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Abstract 

All atmospheric models used for numerical weather prediction (NWP) and climate modeling have 
inherent uncertainties. Many of them stem from parameterization schemes for physical processes 
within the models, which often include free or poorly confined parameters. Model developers 
normally calibrate the values of these parameters manually in order to improve the agreement of 
forecasts with available observations. This ‘expert tuning’ is typically done once during the 
development of the model, for a certain target area, and for a certain model configuration, and is 
often difficult if not impossible to replicate. It is questionable whether such a calibration is still 
optimal for different target regions (e.g. with a different climate) or for other model configurations 
(e.g. with an increased grid resolution). Furthermore, the lack of an objective process to re-calibrate 
the model is often a major roadblock for the implementation of new model features. 

A practicable objective multi-variate calibration method has been developed by Bellprat et al. (2012a 
and 2012b) and implemented for a regional climate model. The objective method has shown to be at 
least as good as an expert tuning. Based on these results, a research project (CALMO) has been 
proposed and accepted with the aim to investigate how to transfer this method to NWP applications. 
Within the framework of the CALMO project, a total of 1’070’000 node hours are requested on the 
hybrid Piz Daint system at CSCS to develop an objective calibration method for NWP. As a 
demonstration vehicle, we will use a new kilometric configuration of the COSMO model. Since many 
research groups and operational centers are moving towards (convection-permitting) kilometric 
resolutions, there is a particular interest for re-calibrating high-resolution configurations. At the same 
time, there is a high potential to show a significant impact of the calibration method, since the 
kilometric configuration differs substantially from the COSMO configurations widely used. The need 
to span a significant subset of the model parameter space and the size of the computational mesh 
requires access to significant computing resources. The Piz Daint system is optimal for this purpose, 
as we are planning to run the COSMO model in GPU mode. 

Besides setting up the calibration method for an NWP model, the two additional scientific goals of 
this project are to understand the sensitivity of the NWP model quality with respect to the model 
parameters space as well as to optimize the calibration procedure in order to minimize the amount 
of computing resources required. Both aspects cannot directly be transferred from the experience 
with the calibration of the climate version of COSMO due to the very different performance scores 
and forecast lengths used for climate and weather forecasts. 

The main scientific impact of a positive outcome of this project is the availability of an objective 
calibration tool to determine the optimal setting of free or poorly defined model parameters. 
Depending on the (minimal) computing resources needed for a robust calibration, modelers will be 
able to objectively and reproducibly re-calibrate their NWP modeling system whenever needed: after 
major model changes, for an unbiased assessment of different modules (e.g. parameterization 
schemes), to avoid or remove compensating errors, for optimal perturbation of parameters when run 
in ensemble mode, for a better understanding of the sensitivity of the model quality to a specific 
model parameter, etc. What today is only done once (‘expert tuning’) will in the future be done as 
often as needed! 



Background and significance 

In this section, we briefly outline the current state-of-the-art of objective calibration for atmospheric 
models and describe the methodology we will apply for our calibration. 

It has been shown that model parameter uncertainty is a major source of errors in regional climate 
model simulations (Stephens et al., 1990; Knutti et al., 2002; Webb et al., 2013). To circumvent this 
problem, an objective calibration method (Neelin et al., 2010) for the climate version of the COSMO 
model, the so-called COSMO-CLM, has been applied at the Institute of Atmospheric and Climate 
Science of the ETHZ (Bellprat et al., 2012b). After having identified key COSMO model parameters 
(Bellprat et al., 2012a) and defined a performance score representative for the model quality, a cost-
effective meta-model describing the model performance in the space spanned by these model 
parameters has been derived. The optimal parameter configurations for the full model are then 
found by optimizing the model performance of the meta-model with respect to the performance 
score used. 

