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Chapter 1

Introduction

This document gives an introduction for an parameter estimation procedure for complex computer mod-
els with very large data output. The methodology relies on the publication “Bellprat, O., S. Kotlarski,
D. Liithi, and C. Schir (2012), Objective calibration of regional climate models, J. Geophys. Res.,
117, D23115, doi:10.1029/2012JD018262. (Bellprat et al., 2012b)” and has originally been designed for
an objective calibration of model parameters in physical parameterizations of regional climate models
using a calibration theory published in (Neelin et al., 2010). In practice, the approach can be applied to
any optimization problem, yet if the target model or function is computationally very efficient, flexible
approaches provide more accurate solutions.

The number of required simulations using such alternative approaches is yet too large for high res-
olution climate models since typically only few tenths of simulations can be afforded. The present
framework therefore aims at minimizing the computational costs to calibrate unconfined model param-
eters in climate models. Presently state-of-the-art atmospheric model are tuned using expert knowledge
and hand-tuning without following a well defined strategy. This condition inhibits for instance model
comparison using two different parameterizations as the model will always depend on how the tuning is
performed. The proposed procedure therefore is not only an approach to improve model performance
but also to compare model parameterizations which have undergone the same tuning efforts.

Nonetheless expert knowledge is still required in the proposed framework by the definition of model
parameters which are calibrated and their uncertainty ranges. This selection is a choice of the user, as
well as the definition of a cost-function which is optimized. The tool hence is a way to facilitate high-
dimensional problem solving given certain definitions which allows for a transparent and re-producible
calibration of climate models.

The following chapters will guide a user for application of the methodology. The first chapter gives the
methodological background. The second chapter aims at providing an overview of the code package
and the work flow for a potential application. This followed by an overview of all functions as part of
the package are presented for more in-depth understanding.



Chapter 2

Method

Although methodology of the calibration framework is documented in the reference publication, a
short summary of the important equations is summarized here. The basic idea of the framework is to
build a computationally efficient statistical model that approximates the model output fields for an n-
dimensional parameter space (often termed as model emulator, model surrogate, or metamodel). Using
such a metamodel the high dimensional problem can be solved efficiently with common optimization
procedures that require typically O~ simulations for parameter problems with 10 or less parameters.
These number of simulations are not possible to perform with a climate model due to computational
constraints of current high-performance computing centers.

There are numerous approaches how to approximate model parameter experiments (e.g. Neural Net-
works or Gaussian Processes) and several approaches have been applied to climate models as discussed
in Annan and Hargreaves (2007). The present framework relies on a metamodel that approximates the
parameter space using a multivariate quadratic regression. This choice has been made as the approach
uses only the minimum number of model simulations that are required to account for non-linear be-
havior and parameter interactions in model parameter experiments. The use of a quadratic regression
further inhibits over-fitting and allows for analytical solutions of the parameter space.

In order to estimate the multivariate quadratic metamodel only the boarders of the n-dimensional space
have to be sampled (a design which is referred as a Koshal design in the literature). The Fig.2.1 il-
lustrates such a design for two parameters (P1,P2) where in the center the default values (cross) and
each dimension a minimum and maximum parameter value is sampled (circles). Additionally, in order
to take parameter interactions into account, one corner point needs to be simulated (triangle) which
corresponds to N*24+N(N-1)/2 simulations for N parameters.

Using the design points the following linear set of equations can be solved to estimate the linear term
“a” and the non-linear term “B”,

O = ®pep + pla+ pl B (2.1)

where @ corresponds to the data field which is approximated (®,. is the reference field, ®* the predicted
field by the metamodel) based on parameter vector p+ which describes the parameter values centered
around the default value and normalized by the parameter range,

Hp — Hdef
= - . 2.2
maw (i) — min(jep) 22

Using centered parameter values has the advantage that the prediction of a parameter combination in
one dimension is independent from the other parameter dimensions and therefore also their inaccura-
cies. The normalization avoids rounding errors in case the parameters vary in very different magnitudes.

