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1 Introduction

Germany is exposed to various kinds of high impact weather phenomena. Strong impacts are expected from
convective events during summer which happen to be especially hard to predict. The Seamless Integrated
Forecasting System (SINFONY) project at DWD focuses on such events, which mostly take place on the
kilometer scale. One aim of the project is therefore the development, adaptation, and operationalization
of innovative, spatially based verification methods of the entire process chain of the integrated forecasting
system consisting of data assimilation, nowcasting and numerical short-term prediction. The advantage of
spatially based verification methods is that exact matching of forecasts and observation no longer needs to
prevail to obtain good scores because these methods circumvent the “double penalty” problem, i.e. a miss
due to a displaced observation event and a false alarm due to a displaced forecast event.

Following Gilleland et al. (2009) there exist mainly four categories of spatial verification – neighborhood
(or fuzzy) and scale-separation basically applying filtering methods, as well as feature (or object) based and
field deformation basically yielding information about displacements. In the SINFONY project, we decided
to apply neighborhood as well as object-based verification methods. Both methods are well established and
cover a huge amount of information which is helpful for model development, user interpretation and many
more.

The neighborhood (also known as fuzzy) approaches compare values of forecasts and observations in
space–time neighborhoods relative to a point in the observation field. Properties of the fields within neigh-
borhoods (e.g., mean, maximum, existence of one or more points exceeding a certain threshold) are then
compared using various statistical summaries, which are often simply the traditional verification statistics.
Such comparisons are typically done for incrementally larger neighborhoods so that it is possible to determine
the scale at which a desired level of skill is attained by the forecast (Gilleland et al., 2009). The neighborhood
methods apply a smoothed filter on the original field(s). Summary statistics, such as traditional verification
statistics, can be applied to the smoothed field. The process is typically repeated using increasingly larger
neighborhoods. The most established neighborhood method is called Fractions-Skill-Score developed by
Roberts and Lean (2008).

Of particular interest, especially in SINFONY, are object-based methods which require a threshold-
linked object identification algorithm. It is applied to pixel-based forecast and observation fields of radar
reflectivity. The resulting objects contain certain attributes regarding their geometry (e.g., centroid, area),
intensity (e.g., min, max), and forecast information (e.g., trajectory). In SINFONY, we focus on the object-
based evaluation metric called median of maximum interest (MMI) after Davis et al. (2009) to assess
the quality of the predicted precipitation objects. The object-based evaluation is extended to cope with
ensemble forecasts. Besides basic single member verification a new technique to define a so called “pseu-
domember” (Johnson et al., 2020, J20 hereafter) is analyzed. The pseudomember comprises a reasonable
and representative selection of objects from all ensemble members that have locally the highest probability
of occurrence.

2 Data and methodology

2.1 Data sets

In SINFONY will be a variety of data available for verification. The case study period of the underlying
data will be mentioned in the respective section.

2.1.1 Grid-based data

For numerical weather prediction, NWP, the underlying model is the regional ICON-D2-EPS in a quasi-
operational setup since 2019. Before 2019, we were using COSMO-DE-EPS in a quasi-operational setup.
The EMVORADO operator (Zeng et al., 2016) simulates synthetic radar reflectivities for each of the 17
polarimetric Doppler-C-Band radar systems in the DWD radar composite. Subsequently, the model volume
scans will be processed by POLARA and mapped onto a Radolan grid with a horizontal resolution of 1 km.
We are using 40 members for data assimilation and 20 members for the forecast of up to 8 hours.

