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Summary 
The aim of research and development in the field of data assimilation (DA) is to further 
improve and extend the KENDA assimilation system and use of observations in view of 
better convective-scale deterministic and ensemble forecasts with ICON-LAM 
particularly for weather-related quantities. On the one hand, this is addressed by 
extending the use of observations, with a focus on those related to cloud and 
precipitation, but also those in the planetary boundary layer and near the surface. 
On the other hand, the current LETKF scheme will be complemented by a variational 
component for an ensemble-variational analysis (EnVar) and, at least experimentally, 
by a particle filter (PF) in order to address certain limitations of the LETKF. To allow 
for data assimilation with ICON-LAM at low cost, tools will also be provided to perform 
a variational data assimilation without the need to run a (convective-scale) ensemble in 
the assimilation cycle.  

 

Data Assimilation Algorithms 

Background and Status 

In the former priority projects KENDA (Km-scale ENsemble-based Data Assimilation) 
and KENDA-O (KENDA for high-resolution Observations), a 4-dimensional Local 
Ensemble Transform Kalman Filter (4D-LETKF) scheme following Hunt et al. (2007) 
has been developed for the COSMO model and ported to the ICON-LAM model. Latent 
heat nudging (LHN, Stephan et al., 2008) of radar precipitation has been integrated 
into the KENDA-LETKF analysis cycle. The main purpose of this data assimilation (DA) 
system called KENDA (Schraff et al., 2016) is to provide the initial conditions both for 
deterministic and ensemble forecasting on the convective scale (i.e. with 1 – 3 km 
model mesh size). Foci of interest include improved forecasts of high-impact weather, 
e.g. in convective situations or for fog and low stratus conditions, and especially in the 
very short time range. It is running operationally now at several COSMO member 
states (Germany, Switzerland, Italy), providing the initial conditions for operational 
deterministic and ensemble forecasts. 

Compared to the previous observation nudging scheme, the introduction of KENDA 
has resulted overall in large improvements in the EPS forecasts and more moderate 
but still significant improvements in the deterministic forecasts, particularly of 
convective precipitation in summer. This benefit of KENDA prevails throughout 
except for two aspects: a) low stratus, which has been degraded in some cases, 
notably over the Swiss Plateau, and b) 2-m humidity which has been found to be 
slightly degraded (in MeteoSwiss verifications) since 2-m humidity observations have 
been assimilated only in the nudging scheme up to now. Apart from the 2-m humidity 
data, these overall very positive results were achieved using a similar set of 
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observations. The ability of the KENDA-LETKF to derive and use flow-dependent 
background error covariances for the computation of the analysis increments 
certainly plays a major role for this. Compared to the nudging scheme with its 
limitations to assimilate indirect observations, the LETKF also offers much better 
prospects to use additional data. The greatest success in this respect so far has 
been the recent operational introduction of radar radial velocity and reflectivity volume 
data in the LETKF, with clear benefits found in the main tests (at DWD and at ARPAE 
(Gastaldo et al., 2018)). With this, the COSMO consortium is the first one (in Europe 
and at national level worldwide to our knowledge) to assimilate operationally 3-D 
radar reflectivity directly without any retrieval approach. 

Besides this great potential of the LETKF, there are also certain limitations and issues 
(some of which may contribute to the shortcomings with low stratus), e.g.: 

– In the LETKF, the available number of degrees freedom to fit the observations within 
the localisation scale does not exceed the number of ensemble members. This rank 
deficiency problem poses a limitation for the use of high-resolution data. 
Enhancing the effective degrees of freedom in the analysis by reducing the 
localisation scale may lead to imbalances and incomplete consideration of real 
background error covariances. The variational approach and inclusion of 
climatological covariances may mitigate this problem. 

– The LETKF deploys localisation in observation space by increasing the errors for 
observations further away from a given analysis grid point and discarding the data 
beyond a certain distance limit. This poses a problem for the treatment of non-local 
observations such as satellite radiances and GNSS (Global Navigation Satellite 
System) total delay data. It also does not allow for localisation between the analysed 
variables, i.e. the local cross-covariances given by the ensemble cannot be reduced 
in the analysis equation. (Extensions of the algorithm like multi-step approaches or 
(univariate) additive background covariance inflation may mitigate the latter aspect).  