The metamodel is by its definition quadratically smooth in space and only interaction between two pa-
rameters are allowed. This simplification is a good approximation of parameter experiments in climate
models (Neelin et al., 2010, Bellprat et al., 2012b) but some inaccuracies because of this simplification
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Figure 2.1: Koshal parameter experiment design required to estimate the parameters of the metamodel

can arise. In particular the estimation of the parameter interactions has proven to be mis-represented
by this simplification. Possible reasons might be that three-way parameter are not determined even
tough they seem to have important contributions in climate models (Rougier et al., 2009) or that the
quadratic interaction term is not flexible enough to capture the true parameter interactions in the model.
To constrain this uncertainty it is therefore advisable to use several simulation to estimate the interac-
tion terms to achieve higher accuracy, yet typically the parameter interactions play only a minor role
to determine the parameter space (Bellprat et al., 2012b, Bracco et al., 2013). Nevertheless, if higher
metamodel accuracies are desired, a Gaussian Process (GP) approach is here advised (Rougier et al.,
2009, a Matlab code for GP emulation is provided here http://www.gaussianprocess.org/).

Using the fitted metamodel the agreement of the model with the observations can be maximized using
performance function. This function is a choice of the user and is independent of the calibration frame-
work and thus different objective functions can be optimized. We here choose to use a multivariate
least-square estimation (Performance Score PS) considering uncertainty sources of predictability and
observations as defined in Bellprat et al. (2012a).

Using a definition of the model performance the parameter space can be sampled to identify optimal
parameter configurations. Finding such optimal configurations is albeit the linearisation of the climate
model using the metamodel a tedious task in very high dimensional parameter spaces. The most
challenging problem of such optimization problems is that within the parameter space many local
maxima may exist which need to be distinguished but also identified. Sampling the parameter space
(with N number of parameters) using a grid design is very inefficient in this case as the number of
parameter combinations required grows with the exponent of parameters (power N). A further key
limitation of grid sampling is the “collapsing” property: multiple parameter configurations have the
same parameter value projected on the parameter axis. This limits the sampling in space and thus the
small scale non-linearities i.e. local maxima are misrepresented.

Again numerous approaches from optimization theory exist to efficiently find these maxima. Here we
use a Latin hypercube sampling (LHS) approach to reduce the dimensionality of the parameter prob-
lem. The approach has been introduced by McKay et al. (2000) and is widely used for determination
of computer experiments. To illustrate the concept a comparison between a grid sample and a Latin
hypercube sample is shown in Fig.2.2 again for two parameters. The baseline of the LHS is the number
of parameter combinations M which are sampled. In case of a grid design for two parameters using a
minimum, a center and maximum parameter value the number of parameter combinations corresponds
to M = 3% = 9 experiments. Instead of sampling each combination for a fix number of intervals (grid
design) the number of intervals in a LHS corresponds to the number of experiments M. The sample
is subsequently drawn as such that each parameter combination uses a different parameter value as
any other combination. This approach avoids the “collapsing” property of a grid design and makes the
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Figure 2.2: Comparison of grid-sampling and Latin hypercube sampling from Urban and Fricker (2010)

sampling independent of the number of parameters considered.

There are multiple samples which can be drawn for such a design corresponding to (M!)N~!. The
common approach to select one these samples is to use the sample with highest sum of Euclidean dis-
tances or to minimize the correlation structure between all parameter combinations. The LHS is used
in the reference publication to find optimal parameter configurations using a 1 Million LHS for five
parameters (i.e. 1 Million different values for each parameter sampled). Further a LHS sample is used
to draw an independent parameter sample for a validation ensemble of the metamodel is used.

Alternative procedures for the calibration of the model parameters is possible using machine learning
theory as Genetic Algorithms (Goldberg, 1989, toolbox integrated in Matlab as gatool) or Bayesian
statistics as a Marcov Chain Monte Carlo (MCMC, Matlab code available here http://helios.fmi.fi/ laine-
ma/memce/) integration. Generally these approaches are more efficient but require a multitude of ad-
ditional assumptions. A further approach to constrain the parameter uncertainty without a calibration
procedure is history matching; recently also applied in climate models (Williamson et al., 2013).



