
IMPACT : Icon on Massively Parallel ArchiteCTures
Version 0

Project duration: 10.2018 - 9.2022

Total FTE request: 4.26

Project leader: Carlos Osuna (MeteoSwiss)

Summary
Being able to run efficiently on modern high performance computing (HPC)
architectures is a critical element to enable forecast quality improvements through
increasing resolution, model complexity or the number of ensemble members. In recent
years many different hardware architectures have emerged for HPC usage such as
graphical processing units (GPUs), many-core processors or field-programmable gate
array (FPGA) and performance improvement has been achieved by a dramatic
increase in the number of compute units available on all these technologies. With the
end of Moore’s Law and Dennard Scaling, this trend is foreseen to continue and
estimates are that there are more disruptive changes on the horizon. Building on the
experience and knowhow from the COSMO POMPA project, the aim of this project is to
adapt the ICON model to run on various architectures such as x86 multicore CPUs and
GPU accelerators, focusing in the LAM mode for NWP applications. Through the
various tasks proposed, the project will investigate and apply methods and tools to
achieve performance portability, enabling efficient execution of a single source code on
different hardware architectures. Adopting such tools is also a step to get ready for
future hardware which will likely require to expose massive parallelism at an even
larger scale than today. Software engineering aspects will also be considered to
investigate readability, maintainability and safety of the ICON base code.

Motivation

Thanks to the advances in high-performance computing (HPC) systems, recent years
have seen significant progress in our capacity to predict weather and climate evolution
using numerical models. The latest improvement in computing capacity was achieved
by increasing massively the number of compute units on a chip, which requires the
software to expose and exploit always more parallelism. This trend will further continue
in the future, likely at an even larger scale. An important game changer in the HPC
industry is the emergence of artificial intelligence which is now one of the main drivers
in hardware design and may further lead to an increase in architecture diversity and will
require to adapt our models and change the way we program them (Dongarra et al.
2011; Hu et al. 2010). These developments on hardware technologies offers exciting
prospects to improve forecast quality, for instance increasing model resolution would
allow to use a model description closer to first principles. In particular, at horizontal
resolutions of O(1 km) and below, the models become cloud permitting and some

IMPACT

physical parameterizations such as convection can be switched off. One could also
benefit of more computing capacity by increasing the number of ensemble members for
probabilistic forecasting.
From a computer science perspective, the changes in hardware architecture poses
major challenges. Harvesting the computational capacity of emerging HPC systems
increasingly involves the use of heterogeneous many-core architectures consisting of
both CPUs and accelerators (e.g., GPUs). The efficient exploitation of such
architectures and future systems requires changes in the way we develop our software.
We have to consider new programming models in order to adapt state-of-the art
weather and climate models which are typically significant code bases maintained by a
large community of domain-scientists.
As part of the POMPA (Performance On Massively Parallel Architectures) project the
COSMO model was adapted to run on GPU architecture using a combination of
Domain Specific Language (DSL) and compiler directives (OpenACC) (Lapillonne and
Fuhrer 2014, Gysi et al. 2013, Fuhrer et al. 2014). Thanks to this work the COSMO
code is now run on a GPU system for the operational numerical weather prediction of
MeteoSwiss and for regional climate modeling at ETH Zurich.
In the proposed project, we intend to build on the know how acquired while porting the
COSMO model to GPU and apply similar approach to the ICON (Icosahedral
Nonhydrostatic) model (Zängl et al. 2015). The project will also take advantage of a
partial port of the dynamical core of ICON with OpenACC compiler directives which is
already integrated in the official code version. The ICON model is already highly
optimized for CPU architectures and the project will first focus on running the model on
GPU systems which are at the moment a working alternative for such model. Other
architectures will be considered at a later stage. This project will be closely coordinated
with the ENIAC project which aims at adapting ICON for new architectures for climate
applications.

Actions proposed

– Investigate together with ICON developers if improvements regarding software
engineering aspects can be applied and would benefit to the existing ICON model:
make the Fortran code more modular, further improve the existing testing
infrastructure by adding threshold based validation.

– Port ICON for NWP applications to GPU using OpenACC directives only: this will
serve as the performance baseline for any further steps.

– Investigate-Optimize ICON for x86, GPU, (and possibly additional architectures TBD
in close coordination with the ICON developers, e.g. ARM and new Intel
accelerator).

– Performance evaluation on HPC systems of COSMO members: run first COSMO
with the C++ dycore on CPU (and GPU if available). This will be followed by a
comparison with ICON-LAM (limited-area mode of the ICON Modelling Framework).