– Systematic model errors leading to model bias are difficult to account for in data 
assimilation, and current operational schemes do not do this (in the troposphere, 
except that bias corrections can be applied to observations in order to unbias the 
latter with respect to the model). This problem is prominent for ensemble Kalman 
filters (EnKF) which in this case often underestimate the background errors as they 
derive their covariances from the equally (or similarly) biased ensemble members.  

Generally, the ability of EnKF to correct for errors in the first guess (mean) depends 
on whether the assumed first guess error covariances (both variances and 
correlations) derived from the ensemble perturbations (i.e. the deviations of the 
ensemble members from the ensemble mean) reflect the true first guess errors well 
or not. Thus, EnKF tend to rely more strongly on the quality of the first guess 
(ensemble) than schemes that make use of flow-independent error correlations. 

– The LETKF makes the Gaussian assumption. The probability density distributions of 
the first guess or the observation errors, however, are often non-Gaussian and (for 
first-guess errors) multi-modal in the convective scale and in particular for weather 
related variables and observations such as those related to cloud and precipitation. 
Furthermore, even though the LETKF requires only the application of the full non-
linear observation operator1, it takes implicitly a linear assumption. In cases of non-
linearity and non-Gaussianity, the LETKF analysis is therefore not optimal. 

                                                
1 The terms ‚observation operator‘ and ‚forward operator‘ are used synonymously for the computation of a 
simulated observation (i.e. model equivalent related to an observation) from the model state.  
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Other data assimilation methods offer advantages for some of these issues but also 
have their own disadvantages compared to the LETKF:  

– The particle filter (PF) addresses particularly non-Gaussianity and nonlinearity. 
At DWD, two PF variants, a Localized Adaptive Particle Filter (LAPF, see Potthast et 
al., 2019) and a Localized Markov Chain Particle Filter (LMCPF), have been 
developed. They compute an ensemble transform matrix locally as in the LETKF, 
but replace the LETKF update in ensemble space by a PF update and resampling in 
ensemble space. In this way, they overcome the problems of filter collapse (i.e. 
having far too little spread) and divergence (from the true state) that are typical for 
traditional PF applied to high-dimensional problems. Potthast et al. (2019) were the 
first to run a PF stably over a long period for a global NWP system in a quasi-
operational setting and obtained forecast quality comparable to that from the 
LETKF. The LMCPF has also been found to work similarly for the COSMO model on 
the convective scale.  

– In variational data assimilation (Var), certain aspects of non-linearity and non-
Gaussianity can also be better handled than in the LETKF. The cost function may 
include nonlinear terms, and variational quality control (VarQC) helps to deal with 
observation departure statistics with fat tails by weighting down outliers. The 
iterative approach can improve the analysis in the presence of a non-quadratic 
shape of the cost function; on the other hand, the tangent linear and adjoint are 
required for the observation operators and in 4DVar for the NWP model. 
Furthermore, Var does not suffer from the rank deficiency problem and may 
potentially allow for using data at higher density (depending on the background error 
covariances applied), and it avoids the localisation in observation space.  

At DWD, an EnVar scheme following ideas from Buehner et al. (2005) has been 
developed and is running operationally for global DA / NWP. Technically, it can be 
seen as a natural evolution of the 3DVar scheme combining the climatological 
background error covariances (B-matrix) of 3DVar (currently with a weight of 30 %) 
with the B-matrix derived from the ensemble perturbations of the associated LETKF 
(with a weight of 70 % as obtained by tuning). In this way, this hybrid EnVar 
(‘hybrid’ commonly denotes this type of blending of climatological and flow-
dependent B-matrices) combines the main advantages of the two methods, Var and 
LETKF: It avoids or mitigates the above-mentioned shortcomings of the LETKF and 
at the same time benefits from the flow-dependent ensemble B-matrix. As a result, 
the forecasts started from EnVar analyses have been found to be significantly 
superior to those from the former 3DVar and to those from the analysis mean of the 
LETKF (which however is run at three times lower resolution). A four-dimensional 
version of EnVar known as 4D-EnVar is also under development at DWD. 

