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1. Introduction – CALMO project 

The CALMO project is based on the objective calibration method which was developed and implemented in 

regional climate model by Omar Bellprat and Christoph Schär (ETH). The purpose of the CALMO project is to 

implement the calibration method of [1] to NWP model COSMO. Briefly, the calibration method is the 

following:  

a. First, define the parameters for tuning and their allowed ranges. The selected parameters have to be the 

most significant for the verified fields. For example, for the maximum 2m-temperature we may need to 

focus on soil and radiation schemes parameters, while for precipitation, we may need to consider also 

microphysical parameters, etc.  

b. Define the forecast fields to be verified. It is important to select many meteorologically important fields in 

order to better reflect the weather conditions. Otherwise there is a danger that the calibration procedure 

will improve specific fields while degrading the overall skill of the forecast.   

c. Define the time periods and geographical regions for calibration. The time periods and the regions should 

be chosen to represent a meaningful forecast. 

d. Define the parameters (combinations) values for performing the COSMO simulations. The minimum 

required number of simulations to be performed is 2N + 0.5N(N − 1) + 1, where N is the number of 

calibrated parameters.  

e. Define the method to perform the COSMO simulations, i.e. initial and boundary conditions and the 

forecasts time ranges. For soil-related parameters, long term “spin-up” simulations of the COSMO soil 

scheme are needed for preparing proper initial conditions. 

f. After the simulations are performed, the Meta-Models are constructed, i.e. the forecasted fields are 

interpolated in parameters space via N-dimensional quadratic polynomial (for each field, for each region 

and each day, separately). These interpolation formulas (the Meta-Models) allow estimating the 

forecasted field value for arbitrary parameter values (for each region and each day) without performing 

real COSMO simulation. 

g. At the next stage, the parameters space is filled by a large number of parameters combinations. For each 

parameter combination, a forecast field time series is produced (using the Meta-Models), compared with 

the observations, and evaluated using a performance score.  

h. Finally, the parameters combination which obtained the best score is selected. 

i. In principle, it is reasonable to perform a real COSMO simulation with the selected parameters 

combination, and verify whether the forecasts are indeed better (than with the default parameters 

combination).  
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2. Overview: different stages of the CALMO project 

The CALMO project included three stages. At CALMO-stage-1 we have performed a preliminary calibration of 

COSMO-7km. The detailed description of that stage is presented in COSMO technical report [2]. At CALMO-

stages 2 and 3 we have performed several improvements of the calibration process. The main characteristics 

of the 3 stages are summarized in table 1: 

 Stage-1 Stage-2 Stage-3 

Resolution 7km 2.2km 1.1km 

Simulations 
domain 

~[17W-22E, 
35N-57N] 

~[0E-17E,42N-50N] ~[0E-17E, 42N-50N] 

Calibration 
area 

Switzerland Switzerland and north Italy Switzerland and north Italy 

Calibrated 
atmospheric 

fields  

T2m-max; 
T2m-min; 

24h-
precipitation 

T2m-max; T2m-min; 24h-
precipitation; sounding profiles 
diagnostics: CAPE; CIN; total column 
water vapor; vector wind shears 
between the levels 500-700mb/700-
850mb/850-1000mb; temperature, 
relative humidity and wind 
components at 850, 700 and 500mb 

T2m-max; T2m-min; 24h-
precipitation; sounding profiles 
diagnostics: CAPE; CIN; total column 
water vapor; vector wind shears 
between the levels 500-700mb/700-
850mb/850-1000mb; temperature, 
relative humidity and wind 
components at 850, 700 and 500mb 

Simulations 
period 

1-20/1/2008, 

1-20/6/2008 
1/1/2013-31/12/2013 ~ 1/1/2013-1/2/2013  

Tuning 
parameters 

rlam_heat, 
tkhmin, 
tur_len 

rlam_heat, tkhmin, tur_len, entr_sc, 
c_soil, v0snow 

tkhmin, tur_len, entr_sc, c_soil, 
crsmin 

Table 1: Overview: different stages of the CALMO project 

 

3. Short overview of the tuned parameters 

In table 2 we present the parameters which were tuned during the different stages of the CALMO project, and 

briefly describe their physical meaning. 

 
Used at 
stages: 

Brief physical meaning Min Default Max 

rlam_heat 1,2 

rlam_heat [no units] is the parameter which linearly 
determines the heat resistance length of laminar layer; 
so that the higher is rlam_heat the higher is the 
resistance of laminar layer for heat transfer, and 
consequently, the lower is the heat transfer between 
the surface and the lower atmosphere 

0.1 1 2 

tkhmin 1,2,3 

tkhmin [m2/s] and tkmmin [m2/s] determine the 
minimum limits for the turbulence coefficients. tkhmin 
presence is evident when the turbulent diffusion 
coefficients (then the mixing) are small, which occurs 
in stable conditions, mainly at night near the surface 

0.1 0.4 1 
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tur_len 1,2,3 

tur_len [m] is l∞ in Blackadar formula (Blackadar, 
1962) for the turbulence length. The higher is tur_len, 
the higher are the turbulent coefficients (both vertical 
and horizontal) in the middle-upper atmospheric 
levels, and consequently the higher are the turbulent 
fluxes (mixing) for all the variables and tracers 

100 150 1000 

entr_sc 2,3 

entr_sc [m-1] is the mean entrainment rate of 
boundary layer humidity into the shallow convection 
clouds. The higher is entr_sc, the more effective is the 
shallow convection vertical mixing. 

0.05e-3 0.3e-3 2e-3 

c_soil 2,3 

c_soil [no units] is the surface-area index of the 
evaporating fraction of gridpoints over land: c_soil ∈ 
[0, c_lnd=2]. The higher is c_soil, the higher is the 
surface evaporation. 

0 1 2 

v0snow 2 
v0snow [no units] is the factor in the terminal velocity 
for snow 

10 20 30 

crsmin 3 
crsmin [s/m] is the minimum value of stomatal 
resistance used by the BATS approach for vegetation 
transpiration 

50 150 200 

Table 2: COSMO parameters tuned at different stages of the CALMO project  

 

4. Meta-Model 

4.1 Overview 

The Meta-Model was widely discussed in COSMO technical report [2], so here we briefly present its basic idea. 

Following the theory of Meta-Model construction [1,3], for any parameters combination (for example N=3 

parameters combination of rlam_heat, tkhmin, tur_len), for a given day “i” and a region “r”, the COSMO field F 

(for example Tmax, Tmin, Pr, etc.) may be approximated by 3-dimensional polynomial of order 2: 

𝐹𝑖,𝑟 ≈ 𝐹𝑑 𝑖,𝑟 + 𝑐𝑖,𝑟 + ∑ 𝑎𝑖,𝑟
(𝑛)

𝑥𝑛
𝑁
𝑛=1 + ∑ 𝐵𝑖,𝑟

(𝑛,𝑚)
𝑥𝑛𝑥𝑚

𝑁
𝑛,𝑚=1
(𝑛≠𝑚)

       (1) 

Where: 𝑥1 =
𝑟𝑙𝑎𝑚_ℎ𝑒𝑎𝑡−𝑟𝑙𝑎𝑚_ℎ𝑒𝑎𝑡𝑑

𝑟𝑙𝑎𝑚_ℎ𝑒𝑎𝑡𝑚𝑎𝑥−𝑟𝑙𝑎𝑚_ℎ𝑒𝑎𝑡𝑚𝑖𝑛
, 𝑥2 =

𝑡𝑘ℎ𝑚𝑖𝑛−𝑡𝑘ℎ𝑚𝑖𝑛𝑑

𝑡𝑘ℎ𝑚𝑖𝑛𝑚𝑎𝑥−𝑡𝑘ℎ𝑚𝑖𝑛𝑚𝑖𝑛
, 𝑥3 =

𝑡𝑢𝑟_𝑙𝑒𝑛−𝑡𝑢𝑟_𝑙𝑒𝑛𝑑

𝑡𝑢𝑟_𝑙𝑒𝑛𝑚𝑎𝑥−𝑡𝑢𝑟_𝑙𝑒𝑛𝑚𝑖𝑛
 

The index d stands for default. For default values of the N=3 parameters, i.e. [x1 = 0, x2 = 0, x3 = 0], the 

approximated field should be close to 𝐹𝑑 𝑖,𝑟. The constants 𝑐𝑖,𝑟, 𝑎𝑖,𝑟
(𝑛)

, 𝐵𝑖,𝑟
(𝑛,𝑚)

 are obtained using several COSMO 

simulations, as described in the following. Each simulation (for given parameters values) yields a set of 

forecasted values 𝐹𝑖,𝑟. When sufficient number of simulations is performed, one can interpolate the different 

known values of 𝐹𝑖,𝑟 as function of [x1, x2, x3] using the 3D polynomial in eq. (1) above. The sufficient number 

is 2N + 0.5N(N − 1) + 1, so that for N=3 the sufficient number of simulations to be performed is 10. Next we 

discuss the ways to increase the quality and the representativeness of such fit. The following factors are 

important for the interpolation to be realistic (to be able to replace the COSMO simulations):  

 The choice of parameters values (combinations) for COSMO simulations should be specific. In this work the 

design is chosen according to Bellprat (2012) [1] (see also COSMO technical report [2]). Moreover, one 
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should use as many as possible additional “constrain” simulations (for additional parameters 

combinations). 

 The simulated COSMO field 𝐹𝑖,𝑟 should not be noisy as function of the parameters. In other words, the 

sensitivity of 𝐹𝑖,𝑟 on the parameters should be higher than the noise level. However, various COSMO fields 

are noisy for various parameters. That issue was discussed and solved in COSMO technical report [2]. 

 The time periods “i” and the regions “r” should be chosen to represent a meaningful forecast of the field 

𝐹𝑖,𝑟. In that work we have chosen typical periods of 24 hours (maximum and minimum daily temperature, 

24h accumulated precipitation, etc.) and climatically distinguishable regions. The choice of the regions will 

be discussed in sections 4.2.1 and 4.2.2 below. 