– Use domain specific language (DSL) and abstractions to achieve better portability of
ICON-LAM and prepare the model, in close coordination with the ICON developers,
for future changes in hardware. The approaches proposed offer a broad coverage of
different levels of abstraction and disruptive changes for later evaluation and
possible integration into the Fortran model.

– Explore task parallelism to improve strong scalability.

2

IMPACT

Deliverables of the project

– Extensions of ICON that allow to run the model (with focus on ICON-LAM for NWP
application) on CPU and accelerators (GPUs) achieving a performance
improvement for the official ICON version. Required features of the operational
configuration of the different COSMO centers will be included in the implementation,
e.g. 2 way nesting capability. [code+documentation]

– For the physics, latent heat nudging and organizational code, OpenACC will be used
to port the code to GPUs. For the dynamical core, OpenACC as well as the DSL-
approaches based on GridTools will be delivered. Comparison of both approaches
for the dycore as a basis for insertion in the official ICON code will be reported.
[code+documentation and report]

– Comparison of OpenACC with OpenMP 4.5, as well as recommendation for future
use [code+documentation and report]

– Evaluation of the use of Fortran base CLAW-DSL single column abstraction for the
physics to achieve performance portability with a single source code. Demonstrate it
on two parameterizations: microphysics (graupel scheme) and turbulence
[code+documentation and report].

– Study on task parallelism based on a literature review and on the evaluation done
with the COSMO dynamical core, including recommendations for a general
introduction in ICON [report].

Description of individual tasks
The detailed FTEs per task are in the annex 1.

If not otherwise explicitly mentioned, all tasks regarding the ICON model will be done
focusing on ICON-LAM for NWP applications. Care will be taken that the
implementations are compatible and whenever possible extendable to the other modes
of ICON, but no completeness will be guaranteed by the project for these modes.

Task L: Project leadership

Task 1 : Testing and Software engineering

The ICON model is a powerful tool for global and regional weather modelling. Adapting
such a large code base, with more than one million lines of code, for different HPC
architectures is a great challenge. The code has been highly optimized for CPU
architectures and some automated testing is already in place in collaboration with the
Max Planck Institute in Hamburg. Based on the experience from COSMO, the
maintenance effort of a codebase that has to run in different configurations on different
hardware architectures can be substantial. The cost of adapting and maintaining the
Fortran code base can potentially be reduced by improving software engineering
aspects. In particular, modularity in a sense of being able to run separately different
components of the models is an important functionality that will allow to work, develop
and test individual components of ICON independently from the rest of the model.
Modularity and component testing is a crucial software engineering practice that

3

IMPACT

decreases the maintenance cost of a model and reduces the complexity of coupled
software systems.

In addition the existing testing infrastructure can be extended to further increase the
code coverage of the tests. Furthermore most of the current technical testing in place
for ICON relies on bitwise-identity. However, bit reproducibility is not guaranteed in
general across different compilers and architectures. Therefore, additionally to the
current bit reproducibility testing, a threshold based validation – similar to the one used
in the COSMO technical testsuite – will be proposed and implemented in this task.

Task 1.1 Guidelines/recommendation for future ICON development

Monitor programming practices in other communities using large Fortran codes.
Organize workshops / presentations on software engineering and propose guidelines to
the model developers.

Task 1.2 Modularize components of the Fortran code

Provide a solution for applying modularity to the ICON model, where, if adopted, any
component of the model could be run in a standalone manner. The approach(es) will
be discussed with the ICON developers. A prototype will be implemented for two
components or parameterizations and used to demonstrate the component-wise testing
that would be applicable to ICON.

Task 1.3 Improve testing infrastructure

Implement threshold based validation for ICON.

Deliverables:

D1.1 (3.2019) Threshold based validation in place in ICON [code+documentation]

D1.2 (3.2020) Modular and standalone version of the microphysics (graupel scheme)
and of the tendencies of velocity components of the ICON model
[code+documentation, presentation]

Task 2: Baseline performance on CPU and GPU

In this task we propose to implement a baseline version of the ICON model using
OpenACC to enable both CPU and GPU execution. The port will be complete and will
cover all components of ICON required for LAM NWP simulations. This work will profit
and complement the already existing OpenACC implementation of the ICON dynamical
core. The performance results will serve as a baseline for other porting approaches
(see Task 3) and evaluated in terms of performance, efficiency and time-to-solution.
The OpenACC directives are the current working standard for GPU, however another
set of directives, OpenMP 4.5 for accelerators, is emerging and may be considered in
the future. Currently, OpenMP for accelerators is not yet fully mature and it is not clear
at this stage whether this approach will be applicable for codes such as ICON. Some
test implementations will be carried out in this project in order to give a
recommendation.