Note that EnVar provides only a single analysis for a deterministic forecast 
(unless a whole ensemble of EnVar’s is run) and still relies on the LETKF for the 
ensemble initial conditions. However, it is possible to apply ‘re-centering’ of the 
analysis ensemble around the EnVar deterministic analysis (by shifting all ensemble 
members in the model space in the same way such that the mean of the re-centered 
analysis ensemble coincides with the deterministic analysis). Recent tests for the 
global ICON system have shown large improvements of the EPS forecasts, when 
re-centering was applied to the LETKF ensemble during the data assimilation cycle 
and to the final analysis ensemble. Small improvements are obtained even in the 
deterministic analysis and forecast which obviously benefit from the improved B-
matrix derived from the re-centered ensemble.  
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Agenda on Algorithms 

A focus will be on the development of algorithms that may complement or replace the 
current LETKF:   

1. EnVar 

The above mentioned results and considerations strongly promote the development 
and test of EnVar for the convective scale (with ICON-LAM). This holds although 
EnVar produces only a deterministic analysis and the focus of the COSMO 
consortium is on convective-scale EPS which would still rely on the (possibly re-
centered) LETKF. For DWD, using EnVar operationally for ICON-LAM would also 
further harmonize the global and regional DA systems and increase synergies in 
research, development, and maintenance. It is worth mentioning that this 
development moves in parallel to the major trend of methods used at other major 
centres or European consortia for convective-scale DA: The UK Met Office deploy 1-
hourly 4DVar (currently with climatological B-matrix, but working towards a hybrid B-
matrix, see Milan et al., 2020). MeteoFrance, HIRLAM (HARMONIE-AROME), and 
JMA all use 3DVar but are working towards 4DVar and testing hybrid EnVar and 4D-
EnVar (Gustafsson et al., 2018). NOAA-NCEP introduced hybrid EnVar (in 
HRRRDAS: High-Resolution Rapid Refresh DA System) in late 2020. 

Despite DWD’s encouraging experience with EnVar and recentering of the 
ensemble in the global system, it has yet to be seen, however, whether EnVar will 
really be able to improve upon the current KENDA-LETKF, for several reasons: 

– At the convective scale, balances are much more flow-dependent and 
unknown than at larger scale. Therefore, adding a climatological part to the 
ensemble B-matrix in a hybrid EnVar will likely have less benefit than at global 
scale, if at all.  

– The standard EnVar (currently used for the global system at DWD) is 3-
dimensional. The time dimension for the computation of the first guess 
departures and for the ensemble B-matrix in the current 4D-LETKF of KENDA 
would be lost. Past tests with KENDA have shown that 3D-LETKF does not 
perform as well as 4D-LETKF even though the difference was smaller than 
expected.  

It is worth mentioning however that a first version of a FGAT-EnVar (FGAT: 
First Guess at Appropriate Time) has already been developed at DWD. This 
computes the model equivalents to the observations by including temporal 
interpolation of the fields from several time slots of the first guess run to the 
observation times. Furthermore, a 4D-EnVar is under development (focusing 
first on the global system) which will account additionally for the time dimension 
in the ensemble B-matrix. Note that unlike classical 4DVar, 4D-EnVar does not 
require the tangent linear and adjoint of the forecast model (or an approximation 
of it). 

– A part of the performance gains from re-centering the ensemble in the global 
ICON system can be explained by the three times higher (horizontal) resolution 
of the deterministic analyses and forecasts compared to the ensemble. Current 
plans for convective-scale configurations however do not envisage different 
resolutions for the deterministic and ensemble runs. Due to the small scales, 
strong non-linearities and non-Gaussianities involved in situations with 
(explicitly simulated) deep convection, it is not clear whether re-centering of the 
ensemble will work beneficially at all at the convective scale (in convective 
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situations). If not, the potential for improvements from EnVar would be limited to 
the deterministic forecasts (except for secondary effects e.g. from VarQC).  

– Using the framework of LETKF has allowed the COSMO consortium to be the 
first (to our knowledge) to introduce the direct assimilation of 3D radar 
reflectivity operationally (albeit still in combination with latent heat nudging 
(LHN)). The other consortia and major centers, all deploying some variants of 
variational DA (Var) as primary algorithm, chose to resort to other methods for 
their operational applications up to now. Meteo-France, HIRLAM, and JMA 
assimilate columns of relative humidity pseudo-observations derived from 
reflectivity (Wattrelot et al., 2014). NOAA-NCEP deploy a particular latent 
heating method for their convective-scale HRRR (High-Resolution Rapid 
Refresh) model (Benjamin et al., 2016). The Met Office applies LHN for their 
UKV model even though the development of radar reflectivity assimilation within 
4DVar is at an advanced stage and set to replace LHN (Milan et al., 2020). 
Issues to assimilate reflectivity in Var directly include the choice / extension of 
the control vector (i.e. the ‘analysed variables’), explicit linearization of 
strongly nonlinear processes and relationships, and (for classical or hybrid 
schemes) formulation of climatological background error covariances related to 
moisture and hydrometeors. COSMO will also face these issues when tempting 
to introduce EnVar and will need to come up with a practical solution to 
assimilate these data.  