Chapter 3

Code structure and working flow

The structure of the program code is shown in Fig.3.1. Four main operation tasks are defined in
square blocks, the definition of calibration suite, the estimation of the metamodel, the validation of
the metamodel and the optimization of the model parameters. Relying on these main task, optional
routines can be called which are shown in ellipsoid areas. The data of is stored and accessed by
three matlab structures termed parameters (contains information on parameters and experiments),
datamatriz (contains simulated data of parameter experiments and validation sets) and metamodel
(contains parameters and information on the fitted metamodel). All matlab routines can be called
using these data structures, which are described with more detail in the next sections.

3.1 Definitions and data

3.1.1 Parameter

Within the parameter structure all information about the model parameters are stored. The individ-
ual fields describe for each parameter in name a string of the parameter name, name_texr the same
name string using LaTeX standards for plotting, in range a vector with the minimum and maximum
parameter value, in default the reference parameter value, in experiments the parameter values of
all experiments used to fit the metamodel, in constrain additional parameter experiments outside of
the Koshal design to further constrain the metamodel, and in validation the parameter values of the
independent experiments used to validate the metamodel.

parameters =

1xN struct array with fields:
name
name_tex
range
default
experiments
constrain
validation

3.1.2 Datamatriz

The datamatrixz contains all data from the simulations which is needed to estimate and validate the
metamodel, and to compute model scores if they are not emulated directly. A function to read-in
data must be built by the user, an example how to read NetCDF data is provided. The individual
fields of this structure contain in moddata all model data of the parameter experiments used to fit the
metamodel, in refdata the data of the reference simulation, in valdata the data of the independent
simulations for the validation of the metamodel, in obsdata the observations which are used to compute
a model score if specified any, in score the name of the function that computes the model score (an
example using ps is provided), in constrain the data of the simulations needed to additionally constrain
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Figure 3.1: Schematic figure on the calibration framework. The framework is divided in four main tasks
illustrated with square blocks: the definition of the calibration suite, the estimation of the metamodel,
the validation of the metamodel and the optimization of the model parameters. For each task different
functions are provided which are called using three data structures of the framework: the datamatriz
(containing the data of the simulations and its definitions), the parameters (containing the information
about the parameters and its values of the experiments), and metamodel (containing the estimated
metamodel parameters). All functions need either all of these data structures or only two of them.
More information about the functions are provided in the function alphabet of this document.
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the metamodel. Further information of physical variables can be specified which are listed in the field
variables that describes in the first term the index within the data structure that corresponds to
different physical variables and in the continuation the strings of the variable names. Further physical
limits for these variables can be set in limits, with a lower and upper bound for which each prediction
with the metamodel is constrained.

datamatrix =

moddata: [5-D double]
refdata: [4-D double]
valdata: [5-D doublel
obsdata: [4-D double]

score: ’ps’
constrain: [5-D doublel
variables: {[4] >T2M° PR’  GILCI P T

limits: {[-Inf Inf] [0 Inf] [0 100]}

3.1.3 Metamodel

The estimated metamodel parameters are stored in the metamodel structure. For each data point a
linear a and non-linear matrix B is estimated, the dimensions of field a and B therefore corresponds
to the dimensions of the data plus a dimension for all parameters. In case additional simulations are
used to constrain the metamodel a constant term c is used, otherwise only the data of the reference
simulation is used as a constant term.

metamodel =
a: [6-D double]
B: [7-D doublel]
c: [6-D doublel

3.2 Metamodel estimation

The estimation solves the linear set of equations resulting from equation 2.1. The data matrix is for this
purpose linearized such that the estimation is independent on the number of dimensions. This allows
that the metamodel can be estimated on multivariate model data or integrated data of for instance a
performance score directly (one value per experiment). The estimation of the metamodel is called using
neelin_e which gives as an output the estimated metamodel.

metamodel = neelin_e(datamatrix ,parameters)

The linear set of equation is solved by using the axial and default experiments (See Fig.2.1) for a
quadratic regression in each parameter dimension, which can subsequently used to estimate the inter-
action term using the interaction experiments.

Depending on the number of experiments provided the function differs between different estimations.
If the number of experiments is small than the number required for a Koshal design (2*N+N(N-1))
the estimation of the interaction terms is omitted and only the linear and quadratic term is estimated.
If the number of experiments is larger than the linear set of equations the additional experiments are
used to further estimate the interaction terms using a least square estimation. In case the number of
experiments is small than 2*N the estimation can not be performed.