Task 2.1 OpenACC port of the ICON model

This includes physics, and other components such as boundary conditions and output. Part of
the physics is already implemented with OpenACC for COSMO and can be reused with minor
modifications, namely, the microphysics, turbulence, soil and lake modules. Other packages,
such as the convection and SSO modules, will be ported. Some components of the dynamics

4

IMPACT

which are not yet supported with the OpenACC version, such as 2-way nesting, will be ported.
The data workflow when running in assimilation mode on a GPU system will be analyzed. We
note that, except for latent-heat nudging, data assimilation is not part of the ICON code but is
integrated in the data assimilation software DACE. The forward operators needed for the
assimilation system KENDA will be called via an online coupling to DACE, which will require
data transfer between the GPU and the CPU. In case such transfer would be too costly, some
component of DACE may have to be ported as well with OpenACC. In such case work would
have to be negotiated and coordinated with responsible group at DWD led by Roland Potthast.

See annex 2 for detailed FTE planning.

Task 2.2 Performance results

In a first step, the performance of only the dynamical core of ICON will be investigated.
Performance comparison with results achieved by other porting efforts, namely
COSMO and COSMO-Eulag with DSL based implementation on different architectures
will be carried out. The tests will be run using the CDIC project test cases. In a second
stage, a performance comparison for the full ICON model on CPU and GPU for realistic
NWP cases will be carried out.

Task 2.3 OpenMP evaluation

The viability of using OpenMP for accelerator directives will be investigated for the
microphysics parameterization, as a prototype. Conclusions extracted from the
evaluation of this prototype will be applicable to other parameterizations.
Recommendation to replace OpenACC directives with OpenMP directives will be
made. The change of the full model from OpenACC to OpenMP is evaluated to about
0.3 FTE (not part of this project).

Deliverables:
D2.1 (08.2021) GPU capable version of the ICON model with OpenACC directives for
existing numerical weather prediction applications at DWD and COSMO partners
[code+documentation]

D2.2 (08.2020) Port of the microphysics (graupel) as well as velocity tendency code
with OpenMP 4.5 and recommendation document regarding this set of compiler
directives [code+documentation & report]

D2.3 (9.2019) Performance comparison of the dynamical core between COSMO, and
ICON on different architectures. [report]

D2.4 (12.2021) Performance results comparison of the full ICON model on CPU and
GPU [report]

Task 3 : Performance portability and abstraction

The OpenACC port of ICON will provide a model version that can run on GPU and
CPU. However, from the experience gathered with the port of the COSMO model, it is
known that optimizations for CPU and GPU often result in significantly different
implementations and structure of the computations. This inhibits retaining a single
sources code and will require to accept implementations that will not be optimal in one
or more architectures. In addition the OpenACC programming model does not expose
fine grain hardware optimizations, such as control over the memory hierarchy, which
could have an impact on performance. Finally, introducing OpenACC on top of
Fortran+MPI+OpenMP increases the complexity of the code which may result in
additional maintenance effort. For the dynamics – because of the horizontal

5

IMPACT

dependencies which introduce additional complexity for optimization and performance
portability – it was shown, that an optimized OpenACC implementation could be up to
50% slower as compared to an optimized code using a hardware specific language. In
order to achieve portability retaining a single source code and performance portability
as well as higher code maintainability we propose different alternative approaches. The
approaches proposed in this task offer different level of abstractions and will also
require different levels of disruptive changes in order to adopt them in the Fortran
version of ICON.

For the physics, where individual vertical columns are independent, the use of the
CLAW-DSL (Domain Specific Language) will be prototyped and evaluated. The CLAW-
DSL is a Fortran based DSL for the physics which allows to implement computations in
the code as single column, where the horizontal loops and directives are generated
automatically. The generated code is Fortran code with compiler directives.

