KENDA developments at DWD

Christoph Schraff

KENDAscope: KENDA from Surface to Cloud Observations Progressive Extension (Sept. 2020 – Aug. 2025)

- Task 1: algorithmic developments
 - 1.1 refinements of reference KENDA (currently LETKF)
 - 1.2 Variational DA (EnVar, CEnVar, 4D-EnVar)
 - 1.3 Particle Filter
- Task 2: observations (from surface to clouds)
 - 2.1 Radar (Z + Vr)
 - 2.2 ground-based GNSS ZTD + STD
 - 2.3 all-sky IR + VIS radiances
 - 2.4 MTG IRS
 - 2.5 screen-level obs (T2M, RH2M)
 - 2.6 PBL profiling obs (wind lidar, MW radiometer, Raman lidar, drones, towers)
- Task 3: soil / surface (satellite soil moisture, SST, ...)

ARPAE-EMR (Thomas Gastaldo, Virginia Poli)

- implementation of DA suite for ICON-I2 (to replace COSMO-2I in 2023) (ongoing due to some issue with the radar operator)
- (further) evaluation of correlated R estimated from Desroziers stats for radar radial wind

COMET (Francesca Marcucci, 0.01 FTE)

• maintenance of operational suite, migration to new ECMWF ATOS system

DWD (Hendrik Reich, Stefanie Hollborn, et al.)

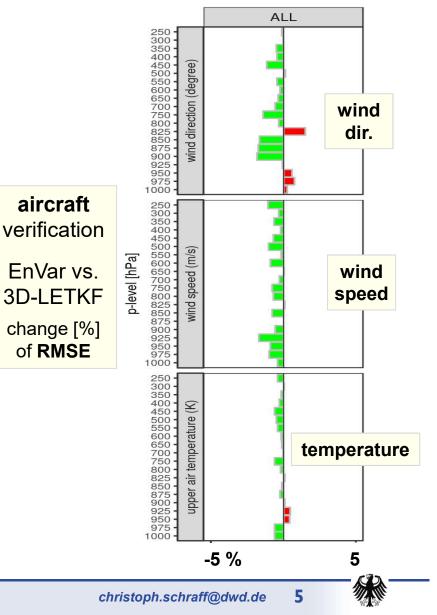
Ongoing technical work on

- processing of 'rof' (raw feedback) files in DACE:
 - contains only obs w/o model info, for easier testing of use of new obs or obs from external providers (e.g. field campaigns):
- non-diagonal R (obs error covariance matrix) with inter-channel or vertical correlations in LETKF
 - → hyperspectral satellite data (IASI, IRS), ground-based MWR, lidar (?), GNSS STD (?)
 - a.o. requires (MPI-) parallel processing of obs in LETKF (due to memory problems, at least for satellite obs, e.g. IASI)