This kind of issue is prominent for radar reflectivity, however it may also be 
present for other types of data, and quite certainly for some observation 
operators developed and tested in experiments with the LETKF. This includes 
the assimilation of nowcast objects and the assimilation of cloud top height 
(based on SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and 
radiosonde data) as implemented experimentally in a former KENDA task 
(Schomburg et al., 2015). Since Var requires the tangent linear and the adjoint 
of the observation operators, it can make their formulation and 
implementation much more intricate and restricted than LETKF or PF. 

As a result, the benefit from EnVar can be severely hampered if these types of 
data, often related to cloud and precipitation, are to be assimilated. 

2. CEnVar / 3DVar for avoiding the need to run an ensemble 

Yet, there is another important reason for the COSMO consortium to develop and 
provide Var. For the COSMO model, observation nudging has allowed institutes 
from member states or licensees with quite limited computational resources to carry 
out data assimilation as the nudging scheme is cheap and does not require to run a 
(convective-scale) ensemble in the data assimilation cycle in contrast to LETKF. As 
observation nudging is not available for ICON, a cheap surrogate approach 
without the need to run a convective-scale ensemble is needed, and this can be 
provided by Var.  

– One solution is classical 3DVar, using a climatological B-matrix. For 
convective-scale NWP, this does not appear ideal because the real background 
errors are very flow-dependent at that scale, notably for high-impact weather. 
Furthermore, the climatology needs to be computed for each new model 
configuration in order to derive a suitable, adjusted B-matrix unless one wants 
to rely on the statistics of another, possibly similar configuration.  
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– Another solution is to derive an ensemble B-matrix from the ensemble members 
of a global ensemble (data assimilation) system. NOAA-NCEP have deployed 
this approach for their convective-scale system HRRR (Gustafsson et al., 2018) 
until late 2020 and also for their regional system RAP (RApid Refresh) since it 
has resulted in immediate significant improvements over classical 3DVar (Wu et 
al., 2017). Even though convective motions are missing, the method is still able 
to capture the larger-scale flow dependency of the background errors. To avoid 
misunderstandings, we will tag this approach CEnVar (Coarse-Ensemble Var). 
This avoids the need to run an ensemble (data assimilation) at convective 
scale, however the prerequisite is to have enough bandwidth to transfer the 
ensemble fields in time from the centre (e.g. DWD for ICON) that runs the 
global system and provides these fields.  

Naturally, there is also the possibility then to combine this ensemble information 
and a climatological B-matrix for a hybrid CEnVar. 

3. Particle Filter 

Non-linearity and non-Gaussianity tend to play a major role for convective-scale DA, 
both with respect to the involved (convective) model processes with their short time 
scales and with respect to the higher priority to assimilate data related to cloud and 
precipitation with highly nonlinear observation operators. As the Particle Filter (PF) 
neither takes the assumption of Gaussianity nor of linearity, it is considered 
particularly promising to continue the longer-term oriented research on PF in the 
context of ICON-LAM. This will also attain a lot of attention and visibility in the 
scientific community.  

Refinement of LETKF and estimation of uncertainties 

Not only in the context of introducing new observation types but also in general, it will 
be necessary to refine and adapt features and settings of the main DA scheme, 
currently the LETKF. This relates particularly to the ensemble generation since a good 
estimate of the uncertainties and possible distribution of atmospheric states is essential 
for a good analysis and forecast quality. An integrated approach is required for data 
assimilation and ensemble prediction. Within the DA cycle, there is scope for 
improvement e.g. by tuning and upgrading covariance inflation. This may also include 
perturbed physics parameters or stochastic perturbations.  