 It is important to select many meteorologically important fields 𝐹 in order to better reflect the weather 

conditions. Otherwise there is a danger that the calibration procedure will improve specific fields while 

degrading the overall skill of the forecast. At CALMO-stages 2 and 3 we have included optimization of 

meteorological profiles characteristics. That will be discussed in section 4.2.3 below.  

 The default values of the parameters should be located close to the center of their allowed ranges. 

Otherwise, in the “empty parameter ranges”, the parabolic fit may reach very high (or very low) unrealistic 

peaks. The problem is, that the default values of rlam_heat, tur_len and entr_sc are significantly shifted 

from the centers of their allowed ranges: for [0.1 1 10], [100 500 10000], and [0.05e-3 0.3e-3 2e-3], for 

rlam_heat, tur_len and entr_sc, respectively. That problem will be discussed and solved in section 4.2.4 

below. 

 

4.2 Adaptations to the Meta-Model 

From CALMO-stage-1 (see COSMO technical report [2]) to CALMO-stages 2 and 3 we have performed several 

adaptations to the Meta-Model codes: 

4.2.1 Option not to average Tmax/Tmin over regions 

For observations over Switzerland we use C. Frei [4] gridded data after correction to the elevations of model 

grid points. Over Italy we use the observations interpolated to the model grid (without correction to the 

elevations of model grid points), while only the grid points in vicinity of the stations get a value. At CALMO-

stage-1 we have divided Switzerland area into 3 regions, and averaged the maximum and minimum 2m 

temperatures (Tmax and Tmin, respectively) and 24h accumulated precipitation (Pr) over these regions, before 

comparing with observations. While for precipitation, this averaging reduces the noise, for Tmax and Tmin we 

lost a lot of information. Just for example, Tmax errors at two different grid points can yield no error on 

average (see figure 1). 
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Figure 1: Schematic example for the reason not to average Tmax/Tmin over regions. 

Moreover, at CALMO-stages 2 and 3 the Italian data is also analyzed. This data is not gridded (as Swiss one), so 

that much less grid points are available for comparison of the model to the observations. In that case, region 

averaging would be based on much less points than over Switzerland. 

Therefore at CALMO-stages 2 and 3 we have added the option (to the Meta-Model code) not to average Tmax 

and Tmin over regions, but to calculate the Meta-Model forecast for all the available grid-points in model and 

observations (about 10407regsN for minmax TorT   for CALMO-stage-2, and similar number for 

CALMO-stage-3). 

4.2.2 Defining new regions for averaging the 24h accumulated precipitation 

          (optional also for Tmax, Tmin) 

For observations over Switzerland we use the gridded MeteoSwiss radar composite (corrected by rain gauges) 

interpolated to the model grid. Over Italy we use the observations interpolated to the model grid, while only 

the grid points in vicinity of the stations get a value. In order to reduce the noise associated with precipitation 

fields, the precipitation model and observations values are averaged over 6,Pr monregsN  geographically 

unique regions, as presented at figure 2: 
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Figure 2: Geographically unique regions for precipitation averaging: 1-green: Swiss plateau (300m<h<1500m); 

2-red: Swiss Alps (1500m<h); 3-cyan: Italian Alps (1500m<h); 4-yellow: Italian hills and Ticino 

(300m<h<1500m); 5-blue: Po Valley (h<300m); 6-magenta: Italian north-west coast (mainly h<300m). 

4.2.3 Meta-Model predicts profiles characteristics 

At CALMO-stage1 we have used the following fields: 
1 - Daily maximum 2m temperature ( maxT ), 

2 - Daily 

minimum 2m temperature (
minT ), 3 - 24h accumulated precipitation ( Pr ). 

At CALMO-stages 2 and 3 we are using also the soundings data and the associated model profiles (at grid 

points near the soundings locations). The new verified fields are: 
4 - Convective available potential energy (

CAPE ); 5 - Convective inhibition (CIN ); 6 - Total column water vapor (TCWV ); 7 - Vector wind shear 

between the levels of 500mb and 700mb ( 1WS ); 8 - Vector wind shear between the levels of 700mb and 

850mb ( 2WS ); 9 - Vector wind shear between the levels of 850mb and 1000mb ( 3WS );  12,11,10 - 

Temperatures at 500mb (T500), 700mb (T700) and 850mb (T850), respectively; 15,14,13 - Relative humidity at 

500mb (T500), 700mb (T700) and 850mb (T850), respectively; 18,17,16 - East-west wind component at 500mb 

(U500), 700mb (U700) and 850mb (U850), respectively; 21,20,19 - South-north wind component at 500mb 

(V500), 700mb (V700) and 850mb (V850), respectively. 

There are 11 available soundings at the CALMO-stages 2 and 3 domains, as presented in figure 3: 

 

Figure 3: Available soundings inside CALMO-stages 2 and 3 domains. 

Most of these soundings available twice per day, yielding about 2520regsN  ( fieldsoundingany ) 

profiles over the domain per day (depends on the sounding report quality). 

4.2.4 Logarithmic transformation for some of the parameters 

As discussed already in CALMO-stage 1 [2], the parabolic fit can accurately represent the dependency of the 

verified fields in parameters space only if the default values of the parameters are located close to the center 

of their allowed ranges. Otherwise, in the empty parameter ranges, the parabolic fit may reach very high (or 
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very low) unrealistic peaks. The solution for that problem is transforming the “problematic” parameter/s to 

logarithm of the parameter/s. Such transformation “brings” the far away parameter values closer to the 

others, eliminating the empty parameter ranges, causing the parabolic fit to be more monotonic. In CALMO-

stages 2 and 3, the “problematic” parameters are tur_len and entr_sc.   

Recently we have developed a method to objectively transform these parameters to logarithmic space: 
















 

minmax

minlogˆ
xx

xx
xx . The demand for the transformed default value to be exactly at the center 

between the minimum and maximum values, i.e. min

!

min
ˆˆˆˆ xxxx dd  defines   and  . Applying the 

procedure yielded 25.0,72   , for tur_len, and 210,9500    for entr_sc. 

5. Performance scores 

First, we have introduced “user defined weights” 
21,...,1  (any positive numbers) for the contributions of 

various fields. For the results below, we have set: 

1max T , 1min T , 1Pr  , 0CAPE , 0CIN , 1TCWV , 33.01 WS , 33.02 WS , 33.03 WS , 

33.0500 T , 33.0700 T , 33.0850 T , 33.0500 RH , 33.0700 RH , 33.0850 RH , 2.0500 U , 

2.0700 U , 2.0850 U ,  2.0500 V , 2.0700 V  , 2.0850 V . 

The fields CAPE and CIN (both observed and simulated) are generally noisy. Moreover, in the soundings data 

the number of reports (levels) is usually low, making the calculation of CAPE and CIN highly uncertain. 

Therefore at this work we set zero weights for these fields: 0CAPE , 0CIN .  

We have developed 2 optional performance scores for CALMO-stages 2 and 3, which are described below. 

5.1 RMSE-type score 

In contrast to CALMO-stage1, in stages 2 and 3 the number of regions (or grid-points) for comparing the model 

with observations very much depends on the forecasted field  (and slightly depends on the month). 

Therefore the score for parameters combination p takes more complicated form: 
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Where the fields 211 where defined at Section 4.2.3 above. 

5.1.1 “Observations variability” is defined per month 

The quality of COSMO forecast strongly depends on the region and the season. For example, the forecast with 

Tmax error of 5K in the Alps at winter may be actually better than with error of 3K in the Swiss Plateau at 

summer. Therefore one needs to normalize the forecast errors by a value which reflects the forecast 

complexity for a given day and region. As at CALMO-stage 1, we normalize the forecast field  errors by the 
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observations standard deviation monr ,,  at a given region (or grid-point) r  over a period of a month 

30,  mondaysN  (the period should not be too short in order to contain large enough sample, but not too long 

in order to represent the variability of a specific season): 
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5.1.2 Normalization weights 

Normalization weights are defined to set equal contributions for the various fields ( 10000pN  - number of 

parameters combinations): 
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    (4) 

5.2 COSI-type score 

The “COSMO Index” (COSI) was developed by Ulrich Damrath (DWD) and is defined in [5]. 

We have adapted the score for CALMO use as following: 
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where -1/3<ETS<1 (1 is the best) is the threshold dependent (we have chosen region averaged precipitation 

amounts thresholds of 0.1,1,3,7.5,10mm per 24h) precipitation score: 
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        (6) 

where:  

H - Number of hits (i.e. both the model and the observations where above the given threshold); 

F - Number of “false alarms”; 

M - Number of misses. 

6. Convergence to the optimal parameters combination 

6.1 Method 

After the Meta-Model is constructed we divide the parameters space into high number of points (parameters 

combinations), and calculate the score (see section 5) for each of the points in order to find the optimal one. In 

CALMO-stage 1, we have tuned 3 parameters, dividing the parameters space into 10000 points, i.e. roughly 21 

bins for each of the parameters. In CALMO-stage 2, for example, the number of calibrated parameters is N=6, 
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yielding huge number (about
86 1021  ) of points to be evaluated in order to find the optimal one. However, 

for computer time reasons it is not possible.  

Recently we have developed a method to overcome that problem and converge to the optimal parameters 

combination. At first iteration we sample 1000 points only and reveal the optimal regions in our N dimensional 

parameters space (according the uncertainty of the optimal 100 combinations). An example of the 

convergence after first iteration is presented at figure 4 below. 

 

Figure 4: Example of convergence after first iteration. Each panel shows (in blue) the optimal 100 parameters 

values (in sorted order) among 1000 sampled combinations. The red lines represent the allowed ranges for 

each parameter, the green lines represent the uncertainty for each parameter after first iteration (following the 

optimal 100 values). Red crosses represent the best parameters combination after first iteration. 

At second iteration we sample those regions (between the green lines at figure 4) by additional 1000 points, 

and reveal new, smaller, optimal regions (again according the uncertainty of the new optimal 100 

combinations). We continue with these iterations until the solution converges to the optimal parameters 

combination. An example of the converged stage is presented at figure 5 below. 
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Figure 5: Example of convergence after last (35th) iteration.  