For nowcasting, we are using STEPS DWD with a localization filtering approach (planned to submit
in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing) to generate an
ensemble with 30 member (20 member used for verification) with a nowcasting time of two (or four) hours.
All nowcasting data are on the 1 km horizontal resolution Radolan grid.
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2.1.2 object-based data

For object identification, we are using our in-house product KONRAD3D. With the help of adaptive thresh-
olding schemes and other filtering methods, which will not be specified in this report, KONRAD3D identifies
cell objects in each radar volume scan. The default basic threshold for object identification is 35 dBz whereas
a subcell within such regions must fulfill a minimum-maximum difference to the basic threshold of at least
7 dBz. This means that cells mostly obtain a minimum value of 42 dBz. By optimized combination of
objects in each radar volume scan, three-dimensional objects will be built taking into account the entire
DWD radar network.

KONRAD3D is used for object nowcasting as well. Currently in development is an ensemble based object
nowcasting which will unfortunately not be available for the current study. However, since EMVORADO
simulates reflectivity for all radars and respective volume scans, KONRAD3D can be applied to the NWP
forecasts, described in the previous section. Therefore, we can fall back on an 20 member ensemble object-
based NWP forecast of 8 hours with temporal resolution of five minutes to test our object-based verification
methods. Further, a comparison of 1-moment vs. 2-moment microphysics scheme will be done. As the
latter is able to produce higher reflectivities, it is expected to better capture extreme events.

Combined product Seamless combination of nowcast and model forecast, grid-based and object-based.

2.2 Spatial verification methods

2.2.1 Neighborhood-based methods

We apply mostly well-known neighborhood-based verification methods to our data. The most established
method is the fractions skill score, FSS, (NO-NF) by Roberts and Lean (2008). Further, we implemented the
minimum coverage method (NO-NF), Fuzzy-logic (NO-NF), fuzzy-logic with joint probabilities (NO-NF),
multi-event contingency table (SO-NF) and pragmatic approach (SO-NF) for which the reader is referred to
as Ebert (2008). All necessary information about the underlying methods can be found in this publication.
Since the above mentioned methods for building a contingency table from neighborhood probabilities have
weaknesses in their bias behavior, we implemented the neighborhood-based contingency table including
errors compensation by Stein and Stoop (2018). This method uses a practical approach in which it the
same number of misses and false alarms in a certain neighborhood compensate each other to hits and
correct negatives, i.e. it is a correct forecast in the respective neighborhood. A positive side effect of this
method is that the frequency bias is independent of the neighborhood size (small deviations on domain
edges are possible), which makes it quite practical using it for verification.

Another useful method we implemented is the displacement estimation of precipitation fields based on
fractions skill score by Skok and Roberts (2018). The authors used the FSS = 0.5 threshold for a useful
forecast to estimate a global distance metric. The results are quite promising even though the method is
not applicable for frequency biases larger than two and lower then 0.5. Also for frequency biases larger than
1.5 (< 0.75) the method exhibits shortcomings. However, for the remaining data, the displacement metric
is a useful information apart from the classical categorical verification metrics. To go one step further, G.
Skok presented a new metric called displacement from NSS (neighborhood skill score) at 2020 International
Verification Methods Workshop. Further, Skok showed that the results are closer to the real displacement
and also in more realistic cases the score showed more reliable results. The Displacement-NSS is no more
limited to small biases which makes it quite useful for application in our SINFONY project. Therefore, with
the help of G. Skok, we implemented this metric as well. However, the deviation of the NSS displacement
from real displacement becomes larger the closer precipitation objects are to the domain edges. Up to now,
we did not correct this fact in our verification analyses but postpone it to future work.

Another useful method, we implemented, is Neighborhood-Ensemble-Probabilities (NEP) proposed by
Schwartz et al. (2010). Here, the thresholding, neighborhood-smoothing (for different box lengths) will
be done for all M ensemble member separately. Finally, the resulting M neighborhood probabilities will
be averaged to obtain NEP. On the NEP field, all above described methods can be applied, however, not
all methods will give benefits for using NEP. The most reliable method in combination with NEP is FSS.
The NEP is most beneficial for smaller neighborhood sizes around a certain point of interest. For larger
neighborhoods, the effect will be smoothed out or the areas of precipitation probabilities become to large
in comparison with the observation.