In case additional experiments are desired to use to further constrain the metamodel linear and square
parameters the function neelin_c can be used, which uses the definitions of datamatrix.constrain and
parameters.constrain to narrow the uncertainty of the metamodel. This function should be called after
the initial estimation of the metamodel as the following:

metamodel = neelin_c(datamatrix ,parameters ,metamodel)



1

3.3 Metamodel validation December 19, 2013

3.3 Metamodel validation

Once the metamodel is estimated the metamodel can be evaluated with a number different analysis
functions. The base function for this purpose is metamodel prediction function neelin_p which pre-
dicts the data of a given parameter experiment using the three base structures (metamodel, parameters,
datamatrix) and a vector of parameter values for which the data should be predicted.

datamatrix = neelin_p(metamodel ,parameters ,datamatrix ,pvector)

Given the prediction function independent simulations not used to estimate the metamodel can be used
to assess the accuracy of the metamodel. This error of the metamodel can be estimated using the
function:

[errstd]=errmeta(metamodel ,parameters ,datamatrix)

The function estimates the standard error to predict a number of experiments defined in datama-
trix.valdata with parameter values defined in parameters.validation. Further a scatter plot of the
simulated and predicted data points is produced.

Further metamodel analysis tools are the planes function, that plots pair-wise parameter planes pre-
dicted by the metamodel, metaparam which plots the metamodel parameters normalized by the vari-
ability of the data, and squarefit which allows to visualize the quadratic regression averaged for all
the data points. If datamatrix.variables is specified, referring to physically different variables in the
data, all the aforementioned figures are separated for these variables.

3.4 Parameter optimization

If the accuracy of the metamodel satisfies the needs of the problem the parameter space can be sampled
in order to determine optimal model parameters. The calibration package offers for this purpose a Latin
hypercube sampling that can be called using:

[lhscore lhexp popt]=lhopt(metamodel ,parameters,datamatrix,lhacc)

The number lhacc determines the number of samples drawn from the LHS. The optimization yields for
each sample a performance score (lhscore depending on the definition of the score), the experiment
of the parameters (lhexp) and the optimal model parameter setting (popt). The optimal parameter
corresponds to the parameter sets which according to the metamodel yields the highest score. How-
ever, given that the metamodel is associated with an uncertainty it is more reasonable to determine a
distribution of parameter combinations which yield best model performance.

This distribution of optimized model parameters can be computed using the following function:

optparam(parameters ,lhscore,lhexp,popt,errstd)

Additionally to visualize the whole performance space captured by the metamodel, a empirical distri-
bution of the performance score can be visualized using the following command:

histplot(lhscore,datamatrix)



Chapter 4

Function Alphabet

The available functions of the package are briefly described here with a short description of the function-
ality, an example of the produced figure (if any produced) and the‘description from the header of the
code. The figures are based on an example of a calibration of the regional climate model COSMO-CLM
for 8 parameters. The underlying description of the variables and observations selected are described
in Bellprat et al. (n.d.). Additionally, to the functions of the calibration framework, a very simple toy
model calmo_toy is provided which allows to test the effect of noise in the experiment data and effect
of structural error of the quadratic assumption.

10
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4.1 exppattern.m

In order to visualize the effect of the model parameters from the different experiments a plot procedure
is provided which summarizes the the difference of the experiments with respect to the reference.
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Figure 4.1: Sensitivity of parameter experiments divided in to variables, regions and seasons.

Header:

% Plot routime to visualize experiments for a Neelin fit
% NAME
V4 ecppattern
/% PURPOSE
Create mosaic plots for dimesensions simulation, region, and varable
INPUTS
From the structure datamatrixz and paramters the
following fields are
processed (mind the same naming in the input)

datamatriz.moddata :
Model data for all ezperiments
parameters.name:
Name of parameter, parameter exzperiments
OUTUTS
Pcolor plots given the number of model wvariables

4% HISTORY
First wersion: 11.10.2013

SR IT ST IR L SN IR AL SN IR AL 5N AR e Sw A e e
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4.2 errmeta.m

When using a validation set of simulations the function errmeta.m allows the user to estimate the
prediction error of the metamodel. The error of the metamodel is further visualized using the scatter
plots of the simulated and predicted data points as shown in Fig.4.2.
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Figure 4.2: Simulated and predicted data points with the metamodel divided into different variables.