For the dynamics we propose to further achieve separation of concern between the
user code and the hardware implementation by using high level domain-specific
language (DSL). This task will benefit from development of a new DSL language as
part of the ESCAPE-2 (Energy-efficient Scalable Algorithms for Weather Prediction at
Exascale) project led by ECMWF. The ICON developers will be involved in the design
of the new language and this DSL will be applied to ICON. The backend of the DSL will
likely be based on the GridTools library. The GridTools DSL is an extension of the
STELLA library used for the COSMO dynamical core and which has proven its
efficiency on CPU and GPU architecture. The new DSL-ICON dynamical core will be
attached to the official ICON code as contributed code, and the additional maintenance
will be the responsibility of MeteoSwiss. After the end of the project, the Fortran version
will continue to be the main version, and the DSL-based dynamical core will not require
substantial extensions or modifications of the main version. The new dycore will retain
the existing flexibility for grid nesting and MPI domain decomposition.

Task 3.1 Apply CLAW DSL to the most relevant parameterizations

The CLAW-DSL can be applied incrementally as the resulting CLAW optimized code
can directly run within an existing OpenACC code. This approach will be applied to the
microphysics and radiation code. An evaluation of the results will be done and
recommendations regarding a general use of CLAW will be reported.

Task 3.2 Participate in design and implement DSL based dynamical core

The ICON developers will participate in the design of the DSL and the DSL approach
will be applied to the complete dynamical core.

Deliverables:
D3.1 (06.2022) Microphysics and radiation parameterization implemented with CLAW-
DSL and evaluation report [code+documentation & report]

D3.2 (03.2019) DSL Design workshop with the ICON developers [workshop]

D3.3 (06.2022) Performance portable dynamical core implemented using DSL
[code+documentation]

6

IMPACT

Task 4: Strong scalability

There is a trend of hardware architectures and programming models to move towards a
data-movement centric and task oriented approach. This task aims at achieving better
strong scaling by using task parallelism. Currently only the parallelism in the spatial
dimension is exploited, however with the continuous increase of computing units
available per chip in modern accelerators, our model configurations are not providing
enough data parallelism to efficiently use all the computing units, limiting the scalability
of the model. One way of improving the strong scalability is to introduce task
parallelism to different components of a model that can be run concurrently. Exploratory
work has shown that our models exhibit a considerable degree of parallelism that can
be applied to multiple components. This however requires extensive changes to the
code structure to be applicable. In this task we will explore and evaluate the impact of
introducing task parallelism using an already available version of the COSMO
dynamical core implemented with a new prototype DSL. This prototype DSL allows for
exploring automatically the potential gain obtained from task parallelism. This will give
insight into for a future implementation strategy in ICON.

Task 4.1 Monitor other projects applying task parallelism in weather and climate
models

Watch other projects that are applying task parallelism to weather and climate models
to improve scalability. The goal is to evaluate different solutions and technologies being
applied and their impact on performance on modern accelerators.

Task 4.2 Small prototype out of COSMO

Use the C++ dynamical core of COSMO as a vehicle to explore task parallelism. A
DSL-based dynamical core is ideal for this purpose, since the DSL allows for a high-
level of abstraction of the user code and the information exposed in the DSL can be
used in order to automatically generate data flow graphs and a schedule of how to run
tasks.

Deliverables:
D4.1 (06.2020) Literature/Project review document regarding task parallelism [report]

D4.2 (06.2021) Prototype based on the COSMO dynamical core using task parallelism
[code]

Task 5: Coordination activities with ICON development

A good coordination with the official developments of ICON will be crucial in order to
integrate outcomes of the IMPACT project into the official code. In this task we propose
activities in order to have close interaction with the main developers of ICON in order to
facilitate possible future integration of IMPACT into the official code as well as to
integrate feedback of the ICON developers in the technologies and porting efforts being
developed.

Task 5.1 We will organize joint sessions with the ENIAC project at the ICON developers
meetings. The progress and main outcomes of the project will be discussed during
those sessions. Feedback gathered will be essential and considered for further
developments.

7

IMPACT

Task 5.2 Introduce code review tools for the main developments of IMPACT that are
offered to the main ICON developers. Key developments of IMPACT, like OpenACC
port of physical parameterizations and organizational code will be open for code review
in the github platform of ENIAC, or on the reviewing infrastructure of DWD/MPI once
available, where changes to the official code are discussed.

Deliverables:
D5.1 (-) Regular meeting sessions at the ICON developers meetings, jointly with
ENIAC [workshop]

Links to other projects or work packages

The C2I project is related to the migration of COSMO members to ICON and is
therefore strongly linked with this project as some member may only transition to ICON
once it is GPU capable.

A strong collaboration with the PP CEL-ACCEL which also make use of the GridTools
library is required. It is planned to have shared workshop and parallel sessions at the
COSMO meetings.