Finally, we implemented reliability and ROC diagrams for analyzing our grid-based deterministic and
ensemble data. As reference, however, we made a compromise and took only binary observation into account,
since otherwise the huge quantity of verification data is not manageable in an operational framework.
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Further implementations are planned for the future.

2.2.2 Object-based methods

Total Interest and Median of Maximum Interest

The TI (Davis et al., 2009) is a measure for the similarity of two objects with respect to the objects’
attributes. For each selected attribute i of an object pair j a “fuzzy logic function” (F ) is defined in order
to transform the value of i into the interval [0,1]. For example, the function of the centroid distance (FCD)
– one attribute of an object pair – is defined to be equal 1 if CD is less than 10 km, then linearly decreases
with increasing CD and equals 0 for CD larger than 100 km. The F -values of different attributes result in
the “interest” (I) by multiplying with weights (w) and confidence factors (c). The TI of an object pair j,
finally, is the weighted sum of all I-values of all considered attributes i (Davis et al., 2009):

TIj =

∑
i Iij∑
i wici

(1)

Iij = Fijwici (2)

Attribute w, % c fmin fmax

Centroid distance 28 Area ratio 10 km 100 km
Minimum boundary distance 40 1 5 km 50 km
Area ratio 19 1 0.0 0.8
Intersection area ratio 13 1 0.0 0.25

Table 1: Attributes and parameters used to calculate the total interest TI. fmin and
fmax are the lower and upper limits below and above which the fuzzy logic function of the
respective attribute takes its minimum, respectively maximum value.

In the presented analysis we employ the settings as described in Davis et al. (2009) and listed in Table
1 to calculate the TI. Having one set of observed and one set of predicted objects, the TI-values of all
possible object pairs are calculated. They fill the so called TI matrix which contains all observed objects
as columns and all predicted objects as rows. The next step selects the maximum values along each row
(column) and adds them as a new column (row) at the right (bottom) of the TI matrix. The median over
all these maximum values builds the final score for the object-based ensemble verification, i.e., the median
of maximum interest MMI.

Ensemble forecasts

The object-based evaluation of ensemble forecasts is one major challenge in the verification for two
reasons. First, the amount of objects to be processed can be very large depending on the weather situation
and number of ensemble members. And second, new methods must be developed to reveal a fair score.
Two rather simple ideas are the verification of the objects from each single ensemble member separately or
of the merged set of all objects from all members. The first one yields simply the quality of each member
and can additionally provide information about the spread of the ensemble. The second one is very likely
to generate so called “over-forecasting”, i.e., the combined set of objects comprises much more objects than
the observation which may generate many false alarms. Therefore, a third method is analyzed in which a
reasonable selection of objects is chosen to build the so called “pseudomember” which comprises the objects
from all ensemble members that are locally the most representative ones of the ensemble distribution (J20).

The selection of objects for the pseudomember follows five steps as described in J20:

1. “Make a list of all objects in the forecast ensemble, together with the objects’ probabilities, calculated
from the percentage of ensemble members with a matching (i.e., total interest > 0.2) object.

2. Sort all of the objects by probability, breaking ties according to the average total interest with all the
objects from other ensemble members that it matched to.

3. Add the highest probability object to the object list of the pseudomember.
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4. Remove from consideration the added object, as well as all matching objects in other members that
contributed to the probability of the added object, leaving a new, smaller list of objects.