6.2 Uncertainty of the optimal parameters combination 

A question arises – what is the uncertainty of the optimal parameters combination? In other words, what is 

the score sensitivity when slightly changing the parameters values with respect to the optimal parameters 

combination? To answer this question, we have followed the procedure described above, and determined the 

iteration at which the score reaches 90% of the optimal combination score. We define the parameters 

uncertainty (between the green lines at figure 4, for example) at that iteration as the uncertainty of the 

optimal parameters combination.  

 

7. TERRA stand-alone 

As part of CALMO-stages 2 and 3, among other parameters it was planned to tune also soil-scheme (TERRA) 

parameters (for example the hydraulic soil conductivity). In contrast to the regular COSMO parameters, the 

change in Terra parameters affects the COSMO forecasts with a significant delay (up to several years) via slow 

adaptation of the soil temperature and moisture profiles. Therefore, in order to tune TERRA parameters for 

specific year, one has to make the parameter changes several years earlier, and run the COSMO model in a 

cycle, slowly adapting the soil profiles to the parameter change. Moreover, errors in soil profiles caused by 

interpolation of soil fields from a coarse model disappear slowly, also on the scale of several years. Therefore, 

in order to obtain appropriate initial conditions in the soil (without interpolation errors), one again has to 

make the interpolation of soil fields several years earlier, and run the COSMO model in a cycle, slowly 
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“forgetting” the interpolation errors. However, performing several years pre-run of the COSMO model (in a 

cycle mode) is computationally expensive. Instead, it was decided to use the TERRA “stand-alone” (TSA) 

program driven by COSMO atmospheric analyses (from MeteoSwiss archive). The method was to initialize soil 

profiles from a coarse model interpolation, change the parameters of TSA (if needed), and run it for several 

years (prior to the tested year). Then, the obtained soil profiles were installed as initial soil conditions for the 

COSMO model runs (for the tested year). With we have run TSA for 3 years (2010-2012) with resolutions of 2.2 

and 1.1 km, and prepared the soil initial conditions for the COSMO runs at 2013. 

 

8. CALMO stage-2 

8.1 Validation of CALMO stage-2 Meta-Model using arbitrary test simulation 

In order to validate the Meta-Model quality, additional test simulation was performed for an arbitrary 

parameters combination [rlam_heat=1.24, tkmmin=0.233, tur_len=363.9, entr_sc=0.000267, c_soil=0.492 and 

v0snow=12.1], which was not used for building the Meta-Model. That allows comparing the Meta-Model 

prediction for this specific parameters combination with the real simulation results, over the entire 2013.  

Figs. 6-9 show scatter plots for maximum daily 2m-temperature (Tmax), minimum daily 2m-temperature 

(Tmin), 24h accumulated precipitation (Pr), and column integrated water vapor (TCWC), respectively. The y-

axes show the Meta-Model estimation with respect to the reference (simulation with default parameters 

values), while the x-axes show the COSMO simulation results with respect to the reference. For Tmax and 

Tmin, each point represents grid-point comparison (according method IV as explained in section 8.2 below). 

For Pr each point represents regions averages. For TCWC each point represents a profile in one of the 

radiosondes locations.  

 

Figure 6: Tmax Meta-Model prediction for the tested parameter combination, vs COSMO simulation results 

during the year 2013. X axis presents the simulated Tmax minus the reference simulation. Y axis presents the 

Meta-Model Tmax minus the reference simulation.  
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Figure 7: Tmin Meta-Model prediction for the tested parameter combination, vs COSMO simulation results 

during the year 2013. X axis presents the simulated Tmin minus the reference simulation. Y axis presents the 

Meta-Model Tmin minus the reference simulation.  

 

 

 

Figure 8: Pr Meta-Model prediction for the tested parameter combination, vs COSMO simulation results during 

the year 2013. X axis presents the simulated Pr minus the reference simulation. Y axis presents the Meta-

Model Pr minus the reference simulation.  
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Figure 9: TCWC Meta-Model prediction for the tested parameter combination, vs COSMO simulation results 

during the year 2013. X axis presents the simulated TCWC minus the reference simulation. Y axis presents the 

Meta-Model TCWC minus the reference simulation.  

 

Important to mention, that only one point (one parameters combination) in 6-dimensional parameters space 

was analyzed, so that correlations presented in figures 6-9 are not necessarily represent other possible 

parameters combinations. 

However, for the tested parameter combination, the correlations R between the COSMO forecasts and the 

Meta-Model estimations are generally high. Consequently, the overall method seems to prove itself: one can 

use the Meta-Model to reproduce COSMO forecasts for various parameters combinations. 

 

8.2 Calibration results for entire year 2013 

The calibration was performed using 4 different methods: 

I. Averaging Tmax and Tmin over regions (see Section 4.2.1 above), using RMSE-type score; 

II. Not averaging Tmax and Tmin over regions, using RMSE-type score; 

III. Averaging Tmax and Tmin over regions, using or the COSI score; 

IV. Not averaging Tmax and Tmin over regions, using the COSI score. 

We have used the Meta-Model to calculate the overall score 
pS  (either RMSE-type (eq. 2) or COSI (eq. 5)) for 

any given parameters combination. Figures 10-13 present the contours of pS  deviation, i.e. pp SS  , for 

pairwise parameters combinations only, for the methods I,II,III,IV, respectively. Note that for RMSE-type score 

lower pp SS   means “better” parameters combination, while for COSI score, higher pp SS   is better. One 

can see that the optimal parameters regions are similar, regardless the method we used. 
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Fig. 10: Method I - Contours of score deviation pp SS   (eq. 2), for pairwise parameters combinations. Lower 

pp SS   areas represent “better” parameters combinations. 

 

Fig. 11: Method II - Contours of score deviation pp SS   (eq. 2), for pairwise parameters combinations. Lower 

pp SS   areas represent “better” parameters combinations. 
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Fig. 12: Method III - Contours of score deviation pp SS   (eq. 5), for pairwise parameters combinations. Higher 

pp SS   areas represent “better” parameters combinations. 

 

Fig. 13: Method IV - Contours of score deviation pp SS   (eq. 5), for pairwise parameters combinations. Higher 

pp SS   areas represent “better” parameters combinations. 

 

Figures 14 and 15 present pS  scores distributions after first and last iterations, respectively (see Section 6 

above), together with the score of the reference (REF) simulation, for methods I-IV. 
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Fig. 14: 
pS  scores distributions after first iteration, together with the score of the reference (REF) simulation, 

for methods I-IV. For convenience, the distributions are presented as function of REFppp SSS ,1
~

 for 

methods I,II and as function of 1
~

,  REFppp SSS  for methods III,IV. Therefore higher 0
~

pS  means better 

score with respect to the REF simulation. 

 

Fig. 15: pS  scores distributions after last iteration, together with the score of the reference (REF) simulation, 

for methods I-IV. For convenience, the distributions are presented as function of REFppp SSS ,1
~

 for 
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methods I,II and as function of 1
~

,  REFppp SSS  for methods III,IV. Therefore higher 0
~

pS  means better 

score with respect to the REF simulation. 

 

Table 3 presents the optimal parameters combinations, as well as their uncertainties (see section 6.2) for the 

methods I-IV described above:  

Table 3: Optimal parameters combinations and their uncertainties for methods I-IV. *For method III there was 

no complete convergence to the optimal parameters combination, so the uncertainties are not presented. 

 

Assuming method IV as the most reasonable, the final optimal parameters combination with its uncertainty is: 

 rlam_heat=1.273 instead of the default 1.0. Uncertainty: [1.149 1.390]; 

 tkhmin=0.266 instead of the default 0.4; Uncertainty: [0.205 0.351]; 

 tur_len=346.5 instead of the default 150; Uncertainty: [294.6 409.9]; 

 entr_sc=0.0001607 instead of the default 0.003; Uncertainty: [0.0001261 0.0002104]; 

 c_soil=0.588 instead of the default 1.0; Uncertainty: [0.515 0.664]; 

 v0snow=12.3 instead of the default 20; Uncertainty: [11.6 13.3]. 

 

8.3 Calibration results - seasonal dependence 

At this section we analyzed the seasonal dependence of the optimal parameters combination during 2013. For 

that purpose we have performed parameters calibration for summer 2013 (Jul, Aug and Sep) and winter 2013 

(Jan, Feb and Mar), separately. The results for the optimal parameters combinations, as well as their 

uncertainties are presented in table 4. 

 

v0snow c_soil entr_sc (10
-4

) tur_len Tkhmin rlam_heat 
Met
hod 

18.7 19.9 21.2 
[-6.0% +6.5%] 

0.623 0.681 0.733 
[-2.9% +2.6%] 

0.643 0.731 0.866 
[-4.5% +6.9%] 

268.0 309.3 347.3  
[-4.6% +4.2%] 

0.179 0.229 0.282 
[-5.6% +5.9%] 

0.724 0.835 0.942 
[-5.8% +5.6%] 

I 

17.1 18.5 19.3 
[-7.0% +4.0%] 

0.679 0.725 0.760 
[-2.3% 1.8%] 

0.796 0.798 0.938 
[-0.01% +0.7%] 

390.2 437.4 503.9 
[-5.2% +7.4%] 

0.316 0.372 0.442 
[-6.3% +7.8%] 

0.836 0.964 1.077 
[-6.7% +5.9%] 

II 

18.8 0.735 0.832 422.3 0.155 1.009 III * 

11.6 12.3 13.3 
[-3.5% +5.0%] 

0.515 0.588 0.664 
[-3.7% +3.8%]  

1.261 1.607 2.104 
[-1.8% +2.5%] 

294.6 346.5 409.9 
[-5.8% +7.0%] 

0.205 0.266 0.351 
[-6.8% +9.4%] 

1.149 1.273 1.390  
[-6.5% +6.2%] 

IV 
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Table 4: CALMO stage-2 optimal parameters combinations, as well as their uncertainties for method IV for the 

following cases: all months in 2013, summer 2013 (Jul, Aug and Sep) and winter 2013 (Jan, Feb and Mar). 