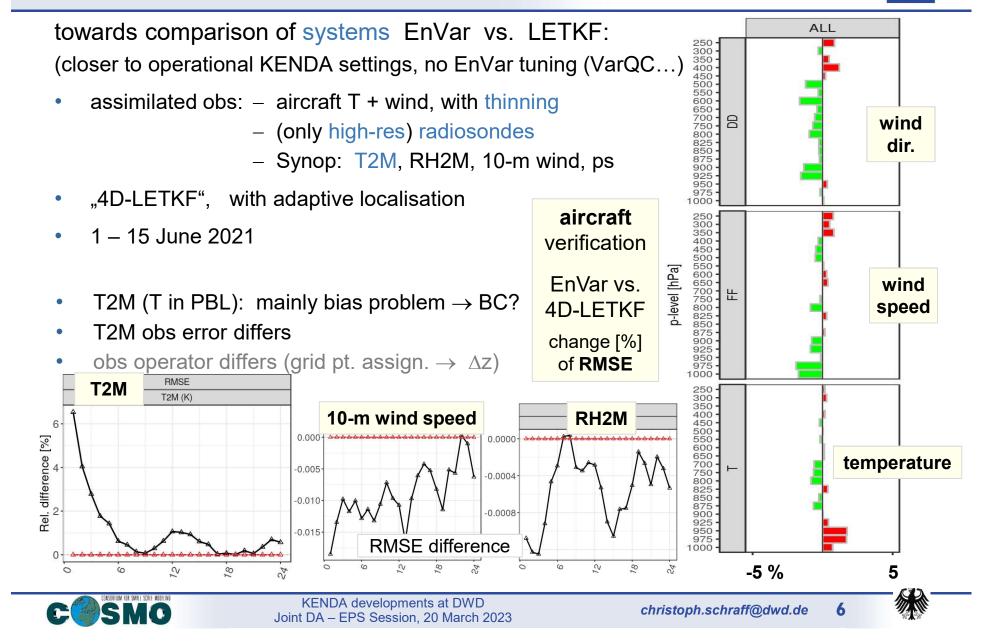
Deutscher Wetterdienst

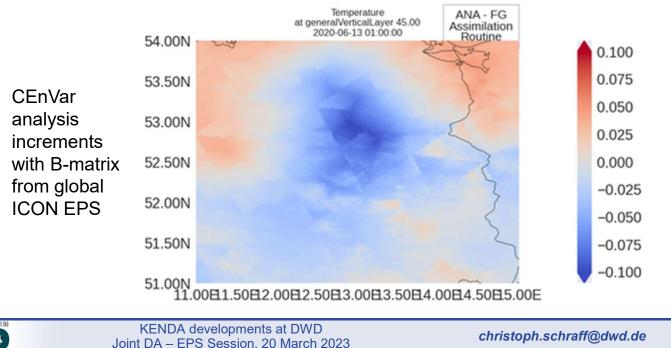
EnVar for ILAM (Mareike Burba, Stefanie Hollborn, Hendrik Reich, Sven Ulbrich, Christoph Schraff et al.)

- EnVar: runs technically in a preliminary version (for conventional obs with DACE obs operators that are used operationally in global DA)
 - 'unified DACE operators' := DACE operators adapted for convective scale (based on contents of COSMO operators)
 - \rightarrow little / no effort to derive TL + adjoint
 - \rightarrow implemented + applied for aircraft obs
 - → 1st step for Synop: revised + unified processing of cloud-related obs, cloud ceiling + visibility added (for verification)
 - careful EnVar tests / comparison to LETKF done
 (to be continued (with unified operators), less resources in next future

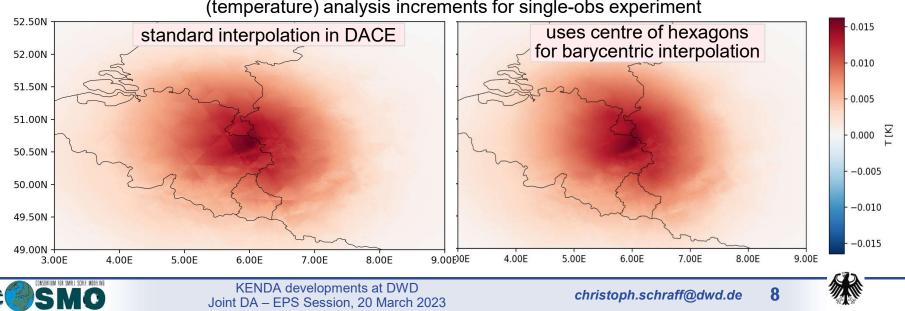


comparison of methods EnVar vs. LETKF: use of obs as similar as possible (far from operational setup)


- assimilation of aircraft T + wind only
- almost no thinning
- "3D-LETKF"
- 01 15 June 2021
- deterministic forecast