The calibration performed by Bellprat et al. (2012b) allowed for the reduction of the model error of 
an expert tuned COSMO-CLM by about 10% using at the same time much less human resources. The 
optimal parameter setting was also found to be close to the COSMO-EU configuration, the 
configuration used in production for NWP forecasts at the German Weather Service (DWD), 
suggesting a low dependency of the calibration results with respect to the specific application of the 
model (climate or weather).  In the published version of the COSMO-CLM calibration (Bellprat 
2012b), a total of 5 parameters were calibrated. In a second calibration attempt that is currently 
being prepared for publication, three additional parameters were considered, leading to a significant 
further improvement. In particular, the warm summer temperature bias (and the overestimation of 
inter-annual summer temperature variability) has been strongly reduced. It is worth noting that this 
summer temperature bias is a persistent bias of the COSMO-CLM, which has resisted all previous 
expert tuning attempts (see Kotlarski et al., 2014). 

The basic idea of the calibration framework is to build a computationally efficient statistical model 
that approximates the model output fields of the full model for an n-dimensional model parameter 
space (often termed as model emulator, statistical surrogate model or meta-model). A model 
emulator (O’Hagan, 2006) allows estimating the simulated model variables of the climate or weather 
prediction model of interest for a certain set of model parameters selected. 

There are numerous approaches how to 
approximate model parameter experiments (e.g. 
Neural Networks or Gaussian Processes) and several 
approaches have been applied to climate models as 
discussed in Annan and Hargreaves (2007). The 
proposed project relies on a meta-model that 
approximates the parameter space using a multi-
variate quadratic regression. This choice has been 
made initially for tuning COSMO-CLM as the 
approach uses only the minimum number of model 
simulations that are required to account for non-
linear behavior and parameter interactions in model 
parameter experiments. The use of a quadratic 
regression further inhibits over-fitting and allows for 
analytical solutions of the parameter space. 

In order to estimate the coefficients of the multi-variate quadratic meta-model, a minimum set of 
model runs has to be performed. The most obvious way of carrying out the minimum set of runs is a 
Koshal design for fitting a second-order polynomial (Mayers et al., 2009). Such a design is illustrated 
in Figure 1 for two parameters (P1, P2), where the default value is in the center (cross) and the 
minimum and maximum values are sampled in each dimension (circles). Additionally, in order to take 

 
Figure 1: Koshal parameter experiment design 
required to estimate the parameters of the 
meta-model (from Bellprat et al., 2012b) 



parameter interactions into account, one corner point needs to be simulated (triangle). Using this 
design a total number of N*2+N(N-1)/2 simulations are required for a calibration of N parameters. So 
for a calibration of 8 parameters, a total number of 44 simulations are required. 

State-of-the-art NWP models are tuned using expert knowledge and hand-tuning without following a 
well-defined strategy (Duan et al., 2006; Skamarock, 2004; Bayler et al., 2000). This ‘expert tuning’ is 
typically made only once during the development of the model, for a certain target area, and for a 
certain model configuration, and is difficult if not impossible to replicate. To use an objective method 
such as the one applied in Bellprat et al. (2012b) is highly attractive due to its efficiency, wide 
calibration range and transparency. A re-calibration of the model parameters could and indeed 
should be applied each time a significant change in the configuration is introduced, or when the 
model is used on a target region with a significantly different climatology. Model development could 
thereby be accelerated, because the expert knowledge required for an expert tuning is often not 
readily available, and testing new model parameterizations would ideally be accompanied a proper 
re-calibration. Additionally, a major stumbling block to model improvements are compensating 
errors, where the systematic error in a certain part of the model is compensated by manual tuning of 
another part of the model and thereby introducing another systematic (but balancing) error. As a 
result, compensating errors often lead to a degradation of model quality if a significant improvement 
is made to the model component with the systematic error. An automatic re-calibration 
methodology can help to surmount this deadlock by being able to rapidly find new optimal 
parameter settings. 

