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Task 1. Challenges in observing Challenging/High Impact Weather  (WG5 and WG4 

related) 

Question: How well high-impact weather is represented in the observations, including biases 

and random errors, and their sensitivity to observation density? 

HIW phenomena studied: visibility range (fog), thunderstorms (w. lightning), intense 

precipitation, extreme temperatures and winds. 

Andrzej Mazur, Institute of Meteorology and Water Management – National Research 

Institute 

Chiara Marsigli, DWD 

Anastasia Bundel, RHM 

 

This task considers which observations are necessary to verify HIW forecasts, as well 

as issues related to observation sparseness, quality, and thresholds. HIW prediction 

improvement depends crucially on availability of dense observations. The uncertainty is 

higher in new types of observations, and it becomes necessary to take it into account. The 

overview of methods to account for observation uncertainty is considered in paragraph 1.2. 

Often, the best way is to use several observational datasets to this purpose. For verification 

and postprocessing, the essential step is to find good correspondence between the forecast and 

observation, or reference. In [C. Marsigli et al, 2021], a framework for the verification of 

high-impact weather is proposed, including the definition of forecast and observations in this 

context and creation of a verification set. This was discussed at the IVMW2020 

[https://jwgfvr.univie.ac.at/]. It was noted by T.Bullock [https://www.univie.ac.at/img-

wien/jwgfvr/2020IVMWO_Outcomes&PhotoMosaic.pdf] that there is always some 

processing (both on observations and forecast) for enabling comparison. We need just to be 

clear on what is being done to the model output and/or obs prior comparison (e.g., conversion 

of radar reflectivities to rainfall rate, versus forward model to reproduce radar reflectivities). 

 

It can be said that every weather has its impact. Starting with the least inconvenient, 

like 

1. Inconvenience of carrying an umbrella/sun glasses, 

2. Higher power bills,  

through moderately troublesome: 

3. Possibility of dispersion of atmospheric pollutants,  
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4. flight delays due to weather conditions 

... 

to very dangerous in consequences, like 

n. Catastrophes in sea, land and air traffic 

n+1. The destruction caused by a flood or a tornado. 

 

To someone affected, any of these may seem “significant” at that moment. Some impacts are 

clearly more significant than others. There are four general categories of impacts: 

1. Low-impact – minor inconvenience, small and local economic losses, etc. 

2. Moderate-impact – minor damage, some social disruption, etc.  

3. High-impact – damage, risks to health, broad economic impact, etc. 

4. Extreme-impact – dramatic losses, deaths, injuries, major social disruption, etc. 

 

Since every (kind of) weather has its impact, each weather element can be treated as an 

impact source. It's just a matter of scale. 

• ”regular” elements – temperature, precipitation, wind speed…  

• ”specific” elements – visibility limitations, thunderstorms, tornadoes, … 

Observational data for each element can be obtained from a variety of sources. The main 

sources can be divided into: 

 

1. Data from SYNOP stations 

2. Lightning Detection Networks (LDN)  

3. Radar data, Doppler radar data 

4. Satellite products 

5. Nowcasting products used as reference data 

6. Non-conventional data such as datasets derived from telecommunication systems, 

data collected from citizens, reports of impacts and claim/damage reports from 

insurance companies, social networks, data from cameras and images 

7. Other data 

 

Below, an overview of these sources is given. This overview is far from being exhaustive, 

and, according to the purposes of PP AWARE, is focused on the types of observations used in 

the project tasks, namely, events of convective origin (extreme precipitation, lightning, 
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convective cells, tornadoes) and fog. In [C. Marsigli et al, 2021], an overview of new 

observation types is given in more detail.  

 

1. Data from SYNOP stations1, climatological stations, rain gauges, telemetry stations 

includes measurements of, among others, the following values: 

- temperature, precipitation, visibility range/limitations, wind speed, wind gusts, occurrence 

of fog/haze, occurrence 

 of thunderstorm with lightning (limited to a remark as ”day with lighting” or similar). 