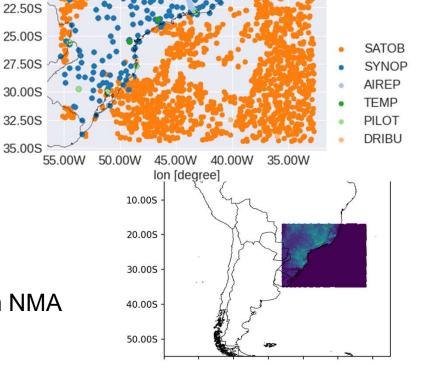
Deutscher Wetterdienst


- **CEnVar** (Sven Ulbrich, Mareike Burba, et al.)
 - runs technically with ensemble-B from ICON-EU or ICON-global
 - (complete model fields, or from fields cropped around target domain by ICONremap (can be afforded if certain fields precomputed))
 - interpolation of analysis increments from 40 km grid (resolution of global B-matrix) to 2 km LAM grid has shown artefacts (due to 'jumps' in selected 3 source grid points still visible in initialized analyses after IAU)

- **CEnVar** (Sven Ulbrich et al.)
 - runs technically with ensemble-B from ICON-EU or ICON-global
 - (complete model fields, or from fields cropped around target domain by ICONremap (can be afforded if certain fields precomputed))
 - interpolation of analysis increments from 40 km grid (resolution of global B-matrix) to 2 km LAM grid has shown artefacts ...
 - ... avoided by an alternative scheme at negligible cost (uses virtual centre of hexagon as one interpolation source points for barycentric interpolation of resulting triangle)

(temperature) analysis increments for single-obs experiment

that want to apply CEnVar on their own model domain


full performance tests should be done by institutes

Task 1.2: Variational DA (EnVar, CEnVar)

• CEnVar:

_

- 6-day test South. Brazil (only few obs!)
 - CEnVar vs. 3DVar (global clim. B) far better
 - CEnVar vs. downscaler neutral
- Romanian NMA domain / model fields:
 - testing at DWD: works with obs from DWD data base, and also with (hourly Synop) obs from NMA
 - ready for testing at NMA

active observation reports (EnVal

17.50S

20.00S

at [degree]

2

- EnVar for operational KENDA
 - requires TL / AD of EMVORADO (in DACE!) (some work by Uli Blahak), SEVIRI VIS, ...
 - cloud variables / hydrometeors currently not included in control vector of VAR
 - \rightarrow (e.g. CONTRAILS project): extend VAR to allow for use of cloud-related info
 - (e.g. work on relation sub-grid var. qc_dia, qi_dia, clc to grid-scale var e.g. by ML, or ens. pert. X)
- Hybrid EnVar: aim to develop regional climatological B-matrix (no resources): really?
 → 3D-EnVar at Meteo-France pre-operational with pure ensemble B (info from radar meeting)
- DWD (Stefanie Hollborn, Roland Potthast et al.)
 4D-EnVar: EnVar, but with several time slices within assimilation window:
 - technical implementation ~ done
 - read ensemble at different time slices
 - first guess at appropriate time
 - ensemble B-matrix interpolated in time
 - post-multiplication with temporal weights
 - to be done: testing (incl. bug fixing), tuning, evaluation

Particle Filter for ICON-LAM (Nora Schenk, Anne Walter, Roland Potthast)

- very little human resources for time being (Nora now on another project)
- presented at EWGLAM 2022, summary:
 - LMCPF able to show better results than LETKF for Lorenz 1996 model
 - LMCPF runs stably for ICON-D2 (8 days),
 but rmse of FG ensemble mean ~ 5 % larger than LETKF
 - LMCPF runs stably for ICON-global (months),
 skill (of ensemble mean) as good as LETKF (troposphere)
 - LMCPF ensemble spread smaller than with LETKF

....