 

One can see significant differences at the optimal parameters combinations for summer and winter. This fact 

reflects different biases of atmospheric fields between the seasons (see for example the first CALMO progress 

report [2]). However, figuring out the atmospheric fields “responsible” for this behavior is beyond the scope of 

this report. 

 

9. CALMO stage-3 

9.1 Calibration results for January 2013 

CALMO-stage-3 calibration was performed using method IV, i.e. “not averaging Tmax and Tmin over regions, 

using the COSI score”. As can be seen in table 1, at that stage we have tuned 5 parameters: tkhmin, tur_len, 

entr_sc, csoil, crsmin, for the period of ~ 1/1/2013 – 1/2/2013. 

As at CALMO-stage 2, we have used the Meta-Model to calculate the overall COSI score 
pS  (eq. 5) for any 

given parameters combination. Before presenting the results for the optimal 5-parameters combination, we 

first investigate the importance of each of the 5 parameters. This is done by performing the calibration several 

times, each time excluding one of the parameters. Figures 16-20 present the contours of 
pS  deviation, i.e. 

pp SS   (higher pp SS   is better), for pairwise parameters combinations only, in the following order:  

 Case 1: Tuning parameters tkhmin, tur_len, entr_sc, csoil (excluding crsmin) – see figure 16;  

 Case 2: Tuning parameters tkhmin, tur_len, entr_sc, crsmin (excluding csoil) – see figure 17;  

 Case 3: Tuning parameters tkhmin, tur_len, csoil, crsmin (excluding entr_sc) – see figure 18;  

 Case 4: Tuning parameters tkhmin, entr_sc, csoil, crsmin (excluding tur_len) – see figure 19; 

 Case 5: Tuning parameters tur_len, entr_sc, csoil, crsmin (excluding tkhmin) – see figure 20.      

v0snow c_soil entr_sc (10
-4

) tur_len Tkhmin rlam_heat 
Cas-
es 

11.6 12.3 13.3 
[-3.5% +5.0%] 

0.515 0.588 0.664 
[-3.7% +3.8%]  

1.261 1.607 2.104 
[-1.8% +2.5%] 

294.6 346.5 409.9 
[-5.8% +7.0%] 

0.205 0.266 0.351 
[-6.8% +9.4%] 

1.149 1.273 1.390  
[-6.5% +6.2%] 

Ent-
ire 

2013 

20.2 21.2 22.3 
[-5.5% +5.0%] 

1.090 1.150 1.205 
[-3.0% +2.8%] 

4.439 4.890 5.495 
[-2.3% +3.1%] 

352.2 357.5 398.9 
[-0.6% +4.6%] 

0.186 0.221 0.270 
[-3.9% +5.4%]  

0.954 1.071 1.164 
[-6.2% +4.9%]  

Sum-
mer 
2013 

29.2 30.0 30.0 
[-4.0% +0.0%] 

0 0.041 0.134 
[-2.1% +4.7%]  

1.387 1.714 2.076 
[-1.7% +1.9%]  

109.8 117.2 127.9 
[-0.8% +1.2%]  

0.791 0.891 0.929 
[-11.1% +4.2%]  

0.982 1.112 1.232 
[-6.8% +6.3%]  

Win-
ter 

2013 
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Fig. 16: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for parameters 

tkhmin, tur_len, entr_sc, csoil (excluding crsmin) – case 1. Period: 1/1/2013-6/2/2013. 

 

 

Fig. 17: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for parameters 

tkhmin, tur_len, entr_sc, crsmin (excluding csoil) – case 2. Period: 1/1/2013-1/2/2013. 
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Fig. 18: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for parameters 

tkhmin, tur_len, csoil , crsmin (excluding entr_sc) – case 3. Period: 1/1/2013-1/2/2013. 
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Fig. 19: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for parameters 

tkhmin, entr_sc, csoil , crsmin (excluding tur_len) – case 4. Period: 1/1/2013-3/2/2013. 

 

 

Fig. 20: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for parameters 

tur_len, entr_sc, csoil , crsmin (excluding tkhmin) – case 5. Period: 1/1/2013-1/2/2013. 

 

As can be seen from figures 16-20, the optimal and worst areas in parameters space differ between the 5 

cases. This can be explained by an importance of parameters interactions (fourth term in eq. (1)) with respect 

the first order parameters variation (third term in eq. (1)). However, the main reason for such behavior can be 

too small sample (for example, only 48% of the regions were rainy during the 32 days period). 

Following the analysis above, we have performed the calibration taking into account all the 5 parameters 

tkhmin, tur_len, entr_sc, csoil, crsmin. Figure 21 presents the contours of pS  deviation, i.e. pp SS   (higher 

pp SS   is better), for pairwise parameters combinations only.  
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Fig. 21: Contours of score deviation pp SS   for method IV (eq. 5), for pairwise parameters combinations. 

Higher pp SS   areas represent “better” parameters combinations. The tuning is performed for all the 5 

parameters tkhmin, tur_len, entr_sc, csoil , crsmin. Period: 1/1/2013-1/2/2013. 

 

Figure 22 presents 
pS  scores distributions after first (left panel) and last (right panel) iterations, together with 

the score of the reference (REF) simulation. 

 

Fig. 22: 
pS  scores distributions after first iteration (left) and last iteration (right), together with the scores of 

the reference (REF) simulation. For convenience, the distributions are presented as function of

1
~

,  REFppp SSS . Higher 0
~

pS  means better score with respect to the REF simulation. 
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Table 5 presents the optimal parameters combinations, as well as their uncertainties (see section 6.2), when 

calibrating 4 parameters (eliminating one parameter each time according cases 1-5 described above) and for 

the full calibration analysis, tuning all the 5 parameters: 

  

Crsmin c_soil 
entr_sc 
(10-4) 

tur_len tkhmin case 

------------------ 
1.957 2.000 2.000 

[2.0% +0.0%] 
18.0 20.0 20.0 
[1.0% +0.0%] 

100.0 100.0 101.0 
[-0% +0.1%]  

0.986 1.000 1.000 
[0.0% +1.6%] 

1 

150.1 171.2 171.6 
[-8.4% +0.2%]  

------------------- 
7.401 8.985 9.012 

[-8.1% +0.1%] 
100.0 100.0  100.2 

[-0% +1.9%] 
0.988 1.000 1.000 

[-1.3% +0%] 
2 

60.0 1.793 ------------------- 815.2  0.101  3** 

50.0 50.0 54.2 
[-0.0% +1.7%] 

1.978 2.000 2.000 
[-1.1% +0%] 

0.702 0.704 0.904 
[-0.01% +1.0%] 

------------------- 
0.100 0.100 0.111 

[-0.0% +1.2%] 
4 

50.0 50.0 54.3 
[-0.0% +1.7%] 

1.971 2.000 2.000 
[-1.5% +0%] 

4.284 20.0 20.0 
[-8.1% +0.0%] 

100.0 100.0 100.3 
[0.0% +0.03%] 

------------------- 5 

186.3 200.0 200.0 
[-5.5% +0.0%] 

1.937 2.000 2.000 
[-3.2% +0.0%] 

18.0 20.0 20.0 
[-10.3% +0.0%] 

104.3 109.3 117.2 
[-0.6% +0.9%]  

0.983 1.000 1.000 
[-1.9% +0.0%]  

all 5 
param. 

Table 5: Optimal parameters combinations and their uncertainties. **For case 3 there was no complete 

convergence to the optimal parameters combination, so the uncertainties are not presented 

 

Taking into account the uncertainties using also cases 1-5, the final optimal parameters combination (with its 

uncertainty) is: 

 tkhmin=1 instead of the default 0.4; Uncertainty: [0.983 1]; 

 tur_len=109.3 instead of the default 150; Uncertainty: [104.3 117.2]; 

 entr_sc=0.002 instead of the default 0.003; Uncertainty: [0.0018 0.002]; 

 c_soil=2 instead of the default 1.0; Uncertainty: [1.937 2]; 

 crsmin=200 instead of the default 150; Uncertainty: [186.3 200]. 

 

One can see, that all the five parameters get their optimal values on the edges of their allowed ranges. As 

mentioned before, that can be explained by short calibration period i.e. too small sample (for example, only 

48% of the regions were rainy during the 32 days period). In addition, more simulations have to be performed 

to validate the results. In CALMO-stage-3 only one interaction simulation was performed (in addition to the 

minimum required), while in CALMO-stage-2 13 additional interaction simulations were performed.  

 

9.2 CALMO-2km vs CALMO-1km optimal parameters for January 2013 

At this section we addressed the question – does the optimal parameters combination changes with the model 

resolution, or more specifically, from CALMO-2km to CALMO-1km? As CALMO-1km results are available for 

January 2013 only, we have calibrated the parameters for CALMO-2km again but this time for January 2013. 

Table 6 presents the CALMO-2km (Stage-2) and CALMO-1km (Stage-3) optimal parameters combinations, as 

well as their uncertainties for January 2013. 
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Table 6: CALMO-2km (Stage-2) and CALMO-1km (Stage-3) optimal parameters combinations, as well as their 

uncertainties for method IV for January 2013 (in comparison with CALMO-2km for entire 2013 in the first row). 

* Note that in CALMO-1km the calibrated parameters are ' tkhmin', 'tur_len', 'entr_sc', 'c_soil' and 'crsmin'  

 

As can be seen from table 6, the optimal parameters for CALMO-2km and CALMO-1km are completely 

different. We see 4 possible reasons for that: 

 The results are not statistically significant due to short calibration period (one month only). 

 Different parameters combinations were analyzed in stages-2 and 3. In stage-2 we have tuned the 

combination of rlam_heat, tkhmin, tur_len, entr_sc, c_soil and v0_snow while in stage-1 we have 

tuned the combination of tkhmin, tur_len, entr_sc, c_soil and crsmin. Parameters interactions might 

be significant, so that tuning part of parameters keeping others default is different from tuning them 

all together. Therefore we cannot state that the comparison performed in table 6 is a “clean 

experiment”. 