Header:

/% Estimate the error of the metamodel to predict indpendent model information
% NAME
4 errmeta

5
S
o]
o
Q
0
o

Predict modeldata on of independt simulations and estimate the
standard error of the metamodel

INPUTS
The structure metamodel, parameters and datamatric
are used for the inpute of neelin_p. Addionally the parameter
matriz ts read

parameters.experiments:

Parameter matrixz of exzperiments on which metamodel 1is
estimated

phyd:
Index in the model data along which the prediction
error is physically seperated (ez: ind of different
model wvartabiles (temperature,precipitation,clouds))
oUTUTS

Plot: Scatter plot for each defined wariable of simulated and
predicted points
errstd: Standard error to predict the model data
errps: Standard error to predict the model score
HISTORY
First wersion: 11.10.2013
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4.3 histplot.m

This functions allows to characterize the full calibration range of the parameter space in the for the
specified performance function. Further the level of the reference function and the level of performance
of the optimized configuration is plotted as shown in Fig.4.3.

Objective calibration
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Figure 4.3: Calibration range of the Latin hypercube sample along the performance score (PS) in
comparison to the reference (REF) simulation. The blue area above the reference simulation indicates
the potential of the calibration to improve the model performance.

Header:

Plot full performance range sampled with the Latin hypercube
experiment as a histogramm
NAME
neelin_p
PURPOSE
Predict data using the metamodel for a parameter matriz
INPUTS
From the structure metamodel, parameters and datamatrixz the following fields are
processed (mind the same naming in the input)

datamatriz.reffdata:

Modeldata using default parameter settings to
determine/compute the model score of the reference
OUTUTS
Plot: Histogram plot
HISTORY
First wversion: 11.10.2013

SR IT ST IR L ST IR L ST IR AL 5N 3R ¢ e oA e e
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4.4 lhopt.m

The optimization of the optimal parameter configurations is done using a Latin hypercube sampling
described in 1hopt.m. For a given number of samples the function computes the predicted performance
score of each sample and looks for the best combination. The output of the function is then further
used to for histplot.m and optparam.m.

Header:

% Optimise model parameters using a Latin hypercube sampling
% NAME
neelin_p
PURPOSE
Create a sample of parameters wusing a Latin hypercube design
and predict the model performance of the sample using the
metamodel .
INPUTS
From the structure metamodel, parameters and datamatrixz the following fields are
processed (mind the same naming in the input)

metamodel . a:

Vector of linear terms of the metamodel [...,N,1] additional
data dimensions possible (ez:a”[Regions,Variables, Time,N,1])

metamodel .B:

Matriz of quadratic and interactions terms [...,N,N] additional
data dimensions possible (ez:a~[Regions,Variables, Time,N,NJ)

parameters.range:

Range of walues for each paramter to normalize the
scale.

parameters.default:
Default walues of parameters to center the scale
datamatriz.reffdata:

Modeldata of when using default parameter values to
to center the datamatriz

pvector: Parameter wvalues for one experiment with the
dimension of [N,1] N=Number parameters
OUTUTS
dmatriz: Predicted data for parameter exzperiment
HISTORY
% First version: 11.10.2013

SR 3T ST AT L ST AT L ST I IT ST AT T OF I OL 3R AT ST 3R L ST 3R 2L 5T IR AL 5N 3R O 5T A% 3w v oA ow e
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4.5 metaparam.m

To assess the linear, quadratic and inter-action terms of the metamodel a function is provided which
shows these terms when averaging for the whole data structure as shown in Fig.4.4.

a B

soilhyd| 1.41

radfac| 0.49

tkhmin| 0.75

rootdp| 0.24

ucl| 0.52

gio| 2.94

entr_sc| 0.23

rlam_heat| 4.98

Figure 4.4: Parameter values of the metamodel divided into the linear contribution (first column on
the left “a”), the quadratic contribution (diagonal values in the matrix “B”), and interaction values
(off-diagonal values in the matrix “B”). The values are normalized by the range of the parameter values
in order to compare the contribution of each term between the parameters.