The calibration method proposed by Bellprat et al. (2012b) for regional climate modeling cannot be 
directly applied to NWP. First and foremost, the performance score used to assess model quality is 
not applicable to NWP model calibration and a new performance score has to be developed. 
Secondly, the length of the NWP model integrations is much shorter (days) than regional climate 
model integration (years). Thus, there is considerable potential to optimize the simulation strategy 
with respect to the minimal amount and distribution of NWP model forecasts required for a reliable 
calibration. For these reasons, a research project (the “CALMO Priority Project”) within the COSMO 
consortium has been defined and accepted. The project aims at conducting the basic research 
required for proving the effectiveness of the calibration framework developed at ETHZ in the context 
of regional climate simulations for NWP applications, making the necessary adaptations, and 
assessing its practicability. 

The proposed objective calibration methodology has the potential to bring a transformative change 
to atmospheric model development and significantly reduce model development cycle times. The 
calibration method will be a very useful tool to improve the quality of the multiple configurations of 
atmospheric models running in Europe and beyond. More specifically, the developed methodology 
could be used by each COSMO member to define an optimal calibration over the target area of 
interest, for re-calibration after major model changes (e.g. higher horizontal and / or vertical 
resolution), as well as for an unbiased assessment of different modules (e.g. parameterization 
schemes), and for optimal perturbation of parameters when run in ensemble mode. Furthermore, a 
better understanding of the sensitivity of the model quality associated with a specific parameter 
value could benefit the quantification of the flow dependent model forecast error. Last but not least, 
the implementation of the methodology for a specific parameter can clarify the impact of the specific 
parameter on the overall model performance. Once the meta-model has been fitted to the full 
COSMO NWP model both the effect of the parameter setting and parameter space used (i.e., the 
maximal range of optimal values) can be determined without the use of the full NWP model. 

  



Scientific goals and objectives 

The main scientific goals and objectives are in-line with the CALMO research project, which has been 
proposed within the COSMO Consortium and accepted in September 2012. Namely, they are: 

• Provide an objective methodology for NWP models that can substitute expert tuning: Establish a 
standard procedure (tool) that objectively improves NWP model performance by optimally 
determining unconfined parameters. 

• Understand the sensitivity of the NWP model quality with respect to the model parameter 
space. 

• Optimize the calibration procedure with respect to the required amount of computing resources 
for each re-calibration. 

As a demonstration vehicle, the main COSMO configuration to be calibrated in this project is the 
1.1 km mesh-size COSMO model version currently developed within the COSMO-NExT 1project at 
MeteoSwiss, to be operational in 2016. For development of the calibration method, we will use a 2.2 
km version of the model, which is computationally much less expensive. This will yield an objective 
inter-comparison between the known ‘expert tuning’ of that version as well as an inter-comparison 
between two model version.  

Significant experience has already been gathered since the start of the CALMO project. Currently, the 
adaptation of the methodology is being investigated over a large domain (covering Europe) and with 
a 7 km mesh-size. Due to computational constraints, initial tests are performed at these coarse 
mesh-sizes and using only two parameters for calibration (namely the laminar boundary layer 
roughness and the minimal diffusion coefficient for heat) for the entire year 2008. Preliminary results 
show a low sensitivity on both 2 m temperature and precipitation. The reasons for this are not yet 
fully understood but may indicate that the selected parameters are not the most sensitive ones 
concerning NWP forecast quality. The current implementation of the method should urgently be 
shifted to mesh-sizes which are more relevant to current and future model implementations and 
expanded to more than two parameters. As a consequence, the number of required simulations will 
increase and a significant amount of computing resources are required. The selection of additional 
parameters to be calibrated is done in view of variables that are essential to weather forecasting, 
mainly 2 m temperature and precipitation. Initial emphasis is given on selecting parameters affecting 
different physical processes, ranging from cloud-radiation interaction to microphysics and boundary 
layer processes.  