 

These conventional observations remain the basic source of data for many HIW events, 

e.g., extreme precipitation, extreme temperatures and wind. They pass thorough quality 

control and are regular in time. There are long time series of synoptic measurements, which is 

important in the study of rare phenomena. However, the problem with these stations (both 

manned and unmanned) is that the measurement is valid only for the location of a particular 

station. The representativeness may be (artificially) extended up to some dozens of 

kilometers, but it is not necessarily valid for example for stations located in complex terrain 

etc. Some specific measurements (like fog/visibility range2) are being transferred, however, to 

more universal, mobile installations. Data of SYNOP stations: visual thunderstorm occurrence 

at a given obs time and between obs times in a radius 5 km. 

Another problem with SYNOP observations is that they often do not permit full 

characterization of specific HIW phenomena, such as visibility limitations, thunderstorms, 

tornadoes. Thus, in Europe, 10 years ago, a list of new weather elements to be subject to 

routine verification was proposed by [Wilson and Mittermaier 2009]. Among others, 

visibility/fog, atmospheric stability indices and freezing rain were mentioned, and the 

observations needed for the verification of these additional forecast products were reviewed. 

 
1 An exemplary information from European/Polish SYNOP station after decoding a SYNOP (encoded) wire 
rrrr mm dz gg number n  dd ff vv ww w1w2   pppp ttt nh cl h    cm    ch tdtdtd a   ppp rrr 

2020  3  3  6  01001 7 120  6 10  2   22 1013.2 1.1  7  5 3 -1000 -1000   -3.7 7  -0.6   0 

tntntn txtxtx  tgtg sss ff_911   ddd ss_931 tststs ff_910   p0 rrr_24  

  -0.2  -1000 -1000 0       12 -1000  -1000  -1000  -1000 1012      0 

 
2 Hautiere, Nicolas et al., 2006. Automatic fog detection and estimation of visibility distance through use of an 

onboard camera. Mach. Vis. Appl.. 17. 8-20. 10.1007/s00138-005-0011-1. 
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A general remark regarding LDN, and (even more) especially radar or satellite data, is 

as follows: for their correct use, a proper software is needed that will allow the data to be 

transferred to the appropriate (required) format. 

 

2. Lightning Detection Networks 

-Provide information about thunderstorms, lightnings 

 

Lightning Detection Networks (LDNs) are based on lightning detectors that indicate 

electrical activity. The basic assumption made when creating LDN ensures that due to proper 

triangulation, it is possible to estimate the almost exact location of the flash. LDNs can detect 

dry thunderstorms. Furthermore, lightning detectors do not suffer from a masking effect and 

provide confirmation when a shower cloud has evolved into a thunderstorm.  

If used as a proxi for a thunderstorm, a question arises: How many strokes are needed 

to detect the occurrence of a thunderstorm? The matching of the two entities in the verified 

pair should be checked before the computation of summary measures. Any thresholds used to 

identify the objects of the two quantities must also be studied to ensure that the identification 

and comparison is as unbiased (from the observation point of view) as possible [C. Marsigli et 

al., 2021]. In the present report, verification using LPI (lightning potential index) and LDN 

data is studied in tasks 3.1 and 3.2. 

 

Global LDN: websites 

The most popular global resources about lightning are: 

• https://blitzortung.org, a worldwide social network for determining location of 

lightnings in real time. In figures below exemplary screenshots from the webpage in 

static and dynamic presentation.  

https://blitzortung.org/
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Figure 1. Webpage https://blitzortung.org. On the left – standard discharge image – locations 

marked with crosses, the more red the crosses are – the older occurrence of lightning. On the 

right, a dynamic map with additionally marked locations of the detectors and lines to the 

detectors that detected a specific discharge. 

 

• http://wwlln.net/TOGA_network_global_maps.htm: Very Low Frequency sensors. 

Lightning stroke positions are shown as colored dots which "cool down" from blue for 

the most recent (occurring within the last 10 min)  through green and yellow to red for 

the oldest (30-40 minutes earlier)  

 

Figure 2. http://wwlln.net/TOGA_network_global_maps.htm 

 

Regional LDNs 

Regional lightning detection networks: Very Low Frequency sensors in the real time 

within 100-300 km radius, detect two types of lightnings: cloud-earth and intra-cloud.  

http://wwlln.net/TOGA_network_global_maps.htm
http://wwlln.net/TOGA_network_global_maps.htm
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In Poland LDN operated by NWS is called PERUN. It is basically identical to French SAFIR. 