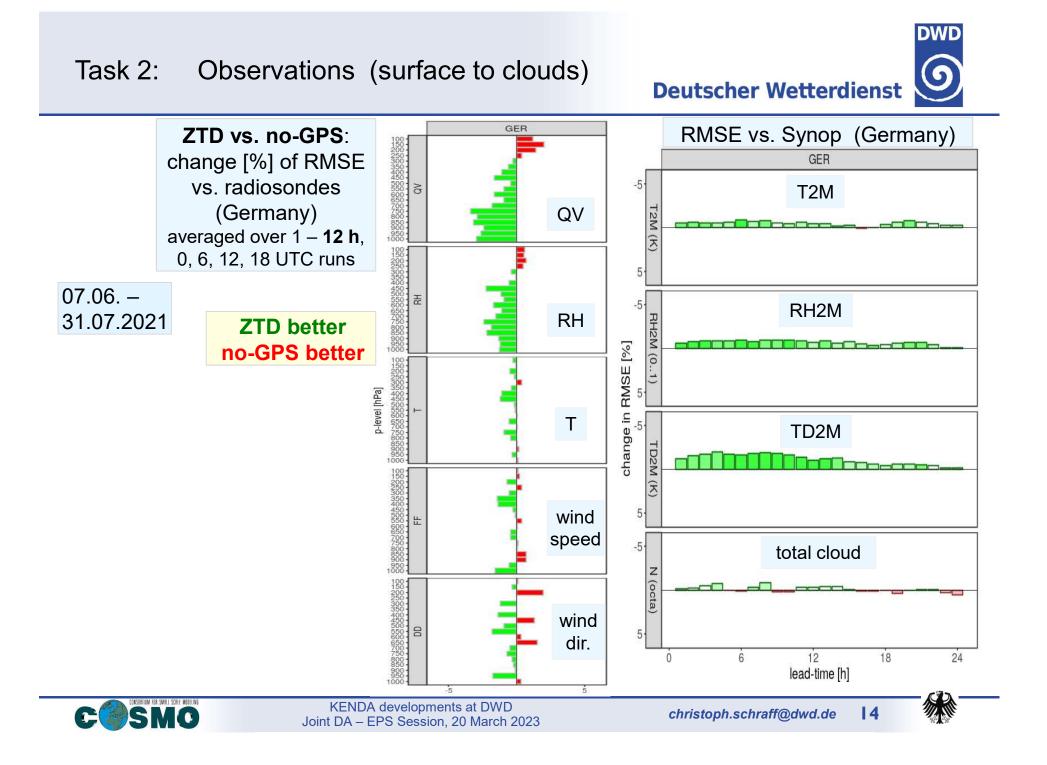
Task 2.1: 3-D radar

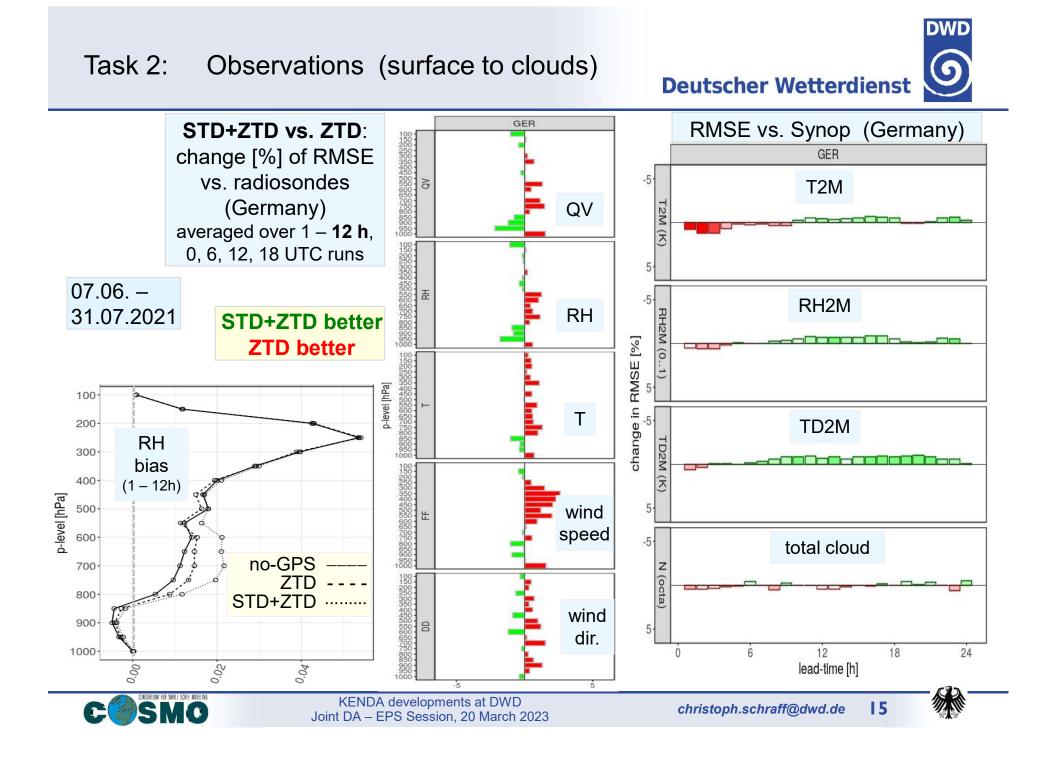
(Kobra Khosravian, Klaus Vobig, Lisa Neef, Klaus Stephan, Uli Blahak et al.)