An important aspect to be considered for the implementation of the method is the selection of the 
performance score for the model quality since it critically influences the sensitivity of the forecast 
quality with respect to the various poorly defined model parameters. For temperature, we intend to 
use root mean squared error (RMSE) as the performance score, which is widely used for temperature 
verification (Murphy, 1988). For precipitation it is known (Katz and Murthy, 1997) that several 
different accuracy measures have to be used to fully assess the value of the forecast. Stable 
Equitable Error in Probability Space (SEEPS) proposed by Rodwell et al. (2010) as well as FBI, ETS, and 
TSS proposed in the work of Cherubini et al. (2002) can be used. Special attention is required when 
selecting the observations used for the determination of the model performance, as they need to be 
consistent with the modeling framework and resolution. High-quality gridded datasets of both 
precipitation and temperature are available for long time periods (e.g. Isotta et al., 2013; Frei, 2013) 
and will be used for the verification of the calibrated model. Once the simulations have been 
performed, different scores or combinations thereof can be applied rapidly and without requiring 
further model integrations. 

The third important objective of this project is to optimize the calibration procedure with respect to 
the required amount of computing resources for each re-calibration: the less resources are needed 
for a calibration, the more (re-) calibrations can be done. While today expert tuning is often only 
                                                             
1 http://www.meteoschweiz.admin.ch/web/en/research/current_projects/forecast/COSMO-NExT.html 
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done once for a specific model parameter, an objective and reproducible calibration should ideally be 
run as often as needed (i.e., after every major model change, for an unbiased comparison of different 
model formulations, to avoid or remove compensation errors, etc.). It is currently not a priori clear 
what the best minimal simulation strategy is for a robust objective calibration. In case of COSMO-
CLM, Bellprat et al. (2012a) use 5 years of monthly means (resulting in 60 data points per parameter) 
to determine the meta-model coefficients. It is unlikely that the same statistics (which would mean a 
six-fold reduction of the required computing resources as compared to the needs to simulate a full 
year) will also be sufficient to calibrate an NWP model since daily means (e.g., 24h precipitation 
sums) exhibit a larger variability than monthly means, but it will be an important finding of this 
project to determine the minimal required data-set to perform a (regular) objective NWP model 
calibration. We plan to investigate different thinning strategies (only every n-th forecast, only n 
weeks every season, etc.) and their impact on constraining the optimal values of calibration 
parameters. Additionally, we will investigate the usage of coarser resolution simulations (2.2 km) for 
the calibration of more expensive high-resolution simulations (1.1 km). As a consequence, we require 
a considerable amount of computing resources in order to generate a robust reference calibration 
with a full year of 1.1 km daily forecasts. 

Description of the research methods, algorithms, and code 

In this section we briefly introduce the code that we will use for the simulations and describe the 
experimental design for applying the objective calibration method described above. 

The code used in this project is the limited area numerical weather prediction (NWP) model COSMO 
(http://www.cosmo-model.org/). COSMO employs finite differences to solve the primitive hydro-
thermodynamic equations that describe the non-hydrostatic compressible flow of the atmospheric 
constituents. It contains a comprehensive set of parameterization schemes to represent non-
resolved processes. COSMO is suitable for running simulations with grid spacings ranging from 
O(100km) to O(1km). The COSMO model has been running for many years at CSCS, both for 
numerical weather prediction and regional climate research, on several generations of CSCS 
supercomputers. 

Within the HP2C (http://www.hp2c.ch/) project “Regional climate and weather modeling on the next 
generations high-performance computers” the COSMO model has been the main target application. 
The dynamical core was restructured to be more easily adapted to new emerging computer 
architectures. The dynamical core is now written in C++ and is based on the stencil library STELLA 
(Gysi et al., 2014) and on a new communication library developed at CSCS (Bianco, 2013). In the 
HP2C project “Operational COSMO Demonstrator (OPCODE)” other important parts like the 
necessary physical parameterization schemes were ported to GPUs mainly through the use of 
OpenACC compiler directives in the respective Fortran code (Lapillonne and Fuhrer, 2013). For this 
project, this refactored version of the COSMO model capable of running on GPU-based hardware 
architectures will be used (referred to as RC). By the time of the start of this project, the RC version 
will be available based on the version 5.0 of COSMO. The benchmarks provided below, are done 
using the RC version based on COSMO 4.19. 