(Surveillance et Alerte Foudre par Interférometrie Radioélectrique). 

An exemplary information from PERUN LDN: time, location, flash type, intensity etc. 

11/01/2011 00:24:50;0004FCFFFFFFFFFFFFFFFFFF;1;0;7561;538442;193454;0;218;0;0;0;0;0;0;7;10;0 

11/01/2011 00:25:58;0004FCFFFFFFFFFFFFFFFFFF;1;0;6839;537325;196241;0;218;0;0;0;0;0;0;7;10;0 

11/01/2011 00:26:35;0004FCFFFFFFFFFFFFFFFFFF;2;0;8280;536018;194977;0;203;0;0;0;0;0;0;7;10;0 

11/01/2011 00:26:35;0004FCFFFFFFFFFFFFFFFFFF;2;0;8788;536502;190226;0;103;0;0;0;0;0;0;5;2;0 

 

In Russia, the lightning detection system of Roshydromet ALVES 9.07 is used 

[Gubenko I. 2016; Snegurov A.V., Snegurov V.S. 2012]. In [Gubenko I. 2016], it is shown 

that the accuracy of regional Russian LDN is higher than WWLLN (comparison to SYNOP 

data). 

Other examples of European LDNs are BLIDS (which stands for Blitz-

Informationsdienst von Siemens), FLITS (in Netherlands and Belgium) or LINET, developed 

in Munich, Germany. In [C.Marsigli et al. 2021], other lightning detection networks are listed, 

and references to works with applications of LDN data in verification are given including 

spatial approach and combining different data sources.  

 

3. Radar data, Doppler radar data  

-Precipitation intensity and type, wind speed, lightning   

 

Radar data and/or Doppler radar data are acquired from weather radar that indicates 

precipitation (in a standard mode) and wind field (in Doppler mode). Both phenomena are 

associated with thunderstorms and can help indicate storm strength. In general, weather radar 

will show a developing storm before a lightning detector does. However, weather radar also 

suffers from a masking effect by attenuation, where precipitation close to the radar can hide 

precipitation farther away. Moreover, if there is no precipitation (at all), availability of radar 

data declines rapidly in both standard and Doppler mode. This situation may occur in 

connection with the phenomenon of so-called dry thunderstorm. In this case lightning(s) may 

be also located outside any precipitation recorded by radar.  

In addition to stationary (ground-located) installations for the detection of flashes, 

mobile devices are also used and carried on ships or airplanes. Large airliners are more likely 

to use weather radar than lightning detectors, since weather radar can detect smaller storms 

that also cause turbulence. Modern avionics for additional safety include lightning detection 
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as well. For smaller aircraft, especially in general aviation (where the aircraft nose is not big 

enough to install a radome) lightning detectors can find and display IC and CG3 flashes. 

Digital radar systems now offer thunderstorm tracking surveillance. This provides 

users with the ability to acquire detailed information of each storm cloud being tracked. 

Thunderstorms are first identified by matching precipitation raw data received from the radar 

pulse to some sort of template preprogrammed into the system. In order for a thunderstorm to 

be identified, it has to meet strict definitions of intensity and shape that distinguish it from any 

non-convective cloud. Usually, it must show signs of organization in the horizontal and 

continuity in the vertical: a core (more intense center) to be identified/tracked by digital radar 

trackers. 

Radar reflectivity fields are used for the estimation of the risk of tornadoes, and for 

verification of these events (see Task 4.1.2).  

 

4. Satellite products  

Occurrence of fog/haze, detection of convective storms, cloud properties (direct measurement 

of moisture and instability4), also via convective indices and CAPE  

 

An advantage of the satellite products is that they provide data over data-sparse 

regions. 