- reflectivity: testing / adjustment to 2-moment microphysics (also model tuning!) investigating spin-up (mostly due to LHN)
- reflectivity: testing targeted covariance inflation: in areas with missing (insufficient) precip / spread \rightarrow only new cells
- use of foreign radars :

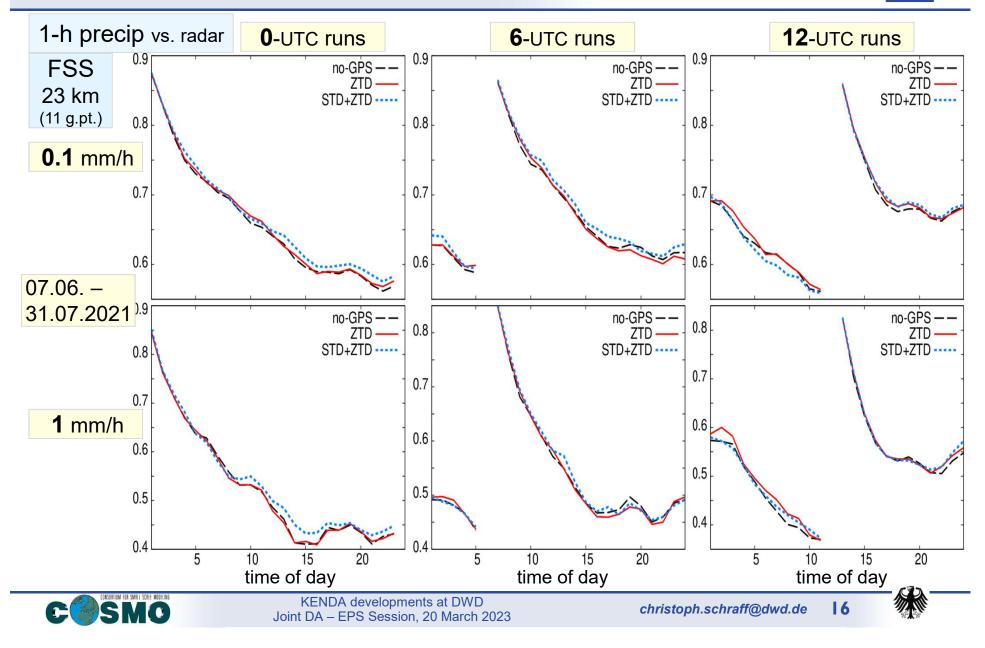
technically, 47 foreign radars (NL, BE, FR, CH, POL, CZ, DK) ready for operational use (reflectivity: all radars, radial velocity only partly (DK good, F, NL not so good)) but need to specify / tune selection of elevation from each country (very heterogeous)

- WG1: assimilation of radar-derived objects / lightning / nowcast cell features / FSS (ongoing)
- WG1: use of dual-polarization moments (direct / hydrometeor mixing ratio retrieval)