The computationally most expensive model setup will be based on the research configuration 
MeteoSwiss is using for the 1.1 km model named COSMO-1, currently under development. Such a 
high horizontal resolution is unprecedented and is currently not used for numerical weather 
prediction. The domain has a size of 1158 x 774 grid points in the horizontal and 80 vertical levels and 
spans the greater Alpine region. The simulation domain and the associated topography (in meters 
above sea-level) are shown in Fig. 3. The 2.2 km simulations will be executed over the same domain 
but have only 60 vertical levels, and thus the computational cost is reduced by a factor of 
approximately 10 with respect to a corresponding 1.1 km simulations. 

The calibration will be performed using 8 parameters. As already stated, the calibration requires at 
least 2*N + N * (N-1) / 2 repetitions of a single model experiment where N is the number of 

http://www.cosmo-model.org/
http://www.hp2c.ch/


parameters used, each experiment being characterized by a different set of model parameters. As a 
first step, the computationally much less demanding COSMO-2 will be calibrated (with 6 or 7 
parameters to be calibrated) to gain experience in the calibration methodology and its applicability 
to NWP models. Then, one year long COSMO-1 simulations in forecast mode (i.e. no direct use of 
observations) will be performed. The year 2008 has been chosen, because it is representative for a 
mean climatology over Europe. 

The initial and boundary conditions for all experiments will be taken from an analysis run at 2.2 km 
resolution. An important issue that requires careful consideration is the initialization of the soil, since 
the typical time-scale for the adjustment of the soil moisture to a change in the model climate is of 
the order of years. One possible approach will be a spin-up run with a much cheaper coarser model, 
before starting each calibration experiment. 

 
Figure 3: Orography and area covered by the 1158 x 774 grid point domain. 

Parallelization approach 

The standard COSMO version employs a two-dimensional domain decomposition along the two 
horizontal directions with a pure MPI parallelization strategy. Inter-node communication is 
dominated by nearest neighbor communication between adjoining sub-domains in order to update 
ghost values required for the application of the finite difference operators, which is implemented 
using a MPI_ISend and MPI_Recv scheme. Communication between accelerators is done using G2G 
technology avoiding transfers from device to host and vice versa. The G2G transfers are implemented 
using a MPI_IRecv/MPI_ISend/MPI_Wait strategy and overlap computation with communication 
wherever possible. The only remaining collective communication patterns are either for computing 
scalar diagnostics or in the I/O part of the code in order to gather fields for writing to the storage 
subsystem. Fine-grain, on-node parallelization is done using CUDA threads in the horizontal 
dimensions, where a minimum of approximately 96 x 96 gridpoints per accelerator are required for 
efficient execution (see below). 

Since the research in this project requires an ensemble of simulations with different tuning 
parameters, the ensemble members are completely independent and can be run in parallel. The 
number of nodes required by each ensemble member is determined by the scalability of the model 
and the required time-to-solution for the ensemble simulation.  

Representative benchmarks and scaling 

In this section we present two types of performance benchmarks. First, we present single socket 
scaling results in order to assess the typical per-node problem sizes that can efficiently be offloaded 
to GPU-based hardware. Second, we present benchmarking results from the Cray XC30 (Piz Daint) 
currently open for production at CSCS using a representative COSMO simulation at 1.1 km horizontal 
resolution. Piz Daint is hybrid high performance computing system with one Intel Xeon E5-2670 and 
one NVIDIA Tesla K20X per node. We will use the benchmark results for our estimation of required 
resources (see below). 