 

Use of observations 

Short- to medium-term agenda 

Besides developing these algorithmic aspects, it is also very important to further 
extend the set of assimilated observation types for operational purposes. Much of 
this will continue the research and development carried out in previous years. Besides 
Mode-S aircraft data, radar radial velocity and reflectivity (for earlier studies, see Bick 
et al., 2016; Gastaldo et al., 2018) could be introduced operationally and successfully 
into KENDA in 2020. It is now important to carry on maintaining, refining, improving, 
and (geographically) extending the use of these data and possibly adjusting it to 
significant changes both in the model (e.g. 2-moment microphysics) and in the 
assimilation scheme as mentioned above. For some other observation types such as 
GNSS (Global Navigation Satellite System) zenith and slant total delay (ZTD and STD) 
and 2-m temperature and humidity from Synop stations (used to modify the 
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atmospheric state), promising results have already been obtained, and it is expected to 
require only few development steps and more testing to allow for operational use. 
There are also observation types such as all-sky satellite radiances where work is 
ongoing and more work is needed despite the progress achieved. 

Even though any type of observation can be beneficial and important to be used, there 
are two classes of data for which further research, development, and extended use are 
considered particularly relevant for convective-scale analysis and forecasting of 
weather, in particular locally driven (or influenced) high-impact weather such as deep 
convection or low stratus and fog.  

– The first class is high-resolution data related to humidity, cloud, and precipitation. 
Besides radar reflectivity (precipitation) and ZTD / STD (humidity) as mentioned 
above, a focus is on the all-sky VIS and IR satellite radiances (from the SEVIRI 
instrument onboard of geostationary Meteosat MSG satellites) in view of 
assimilation of information on cloudiness (for an overview on all-sky satellite DA, 
see Geer et al., 2018; Kurzrock et al., 2018). Brightness temperatures from infrared 
(IR) window channels depend on cloud cover and cloud top height of all cloud types 
all day. IR water vapour (WV) channels are sensitive to water vapour and / or cloud 
cover and cloud top height of high and mid-level clouds also all day. In contrast, 
reflectances from visible (VIS) channels provide information only during daytime 
mainly on cloud cover, in particular of low clouds not seen well by other (IR) 
channels.  

For VIS data, a novel efficient forward operator (MFASIS: Method for FAst Satellite 
Image Synthesis) has been built, and promising results have already been obtained 
in a comprehensive case study for COSMO-KENDA by Scheck et al. (2020) and 
even for longer test periods with ICON-LAM at DWD. Related to the assimilation of 
infrared (IR) water vapour (WV) radiances, Hutt et al. (2020) assimilated clear-sky 
WV radiances in COSMO-KENDA, while for cloudy (all-sky) IR WV radiances, 
Harnisch et al. (2016) introduced a model for observation errors, and Otkin and 
Potthast (2019) introduced a conditional nonlinear bias correction. Even though 
these are important steps towards the assimilation of all-sky IR radiances in the 
operational setting of KENDA more efforts will be required. Moreover in the longer 
term, these developments for SEVIRI will also need to be transferred to the Flexible 
Combined Imager (FCI) of MTG (Meteosat Third Generation) satellites the first of 
which is scheduled to start operations in autumn 2023. 

– The second class of observations that appear particularly relevant are observations 
describing the planetary boundary layer (PBL), down to the surface level. These 
include high-frequency indirect measurements (often available every 30 min) from 
ground-based remote sensing devices such as microwave radiometers (MWR: for 
low-resolution vertical profile information on temperature and humidity), wind lidars, 
Raman lidars (high-resolution vertical temperature and humidity profiles), and DIAL 
(Differential Absorption Lidar: humidity) but also direct measurements from drones 
and towers. Some of these devices are still rare and experimental, while others are 
increasingly available. Leuenberger et al. (2020) have shown that high-frequency 
profile observations from Raman lidars and drones can improve analyses of the pre-
convective boundary layer and the stable boundary layer favourable for fog, and 
subsequent forecasts of cloudiness and precipitation benefitted up to 9 hours lead 
time. There are national projects dealing with several of these data types which 
need to be coordinated and supported as part of the further KENDA development. 
For screen-level observations (2-m temperature, 2-m humidity), a novel approach 
for station-dependent bias correction has been devised which can also be adapted 
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for observation error specification. It has great promise to be able to deal with 
networks with very variable quality (see also below). 

Generally, bias correction and improving the specification of the random observation 
errors are important topics for many new or already used observation types. In the 
medium term, specifying correlated observation errors should be explored.  