Satellite data detection of convective storms is based on direct measurement of 

moisture and instability,  

▪ Intensity = IR + ((IR-NWP)-(WV-IR))5 

with IR, NWP, WV being temperature obtained from different channels.  

From the above equation, it is necessary to use the PA (e.g., the results of the global GFS 

model). 

▪ convective indices, in general, can be a good prognostic tool if only forecasters 

could understand why values are approaching critical levels, like in the 

examples below:  

 Showalter Index – extreme instabilities for SI less than -6 

 Total Totals Index – severe storms with TTI greater than 50 

 K Index – high convective potential for K greater than 40 

 
3 IC – inter-cloud lightning, CG – cloud-to-ground flash 
4 infrared (IR) 10.8 µm and water vapor (WV) 6.2 µm channels 

5 da Silva et al., 2016. A method for convective storm detection using satellite data. Atmósfera 29 (4), 343-358 



8 
 

 SWEAT Index – severe phenomena possible for SWEAT greater than 300 

 Lifted Index  – extreme instabilities for LI less than -6 

 CAPE – extreme values of 2500 and more  

 

An example of thunderstorm verification for clouds based on satellite data is given in 

[Keller et al. 2015]. 

In RHM, a study on identification of the areas of deep convection based on satellite 

data is carried out [Shishov A.E., I.A. Gorlach 2020; Shishov A.E. 2021]. Based on calibrated 

radiative temperature from Seviri, Meteosat-11, using a threshold, a mask of deep convection 

areas is found. Then the cell shape is determined. The cells are traced in time based on the 

normalized overlapping area. Cell destroying is also taken into account. Then, the cell 

movement direction, deformation, and other characteristics are identified. Figure 3 gives an 

example of the areas of deep convection in the visualization system developed by the authors. 

It is planned to involve other data for deep convection area identification, such as surface obs 

(KH01, METAR) and COSMO-Ru / ICON-Ru prognostic fields. It is planned to study the 

feasibility of using this product as a reference for verification of a model analogue. 

 

Figure 3. An example of the areas of deep convection in the visualization system 

 

Satellite products are now widely used to derive the information about the fogs and low 

stratus, besides SYNOP reports containing visibility range/limitations. Problems of visibility 

measures from manual and automatic stations are described in [Wilson and Mittermaier 
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2009]. The main problem of point observations is that they are scarce and not sufficient to 

reproduce the spatial stracture of fog.  

In [Morales at al. 2013], verification is performed for low clouds in the model as proxi for 

fog vs cloud type product from satellite NWC-SAF as observations. In [Ehrler 2018, 

Westerhuis et al. 2018], liquid water path (LWP) in the model is compared vs satellite data 

(channel combination) to give a Cloud Confidence level. A paper is under preparation by the 

Russian team (N. Chubarova, Yu. Khlestova, et. al.), which compares model LWP using one- 

and two-moment physics COSMO scheme with satellite product. 

Satellite images also enable reconstruction of tornadoes tracks by fallen trees (see also 

Task 4.1.2) 

 

5. Nowcasting products used as reference data 

National Meteorological Services develop tools for nowcasting, where data from different 

sources (satellite, radar, lightning, …) are integrated in a coherent framework. The detected 

variables/objects of nowcasting (thunderstorm cells, hail, …) can become observations 

against which to verify the model forecast. Thus, nowcasting products are proposed as 

observed data instead of prediction tools if we consider step 0 of the nowcasting algorithm as 

an “analysis”. 

 

Figure 4. Nowcasting objects from KONRAD3D system 

 

Advantage of this approach is high spatial continuity over vast areas and detection of 

high-impact weather phenomena, while the disadvantage is that some data have only a 
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qualitative value. But qualitative evaluation could become quantitative by “relaxing” the 

comparison through neighbourhood/thresholding.  

The link with the nowcasting groups should be strengthen to explore the possible usage of 

the variables/objects identified through nowcasting algorithms for forecast verification. 

 

 

6. Non-conventional data 

The number of applications of non-conventional data grows rapidly.  

They include: 

• Data from insurances 

• Data from citizens (private meteostations, phones), cars 

• Impact data (emergency calls, fire brigade operations) – high spatial resolution 

• Social media (social networks, etc.) 