Task 2.2: ground-based GNSS Zenith / Slant Total Delay (Michael Bender)

- 'final' bug fixed to allow for **online** BACY DA experiments with ICON-D2
- first ICON-D2 experiments (June + July 2021 : old Mode-S, no SEVIRI VIS):
 - no-GPS: reference (no GNSS)
 - ZTD: (GPS-derived) ZTD only
 - **STD+ZTD**: ZTD + GPS-derived STD (low elevations < 25 deg only)
 - ZTD + GNSS-derived STD (2.5 * more STD's, incl. Galilei, Glonass)



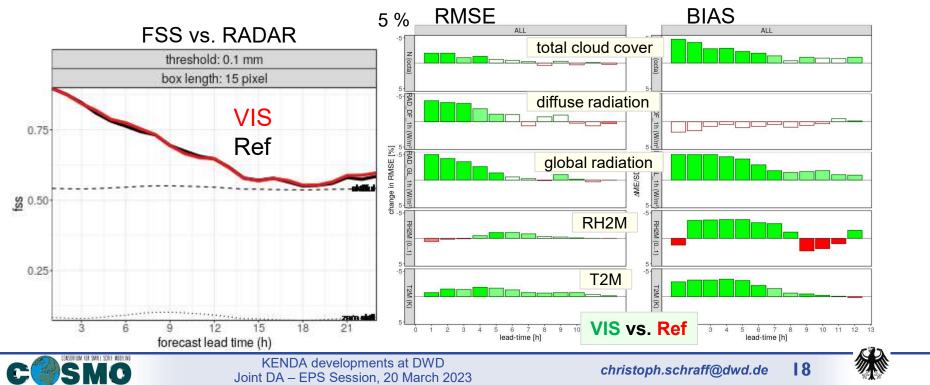
Deutscher Wetterdienst

- ZTD impact: positive on humidity (2 % up to 700 hPa, 1 % RM2M + up to 400 hPa) very slightly positive on temperature (< 1 % T2M, upper-air T)
 ~ neutral on wind, precip, cloud, etc.
- additional low-elevation **STD**: small impact,

slightly negative for upper-air wind + temperature, T2M, RH2M: slightly negative in first 6 hrs, slightly positive later on precipitation: slightly positive (0-, 6-UTC runs)

- technical: consolidate BACY adjustments, introduce into NUMEX
- further experiments (with VIS + WV rad., new Mode-S; also winter ...?) +

work on: obs error variances (online, using O–FG stats + GPS processing info),
 obs error correlations
 bias correction (elevation + azimuth bins)
 localization (info from FSOI tool)



Task 2.3: all-sky (cloudy) IR + VIS SEVIRI radiances

- VIS channels: info on all clouds, incl. low clouds (but not on cloud top height) at daytime (Lilo Bach et al.)
 - latest experiment, ICON with LH of sub-grid cloud condensation, 12.05 11.06.2022
 - positive impact on cloud, radiation, 2-m temperature + humidity; upper-air neutral
 - precip neutral, no increase of negative bias

- VIS channels: info on all clouds, incl. low clouds (but not on cloud top height) at daytime (Lilo Bach et al.)
 - in Sinfony-RUC since Oct. 2022
 - in ICON-D2 parallel suite since 9 Dec. 2022 (extra cost ok)
 - monitoring of SEVIRI VIS set up in global DA system (in NUMEX exp. for time being)
 - **operational** since 15 March 2023:
 - ✓ first time in KENDA: use of satellite data (except clear-sky rad. at COMET)
 - ✓ first time at DWD: use of cloudy satellite data
 - ✓ first time internationally: use of visible channel data
 - future steps
 - combination with (SEVIRI) WV channels
 - preparation for VIS of FCI @MTG
 - further visible + near IR channels

WV + clouds in mid- to upper troposphere (Annika Schomburg et al.)