It should also be noted that the analysis step interacts strongly with the numerical 
model, particularly in an assimilation cycle with very short update frequency. Hence, 
introducing new observation types will often require collaboration between data 
assimilation, physical parameterization, model dynamics, and ensemble generation. 
Furthermore, diagnostic tools such as the ensemble-based variant of the FSOI 
(Forecast Sensitivity to Observations Impact) and their applicability to convective-scale 
systems (limited e.g. due to linearity assumptions, localisation, spin-up, impact of 
biases, etc.) should be studied.  

Medium- to long-term perspective 

There is a variety of novel observation systems which deliver new types of 
observations or will do so in the future. For some of them, only test data are currently 
available. To explore their potential and prepare their operational use in the long term, 
starting development and research on some of them soon is very important, while 
opportunities for exploratory research on others should be taken. 

– A future data source considered highly important due to its vast amount and high 
horizontal and temporal resolution is the MTG IRS (Meteosat Third Generation 
Infrared Sounder) which is scheduled to be operationally available in 2024. Even 
though the ultimate goal might be the use of all-sky data, the main benefit from 
these hyper-spectral radiances on top of the cloud information from the imagers 
(SEVIRI, FCI) is expected from profile information on temperature, humidity, and 
vertical atmospheric stability. Preparations for the use of these data should possibly 
start soon with a focus on the clear-sky radiances. Later, this can be extended to 
radiances sensitive to regions above cloud or affected (slightly) by clouds, keeping 
the focus on deriving information of temperature and humidity. 

– Lightning and polarimetric parameters from dual-polarisation radars, weather 
cameras, IR cameras, web cams are among a variety of novel data types which 
are completely different from those already assimilated. Their use typically requires 
large research efforts, for instance for the development of suitable observation 
operators. Taking opportunities for such efforts (e.g. involving third party funding) is 
encouraged. 

– Weather-related data from sources not being operated by national or public regional 
weather services will increasingly be produced and potentially available. This 
includes data from devices or networks operated by public entities or private 
companies and so-called citizen data (or crowd-sourced data, i.e. data produced 
by (typically many) individual entities). Some of these data sources provide 
quantities similar to the ones already assimilated, such as roadside sensors, 
Netatmo weather stations, wind speeds measured at wind mills, etc. These data 
can greatly enhance the data density from the network operated by the weather 
services near the surface, and investment in their development is therefore clearly 
recommended. However, their quality is often poorer or at least more variable in 
terms of biases, random errors, outliers, meta data, availability, etc. This demands 
careful bias correction, estimation of random observation errors, and quality 
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control, possibly based on machine learning approaches, and should be 
complemented by automated monitoring. 

 

Further aspects 

Machine learning 

For only the past few years, neural networks and machine learning (ML) in general 
have been gaining rapidly increasing attention in the international NWP community. 
While such methods are not expected to replace data assimilation schemes (or even 
numerical models) for operational NWP as a whole in the foreseeable future, they are 
beginning to be explored and used successfully for certain aspects. In the context of 
KENDA, neural networks are used in a recent version of the MFASIS observation 
operator for VIS satellite radiances, and are also explored as part of an observation 
operator (or pre-processor) for images from weather cameras (in the ICamCloudOps 
project at DWD). Exploratory research (in collaboration with DWD) will soon start on 
estimation of observation errors by machine learning. The conditional online bias 
correction based on nonlinear regression and tested for 2-m temperature and humidity 
data may also be seen as a (simpler) example of ML. Another promising application of 
ML is quality control. It is expected that in particular (certain) citizen data and data 
from external providers will require or at least benefit from machine learning applied to 
some of the mentioned processing steps. Therefore, research on ML is highly 
recommended.  

Addressing observation and model biases, and link to model physics 

An assumption for optimality of current data assimilation schemes is that there are no 
systematic differences, hereafter called ‘relative biases’, between observations and 
the model first guess (in observation space, i.e. after having applied the observation 
operators). Assimilating data with relative biases (i.e. with biased observation 
departures) can often lead to spin-up effects and degrade subsequent forecasts. The 
source of a relative bias may be systematic errors (biases) in either the observations, 
the model state, the observation operator, or a combination of them. It is often very 
difficult to identify the source(s) and discriminate between the biases. Collaboration 
with experts on the model and its parameterizations will be further enhanced to help 
identify and reduce such biases in the model and observation operators, and to help 
understanding the effects of such biases on the assimilation. 