Header:

SR AT ST SR AN ST AR A ST v A e W

Visualize fitted metamodel parameters

NAME
metaparam

PURPOSE
Show mormalized linear,quadratic and interaction terms for each
parameter and interaction

INPUTS
The structure metamodel, parameters,datamatriz are used

OUTUTS
Plot: Histogram of the difference between predicted and actual
model data

HISTORY

First wversion: 11.10.2013
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4.6 neelin_e.m

Using the definitions in section 3.2 this function allows to estimate the metamodel creating a metamodel
structure which contains all information to make a prediction of a given parameter set.

Header:

/% Quadratic regression metamodel as described in Neelin et al. (2010) PNAS

% NAME
neelin_f
PURPOSE

INPUTS

The structure
Exzample for 2

[p1_1 dp2 ] !
[pi_h dp2 ] !
[dp1 p2_1] !
[dp1 p2_h] !
[p1_1 p2_h] !

!

parameters.range:

scale.

parameters.default:

datamatrixz.moddata:

datamatriz.reffdata:

to center the

OUTUTS
structure metamodel.
a: Metamodel parameter
B: Metamodel parameter

4 HISTORY

ST AT ST X AT T T IL ST IR L ST OT L ST IR L 5T IR L ST IR 1L OF L 2T ST R 2L OF R 2L 5N IR 2L SN N 3L 3N N 5L OQ AR 5T SR e e oaw e e

parameters.experiments:

4 First wersion: 11.10.2013

Estimate a mutlivariate quadratic metamodel which estimates quadratic
regressions in each parameter dimensions and computes interaction
terms for all pair of parameter exzperiments

From the structure parameters and datamatriz the following fields are
processed (mind the same naming in the input)

Parameter wvalues for each exzperiment with the
dimension of [N, 2*N+N*(N-1)/2]

NEEDS to be as follows
parameters (p1,p2)

Low parameter walue for pl default dp2
High parameter walue for pl default dp2
Low parameter wvalue for p2 default dpl
Hihg parameter walue for p2 default dpl
Ezperiments with interaction (no default)
Additional exzperiments used to

constratin interaction terms

Range of walues for each paramter to normalize the

Default wvalues of parameters to center the scale

Modeldata corresponding to the dimenoins of
parameter.experiments

Modeldata of when using default parameter values to

datamatriz

fitted. Not needed <f metamodel fits score data directly

for linear terms [N,1]
for quadratic and interaction terms

[N,N]. Quadratic terms in the diagonal, interaction terms
in the off-diagonal.

Matriz symetric, B(%i,35)=B(j,%).
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4.7 neelin_p.m

Based on an estimated metamodel and a parameter set of chosen this function predicts the data that
would result from a simulation with the specified parameter set.

Header:

% Forecast using regression metamodel as described in Neelin et al. (2010) PNAS

% NAME
% neelin_p

PURPOSE

Predict data using
INPUTS

From the structure

metamodel . a:

metamodel .B:

parameters.range:

scale.

parameters.default:

Modeldata
to center

pvector: Parameter
dimension
OUTUTS
dmatrixz: Predicted
/4 HISTORY
4 First wversdion: 11.10.

ST AT ST SR AT OT IR AT ST IR AL ST IR AL ST IR AL ST IR L OF IR AL ST R ¢ ST AR e e A oNw W

the metamodel for a parameter matric

metamodel , parameters and datamatriz the following fields are

processed (mind the same naming in the input)

Vector of linear terms of the metamodel [...,N,1] additional
data dimensions possible (ez:a”[Regions,Variables, Time,N,1])

Matriz of quadratic and interactions terms [...,N,N] additional
data dimensions possible (ez:a”[Regions,Variables, Time,N,N]J)

Range of walues for each paramter to normalize the

Default walues of parameters to center the scale

datamatriz.reffdata:

of when using default parameter wvalues to
the datamatriz

values for one ezperiment with the
of [N,1] N=Number parameters

data for parameter exzperiment

2013
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4.8 neelin_c.m

Additional simulations than needed to estimate the metamodel can be used to further constrain the
linear and quadratic terms of the metamodel. By defining these parameter configuration and data in
the structures parameters and datamatrix this function can be called as described in section 3.2