5. Repeat from step 2 until no objects remain in the list of ensemble forecast objects.”

Here these steps are performed for constructing the pseudomember but another matching criterion (first
step of J20) was used. For the comparison of one specific object from one member with all objects from all
other members, the TI of this specific object with all other objects is calculated as

TI =
2 · FCD + FAR

3
(3)

where FCD and FAR are the interest functions of centroid distance (CD) and area ratio (AR). These
functions are defined as

FCD =


1 CD < CD1

1
2 ·

[
cos

(
CD−CD1

CD2−CD1
· π

)
+ 1

]
CD1 ≤ CD ≤ CD2

0 CD > CD2

(4)

FAR =


0 AR < AR1

1
2 ·

[
sin

(
AR−AR1

AR2−AR1
· π − π

2

)
+ 1

]
AR1 ≤ AR ≤ AR2

1 AR > AR2

(5)

Below CD1 and AR1 and above CD2 and AR2, which are set to CD1 = 10 km, CD2 = 70 km, AR1 = 0,
and AR2 = 0.8, the interest functions take their minimum (0), respectively, maximum (1) values. For object
pairs to be defined a match the TI must exceed a value of 0.7. This criterion limits the ranges of CD and
AR within which matches are possible. Hence, if CD is larger than 38 km no match can occur even if AR
was perfect while no matches occur for AR below 0.16 even if CD was perfect.
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Figure 1: Procedure of selecting the objects of the pseudomember for a forecast initialized
on 30 May 2016 12 UTC with a lead time of 3 hours. All objects of all ensemble members
in a given region are shown in panel (a). Panels (b)–(k) depict the single pseudomember
objects (gray bordered polygons) according to their probability of occurrence (colors). The
lighter colors around these objects mark the uncertainty regions, i.e., the unified area of all
objects from other members that were defined a “match” with the respective pseudomember
object. The combined result with all pseudomember objects is given in panel (l). Colored
areas of the uncertainty regions are stacked on top of each other with increasing probability,
hence, regions with low probability can be covered by those with higher probabilities.

Figure 1 illustrates the procedure of selecting the pseudomember objects following the steps described
above. Technically, the pseudomember is a list of polygons, i.e., the selected objects, together with their
probabilities of occurrence and uncertainty regions. The probability of occurrence p (color scale in Fig. 1)
is the percentage of ensemble members with at least one matching object. The member of the object in
consideration itself is counted as well, hence, for a 20 member ensemble, as used in this study, p varies in
5% steps between 5% and 100%, where 5% means no other member has a matching object and 100% all
other members have at least one matching object. If a member has more than one matching object all these
objects are removed from further consideration (step 4 in the description above) but this member still counts
as only one member with regard to the probability. The uncertainty region of a pseudomember object is the
unified area covered by all the matching objects from other members (light colors in Fig. 1). In the example
one object has matching objects in all other ensemble members and gets a value of p = 100% (Fig. 1b).
The probability of the subsequently selected objects decreases until only one object remains which has no
matching objects in other members and therefore p = 5% is assigned to this object (Fig. 1k).

3 Results

The different spatially based verification methods described before are applied to predictions from the
SINFONY reference period between 27 May – 25 June 2016. This early summer period is characterized
by almost daily strong convective activity over Germany. Unfortunately, only COSMO-DE-EPS runs are
available for this time period.
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3.1 Neighborhood-based methods

In this section, we show some representative results from the SINFONY reference period in May/ June
2016.

Figure 2: FSS tiles plots for reflectivity (dBz) averaged over the SINFONY reference period
(27 May – 25 June 2016) and over all initial times (11 – 15 UTC) and all ensemble members
(1 – 20, incl. NEP). The top row shows results for a lead time of 30 minutes, the bottom
row for 4 hours. COSMO-DE-EPS 1-moment microphysics scheme (left panels), 2-moment
microphysics scheme (middle panels) and STEPS nowcasting (right panels). Greenish colors
represented a skillful FSS (≥ 0.5), reddish colors represent non-skillful FSS (< 0.5).

A first overview of the quality of the forecasts is given by Fig. 2. It shows FSS tiles plots for 30 minutes
lead time (upper row) and 4 hours lead time (bottom row), as well as three different model setups, COSMO-
DE-EPS 1-moment microphysics scheme (left panels), 2-moment microphysics scheme (middle panels) and
STEPS nowcasting (right panels).