Within DA, it is recommended to further develop (also by the above-mentioned 
advanced techniques), refine and much more widely apply bias correction schemes 
to observations, based on observation minus first guess differences. This helps 
avoiding imbalances and spin-up effects. However, it will not correct biases in the 
model state which in some cases might even be gradually enlarged due to feedback 
effects with the bias correction. 

Model biases themselves may also be addressed by applying DA techniques for online 
estimation of parameters in physical parameterizations. Particular physical (or 
external) parameters with very strong, direct relationship to well-observed 
quantities may be estimated, preferably by dedicated schemes. Such parameters are 
often related to the surface and soil. An example of this is the dynamic adaptation of 
certain external parameters (leaf area index, stomata resistance, fraction of sealed 
surfaces) in ICON which heavily influence 2-m temperature forecast errors in certain 
conditions. Implementing further similar schemes appears feasible. 
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Generally, the control vector (i.e. the ‘analysed variables’) of the main DA scheme 
(currently KENDA-LETKF) might be augmented with any uncertain parameters. This 
will update the parameters such that the whole augmented state is optimized with 
respect to the observations. However in such an all-in-one-step approach, the 
estimated parameter values can be influenced by all kinds of errors, and past idealised 
studies have shown that the true parameter values will normally not be retrieved 
successfully. Due to these imponderables, this method is likely beyond the focus of 
research by COSMO at least in the short to medium term.  

Lower Boundary Conditions 

Some existing analysis tools related to the lower boundary conditions need to be 
consolidated and refined, including the soil moisture analysis using soil moisture data. 
An important step will be their port to resp. re-write in the framework of the DACE 
code (Data Assimilation Code Environment) which will make their maintenance and 
further development (including upgrades to more advanced analysis methods) much 
more efficient. This refers to the sea surface temperature (SST) analysis, the snow 
depth analysis, the soil moisture analysis and the related 2-m temperature analysis. 
To meet these objectives, variational schemes based on the framework used for the 
atmospheric analysis will be adopted for SST and snow depth. For snow depth 
however, a complementary approach based on the new multi-layer SNOWPOLINO 
snow module will also be developed. With a longer-term perspective, efforts should 
also go into a coupled data assimilation of the soil (moisture and possibly 
temperature) and atmosphere.  

Computational aspects: GPU 

Several NWP centres in COSMO already use HPC (High Performance Computing) 
platforms that use GPU’s (Graphics Processing Units) and run the NWP model on it. It 
is expected that the role of GPU’s will further increase in the future. In order to prepare 
the operational usability of the data assimilation codes based on DACE on new 
computer architectures, it is therefore indispensable to explore and understand which 
parts of the DACE code are feasible to be ported to GPU and how. An exploratory 
project will start at DWD in 2021 but more efforts will likely be required in the longer 
term for the actual port.  

Risks 

The objectives in data assimilation do not consist of one main single task or aim which 
can be fulfilled or not. Therefore, and since the current KENDA system provides a good 
basis, the risk of an overall failure is low. Instead, there is a variety of individual tasks, 
each one dealing with its own scientific issues (many of which are mentioned above or 
in the respective tasks) and risks. For instance, there is a general risk that the gain in 
forecast quality from the use of any of the addressed observation types may be 
difficult to prove and does not meet the expectations. As mentioned, there is e.g. also 
a risk that EnVar does not perform better than LETKF, in particular if observations 
related to cloud and precipitation, such as radar reflectivity or VIS radiances, are used. 

Besides the scientific aspects, there is always a risk that developments are slowed 
down or even ceased in case of cut downs on human resources. 
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Links to related topics 

It is noted that e.g. at DWD there are activities or plans on further topics in the field of 
data assimilation. However, as they do not aim to provide initial conditions for short-
range NWP they are currently seen beyond the scope of development in the context 
of the COSMO consortium and hence beyond the objectives in these guidelines. These 
topics include re-analyses, (weakly or strongly) coupled DA for coupled atmospheric 
and ocean modelling, (DA for) seamless integrated prediction from nowcasting to very 
short-range forecasting, ultra-rapid data assimilation (URDA) for nowcasting, and DA 
for aerosols. 
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