The PASC ENIAC project aims at adapting ICON for climate on heterogeneous
architecture and will be strongly coordinate with this project.

The PASC PASCHA project will explore task parallelism in the context of COSMO and
is therefore key for Task 4.

The ESCAPE-2 project will provide new DSL suitable for dynamical cores on
icosahedral grids with a focus on high productivity and ease of use for scientific
developers of the model.

The ESiWACE-2 project will demonstrate the use of recent DSLs for model
components of the ICON model.

Risks

The main risk will be to integrate the changes required for this project with the main
development line of the ICON model. Since the ICON code base is very large, and is
continuously being developed by many different contributors, the work will need to be
carefully coordinated. At the start of the project, the governance rules for criteria to
accept code changes for the COSMO consortium into ICON are being defined and are
not yet fully established. A close coordination between the main ICON developers and
this project will be crucial. The risk will be mitigated within the project by means of
establishing regular discussions with main ICON developers (Task 5) and reviews of
the developments proposed.

Additionally maintenance of the code might be a challenge, since (based on COSMO
experience) it is expected to increase when adapting the model for running on multiple
architectures. This risk is mitigated in the project by the exploration and use of possible
alternatives like the CLAW-DSL and GridTools DSL proposed in the project (Task 3)
that offer different levels of abstractions and the possibility to retain single source codes
and implementations. At the end of the project the different approaches will be
evaluated taking into consideration the maintenance cost for the model and
performance portability in different architectures.

8

IMPACT

Acceptance of new code and technologies may be challenging and regular exchange
with the main developers will be organized to mitigate this risk (Task 5). Tools and
technologies will be adapted and developed based on user feedback and
requirements.

References

Dongarra, J., P. Beckman, T. Moore, and co-authors. The international exascale
software project roadmap. Int. J. High Perform. Comput. Appl., 25(1):3–60, February
2011.

Gysi, T., O. Fuhrer, C. Osuna, M. Bianco, T. C. Schulthess, 2013: STELLA: A domain-
specific tool for structured grid methods in weather and climate models. Proceedings of
the international conference for high performance computing, networking, storage and
analysis, No. 41, doi: 10.1145/2807591.2807627

Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M., Arteaga, A., &
Schulthess, T. (2014). Towards a performance portable, architecture agnostic
implementation strategy for weather and climate models. Supercomputing Frontiers
And Innovations, 1(1), 45-62. doi: 10.14529/jsfi140103

Hu, X.S., R.C. Murphy, S. Dosanjh, K. Olukotun, and S. Poole. Hardware/software co-
design for high performance computing: Challenges and opportunities. In
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010
IEEE/ACM/IFIP International Conference on, pages 63–64, Oct 2010.

Lapillonne, X., and O. Fuhrer, 2014: Using compiler directives to port large scientific
applications to GPUs: An example from atmospheric science. Parallel Processing
Letters. 24, 1450003, doi: 10.1142/S0129626414500030

Zängl, G., D. Reinert, P. Ripodas and M. Baldauf, 2015: The ICON (ICOsahedral Non-
hydrostatic) modelling framework of DWD and MPI-M: Description of the non-
hydrostatic dynamical core. Q. J. R. Meteorol. Soc. (2015) DOI:10.1002/qj.2378.

9

IMPACT

Annex 1

1
0

IMPACT

Annex 2

1
1

	Version 0
	Project leader: Carlos Osuna (MeteoSwiss)
	Summary
	Motivation
	Actions proposed
	Deliverables of the project
	Description of individual tasks
	Task L: Project leadership
	Task 1 : Testing and Software engineering

	The ICON model is a powerful tool for global and regional weather modelling. Adapting such a large code base, with more than one million lines of code, for different HPC architectures is a great challenge. The code has been highly optimized for CPU architectures and some automated testing is already in place in collaboration with the Max Planck Institute in Hamburg. Based on the experience from COSMO, the maintenance effort of a codebase that has to run in different configurations on different hardware architectures can be substantial. The cost of adapting and maintaining the Fortran code base can potentially be reduced by improving software engineering aspects. In particular, modularity in a sense of being able to run separately different components of the models is an important functionality that will allow to work, develop and test individual components of ICON independently from the rest of the model. Modularity and component testing is a crucial software engineering practice that decreases the maintenance cost of a model and reduces the complexity of coupled software systems.
	In addition the existing testing infrastructure can be extended to further increase the code coverage of the tests. Furthermore most of the current technical testing in place for ICON relies on bitwise-identity. However, bit reproducibility is not guaranteed in general across different compilers and architectures. Therefore, additionally to the current bit reproducibility testing, a threshold based validation – similar to the one used in the COSMO technical testsuite – will be proposed and implemented in this task.
	Task 1.1 Guidelines/recommendation for future ICON development