Header:

% Constrain linear and quadratic metamodel terms with additinal simulations
% NAME
neelin_c
PURPOSE
Use additional simulations to marrow uncertainty of the
metamodel paramters, particulary if strong unequal distancies
between default and min/maz wvalues.
INPUTS
From the structure parameters and datamatriz the following fields are
processed (mind the same naming in the input)

parameters.constrain:

Parameter wvalues for each experiment for
additional parameter samplilng

parameters.range:

Range of walues for each paramter to normalize the
scale.

parameters.default:
Default walues of parameters to center the scale
datamatriz.moddata :

Modeldata corresponding to the dimenoins of
parameter.experiments

datamatriz.reffdata:
Modeldata of when using default parameter wvalues to
to center the datamatriz
fitted. Not needed <f metamodel fits score data
directly

datamatriz.constrain

Simulation data of exzperiments used to further sample
parameter ranges

OUTUTS
Updatated metamodel structure
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% First wverston: 4.11.2013
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4.9 optparam.m

To empirically estimate the posterior parameter distributions the current functions uses the uncertainty
of the metamodel (one standard deviation from errmeta.m) and selects the best parameter combinations
from lhopt which lie within this uncertainty. The following figure is then produced.

rlam_heat entr_sc qio ) ucl rootdp tkhmin radfac soilhyd
e ° T T T s T s T 02

{4 Default values

-}=Optimal values

Density

00 oos| ' oosf |0 oos| ' oos| ' o0s| ' o0s| ' 00s

0z 4 6 8w ETE z 4 6 & 0s 1 TS % 06 o8 @ 12z 14 16 s s 03 04 05 06 07 08 03 T2 s 4 s

Figure 4.5: Distribution of the model parameters which lead to best model results. The distribution
is computed from a sample of parameter combinations which, given the uncertainty of the metamodel
(errstd), give the best model results. From this sub-sample of the Latin hypercube sample the empirical
distribution of the values are plotted. This approach is an approximation of determination of a posterior
parameter distribution without the definition of distribution priors.

Header:

Plot posterior parameter distributions given the uncertainty of
the metamodel prescribed in errm
NAME
optparam
PURPOSE
Plot parameter distributions which lead to best model results
given the uncertainty of the metamodel
INPUTS
From the structure metamodel, parameters and datamatriz the following fields are
processed (mind the same naming in the input)

datamatriz.reffdata:

Modeldata using default parameter settings to
determine/compute the model score of the reference
OUTUTS
Plot: Histogram plot
HISTORY
First wversion: 11.10.2013
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4.10 planes.m

This routine allows to show the variations in the specified model performance along all planes of
parameter pairs.
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Figure 4.6: Contours of the model performance as predicted by the metamodel along planes of all
possible parameter pairs.
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Header:

% Plot performance planes for each parameter pair predicted
% by the metamodel
3

aoR W N R
2
=
S
(2]

planes
PURPOSE

Predict performance surface for a parameter pairs between
the design points to wisualize performance non-linearities.

INPUTS
From the structure metamodel, parameters and datamatrixz the following fields are
processed (mind the same naming in the input)

16

metamodel . a:

Vector of linear terms of the metamodel [...,N,1] additional
20 data dimensions possible (ez:a [Regions,Variables, Time,N,1])

metamodel .B:

Matriz of quadratic and interactions terms [...,N,N] additional
data dimensions possible (ez:a~[Regions,Variables, Time,N,NJ)

parameters.range:

29

Range of walues for each paramter to normalize the
scale.

parameters.default:
Default wvalues of parameters to center the scale
datamatriz.reffdata:

Modeldata of when using default parameter wvalues to
to center the datamatric

pvector: Parameter values for one exzperiment with the
dimension of [N,1] N=Number parameters

v
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43 /4 OUTUTS
44 i pi: Performance tindex for all data points
45 ps: PS wvalue for each simulation

46§ HISTORY
a7} First werston: 11.10.2013
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