Single socket scaling 

The single socket scaling behavior of the refactored COSMO code in the absence of output 
operations is shown in Figure 4 for a node with two sockets of Intel Xeon E5-2670 as well as a node 
with a single NVIDIA Tesla K20x. The x-axis shows the number of horizontal grid points (atmospheric 
columns) that are assigned to one node. The results shown here exclude inter-node communication 
overheads, since only single node simulations have been executed. On both processor types there is 
an almost linear dependence on the number of grid points, until the number of grid points falls 
below a certain threshold. For GPUs this threshold is reached at approximately 96 x 96 grid points 
per node, whereas for CPUs scaling continues down to 16 x 16 grid points per node. For efficient GPU 
execution, a minimum number of grid points per node is required. Hence, there is a clear limit on the 
number of GPUs that can be efficiently used in parallel for a given problem size as well as on the 
minimum attainable time-to-solution. As long as we can stay within the range where GPUs are 
operating efficiently the use of GPUs is favorable. 

 
Figure 4: Wall clock time needed for a single time step with the restructured COSMO model on a single 
socket as a function of the number of grid points assigned to this socket for Nvidia Tesla X2090 GPU (black), 
Intel SandyBridge CPU (solid circles) and AMD Interlagos CPU (hollow circles) 

Full benchmarks 

Table 1 shows the benchmark results on Piz Daint hybrid nodes for the restructured code (RC) using 
the NVIDIA Tesla K20x accelerators (GPU) and the Intel Xeon E5-2670 processors (CPU) for a 
simulation representative for one ensemble member with a forecast time of +24 hours including I/O. 
The domain size and model configuration are representative for the runs we plan to execute except 
for using version 4.19 of the code. Initial testing has shown, that moving from version 4.19 to 5.0 will 
increase the total runtime of the model by approximately +15%, due to improvements of the 
numerical accuracy in the fast waves solver. Table 1 shows that the CPU version shows good strong 
scalability retaining a parallel efficiency of 85% when comparing a run on 16x16 nodes against a 8x8 
node reference run. The GPU version shows poor strong scalability. Memory constraints on the GPU 
do not allow us to put more than approximately 128x128 grid points on a single GPU, and thus we 
are not able to decrease the number of nodes below 8 x 8 for this problem size. 

Figure 5 shows the scaling behavior of the restructured version (RC) in CPU and GPU mode measured 
on Piz Daint. This experiment takes into account also the effects of inter-node communication and 
output to mass storage. This explains the differences to Table 1, which did not contain any inter-node 
communication and I/O. 



Configuration Version # nodes #GP/ node Runtime [min]  nodeh/modelyr speedup efficiency 

RC 8x8 GPU 65 13824 47.2 18665 REF REF 

RC 10x10 GPU 101 8847 45.4 27884 1.0 0.67 

RC 12x12 GPU 145 6144 42.3 37312 1.1 0.50 

RC 14x14 GPU 197 4514 38.3 45899 1.2 0.40 

RC 16x16 GPU 257 3456 42.2 65976 1.1 0.28 

RC 8x8 CPU 65 13824 104.3 41217 REF REF 

RC 10x10 CPU 101 8847 74.4 45712 1.4 0.90 

RC 12x12 CPU 145 6144 51.2 45150 2.0 0.91 

RC 14x14 CPU 197 4514 39.6 47469 2.6 0.86 

RC 16x16 CPU 257 3456 30.8 48205 3.4 0.85 

Table 1: Benchmark results on Piz Daint (Cray XC30) for a +24 hour simulation with the target domain size of 
1158 x 774 grid points at 1.1 km resolution. Results of experiments for the restructured code (RC) running on 
accelerators. 