	Monitor programming practices in other communities using large Fortran codes. Organize workshops / presentations on software engineering and propose guidelines to the model developers.
	Task 1.2 Modularize components of the Fortran code
	Provide a solution for applying modularity to the ICON model, where, if adopted, any component of the model could be run in a standalone manner. The approach(es) will be discussed with the ICON developers. A prototype will be implemented for two components or parameterizations and used to demonstrate the component-wise testing that would be applicable to ICON.
	Task 1.3 Improve testing infrastructure
	Implement threshold based validation for ICON.
	Deliverables:
	D1.1 (3.2019) Threshold based validation in place in ICON [code+documentation]
	D1.2 (3.2020) Modular and standalone version of the microphysics (graupel scheme) and of the tendencies of velocity components of the ICON model [code+documentation, presentation]
	Task 2: Baseline performance on CPU and GPU

	Task 2.1 OpenACC port of the ICON model
	Task 3 : Performance portability and abstraction

	The OpenACC port of ICON will provide a model version that can run on GPU and CPU. However, from the experience gathered with the port of the COSMO model, it is known that optimizations for CPU and GPU often result in significantly different implementations and structure of the computations. This inhibits retaining a single sources code and will require to accept implementations that will not be optimal in one or more architectures. In addition the OpenACC programming model does not expose fine grain hardware optimizations, such as control over the memory hierarchy, which could have an impact on performance. Finally, introducing OpenACC on top of Fortran+MPI+OpenMP increases the complexity of the code which may result in additional maintenance effort. For the dynamics – because of the horizontal dependencies which introduce additional complexity for optimization and performance portability – it was shown, that an optimized OpenACC implementation could be up to 50% slower as compared to an optimized code using a hardware specific language. In order to achieve portability retaining a single source code and performance portability as well as higher code maintainability we propose different alternative approaches. The approaches proposed in this task offer different level of abstractions and will also require different levels of disruptive changes in order to adopt them in the Fortran version of ICON.
	For the physics, where individual vertical columns are independent, the use of the CLAW-DSL (Domain Specific Language) will be prototyped and evaluated. The CLAW-DSL is a Fortran based DSL for the physics which allows to implement computations in the code as single column, where the horizontal loops and directives are generated automatically. The generated code is Fortran code with compiler directives.
	Deliverables: D3.1 (06.2022) Microphysics and radiation parameterization implemented with CLAW-DSL and evaluation report [code+documentation & report]
	Task 4: Strong scalability

	There is a trend of hardware architectures and programming models to move towards a data-movement centric and task oriented approach. This task aims at achieving better strong scaling by using task parallelism. Currently only the parallelism in the spatial dimension is exploited, however with the continuous increase of computing units available per chip in modern accelerators, our model configurations are not providing enough data parallelism to efficiently use all the computing units, limiting the scalability of the model. One way of improving the strong scalability is to introduce task parallelism to different components of a model that can be run concurrently. Exploratory work has shown that our models exhibit a considerable degree of parallelism that can be applied to multiple components. This however requires extensive changes to the code structure to be applicable. In this task we will explore and evaluate the impact of introducing task parallelism using an already available version of the COSMO dynamical core implemented with a new prototype DSL. This prototype DSL allows for exploring automatically the potential gain obtained from task parallelism. This will give insight into for a future implementation strategy in ICON.
	Task 4.1 Monitor other projects applying task parallelism in weather and climate models
	Task 4.2 Small prototype out of COSMO
	Use the C++ dynamical core of COSMO as a vehicle to explore task parallelism. A DSL-based dynamical core is ideal for this purpose, since the DSL allows for a high-level of abstraction of the user code and the information exposed in the DSL can be used in order to automatically generate data flow graphs and a schedule of how to run tasks.
	Deliverables: D4.1 (06.2020) Literature/Project review document regarding task parallelism [report]
	Task 5: Coordination activities with ICON development
	Deliverables: D5.1 (-) Regular meeting sessions at the ICON developers meetings, jointly with ENIAC [workshop]
	Links to other projects or work packages
	Risks
	References
	Annex 1
	Annex 2