Aggregated over all parameters, the FSS shows normal behavior, i.e. increasing values with increasing
box length (neighborhood size) and decreasing values with increasing thresholds. The STEPS nowcasting
(right panels) is, as expected, of better quality after 30 minutes in comparison to the NWP setups. Especially
the higher thresholds show better scores in the nowcasting, mostly because the NWP is not able to produce
such high reflectivities. However, after 4 hours lead time (lower panels), the NWP quality is superior to
nowcasting quality, which is not surprising since the nowcasting does not include dynamical information.
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Figure 3: FSS as a function of lead time for reflectivity (dBz) averaged over the SINFONY
reference period (27 May – 25 June 2016) and over all initial times (11 – 15 UTC). The
top row shows results a threshold of 15 dBz, the bottom row for 30 dBz. The left column
shows results for a box length of 1 pixel (1 km), i.e. no neighborhood, the right columns for
17 pixel (17 km). Thin solid lines show the FSS of all ensemble members, the thick dashed
line shows the FSS of the NEP field. In black 1-moment microphysics scheme NWP, in red
2-moment microphysics scheme NWP and in blue STEPS-DWD nowcasting.

Fig. 3 shows the FSS results for reflectivity (dBz) as a function of lead time, aggregated of the SINFONY
reference period and all initial times (11 – 15 UTC). The top row shows results a threshold of 15 dBz, the
bottom row for 30 dBz. The left column shows results for a box length of 1 pixel (1 km), i.e. no neighborhood,
the right columns for 17 pixel (17 km). Thin solid lines show the FSS of all ensemble members, the thick
dashed line shows the FSS of the NEP field. In black 1-moment microphysics scheme NWP, in red 2-moment
microphysics scheme NWP and in blue STEPS-DWD nowcasting.

It can be seen that the NWP (red, black) exhibits a short spin-up phase, whereas the spin-up effect
is much stronger for the 2-moment microphysics scheme (red). The reason for this was that the model
produced way to many reflectivity features in the early lead times. This effect is correct for ICON-D2-EPS
in 2020 and 2021 (not shown). It is obvious that the NEP (thick dashed lines) has a quite positive impact on
the score, especially for smaller box lengths. This fact answers the question whether we need an ensemble
for our forecasting systems.

Another powerful tool in neighborhood verification is a respective reliability and ROC diagram. First,
it must be clarified which type of observation should be taken into account. Since neighborhood verification
methods potentially produce a huge amount of data, we decided for a compromise and used the binary
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observation as reference for the diagrams. Otherwise, the user has to decide which observation neighborhood
probability threshold he is interested in.

Figure 4: Reliability diagram (upper panels) and ROC diagram (lower panels) of NEP
member for 30 dBz and two different box lengths, pixel-based (left) and 17 pixel (right).
The model setups are coded as different line types. Red lines represent the lead time of 30
minutes and turquoise of 4 hours. The reference observation is of type binary.

Fig. 4 shows reliability diagrams (upper panels) of NEP member for 30 dBz and two different box
lengths, pixel-based (left) and 17 pixel (right). The left panel shows the classical reliability diagram based
on ensemble probabilities. It can be seen that there is over-forecasting for almost all cases, which increases
for greater lead times (4 hours, turquoise). However, when we include a neighborhood box length of 17 pixel
(17 km, right panel), there is almost perfect reliability of all model setups after 30 minutes lead time (red)
and for some setups even after 4 hours lead time (turquoise). This confirms the fact that including a
neighborhood can exhibit a massively increased forecast quality. A similar picture is given by the ROC
diagrams in the lower panels of Fig. 4. The discrimination of events and non-events is much better when
including a neighborhood box length of 17 pixel.

Another advantage of the neighborhood-based reliability diagrams is that they can be computed even
for deterministic forecasts, i.e. based on neighborhood probabilities. This gives another great added value
to forecast verification.