For the production simulations of this project the 
ratio between wall clock time and model time is 
of key importance, as it determines the time-to-
solution for a given simulation period. In order to 
complete a 1 year long simulation within 
approximately 1 to 2 months a ratio of at least 12 
must be attained (accounting for queue wait time 
and failure recovery). Thus a 24 hour simulation 
should have a wall clock time of approximately 
120 min or less. Table 1 shows that in terms of 
nodeh/modelyr the GPU version of the code is 
over a factor 2.2 more efficient. For the 
configuration using 8 x 8 + 1 = 65 nodes and 
running on GPU, we require a total of 12 wall-
clock days for a simulation of 1 model year. This 
is a sufficient time-to-solution for this project 
and we plan to use this setup for the production 
runs. Since the simulation plan contains an 
ensemble simulation with completely 
independent ensemble members, we expect to be able to simulate the full ensemble within three to 
four months of wall-clock time, accounting for system usage by other users, queue wait time and 
failure recovery. 

Performance analysis 

Table 2 below shows the required performance analysis metrics for the benchmark. The benchmark 
corresponds to a COSMO configuration at 1.1 km resolution integrated forward 24 hours with 
activated performance profiling using CrayPat (pat_build –g mpi,io). The results were obtained on Piz 
Daint with the restructured code on CPU and GPU for the target configuration using 8x8 nodes (see 
above). It should be noted, that some of these performance metrics only make limited sense in the 
case of GPU execution, but we have included them to comply with CSCS’ requirements for 
production proposals. 

Architecture CPU GPU  

Number of nodes 64 + 1 64 + 1 

Figure 5: Wall clock time [min] for +24 hours of model 
time for a domain of size 1158 x 774 gridpoints as a 
function of numbers of nodes used for the simulation 
for the GPU version (blue) and the CPU version (red) of 
COSMO measured on Piz Daint. 

 



Number of MPI ranks 512 + 1 64 + 1 

Wallclock time [s] 7403.5 3605.1 

Memory [MB] / process 710.8 3163.1 

MPI (% of total walltime) 11.5% 8.8% 

MPI_SYNC (% of total walltime) 6.5% 3.7% 

MPI call1 (% of total walltime) MPI_Wait 6.7%  MPI_Recv 7.4% 

MPI call2 (% of total walltime) MPI_Allreduce 5.5% MPI_Allreduce 1.5% 

%peak (DP) 12.3% 3.3% (not applicable) 

PAPI FP OPS / process 2.13E+13 2.87E+12 

PAPI L1 DCM / process 2.82E+13 9.64E+12 

Write Rate (MB; MB/sec) 66594.6 MB 
100.2 MB/s 

64602.8 MB 
743.14 MB/s 

Table 2: Selected output values from CrayPat for the benchmarks running on 8x8 nodes with the 1.1 km 
resolution configuration of the restructured COSMO code on Piz Daint 

As is typical for weather applications, applying finite difference discretizations for the solution of the 
underlying governing equations, per process memory usage is very low. MPI communication is 
dominated by nearest neighbor communication (MPI_Recv) and synchronization. The comparatively 
large synchronization times stem from inherent imbalances in the model, mostly caused by modules 
of differing cost being applied to sea/land grid points and/or cloudy/cloud free regions. The floating 
point efficiency depends on several factors (local domain size as compared to cache size, 
vectorization along the first horizontal direction, etc.) and is not straightforward to explain. 

Project plan: tasks and milestones 

This project will be a one year project running from 1.10.2014 to 30.9.2015. The distribution of 
individual tasks over the project period is shown in Table 3. During the first three months a 
calibration of the 2.2 km mesh-size COSMO version will be performed using 6 to 7 parameters to test 
the calibration method for a convection-permitting COSMO configuration. In computational terms 
the calibration at 2.2 km is a factor 10 cheaper than the one for 1.1 km horizontal resolution, and it is 
hence well suited as a start-up exercise. Moreover, it will also allow for an objective inter-comparison 
between the two model versions, and provide an assessment of the added value of higher resolution. 