 CALMO stage-2 and stage-1 simulations were performed in different ways. Stage-2 runs were 

initialized every 24 hours, while in stage-1 we have initialized the runs once at 1/1/2013 (using Terra-

Standalone pre-runs), and performed single long runs keeping the “soil memory”. This “soil memory” 

may have a big influence on the model forecasts and the optimal parameters combinations. 

 Physical reasons related to the change in resolution from 2.2km (stage-2) to 1.1km (stage-1) are 

probably significant, but at that stage we cannot state how much.   

 

 

 

 

 

 

 

 

 

 

v0snow c_soil entr_sc (10
-4

) tur_len Tkhmin rlam_heat 
CALMO 
Stage 

11.6 12.3 13.3 
[-3.5% +5.0%] 

0.515 0.588 0.664 
[-3.7% +3.8%] 

1.261 1.607 2.104 
[-1.8% +2.5%] 

294.6 346.5 409.9 
[-5.8% +7.0%] 

0.205 0.266 0.351 
[-6.8% +9.4%] 

1.149 1.273 1.390 
[-6.5% +6.2%] 

Stage-2 
Entire 
2013 

11.2 11.8 12.3 
[-3.0% +2.5%] 

0.653 0.756 0.841 
[-5.2% +4.3%] 

2.346 2.764 3.242 
[-2.1% +2.5%] 

559.8 653.3 753.0 
[-10.4% +11.1%] 

0.191 0.220 0.262 
[-3.2% +4.7%] 

0.845 0.935 1.002 
[-4.7% +3.5%] 

Stage-2 
Jan 

2013 

Default value* 
1.937 2.000 2.000 

[-3.2% +0.0%] 
18.0 20.0 20.0 
[-10.3% +0.0%] 

104.3 109.3 117.2 
[-0.6% +0.9%] 

0.983 1.000 1.000 
[-1.9% +0.0%] 

Default value* 
Stage-3 

Jan 
2013 
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10. Summary 

The CALMO project has several important achievements. In general, we have proved that the CALMO 

calibration method allows tuning parameters of NWP model. In order to adapt the calibration method of 

Bellprat O. et al., 2012 [1] to NWP model, we have significantly improved the Meta-Model codes. The main 

developments are listed below: 

 We have added the option not to average 2m-temperature over regions; 

 added prediction of profiles characteristics; 

 added quality control to the observed and simulated fields; 

 added “clever” interpolation of observed 2m-temperature fields to the model grid; 

 developed the RMSE-type and COSI scores; 

 developed new method for logarithmic transformation for selected parameters; 

 developed a method to converge to optimal parameters combination in huge N-dimensional parameters 

space; 

 analyzed the uncertainty of the optimal parameters combination. 

 

These new developments, mainly in the Meta-Model, performance score and the optimization algorithm 

(sections 4,5,6 above and COSMO technical report [2]) highly increased the reliability of the calibration results. 

As part of the CALMO project, we have calibrated the COSMO model in resolutions of 7km, 2.2km and 1.1km. 

For 2.2km and 1.1km resolutions we have used wide verification area, which included Switzerland and north of 

Italy. We have validated the model performance over many meteorological fields. Moreover, for 2.2km 

resolution, the calibration period was very long (entire 2013) and the number of the tuned parameters was 

high (six). These achievements yielded highly qualitative calibration analysis, making the calibration results 

especially reliable. 

Future study may have a lot of interesting and important directions. Using the Meta-Model, one can perform 

more specific calibrations: 

 focusing on specific types of weather conditions (rain, extreme events, stable stratified nights, fogs, etc.); 

 focusing on seasons (season-dependent parameters tuning); 

 Reducing the noise of the calibration method by matching specific parameters to related fields and 

weather situations, and performing the tuning for these matches only. 

 Analyzing the relative importance of “constrain” and “interaction” simulations for various parameters. 
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12. Meta-Model code 

12.1 Algorithm 

In order to execute the program, one has to execute main.m. First it reads the user defined definitions from 

namelist.m. Then it divides the calibration period to several short (~10 day) sub-periods (to save matlab 

memory) and executes ReadData_and_MetaModel.m for every period, to read observations and simulations 

data and build the meta-model regressions. After that stage is performed for all the sub-periods, it executes 

PostProc.m which performs the post-processing and saves the calibration results in .mat format files. 

   12.1.1 ReadData_and_MetaModel.m 

First the observations data is read (via read_calmo_obs.m) into datamatrix.obsdata and 

datamatrix_so.obsdata structures, for near surface fields and sounding derived fields, respectively. The Swiss 

2m-temperature (Tmax and Tmin) fields are interpolated to the model grid (via build_temp_obs.m) using 

several optional methods (including the one which takes into account the local observed 2m-temperature 

profile in the vicinity of the model grid point). Next, the 24-hours precipitation is interpolated to the model 

grid (via build_rain_obs.m). In addition, soundings data is read (via read_sounding_obs.m), followed by 

reading the Italian Tmax, Tmin and precipitation data (from netcdf files). After reading the observations, the 

simulations data is read (via read_calmo_sim.m), while the profiles data is read via read_profiles_mod.m. 

There are several types of simulations data: reference (default parameters combination) simulation is read 

into datamatrix.refdata structure for near surface fields (and datamatrix_so.refdata for profiles derived fields); 

min-max simulations (where one of the parameters gets its maximum or minimum value, while the others kept 

default) are read into datamatrix.moddata structure for near surface fields (and datamatrix_so.moddata for 

profiles derived fields); interaction simulations (where pair of parameters get their maximum or minimum 

value, while the others kept default) are read for near surface fields into datamatrix.moddata structure as well 

(and datamatrix_so.moddata for profiles derived fields); constrain simulations (where one of parameters gets 

some intermediate value, while the others kept default) are read into datamatrix.constrain structure for near 

surface fields (and datamatrix_so.constrain for profiles derived fields); validate simulation (where all the 

parameters get some intermediate value - needed for validating the meta-model at an arbitrary point in 

parameters space) is read into datamatrix.valdata structure for near surface fields (and datamatrix_so. valdata 

for profiles derived fields). After the observations and simulations data is read, there is an option (via “avg_T” 

parameter) to average part of the fields over regions (regions are defined in regions_bmp.m, similarly to 

definition of regions at Frei 2013 for Switzerland) so that the Meta-Model will be built to predict region-

averaged fields, rather than the fields at every grid point.  The averaging over regions is performed in 

Frei_regions.m. Next, we redefine data arrays to have the structure (fields,days,regions,simulations) (via 

gpts_series.m) and finally delete unrealistic sounding/profiles data (via del_bad_sounding.m). Next, the Meta-

Models are created via neelin_e.m which uses polyfitn.m for performing the forecasts fits in N-dimensional 

parameters space. In case only precipitation is averaged over regions (avg_T=0), the Meta-Model structures 

metamodel_tmax, metamodel_tmin and metamodel_pr are created, while if temperature data is also 

averaged (avg_T=1), the Meta-Model structure metamodel_new includes all the data (for temperature and 
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precipitation). In addition, the profiles Meta-Models are written into the structure metamodel_so (see 

definitions of the Meta-Model structures in the description of neelin_e.m function below). Finally, the Meta-

Model structures are saved in .mat format. 

12.1.2 PostProc.m 

First, the Meta-Model structures are loaded for all the periods. Then we calculate the weights for different 

fields via weights_calc.m, needed to equalize their contributions to the final score (see eq. 4). The weights 

calculation uses neelin_p.m. This function calculates “pseudo-forecast” using the Meta-Models, for an 

arbitrary parameters combination. Then a big structure "main_data" is created (and saved in .mat format), 

which includes all the model and observations structures, as well as the Meta-Model structures and the fields 

weights. Next, the function planes.m is called, which plot performance scores for pair-wise parameters cross 

sections. For that, it uses neelin_p.m, as well as the scores calculation rmse_calc.m and cosi_calc.m, for rmse-

type and cosi-type scores, respectively. This is followed by the iterations loop, aimed to converge to the 

optimal parameters combination (see section 6). At each iteration, the function lhopt.m is called which uses 

neelin_p.m to calculate the scores distribution for a specific part of the parameters space (which is getting 

smaller from iteration to iteration). This distribution is plotted via histplot.m. In case the process converged to 

the optimal parameters combination, or the iterations number reached a predefined maximum 

("iterations_num"), the loop is broken. Next, the "good enough" iteration is determined (parameter 

"iteration_goodenough") as the iteration at which the score reaches 90% of the optimal combination score. 

We define the parameters uncertainty (between the green lines at figure 4, for example) at that iteration as 

the uncertainty of the optimal parameters combination. Next optparam.m is called to plot the optimal 

parameters combination (before transforming parameters back from the log representation). In case some of 

the parameters were transformed to log space (see section 4.2.4), the optimal parameters combination and 

the uncertainties values are transformed back to the real parameters space via log_turlen_entrsc.m. Finally, 

the uncertainty ranges are saved in UB_reg.mat and LB_reg.mat, and the optimal parameters combination is 

saved in popt_reg.txt.  