Finally, we want to show results for Displacement FSS and Displacement NSS developed by Skok and
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Roberts (2018) and Skok (2021, not yet published). In contrast to the previously described results, we have
now chosen STEPS DWD nowcasting data from May/June 2021 period.

Figure 5: Displacement FSS (left), number of samples for D-FSS with 0.5 ≤ FBI ≤ 2
(middle) and Displacment NSS (right) for STEPS DWD nowcasting in May/ June 2021
with 20 members. Data are aggregated over initial times from 6 – 18 UTC, 1-hourly.

The left and middle panels of Fig. 5 show the Displacement FSS (D-FSS) and respective number of
samples for D-FSS with 0.5 ≤ FBI ≤ 2, which are taken into account. It can be seen that the displacement
is increasing almost linearly, which is in correspondence with the mechanism of nowcasting. After 2 hours of
lead time, the global displacement ended up with about 14 km ensemble and 13 km deterministic. However,
the number of samples with low bias decreased with increasing lead time.

In contrast, the Displacement NSS (D-NSS) score in the right panel of Fig. 5 has no limitation to the
bias. Biased fields could simply be bias-corrected via constant factor. The displacement from D-NSS ended
up at around 20 km ensemble and 16 km deterministic. This is slightly more than for D-FSS, however,
the D-NSS score should be more confident than D-FSS. Not only because there is no bias limitation, also
because some shortcomings of D-FSS are corrected in D-NSS score (see presentation of G. Skok at 8th
IVMW 2020).

All in all, we found that D-FSS and D-NSS are very useful scores for interpreting other neighborhood
scores, since most of them give no information about deviations in physical parameters. Even if the absolute
values are not that exact as the reality, the relative values when comparing two experiments give added
value to the verification. However, there is a problem of not negligible deviations from real displacement at
domain edges. Up to now, we found no solution for this but this will be done in future work.

3.2 Object-based methods

3.2.1 Deterministic predictions

The MMI is calculated for the nowcasting and two sets of deterministic COSMO-DE forecasts, the first one
employing the one-moment-, the second one the two-moment micropysics scheme. Nowcasts are initialized
hourly between 12 UTC and 16 UTC and run for seven hours. The model is initialized hourly between
11 UTC and 15 UTC and evaluated for the first 8 forecast hours. The shift of one hour in the initialization
explains with the fact that it takes about one hour from the model start until the predictions are available.
For a fair comparison the 11 UTC model forecast is therefore compared to the 12 UTC nowcast and so on.
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Figure 6: MMI vs lead time averaged over the SINFONY reference period (27 May – 25
June 2016) and over all initial times (12 – 16 UTC). Predictions are shown in black for the
nowcasting and in red and blue for the deterministic model forecasts employing the one-
and two-moment-microphysics scheme, respectively. The lead time of the model starts at
-1 hour (i.e., 11 – 15 UTC), since about one hour is required for forecasts started at that
time to become available.

The nowcasting starts at forecast time 0 with the perfect value of 1 (Fig. 6) because the observations
serve as initialization for the nowcast and the fields are identical. The MMI decreases rapidly and is below
the model forecasts after about 3 hours. The one-moment model forecasts start with higher MMI-values
than the two-moment model data. At initialization, i.e., lead time -1 hour, this difference is most distinct.
The artificial initialization of too many objects in the two-moment model causes the bad performance (see
also discussion of Fig. 8). The MMI of the model forecasts approach after 30 minutes and the two-moment
model is superior to the one-moment model after 4 hours of forecast time, i.e., 3 hours lead time in Fig. 6.
From that lead time on the model forecasts perform better than the nowcasting with the clear trend that
the two-moment model is superior to the one moment model.

3.2.2 Ensemble predictions

The analysis of ensemble forecasts is restricted to the two-moment model because its advantages at the
longer lead times compared to the one-moment model.