 joint online processing of WV + VIS implemented in ICON-DACE coupling

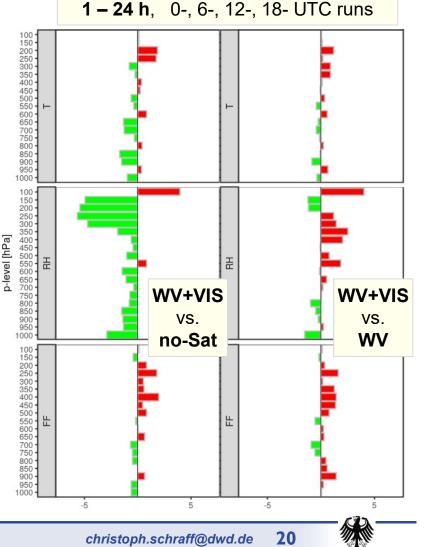
IR WV (water vapour) channels: info on

Observations (surface to clouds)

- tuning experiments for combined use of WV + VIS:

best results with thinning 4×2 grid pts, 25 km localisation for all channels (instead of superobbing 4 x 2 g.p. / 35 km for VIS)

- 1 - 22 June 2021[•] WV + VIS still worse than WV above 500 hPa

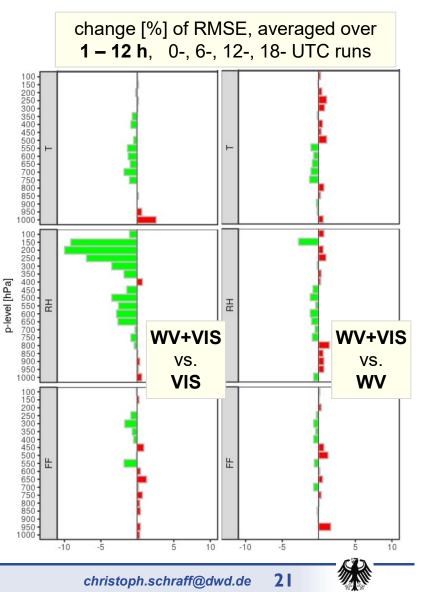

(VIS (w/o vertical localisation) appear to negatively affect impact of WV at high levels)

Task 2:

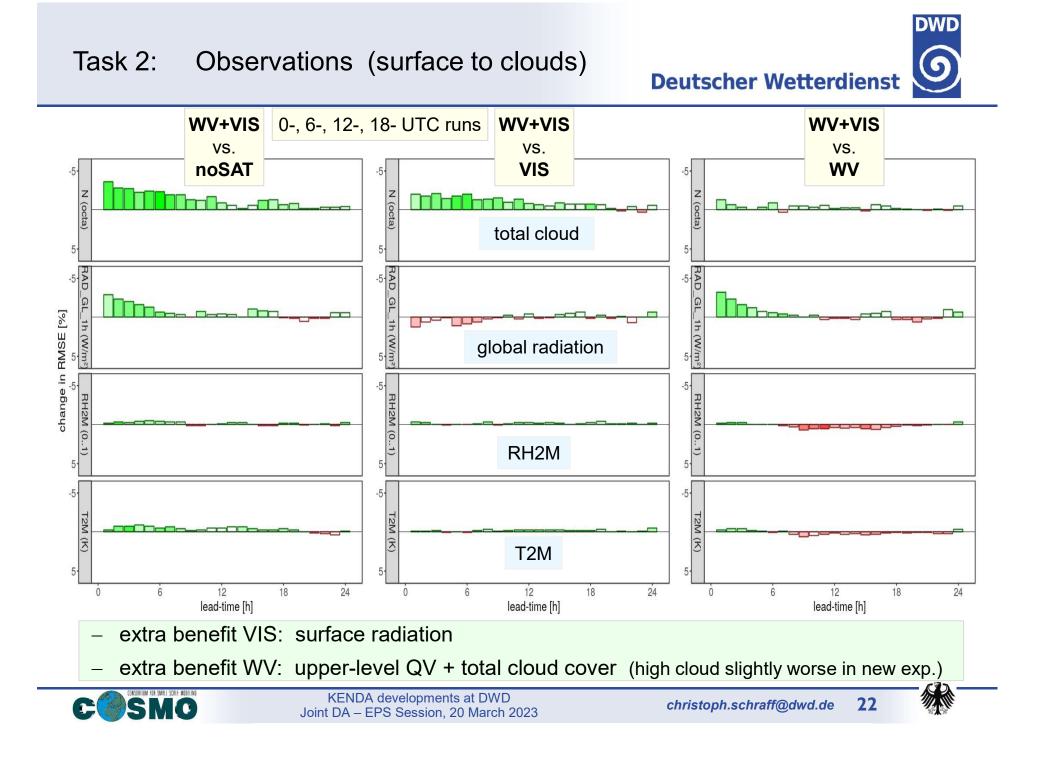
٠

Deutscher Wetterdienst

change [%] of RMSE, averaged over

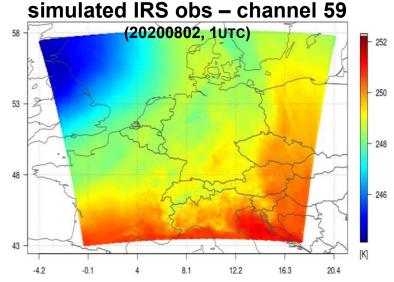

Task 2: Observations (surface to clouds)

 IR WV (water vapour) channels: info on WV + clouds in mid- to upper troposphere


(Annika Schomburg et al.)

- tuning experiments for combined use of WV + VIS: vertical localisation for VIS fixed at 800 hPa
- 15 Aug. 12 Sept. 2022

(new Mode-S, ICON with latent heating from subgrid-scale condensation, operational VIS (superobbing ...) = ref) WV + VIS as good as WV !



Task 2.4: MTG IRS (Meteosat Third Gen. hyperspectral IR Sounder)

(Mahdiyeh Mousavi, Christina Köpken-Watts, DWD)

- simulated IRS ,obs' (with RadSim) into fdbk file
- EnVar-global tecnhical end-to-end test:
 DA of simulated obs ok, + applying monitoring tools
- working on skin temperature retrieval from very low peaking channels (similar to emissivity retrieval for MW channels), to be applied then for assimilated channels (in LETKF)

- implementing land IR-emissivity Atlas & using IASI obs over land (as IRS proxy for DA exp.)
- LETKF being extended for use of non-diagonal obs error covariance R with inter-channel correlations
- soon: prerequisites available to start meaningful DA experiments (with simulated obs)
- important aspects: slant radiative transfer, 4D-EnVar (for indirect wind info), horiz. obs error correlations (for use of obs at high resolution)

KENDA developments at DWD Joint DA – EPS Session, 20 March 2023

Task 2.5: 2-m Temperature + Humidity

- operational for ICON (DWD, COMET) and COSMO (MeteoSwiss) without bias correction due to strong positive impact
- no further work on bias correction (at least) until Elisabeth is back to work (~2023)

Task 2.6: ground-based PBL profile obs

- MW Radiometer, wind lidar: talk by Jasmin Vural
- generally: if only 1 station (MWR, wind lidar) available for DA:
 - verification results (e.g. vs. Lindenberg radiosonde) often not statistically significant even in 3-month experiment
 - experience: difficult to discriminate betw. signal and noise in verification

Task 3.1: Soil moisture analysis using satellite soil moisture data (Valerio Cardinali, Francesca Marcucci, COMET)

• no further work (no impact so far)

Task 3.3: Sea Surface Temperature (SST) analysis

(Gernot Geppert, Martin Lange, Thomas Hüther, DWD)

- "omniVAR": flexible (at present 2-D)-variational analysis in DACE:
 - core of code developed, for plain 2D-Var
 - to be adapted to SST analysis (needs to account for land/sea mask)
 - \rightarrow April 2023: SST analysis technically ready and tested with full set of obs