Months 4 to 12 are devoted to one year simulations (one forecast per day) with 1.1 km resolution 
and 8 perturbed parameters. This requires substantial computing resources (990’000 node hours, see 
below). This proposal requests to get these resources in full, in order to generate a complete data set 
and a robust reference calibration.  For a calibration tool that needs to be run as often as possible 
(ideally after every major change of the model configuration, after major code changes or after 
implementation of new model components such as new parameterization schemes, etc.) this large 
amount of computing resources is a major stumbling block. We will therefore thoroughly investigate 
to what extend the data set of full model runs can be reduced to still obtain a robust and good 
quality calibration result.  

 

Task Description Months Milestones 

1 Refinement and testing of the 
calibration method with 
COSMO-2. 

1-3 COSMO-2 simulations are done, performance 
score for NWP is defined, model parameters to 
be calibrated is determined. 

2 Full year simulations with 
COSMO-1. Parameter 

4-12 COSMO-1 simulations are done (mainly in 
months 4-9), meta-model is set up, minimal 



estimation for coefficient of 
meta-model using the full one-
year data set as well as sub-
sets thereof. 

amount of model runs needed for a robust 
calibration is determined, COSMO-1 is 
calibrated. 

Table 3: Distribution of tasks and milestones over the year.  

We expect a high interest from the broader research community in the findings of this project and 
plan to publish the results in a high-profile, peer-reviewed journal. 

The project team which will execute the proposed research and simulations has the required skills to 
perform the tasks in a professional, effective and timely manner. Dr. Voudouri is the project leader of 
the CALMO project and will carry the overall responsibility. The Co-PI’s (Dr. Bettems and Dr. Khain) 
are both CALMO project members. Dr. Bettems has significant experience in running production 
simulation workflows for NWP on the CSCS systems. The team will profit from existing scientific 
collaboration with Prof. Schär and Dr. Bellprat, who have developed the methodology for climate 
applications. The GPU version of the COSMO model is being developed by a team under the lead of 
Dr. Fuhrer, who has significant experience with running COSMO on hybrid Piz Daint. Finally, Dr. 
Arpagaus is the project leader of the COSMO-NExT project, developing the next generation weather 
prediction models for Switzerland. He adds significant experience in model validation and verification 
and will ensure the applicability of the methodology to a real world NWP system.  

Resource justification 

The following Table 4 shows the resources needed for the project. The calculations are based on the 
benchmark and scaling tests given in the two preceding sections. The configuration chosen for the 
needed resource estimates is RC 8x8 from Table 1 above. Due to the upgrade of the code version 
from 4.19 to 5.0 we expect a further increase in runtime of approximately +15%, due to the 
introduction of a new fast-waves solver in the dynamical core. For the estimation of needed 
resources, we added a margin of 5% to the benchmark result in Table 1 to account for jobs that need 
to be re-run because of failures of any kind (system problems, data problems etc.). In summary, we 
thus require 22’500 nodeh/year for the RC 8x8 configuration (at 1.1 km resolution) on GPU. 

Simulation type  Number of 
simulations  

nodeh/year  Total 
nodeh  

Storage 
needs  

One year simulations with 2.2 km 
resolution for 6 to 7 parameters 

35 x 1 year 
(GPU) 

2’250 78’750 12 TB  

One year simulations with 1.1 km 
resolution for 8 parameters 

44 x 1 year 
(GPU) 

22’500 990’000 58 TB  

Total   1’068’750 70 TB 

Table 4: Overview of needs for the allocation period 

The amount of raw data produced with the simulations will be of the order of 70 TB for the entire 
amount of simulations. The actual amount of storage capacity needed is extremely high as we intend 
to perform simulation that cover in total 44 years. To address this problem, a data thinning policy will 
be employed. Only 2-dimensional fields for specific variables will be kept for the entire simulation 
period. Thus, the amount of storage space needed is significantly reduced. The numbers given in the 
table above already take into account this reduction especially for the 44 one year simulations with 
the 1.1 km configuration.  
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