Example of pseudomember characteristics
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Figure 7: Observed objects (black) and objects of the pseudomember (gray-bordered) for
forecasts initialized on 30 May 2016 12 UTC at lead times of 0 hours (top) and 6 hours
(bottom). Pseudomember objects are colored according to their probabilities and areas
in the respective lighter colors around these objects mark their uncertainty regions (see
text for further details). The effect of considering only pseudomember objects exceeding a
certain probability of occurrence p is illustrated by plotting all pseudomember objects (a,
d: p > 0%) and only objects with p ≥ 50% (b, e) and p = 100% (c, f), respectively.

panel lead time, h p,% # obs # prd MMI
a 0 0 82 260 0.55
b 0 50 82 217 0.56
c 0 100 82 136 0.58
d 6 0 137 210 0.56
e 6 50 137 70 0.49
f 6 100 137 1 0.03

Table 2: Number of observed (# obs) and predicted (# prd) objects and MMI for the
examples shown in Fig. 7.

Figure 7 illustrates the objects of the pseudomember, their probabilities and uncertainty regions, and
the observed objects for 30 May 2016. The forecast was initialized at 12 UTC. The corresponding numbers
of observed and predicted objects and the resulting MMI are listed in Table 2. The ensemble shows little
spread for a lead time of 0 hours as evidenced by the fact that most of the pseudomember objects have a
probability of 100% (Fig. 7 top). For a lead time of 6 hours this has massively changed and only one object
with p = 100% remains (Fig. 7f).

In comparison with the observed objects the pseudomember contains objects that represent the obser-
vations over large parts of the domain well. For lead time 0 all objects, i.e., p > 0%, contain several false
alarms, e.g., in the north-western and south-western part of the domain (Fig. 7a). In the Southeast the
pseudomember has many objects with p = 100% where several but much less objects are observed (Fig. 7c).
Removing objects with low probability from consideration generally reduces the number of false alarms
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while introducing only few missed events over the central to western areas (Fig. 7c). This leads to a slight
increase in the MMI from 0.55 (p > 0%) to 0.58 (p = 100%). For all p-values the number of predicted
objects is clearly overestimated by a factor of 3.2 for p > 0% and still 1.7 if only objects with p = 100% are
considered (Table 2).

After 6 hours all objects (p > 0%) still contain false alarms over the south-western and south-eastern
parts of the domain (Fig. 7d) and the total number of objects is overestimated by a factor of 1.5 (Table 2).
Considering only objects with p ≥ 50% again removes many false alarms on the one hand but the number of
missed events increases on the other hand, over the central-western areas, for example (Fig. 7e). This leads
to an underestimation in the number of predicted objects, 70, compared to 137 observed objects (Table
2). In comparison with lead time 0, the behavior of the MMI is reversed. Considering all objects yields
the highest MMI (0.58) although about 50% more objects are predicted than observed. Constraining the
pseudomember to objects with p > 50% causes a strong reduction in the number of predicted objects leading
to a lower MMI of 0.49 (Table 2). Constraining the objects to p = 100% is not useful for this forecast
range because all but one objects have lower probabilities (Fig. 7f) yielding a MMI of 0.03.

Number of objects

The number of objects can be used as a first criterion for the quality of a forecast and it can give a rough
overview about false alarms and missed events in the prediction. The mean numbers for the SINFONY
reference period at all initial times between 11 and 15 UTC are shown in Fig. 8. The observations have
maximum 85–100 objects at early lead times between 0 and 3 hours, i.e., 11–18 UTC depending on the
initial time. The number decreases with lead time to 13 objects at +8 hours lead time, i.e., 19–23 UTC. This
reflects the diurnal cycle of convective activity with most objects occurring in the afternoon that become
less during the evening and early night-time hours.