12.2 Structure 

The Meta-Model code is written in Matlab and uses its Statistical Toolbox. It consists of 33 Matlab (.m) files, 

which are called in the following order: 

1 main.m % main program to be called 

2     ReadData_and_MetaModel.m % Read observations and simulations data, then  
                               fit the Meta-Models 

3         namelist.m % read namelist 
4         sims_def.m % choose parameters to be tuned 
5             expval_inter_combs.m 
6     % stage A: Reading observations and simulations data: 

7         read_calmo_obs.m % Read observations data 
8             build_temp_obs.m % Interpolate 2m-temperature observations grid                 

                               to model grid 

9   

10             build_rain_obs.m % Interpolate rain observations grid to model  
                               grid 

11             var_meta_calmo.m % correct fields units 
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12             read_sounding_obs.m % Read sounding observations 
13                 get_press_levs.m 
14         read_calmo_sim.m % Read simulations data 
15             var_meta_calmo.m % correct fields units 
16             read_profiles_mod.m % Read simulations data 
17                 get_press_levs.m 
18         Frei_regions.m % Average part of the fields over predefined big  

                         regions 
19             regions_bmp.m % Definition of regions over Switzerland and north  

                            Italy 
20         gpts_series.m % Redefine data arrays to the following structure:  

                        (fields,days,regions,simulations) 

21         del_bad_sounding.m % delete unrealistic sounding/profiles data 
22   corr_so.m 
23     % stage B: create Meta-Models: 
24         neelin_e.m % create Meta-Models – forecasts fits in N-dimensional 

                     parameters space  

25             allcomb.m  
26             polyfitn.m % N-dimensional 2-nd order polynomial fit 
27     % stage C: Post-processing: 

28     PostProc.m % Post-processing: plot analysis results and calculate the  
                 optimal parameters combination 

29         namelist.m % read namelist 
30         sims_def.m % read parameters to be tuned 
31         weights_calc.m % calculate weights for different fields, to equalize  

                         their contributions to the final score (assuming  
                         user defined weights are uniform) 

32             neelin_p.m % calculate “pseudo-forecast” using the Meta-Models 

33             ETS.m % calculate rain part of COSI score (in case weights are 
                    calculated for COSI score also)  

34         planes.m % plot performance scores for pair-wise parameters cross  
                   sections 

35             allcomb.m 
36             divisor.m 
37             neelin_p.m % calculate “pseudo-forecast” using the Meta-Models 
38             rmse_calc.m % calculate RMSE-type score 
39             cosi_calc.m % calculate COSI-type score 
40                 ETS.m % calculate rain part of COSI score 
41         lhopt.m % calculate scores distribution as part of the iterative 

                  convergence algorithm  

42             neelin_p.m % calculate “pseudo-forecast” using the Meta-Models 
43         histplot.m % plot scores distribution as part of the iterative  

                     convergence algorithm 

44         optparam.m % plot optimal parameters combination (before            
                     transforming parameters back from the log  
                     representation) 

45             allcomb.m 
46         log_turlen_entrsc.m % transforming tur_len and entr_sc parameters  

                              back from the log representation 

 
12.3 Subroutines 

The Meta-Model code includes the following subroutines: 

 

function main() 
 
% NAME  
%   main 
% PURPOSE  
%   main program of the CALMO parameters tuning method  
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% NOTE 
%   Set main definitions at namelist.m file ! 
% RUN 
%   from Bash: "matlab -nodesktop -nosplash -r main" 
%   from Matlab: F5 inside main.m 
% INPUT 
%   - 
% OUTPUT  
%   calibration results saved in .mat format 
% AUTHORS   
%   Pavel Khain (pavelkh_il@yahoo.com) 
%   Itsik Carmona (carmonai@ims.gov.il) 
%   Originally: Omar Bellprat (omar.bellprat@gmail.com) 
 

function ReadData_and_MetaModel(date_min,date_max) 
 
% NAME  
%   ReadData_and_MetaModel 
% PURPOSE  
%   Read observations and simulations data, then fit the Meta-Models 
% INPUTS  
%   time period: from date_min 'dd-mmm-yyyy' to date_max 'dd-mmm-yyyy' 
% OUTPUTS  
%   saved (in .mat format) observations and simulations fields as well as 
%   the Meta-Models coefficients 
 

function [maindir simuldir obsdir extdir vars vars_2d avg_T vars_sound sims_opt ml  
          score w_user lhacc iterations_num best_percent date_min  
          date_max]=namelist() 
  
% NAME  
%   namelist 
% PURPOSE  
%   Namelist of the calibration analysis 
% INPUTS  
%   - 
% OUTPUTS  
%   maindir - main directory  
%   simuldir - "maindir/simuldir": path to simulations files 
%   obsdir - "maindir/obsdir": path to observations files 
%   extdir - "maindir/extdir": path to "external data" files 
%   vars - calibrated fields groups. Can be any combinations of:  
%          {'t2m_max','t2m_min','pr','sound'} 
%   vars_2d - calibrated 2D fields. Can be any combinations of:  
%             {'t2m_max','t2m_min','pr'} 
%   avg_T - region average over Precipitation only (avg_T=0), or over  
%           Precipitation, Tmax and Tmin (avg_T=1) 
%   vars_sound - calibrated profiles fields:  
%                {'CAPE','CIN','TCWC','WSHEAR1','WSHEAR2','WSHEAR3','T850mb',  
%                'T700mb','T500mb','RH850mb','RH700mb','RH500mb','U850mb',  
%                'U700mb','U500mb','V850mb','V700mb','V500mb'} 
%   sims_opt - Choose parameters to callibrate and the simulations to use. The  
%              possible values for sims_opt and their meaning appear in sims_def.m  
%              file 
%   ml - Minimum number of days (during given period) for valid soundings data. If  
%        less - current sounding fields are not analyzed 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%            calibrated fields: 
%            tmax tmin pr cape cin ws1 ws2 ws3 T850mb T700mb T500mb RH850mb  
%            RH700mb R500mb U850mb U700mb U500mb V850 V700mb V500mb 
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%   lhacc -  Number of experiments to sample parameter space at each iteration 
%   iterations_num - Maximum number of iterations 
%   best_percent - "winners" percent of lhacc which is used to define the  
%                  parameters space for the next iteration 
%   date_min - beginning of calibration period 
%   date_max - end of calibration period 
 

 

function [paramn,paramnt,range,default,expval,valval,simval,sims_reg,sims_inter,  
          sims_con,valcon,param_log,date_min,date_max]=sims_def(sims_opt) 
 

% NAME  
%   sims_def 
% PURPOSE  
%   Choose parameters to tune and the simulations to use 
% INPUTS  
%   sims_opt - defined by 5-digits number: sims_opt=ABCDE, where: 
%              A - number of parameters to calibrate (1,2,3,4,5,6,…) 
%              B - serial number of combination for given A 
%              C - number of ADDITIONAL (to the minimum required) interaction  
%                  parameter simulations (interaction terms) 
%              D - number of "constrain" 1D simulations (additional simulations  
%                  where only one parameter is changed from default) 
%              E - number of parameters (among A) which are transformed to LOG  
%                  space 
% OUTPUTS  
%   paramn - Parameter names 
%   paramnt - Parameter names (for TEX interpreter) 
%   range - Parameters ranges (min and max) 
%   default - Parameters defaults 
%   sims_reg - Names of max-min simulations (where only 1 parameter is shifted to  
%              its max/min value) 
%   sims_inter - Names of interaction simulations (where 2 parameters are shifted  
%                to their max/min values)  
%   expval - Parameters values for max-min and interaction simulations 
%   simval - Name of "val" simulation (where all the parameters are shifted from  
%            their default values, in order to validate the Meta-Models) 
%   valval - Parameters values for "val" simulation 
%   sims_con - Name of "constrain" simulations (where each time one parameter is  
%              shifted from its default value, but not to its max/min values) 
%   valcon - Parameters values for "constrain" simulations 
%   param_log - Array of 0/1 numbers (having length of paramn), where ones stand  
%               for parameters which are transformed to log space  
%   date_min - The earliest allowed start date ('dd-mmm-yyyy') for chosen sims_opt  
%   date_max - The latest allowed end date ('dd-mmm-yyyy') for chosen sims_opt 
 

function [VectorValues]=expval_inter_combs(temp_inter,range,default,paramn) 
  
% NAME  
%   expval_inter_combs 
% PURPOSE  
%   fill expval matrix for sims_def.m 
% INPUTS  
%   temp_inter - one of the interaction simulations 
%   range - Parameters ranges (min and max) 
%   default - Parameters defaults 
%   paramn - Parameter names 
% OUTPUTS  
%   expval matrix for sims_def.m 
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function [odata odata_s sound_exist]=read_calmo_obs(vars,date_lim,avg_type,  
    size_vars_sound) 

  
% NAME 
%   read_calmo_obs 
% PURPOSE 
%   Read observations data from Switzerland and north Italy, as well as soundings  
%   data, for specified period 
% INPUTS 
%   vars - calibrated fields groups. See namelist.m 
%   date_lim - Structure which includes the dates range of simulations to be read 
%   avg_type - Interpolation method of observations data to model grid. Can be:  
%              'near_neighb','simple_mean','weight_mean','clever_mean' 
%   size_vars_sound - length(vars_sound) - number of soundings fields 
% OUTPUTS 
%   odata - Data matrix with dimensions [Field,Day,1,Lon,Lat] (field can be  
%           Tmax,Tmin,Pr) 
%   odatas - Data matrix for profileswith dimensions [Field,Day,1,Hour,Sounding  
%   location] 
%   sound_exist - binary matrix [Day,Hour,Sounding location] with ones where the  
%                 sounding data exist 
 

function build_temp_obs(avg_type,maxminavg) 
  
% NAME  
%   build_temp_obs 
% PURPOSE  
%   This function interpolates the gridded temperature observations (by C. Frei) to the model grid.  
% METHOD 
%   When comparing smoothed topography model-grid 2m-temperature whith the  
%   observed 2m temperature, one shoud "correct" the observed 
%   2m-temperature to correspond the model grid elevation. The correction may be  
%   performed using the neighboring grid points 2m-temperature profile, 
%   according the recommendation of C. Frei 
%   Steps: 
%   1. Read any simulation file to obtain the model grid lat/lon  
%      (ex:aggregated_LTUR_2013011000.nc) 
%   2. Read any simulation file to obtain the model grid altitude  
%      (ex:laf2013111600_filtered.nc) 
%   3. Read any observations file to obtain the observations grid lat/lon (ex:  
%      TmaxD_ch01r.swisscors_201301010000_201302010000.nc)  
%   4. Read gridded observations altitude ( ex: topo.swiss1_ch01r.swisscors.nc) 
%   5. Interpolate the gridded observations to the model grid using one of the  
%      possible methods  
% INPUTS  
%   avg_type - one of the interpolation methods:  
%              'near_neighb','simple_mean','weight_mean','clever_mean' 
%   maxminavg - Which field to interpolate: 'Tmax','Tmin','Tavg' 
% OUTPUTS  
%   saved (in .mat format) interpolated temperature observations 
 

function build_rain_obs() 
  