• Data from cameras and photos 

 

A detailed overview and examples of the studies using new non-traditional sources of data 

is given in [C. Marsigli et al. 2021]. 

The aim of the Second international verification challenge in 2021 (Run by WMO 

HIWeather Project and Joint Working Group on Forecast Verification Research) is to promote 

quantitative assessment of high-impact weather, hazards and impacts through the use of non-

traditional observations [https://www.emetsoc.org/second-international-verification-

challenge/].  

Recognition of weather from cameras and photos widely relies on the use of machine 

learning. For example, in [Bin Zhao et al. 2018], the accuracy of several CNN-RNN 

Architectures for Multi-Label Weather Recognition from images was studied. 
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Figure 5. Weather recognition from images [Bin Zhao et al. 2018] 

 

A quantitative estimate of weather variables from images was performed in (Wei-Ta 

Chu, Xiang-You Zheng, Ding-Shiuan Ding 2017). The average RMSE of temperature 

estimate was 1.98°C, of humidity, 7.13%, the accuracy of clouds and precipitation estimate 

was about 76%. 

 

Figure 6.  Weather variables determined from photographs [Wei-Ta Chu, Xiang-You Zheng, 

Ding-Shiuan Ding 2017] 

 

7. Other data sources 

Other data sources on CW / HIW (mostly storms, but not only) are mostly websites. A 

universal online resource is the European Severe Weather Database, https://eswd.eu, operated 

by European Severe Storms Laboratory. 
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The information about single event (in general, phenomenon – not only lightning, but 

generalized HIW event) is presented in a table similar to the one below: 

Event Time and location Other info/Quality Control 

Heavy 

rain 

Inwałd,  Małopolskie, 

Poland 

(49.87N, 19.39E)<1 km 

22-08-2020 (Saturday) 

18:30 UTC(+/-15 min.) 

based on information from: a report by a weather 

service, a report on a website, government-based 

sources/administrative organizations  

precipitation: 31.2 mm, duration: 0.5 hours  

Automatic IMWM-NRI weather station measured a 

rain amount of 31.2 mm in 30 minutes, 26.9 mm in 20 

minutes and 20.2 mm in 10 minutes during passage of 

a thunderstorm. 

http://monitor.pogodynka.pl/#station/meteo/249190090 

Reference: Monitor IMGW, 22 AUG 2020. 

report status: plausibility check passed (QC0+) 

contact: ***** *** 

 

Similar information can be obtained from Meteoalarm – Severe Weather Warnings in Europe: 

https://www.meteoalarm.eu/ 

By using the dynamic structure of the resource, information about HIW events can be 

obtained at the spatial resolution level of a few square km, starting from continental, via 

country, to sub-country (city) scale. 
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a. Meteoalarm main page 

 

b. Warnings for selected country 

 

 

c. Detailed warning for city/small region 
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d. Alert map in Russia similar to Meteoalarm 

Figure 7. Meteoalarm systems 

 

One important difference is that this portal only allows you to check alerts (forecasts). 

However, later, for verification, one can compare the data from this webpage with e.g. the 

data from ESWD/ESSL. For this reason, this webpage should also be considered valuable. 

 

 

Conclusions 

• Combining all available datasets is usually the best choice 

• The usefulness of data strongly depends on the particular case. For example, during 

the stormy season, all methods can be equally useful, as well as their combination.  

• For individual cases of thunderstorms, LDN seems to be the best to determine their 

intensity and location. Supplementing LDN results with radar data would give a full 

picture of the situation.  

• Data quality and data uncertainty assessment: usage of multiple data sources 

• Introducing uncertainty information in applications – one of the implicit ways: spatial 

verification methods 

• Closer cooperation with nowcasting, where products for high-impact weather 

detection are developed 

 

And one final note, definitely written in time and under the influence of the state of the 

outbreak. In the CoVid-19 era, strangely enough, the number of available data may 

significantly decrease – as a result of data limitation, e.g. from cancelled flights or sea cruises. 

That is therefore so important to make the best use of the available data. 
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