RMSE and MBE for each

month are printed on the maps. Data where no measurements are available in the observations

are excluded.



COSMO-TERRA - EOBS COSMO-CLM - EOBS

06/2003 07/2003 08/2003 06/2003 07/2003 08/2003

(a) 2-meter maximum temperature (b) same as (a)

(c) 2-meter mean temperature (d) same as (c)

(e) 2-meter minimum temperature (f) same as (e)

(g) 2-meter diurnal temperature range (h) same as (g)

[K]

Figure A2: Monthly mean bias (model - observations) in (a, b) daily maximum 2-meter tempera-

ture, (c, d) daily mean 2-meter temperature, (e, f) daily minimum 2-meter temperature and (g, h)

diurnal 2-meter temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, e) as

compared to the EOBS dataset for JJA 2003. RMSE and MBE for each month are printed on the

maps. Data where no measurements are available in EOBS are excluded.



COSMO-TERRA - EOBS COSMO-CLM - EOBS

06/2006 07/2006 08/2006 06/2006 07/2006 08/2006

(a) 2-meter maximum temperature (b) same as (a)

(c) 2-meter mean temperature (d) same as (c)

(e) 2-meter minimum temperature (f) same as (e)

(g) 2-meter diurnal temperature range (h) same as (g)

[K]

Figure A3: Monthly mean bias (model - observations) in (a, b) daily maximum 2-meter tempera-

ture, (c, d) daily mean 2-meter temperature, (e, f) daily minimum 2-meter temperature and (g, h)

diurnal 2-meter temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, e) as

compared to the EOBS dataset for JJA 2006. RMSE and MBE for each month are printed on the

maps. Data where no measurements are available in EOBS are excluded.



COSMO-TERRA - SLST COSMO-CLM - SLST

06/2003 07/2003 08/2003 06/2003 07/2003 08/2003

(a) radiative maximum temperature (b) radiative (ground) maximum temperature

(c) radiative mean temperature

(c) radiative mean temperature

(d1) radiative ground temperature

(d2) radiative vegetation temperature

(d) same as (c)

(e) radiative minimum temperature (f) radiative (ground) minimum temperature

(g) radiative diurnal temperature range (h) radiative (ground) diurnal temperature range

[K]

Figure A4: Monthly mean bias (model - observations) in (a, b) daily maximum radiative tempera-

ture, (c, d) daily mean radiative temperature, (e, f) daily minimum radiative temperature and (g, h)

diurnal radiative temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, h) as

compared to the SLST dataset for JJA 2003. For evaluation with COSMO-CLM, the CLM variable

ground temperature is used in all plots except (d2), where vegetation temperature is shown addi-

tionally for comparison (see Section 2.2 for distinction). Pixels are stippled where the uncertainty

of the satellite measurement is larger than the reported bias at this point. RMSE and MBE for each

month are printed on the maps. Data where no measurements are available in SLST are excluded.

Note that this especially includes all data points where cloud cover was detected by the satellite.



COSMO-TERRA - SLST COSMO-CLM - SLST

06/2006 07/2006 08/2006 06/2006 07/2006 08/2006

(a) radiative maximum temperature (b) radiative (ground) maximum temperature

(c) radiative mean temperature

(c) radiative mean temperature

(d1) radiative ground temperature

(d2) radiative vegetation temperature

(d) same as (c)

(e) radiative minimum temperature (f) radiative (ground) minimum temperature

(g) radiative diurnal temperature range (h) radiative (ground) diurnal temperature range

[K]

Figure A5: Monthly mean bias (model - observations) in (a, b) daily maximum radiative tempera-

ture, (c, d) daily mean radiative temperature, (e, f) daily minimum radiative temperature and (g, h)

diurnal radiative temperature range for COSMO-TERRA (a, c, e, g) and COSMO-CLM (b, d, f, h) as

compared to the SLST dataset for JJA 2006. For evaluation with COSMO-CLM, the CLM variable

ground temperature is used in all plots except (d2), where vegetation temperature is shown addi-

tionally for comparison (see Section 2.2 for distinction). Pixels are stippled where the uncertainty

of the satellite measurement is larger than the reported bias at this point. RMSE and MBE for each

month are printed on the maps. Data where no measurements are available in SLST are excluded.

Note that this especially includes all data points where cloud cover was detected by the satellite.



COSMO-TERRA - CERES COSMO-CLM - CERES

06/2003 07/2003 08/2003 06/2003 07/2003 08/2003

(a) shortwave radiation (b) same as (a)

(c) longwave radiation (d) same as (c)

[Wm−2]

Figure A6: Monthly mean bias (model - observations) in daily mean (a, b) shortwave radiation

and (c, d) longwave radiation for COSMO-TERRA (a, c) and COSMO-CLM (b, d) as compared to

the CERES dataset for JJA 2003. RMSE and MBE for each month are printed on the maps. Data

where no measurements are available in the observations are excluded.

COSMO-TERRA - CERES COSMO-CLM - CERES

06/2015 07/2015 08/2015 06/2015 07/2015 08/2015

(a) shortwave radiation (b) same as (a)

(c) longwave radiation (d) same as (c)

[Wm−2]

Figure A7: Monthly mean bias (model - observations) in daily mean (a, b) shortwave radiation

and (c, d) longwave radiation for COSMO-TERRA (a, c) and COSMO-CLM (b, d) as compared to

the CERES dataset for JJA 2006. RMSE and MBE for each month are printed on the maps. Data

where no measurements are available in the observations are excluded.