% NAME  
%   build_rain_obs 
% PURPOSE  
%   This function interpolates the gridded rain observations to the model grid.  
% METHOD 
%   1. Read any simulation file to obtain the model grid lat/lon  
%  (ex:aggregated_LTUR_2013011000.nc) 
%   2. Read gridded rain observations you need to interpolate (ex:  
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%  CPCH_201301080000_01440_c2.nc)  
%   3. Interpolate the gridded observations to the model grid using nearest  
%  neighbor 
% INPUTS  
%   - 
% OUTPUTS  
%   saved (in .mat format) interpolated precipitation observations 
% AUTHOR   
%   Pavel Khain (pavelkh_il@yahoo.com) 
 

function output=read_sounding_obs(year,month,day,height_step,  
         windshear,windshearopt) 
  
% NAME 
%   read_sounding_obs 
% PURPOSE 
%   Read and interpolate soundings data, calculate sounding characteristics   
% INPUTS 
%   year 
%   month 
%   day 
%   height_step - The interpolation height step in meters 
%   windshear - [v1u,v1d,v2u,v2d,v3u,v3d] - pressure levels for calculating wind shears: 
%       v1u - the upper pressure level for wshear1 
%       v1d - the bottom pressure level for wshear 1 
%       v2u - as mentioned above but for wshear 2 
%       v2d - as mentioned abobe but for wshear 2 
%       v3u - as mentioned above but for wshear 3 
%       v3d - as mentioned above but for wshear 3, whereas 1100 is the surface level or the lowest level ("below surface") 
%   windshearopt - windshear calculation method: 'scalar' or 'vector' 
% OUTPUTS 
%   output - Data matrix with dimensions [Field,Day,1,Hour,Sounding location] 
 

function [mdata mdata_s]=read_calmo_sim(vars,sims,date_lim,sound_exist,  
    size_vars_sound) 

  
% NAME 
%   read_calmo_sim 
% PURPOSE 
%   Read simulations data from, for specified period 
% INPUTS 
%   vars - calibrated fields groups. See namelist.m 
%   sims - simulations names to be read. See namelist.m 
%   date_lim - Structure which includes the dates range of simulations to be read 
%   sound_exist - binary matrix [Day,Hour,Sounding location] with ones where the  
%   sounding data exist 
%   size_vars_sound - length(vars_sound) - number of soundings fields 
% OUTPUTS 
%   mdata - Data matrix with dimensions [Field,Day,simulation,Lon,Lat] (field can  
%  be Tmax,Tmin,Pr) 
%   mdatas - Data matrix with dimensions [Field,Day,simulation,Hour,Sounding  
%   location] 

 

function output = read_profiles_mod(simdir,year,month,day,simtype,height_step,  
   sound_exist,windshear,windshearopt) 

  
% NAME 
%   read_profiles_mod 
% PURPOSE 
%   Read and interpolate profiles data, calculate profiles characteristics   
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% INPUTS 
%   simdir - path to simulations files  
%   year 
%   month 
%   day 
%   simtype - simulation name 
%   height_step - The interpolation height step in meters 
%   sound_exist - binary matrix [Day,Hour,Sounding location] with ones where the  
%   sounding data exist 
%   windshear - [v1u,v1d,v2u,v2d,v3u,v3d] - pressure levels for calculating wind  
%   shears: 
%       v1u - the upper pressure level for wshear1 
%       v1d - the bottom pressure level for wshear 1 
%       v2u - as mentioned above but for wshear 2 
%       v2d - as mentioned abobe but for wshear 2 
%       v3u - as mentioned above but for wshear 3 
%       v3d - as mentioned above but for wshear 3, whereas 1100 is the surface  
%    level or the lowest level ("below surface") 
%   windshearopt - windshear calculation method: 'scalar' or 'vector' 
% OUTPUTS 
%   output - Data matrix with dimensions [Field,Day,simulation,Hour,Sounding  
%   location] 
 

function datamatrix_new = Frei_regions(datamatrix,lat,lon,vars,  
   avg_T,unify_regions) 

  
% NAME  
%   Frei_regions 
% PURPOSE  
%   Average part of the surface fields over predefined big regions 
% METHOD 
%   use image file (regions_italy_swiss_for_matlab.bmp) where each region has its  
%   color 
% INPUTS  
%   datamatrix - Structure which includes observations and simulations data 
%                for surface fields ('t2m_max','t2m_min','pr'). Dimensions:  
%       [Field,Day,simulation,Lon,Lat] 
%   lat - latitudes of model domain  
%   lon - longitudes of model domain  
%   vars - calibrated fields groups. Can be any combinations of:  
%      {'t2m_max','t2m_min','pr','sound'} 
%   avg_T - region average over Precipitation only (avg_T=0), or over  
%       Precipitation, Tmax and Tmin (avg_T=1) 
%   unify_regions - array that defines which regions (out of 1-7) to unify (option  
%  to unify several regions into one bigger) 
% OUTPUTS  
%   datamatrix_new - Structure which includes observations and simulations 
%                    data for surface fields ('t2m_max','t2m_min','pr').  
%      Dimensions: [Field,Day,region,simulation] 
 

function [area] = regions_bmp(lat,lon,img,unify_regions) 
  
% NAME  
%   regions_bmp 
% PURPOSE  
%   Definition of regions over Switzerland and north Italy 
% METHOD 
%   Analyze image file (regions_italy_swiss_for_matlab.bmp) where each region has  
%   its color 
% INPUTS  
%   lat - latitude 
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%   lon - longitude 
%   img - image file (regions_italy_swiss_for_matlab.bmp) where each region has  
%     its color 
%   unify_regions - array that defines which regions (out of 1-7) to unify (option  
%     to unify several regions into one bigger) 
% OUTPUTS  
%   area - region number to which lat lon belong 
 

function datamatrix_t = gpts_series(datamatrix,vars,var) 
   
% NAME  
%   gpts_series 
% PURPOSE  
%   Redefine data arrays (which were not averaged over regions) to the following  
%   structure: (fields,days,regions,simulations) 
% INPUTS  
%   datamatrix - Structure which includes observations and simulations data 
%                for surface fields ('t2m_max','t2m_min','pr'). Dimensions: 
%                [Field,Day,simulation,Lon,Lat] 
%   vars - calibrated fields groups. Can be any combinations of:  
%          {'t2m_max','t2m_min','pr','sound'} 
%   var - specific field group (one of vars) 
% OUTPUTS  
%   datamatrix_new - Structure which includes observations and simulations 
%                    data for surface fields ('t2m_max','t2m_min','pr').  
%      Dimensions: [Field,Day,region,simulation] 
 

function datatemp=del_bad_sounding(datamatrix_so,ml,sims_reg,sims_inter,  
   sims_con,simval,vars_sound) 

  
% NAME  
%   del_bad_sounding 
% PURPOSE  
%   delete unrealistic sounding/profiles data 
% INPUTS  
%   datamatrix_so - Data matrix for profiles. Dimensions:  
%     [Field,Day,region,simulation] 
%   ml - Minimum number of days (during given period) for valid soundings data. If  
%        less - current sounding fields are not analyzed. 
%   sims_reg - Names of max-min simulations (where only 1 parameter is shifted to  
%              its max/min value) 
%   sims_inter - Names of interaction simulations (where 2 parameters are shifted  
%                to their max/min values)  
%   sims_con - Name of "constrain" simulations (where each time one parameter is  
%              shifted from its default value, but not to its max/min values) 
%   simval - Name of "val" simulation (where all the parameters are shifted from  
%            their default values, in order to validate the Meta-Models)  
%   vars_sound - calibrated profiles fields: {'CAPE','CIN','TCWC','WSHEAR1',  
%       'WSHEAR2','WSHEAR3','T850mb','T700mb','T500mb','RH850mb', 
%       'RH700mb','RH500mb','U850mb','U700mb','U500mb', 
%       'V850mb','V700mb','V500mb'} 
% OUTPUTS  
%   datatemp - Data matrix for profiles. Dimensions: [Field,Day,region,simulation] 
 

function metamodel=neelin_e(parameters, datamatrix_test,vars_2d) 
  
% Quadratic regression metamodel as described in Neelin et al. (2010) PNAS and  
% Bellprat (2012) 
% NAME 
%   neelin_e 
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% PURPOSE 
%   Fit a mutlivariate quadratic quadratic regressions (metamodels) 
% INPUTS 
%   From the structure parameters and datamatrix the following fields are  
%   processed 
%   parameters.experiments: 
%            Parameter values for each experiment with the dimension of [N,  
%            2*N+N*(N-1)/2] 
%            The structure NEEDS to be as follows. Example for 2 parameters  
%            (p1,p2): 
%            [p1_l dp2 ] ! Low parameter value for p1 default dp2 
%            [p1_h dp2 ] ! High parameter value for p1 default dp2 
%            [dp1  p2_l] ! Low parameter value for p2 default dp1 
%            [dp1  p2_h] ! Hihg parameter value for p2 default dp1 
%            [p1_l p2_h] ! Experiments with interaction (no default) 
%                        ! Additional experiments used to constrain interaction  
%                          terms 
%   parameters.range: 
%            Range of values for each parameter to normalize the scale 
%   parameters.default: 
%            Default values of parameters to center the scale 
%   datamatrix_test.moddata: 
%            Modeldata corresponding to the dimensions of parameter.experiments 
%   datamatrix_test.refdata: 
%            Modeldata when using default parameter values to center the  
%            datamatrix fitted 
%   vars_2d - calibrated 2D fields. Can be any combinations of:  
%             {'t2m_max','t2m_min','pr'} 
% OUTPUT 
%   structure metamodel. 
%   a: Metamodel parameter for linear terms [N,1] 
%   B: Metamodel parameter for quadratic and interaction terms 
%      [N,N]. Quadratic terms in the diagonal, interaction terms 
%      in the off-diagonal. Matrix symmetric, B(i,j)=B(j,i). 
%   c: Metamodel parameter for zero order (constant) 
 

function PostProc(period) 
% NAME  
%   PostProc 
% PURPOSE  
%   plot analysis results and calculate the optimal parameters combination 
% INPUTS  
%   time periods array (more precisely - initial dates of the periods): 
%   {'dd-mmm-yyyy','dd-mmm-yyyy',...} 
% OUTPUTS  
%   saved (in .mat format) analysis results 
 

function [W_fin]=weights_calc(parameters,datamatrix_tmp,metamodel_tmp,  
          w_user,score,fields) 
  