The number of pseudomember objects obviously decreases with increasing values of p (Fig. 8). At lead
time 0 the model has too many objects which is a well known issue in the initialization of simulations em-
ploying the 2-moment microphysics scheme. These artificially initialized, unphysical objects have vanished
after 30 minutes and from that lead time onward the numbers of the pseudomember objects scatter around
the observed number of objects depending on p. The number of objects with p > 30% (light green in Fig. 8)
represents the average number of observed objects best in both the temporal evolution with lead time and
in the mean number (65 observed and 70 predicted objects).
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Figure 8: Number of observed (black) and predicted (colors) objects depending on the lead
time, averaged over the SINFONY reference period (27 May – 25 June 2016) and over all
initial times (11–15 UTC). Different colors distinguish which objects of the pseudomember
are considered depending on their probability of occurrence from blue (all objects, p > 0%)
to red (p > 90%). Mean values at the right are averaged over all lead times but 0 hours in
order to remove the impact of artificial objects at initialization time.

MMI vs lead time

The forecast quality of different prediction types is again quantified in terms of the MMI. The following
analysis comprises the MMI of the nowcasting, the deterministic forecast, all the single ensemble members,
the pseudomember with p > 30%, and two “best member” selections. For the latter the MMI is calculated
for each forecast and each single ensemble member separately. The best member then is selected for the
evaluation. We distinguish between the best member at each forecast time step (“best member at each
step”) and the best member on average over forecast lead time (“best member over lead time”). For these
selections the observations for all lead times are required, hence, they can not be used as forecasts. Compared
to the other real forecasts this method globally (over the entire domain) selects the best ensemble member
as if one knew a priori which member will be the best for each forecast. The best member selections help
to classify the quality of the other members.

The MMI of all these prediction types is illustrated in Fig. 9. The nowcasting (black) and the de-
terministic forecast (dashed blue) are the same as in Fig. 6. The MMI of the nowcasting is below the
different model forecasts (blue) after about 2–4 hours. The deterministic forecast is slightly better than any
individual ensemble member (dotted). The quality of the pseudomember is persistently the best, except
lead times -1 and 7 hours, surpassing the quality of the nowcasting after only 2 hours. The pseudomem-
ber even outperforms the “best member” selections showing that it is better to do a localized selection of
representative objects from the ensemble distribution than to choose the member that is globally the best.
Again, the pseudomember is purely based on the ensemble forecasts while the “best member” selections
need observational data for all lead times. This shows the enormous potential of the pseudomember for the
object-based forecasting of precipitation.
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Figure 9: MMI vs lead time averaged over the SINFONY reference period (27 May – 25
June 2016) and over all initial times (12 – 16 UTC). Predictions are shown in black for
the nowcasting and in blue for the model. The lead time of the model starts at -1 hour
(i.e., 11 – 15 UTC), since about one hour is required for forecasts started at that time to
become available. Different forecast types are distinguished by line types and symbols. The
pseudomember is restricted to objects with p > 30%. “bmEachStep” and “bmLeadtime”
stand for “best member at each step” and “best member over lead time”, respectively. See
text for further details.

4 Conclusions

In the running PP-AWARE period, we have applied a lot of verification metrics which are already established
(neighborhood verification) and tested also new verification metrics based on MMI (pseudomember by
Johnson et al. (2020)). Especially the latter is quite useful in the SINFONY project. When using a 40
member object ensemble from NWP, nowcasting and combined products, the number of existing objects
could become massively huge and not manageable without applying filter methods like pseudomembers.

All above described methods, and some more, are implemented in R-packages predominantly for DWD-
internal usage. However, if the packages are well developed, they could be provided to the community. The
R-packages are applicable by namelist control but also interactively. We will provide a flexible reading capa-
bility. The packages will have a flexible aggregation functionality over different parameters. A visualization
via R-Shiny app will give the possibility to interactively visualize and aggregate scores in a way the user
desired. Up to now, we do not plan to integrate an extensive pre-processing like regridding or restructering.
We focus only on the computation of the scores and the user has the responsibility to unify the data in
advance.
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