COSMO-TERRA - CERES COSMO-CLM - CERES

06/2015 07/2015 08/2015 06/2015 07/2015 08/2015

(a) shortwave radiation (b) same as (a)

(c) longwave radiation (d) same as (c)

[Wm−2]

Figure A8: Monthly mean bias (model - observations) in daily mean (a, b) shortwave radiation

and (c, d) longwave radiation for COSMO-TERRA (a, c) and COSMO-CLM (b, d) as compared to

the CERES dataset for JJA 2015. RMSE and MBE for each month are printed on the maps. Data

where no measurements are available in the observations are excluded.



COSMO-TERRA - EOBS COSMO-CLM - EOBS
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Figure A9: Monthly mean bias (model - observations) in daily mean precipitation for COSMO-

TERRA (a, c) and COSMO-CLM (b, d) as compared to the CERES dataset for JJA 2003 (a, b) and

2006 (c, d). RMSE and MBE for each month are printed on the maps. Data where no measurements

are available in the observations are excluded.



(a) Southern European domain

(b) Northern European domain

Figure A10: Mean diurnal cycle of net shortwave radiation (SW ), net longwave radiation (LW ),

net latent heat (LH) and net sensible heat (SH) at surface for COSMO-TERRA (le� panels) and

COSMO-CLM (right panels) averaged over the (a) Southern European and (b) Northern European

domain for JJA in 2003, 2006, 2015. Note that in agreement with the COSMO convention, �uxes

towards the surface are de�ned positive.



LATENT HEAT FLUX

06/2015 07/2015 08/2015

(a) GLEAM

(b) COSMO-TERRA

(c) COSMO-CLM

(d) BENCHMARK

[Wm−2]

Figure A11: Monthly mean latent heat �ux in (a) GLEAM, (b) COSMO-TERRA, (c) COSMO-CLM

and (d) the benchmark for JJA 2015. Data where no measurements are available in observations

are excluded.



Figure A12: Magnitude of heat extremes exceeding human comfort thresholds over Europe for

all three summers expressed as fraction of days a�ected (upper panels), mean amplitude of heat

extremes (middle panels) and mean duration of heat extremes (lower panels) for COSMO-CLM.

Indices used here are, from le� to right, apparent temperature a�er Buzan et al. (2015), Heat Index,

HUMIDEX and AT105F (see Fischer and Schär, 2010).

(a) Longwave radiation

Figure A13: Comparison of diurnal cycle of longwave radiation (Supplementary Figure A13) at the

Lindenberg station and the two models at the associated model pixel averaged over the summer

months for the three summers. �e CERES daily estimate is included (red line).



Figure A14: Performance metrics with all evaluation datasets available. Measures are calculated

for daily values in JJA of 2015, 2006 and 2003, except for the benchmark. For Trad,mean,SLST ,

hatched bars are comparison to Tv and unhatched bars for Trad in CLM. For WECANN, only 2015

is available. Black thick lines indicate the best value of each measure. Errorbars indicate the

di�erence between the two years. For similar analysis in climate mode see Supplementary Figure

A17.



Figure A15: Performance metrics with all evaluation datasets available for the Southern European

domain. Measures are calculated for daily values in JJA of 2015 and 2003. For Trad,mean,SLST ,

hatched bars are comparison to Tv and unhatched bars for Trad in CLM. For WECANN, only 2015

is available. Black thick lines indicate the best value of each measure. Errorbars indicate the

di�erence between the two years. For similar analysis in climate mode see Supplementary Figure

A17.



Figure A16: Performance metrics with all evaluation datasets available for the Northern European

domain. Measures are calculated for daily values in JJA of 2015 and 2003. For Trad,mean,SLST ,

hatched bars are comparison to Tv and unhatched bars for Trad in CLM. For WECANN, only 2015

is available. Black thick lines indicate the best value of each measure. Errorbars indicate the

di�erence between the two years. For similar analysis in climate mode see Supplementary Figure

A17.



Figure A17: Results from (Davin et al., 2016) additionally including the COSMO version 5.0 used

in this study. RMSE of model variables with available datasets over over Europe (-10W - 30E;

36N - 70N) from monthly values over multiple years. MMM denotes the multi-model mean of

all EURO-CORDEX models excluding COSMO-CLM. For more information see also (Davin et al.,

2016) Figure 1. Figure by Edouard Davin.



(a) (b) (c) (d)

Figure A18: Average (a) temperature, (b) wind speed and relative humidity at 2 m (c) and at the

�rst model level (d) averaged over JJA 2015 for COSMO-TERRA over the whole domain as included

in the human comfort indices in Figure 17.



COSMO-CLM - SLST COSMO-CLM - SLST

where cloud cover < 20%

06/2003 07/2003 08/2003 06/2003 07/2003 08/2003

(a) radiative maximum temperature (b) same as (a)

(c) radiative (ground) mean temperature (d) same as (c)

(e) vegetation mean temperature (f) same as (x)

(g) radiative minimum temperature (h) same as (e)

(i) radiative diurnal temperature range (j) same as (g)

[K]

Figure A19: Comparison of 2003 bias maps of CLM vs SLST (CLM - SLST) for (a, c, e, g, i, i.e. le�

panels) all cloud cover fractions in model (same as Figure 12 for 2003) and (b, d, f, h, j, i.e. right

panels) only for points where modelled cloud cover is below 20%. Note that cloud cover is only

available for 2003 CLM runs, hence a threshold for modelled cloud cover is not applied throughout

this study. �is plot is merely to show that the di�erence, if applied to all runs, is likely small.
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