% NAME  
%   weights_calc 
% PURPOSE  
%   calculate weights for different fields, to equalize their contributions to the  
%   final score (assuming user defined weights are uniform). 
% INPUTS  
%   parameters - structure parameters (see definitions in  
%   ReadData_and_MetaModel.m) 
%   datamatrix_tmp - structure datamatrix (see definitions in  
%   ReadData_and_MetaModel.m) 
%   metamodel_tmp - structure metamodel (see definitions in neelin_e.m) 
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%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%   calibrated fields: 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   fields - field name (can be 't2m_max','t2m_min','pr',vars_sound) 
% OUTPUT  
%   W_fin - weights array for different fields 
 

function [dmatrix]=neelin_p(metamodel,parameters,datamatrix,pvector) 
  
% NAME  
%   neelin_p 
% PURPOSE  
%   Forecast using regression metamodel as described in Neelin et al. (2010) PNAS  
%   and Bellprat (2012). 
% METHOD 
%   Predict data using the metamodel for a parameter matrix 
% INPUTS  
%   From the structure metamodel, parameters and datamatrix the following fields  
%   are 
%   processed (mind the same naming in the input) 
%   metamodel.a: 
%          Vector of linear terms of the metamodel [...,N,1] additional 
%          data dimensions possible (ex:a~[Regions,Variables,Time,N,1]) 
%   metamodel.B:  
%           Matrix of quadratic and interactions terms [...,N,N] additional 
%           data dimensions possible (ex:a~[Regions,Variables,Time,N,N]) 
%   metamodel.c: Metamodel parameter for zero order (constant) 
%   parameters.range: 
%            Range of values for each paramter to normalize the scale. 
%   parameters.default: 
%            Default values of parameters to center the scale 
%   datamatrix.reffdata: 
%            Modeldata of when using default parameter values to center the  
%            datamatrix 
%   pvector: Parameter values for one experiment with the 
%            dimension of [N,1] N=Number parameters 
% OUTPUT  
%   dmatrix: Predicted data for parameter experiment 
 

function ets = ETS (Obs,Model,thresrain) 
  
% NAME  
%   ETS 
% PURPOSE  
%   rain forecast. Answers the question: How well did the forecast "yes" events correspond 
%   to the observed "yes" events (accounting for hits that would be expected by chance) 
%   Range: -1/3 to 1; 0 indicates no skill. Perfect score: 1. 
% NOTE 
%   be carefull with 0/0 when there is no rain both in nature and model (ex:  
%   "summer in Israel") !!! 
% INPUTS  
%   parameters - structure parameters (see definitions in  
%                ReadData_and_MetaModel.m) 
%   datamatrix_tmp - structure datamatrix (see definitions in  
%                    ReadData_and_MetaModel.m) 
%   metamodel_tmp - structure metamodel (see definitions in neelin_e.m) 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%            calibrated fields: 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   fields - field name (can be 't2m_max','t2m_min','pr',vars_sound) 
% OUTPUT  
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%   ets - rain forecast score 
 

function planes(main_data,parameters,w_user,score,new_calc,predir,param_log) 
  
% NAME 
%   planes 
% PURPOSE 
%   Plot performance scores for pair-wise parameters cross sections 
% INPUTS 
%   main_data - big structure, which includes the sub-structures:  
%   main_data.data - datamatrix structure 
%   main_data.metamodel metamodel structure 
%   main_data.field - field names 
%   main_data.W - weights array for different fields 
%   parameters structure: 
%   parameters.range: 
%            Range of values for each paramter to normalize the scale. 
%   parameters.default: 
%            Default values of parameters to center the scale 
%   datamatrix.reffdata: 
%            Modeldata of when using default parameter values to center the  
%   datamatrix 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%        calibrated fields: 
%            tmax tmin pr cape cin ws1 ws2 ws3 T850mb T700mb T500mb RH850mb  
%   RH700mb R500mb U850mb U700mb U500mb V850 V700mb V500mb 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   new_calc - 0 or 1: 0 by default, when main_data is devided into cells over  
%     periods. 1 - otherwise 
%   predir - path for saving output planes figures 
%   param_log - Array of 0/1 numbers (having length of paramn), where ones stand  
%      for parameters which are transformed to log space 
% OUTPUT 
%   saved planes figures 
 

function score=rmse_score(qfit,obsdata,W,w_user,new_calc) 
  
% NAME  
%   rmse_score 
% PURPOSE  
%   calculate RMSE-type score for Meta-Model predictions (regressions estimations) 
% INPUTS  
%   qfit - metamodel predictions for given parameter combination 
%   obsdata - observations data 
%   W - weights for different fields, to equalize their contributions to the final  
%       score 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%            calibrated fields  
%   new_calc - 0 or 1: 0 by default, when main_data is devided into cells over  
%              periods. 1 - otherwise 
% OUTPUT 
%   score - RMSE-type score 
 

function score=cosi_score(qfit,obsdata,W,w_user,new_calc) 
  
% NAME  
%   cosi_score 
% PURPOSE  
%   calculate COSI score for Meta-Model predictions (regressions 
%   estimations). Defined on the basis of the COSI score by Ulrich Damrath (DWD) 
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% INPUTS  
%   qfit - metamodel predictions for given parameter combination 
%   obsdata - observations data 
%   W - weights for different fields, to equalize their contributions to the final  
%       score 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%            calibrated fields  
%   new_calc - 0 or 1: 0 by default, when main_data is devided into cells over  
%              periods. 1 - otherwise 
% OUTPUT 
%   score - COSI score 
 

function [Sopt, xstar, xopt, sc_stat,UB_next,LB_next]=lhopt(main_data,  
    parameters,w_user,score,new_calc,lhacc,tmp_str,iteration,  

          best_percent,UB_new,LB_new,param_log) 
  
% NAME 
%   lhopt 
% PURPOSE 
% Optimise model parameters using a latin hypercube sampling. See Bellprat (2012) 
% METHOD 
%   Create a sample of parameters using a latin hypercube design 
%   and predict the model performance of the sample using the metamodel. 
% INPUTS 
%   main_data - big structure, which includes the sub-structures:  
%   main_data.data - datamatrix structure 
%   main_data.metamodel metamodel structure 
%   main_data.field - field names 
%   main_data.W - weights array for different fields 
%   parameters structure: 
%   parameters.range: 
%            Range of values for each paramter to normalize the scale. 
%   parameters.default: 
%            Default values of parameters to center the scale 
%   w_user - array of user defined weights (for simlicity - from 0 to 1) for  
%   calibrated fields: 
%            tmax tmin pr cape cin ws1 ws2 ws3 T850mb T700mb T500mb RH850mb  
%   RH700mb R500mb U850mb U700mb U500mb V850 V700mb V500mb 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   new_calc - 0 or 1: 0 by default, when main_data is devided into cells over  
%     periods. 1 - otherwise 
%   lhacc - Number of experiments to sample parameter space at each iteration 
%   tmp_str - path to the calibration results 
%   iteration - iteration number (of convergence process to the optimal parameters  
%         combination) 
%   best_percent - "winners" percent of lhacc which is used to define the  
%     parameters space for the next iteration 
%   UB_new - upper limit of parameters range at given iteration 
%   LB_new - lower limit of parameters range at given iteration 
%   param_log - Array of 0/1 numbers (having length of paramn), where ones stand  
%      for parameters which are transformed to log space  
% OUTPUTS 
%   Sopt - Scores for all experiments at given iteration 
%   xstar - Latin hypercube parameter experiments at given iteration 
%   xopt - Parameter setting with highest score at given iteration 
%   sc_stat - score statistics at given iteration 
%   UB_next - upper limit of parameters range at NEXT iteration 
%   LB_next - lower limit of parameters range at NEXT iteration 
 

function histplot(lhscore,score,best,predir,iteration)   
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% NAME 
%   histplot 
% PURPOSE 
%   plot histogram of SCORES for meta-models predictions 
% INPUTS 
%   lhscore - Scores for all experiments at given iteration 
%   score - 'rmse' or 'cosi' for RMSE-type and COSI-type scores, respectively 
%   best - 0 or 1: o by default, 1 if a special simulation exists and verified 
%   predir - path for saving output planes figures 
%   iteration - iteration number (of convergence process to the optimal parameters combination) 
% OUTPUTS 
%   saved scores histogram for specific iteration 
 

function optparam(parameters,lhscore,lhexp,popt,errm)   
  
% NAME  
%   optparam 
% PURPOSE  
%   Plot optimal parameters combination 
%   NOTE: not checked or adapted since early stage of the CALMO project ! 
% INPUTS  
%   parameters - parameters structure 
%   lhscore - Scores for all experiments (at last iteration) 
%   lhexp - Latin hypercube parameter experiments (at last iteration) 
%   popt - Parameter setting with highest score (at last iteration) 
%   errm - error of metamodel, set to 0.001 ??? 
% OUTPUTS  
%   Plot optimal parameters combination 
 

function xnolog=log_turlen_entrsc(xlog,paramname)  
  
% NAME  
%   log_turlen_entrsc 
% PURPOSE  
%   convert the optimal parameters (tur_len and entr_sc) values from log-space  
%   back to the regular space 
% INPUTS  
%   xlog - input vector of paramaeters values in log space 
%   paramname - parameter names 
% OUTPUT 
%   xnolog - output vector of paramaeters values (tur_len and entr_sc) in regular %            space 
 


