
Experience in Spatial Verification of Precipitation Radar Nowcasting 

A.V. Muraviev, A.Yu. Bundel 

 

Introduction 

This study presents the results of the object-oriented verification of the precipitation radar 

nowcasting system of the Hydrometeorological Center of Russia. The verification period is May-

September 2017 and November 2017 – March 2018. The focus is on the ability of the system to 

reproduce contiguous precipitation areas (“objects”) with an area exceeding a certain threshold. The 

generalized three-parameter Pareto distribution is used, which enables evaluation of the area sizes in 

the distribution tails by the shape parameter of the distribution.  

The paper [Muraviev 2022b] discusses the problems of constructing correct samples for 

verification and the statistical properties of these samples based on the accumulated datasets of 

observations and forecasts. Here, the main attention is paid to the precipitation objects in the sense 

of object-oriented verification of weather elements [Davis 2006 a, b, Bundel 2021]. The objects are 

determined in the following way: 1) spatial smoothing of the field with a certain smoothing radius; 

2) identification of connected areas using the precipitation intensity threshold - in fact, objects; 3) 

selection of objects with an area exceeding a given threshold value.  

The precipitation intensity was derived from radar reflectivity based on the methods of the 

Central Aerological Observatory (CAO) [Temporary guidelines 2017]. 

Since the precipitation fields belong to time series with a 10-minute step, the independence of 

sample elements can be violated due to serial correlation. To obtain conditionally independent 

objects of maximum area, the concept of a continuous situation is applied, under the assumption 

that particular situations in the synoptic sense can be considered as physically partially independent 

[Muraviev 2022b]. 

The area and the object are defined in precipitation fields using the isoline of the same value, 

with the difference that the area belongs to the original field, and the object belongs to the same 

field, but after spatial averaging. It is possible that the area exists, but the corresponding object is 

not defined due to the smoothing procedure, which reduces the initial intensity of precipitation. 

From a meteorological point of view, the area of the object corresponds to the spatial scales of 

mesoprocesses. It could be more natural to switch to a linear scale by taking the square root of the 

number of points in the object [Davis 2006a], but objects in precipitation fields have not only 

ellipsoid or square shapes, but also elongated stripes and even connected lines [Isaev 2001, 

Lenskaya 2006]. Thus, the number of points seems to be more informative estimate of the object's 

scale in this work. 



We used four methods for estimating the parameters of generalized distributions of extremes 

and threshold exceedances: 1) maximum likelihood, 2) generalized maximum likelihood, 3) L-

moments, and 4) Bayesian estimation using Monte Carlo procedures. Confidence intervals (CI) of 

parameter estimates of the generalized Pareto distribution calculated from sets of radar observations 

and nowcasts based on the STEPS model are used to integrally assess the quality of the statistical 

nowcasting model according to the simplest principle: the greater the intersection of confidence 

intervals for estimates of the same parameters in observations and forecasts, the higher quality of 

forecasts, in terms of the model ability to reproduce the observed distribution of vast precipitation 

areas. 

The resulting tables collect CI intersection estimates for network radars for the warm and cold 

periods of 2017-2018, and for several area thresholds. Particular attention is paid to the quality of 

forecasting the heavy tails of the distribution. In the conclusions, considerations are formulated 

about the information content of such quality assessments and about the possibilities of their 

generalization. 

 

1. Construction of a sample of objects with large and extreme areas 

The correct sample formation is considered in detail in [Muraviev 2022b]. The selection of 

objects in a given field is performed using the FeatureFinder function of the SpatialVx library 

[Gilleland 2020] based on three parameters: 1) the radius of spatial averaging, 2) the identification 

threshold, 3) the minimum area - by the number of connected, or adjacent points of the object. The 

following parameter values were tested: averaging radii - 5 and 9 points; object identification 

threshold of 1 mm/h; the minimum sizes of objects (according to the number of grid points in the 

corresponding area) are 0, 625, 900, 1225 and 1600 points. In areal units, the minimum dimensions 

correspond to the squares 50 50, 60 60, 70 70 and 80 80 [kmkm]. We do not take into 

account the problem of the identified object location at the radar coverage boundary at the present 

stage, and cannot evaluate to what extent the objects surpassing the boundary influence the results. 

In the most important cases, the visual analysis can be used. When passing to radar composite data 

covering the whole territory of European Russia, the influence of the boundaries should 

considerably lessen. 

To identify an object, it is recommended to use two methods for determining the threshold: as 

a fixed value or as a distribution quantile [Davis 1, 2]. Both approaches are complementary, each 

has advantages and disadvantages. In our work, we use a fixed threshold due to the large scatter in 

precipitation fields for different radars and in different test periods [Muravyov 2019]. 



The distribution of precipitation object sizes for the fields of radar observations and forecasts 

was analyzed over the coverage areas of nine DMRL-S radars and in 10-minute time step. The 

distribution of object sizes by quartiles and with an average value (mean) is presented in Table 2. A 

somewhat unexpected fact is that in all radar view areas the smallest object is one point, or one cell. 

 
Table 2. Statistical Characteristics of the Size Distribution of Verification Objects in the Observation Fields 

of different Radars (RAKU, RATL, etc.) in the Central Federal District of Russia. 

 

 min q 25 median mean q 7 5 max 

RAKU 15403 / 7384 

warm one 125 317 1054 1133 17989 

cold one 76 262 1017 1080 14228 

RATL 13269 / 4511 

warm one 116 304 985 1053 16682 

cold one 86 288 1000 1098 22158 

RAVN 14094 / 1502 

warm one 122 316 848 916 16855 

cold one 71 203 511 523   5654 

RAVO 21944 / 5689 

warm one 92 257 749 731 14820 

cold one 65 184 567 514 10560 

RUDB 12022 / 4120 

warm one 134 361 1037 1164 19383 

cold one 83 270 996 980 12528 

RUDK 20455 / 3866 

warm one 104 290 924 970 14443 

cold one 66 180 557 505 11824 

RUDL 20479 / 4246 

warm one 107 298 936 1007 19812 

cold one 72 233 905 841 27128 

RUDN 21215 / 5281 

warm one 113 301 971 1004 17049 

cold one 62 193 704 614 14079 

RUWJ 22991 / 2445 

warm one 95 267 953 895 19551 

cold one 54 172 527 478 16530 
 

Note. Convolution radius is 5 grid points, q25 and q75 are the first and third quartiles of the distribution. The 

rows next to the radar identifiers indicate the total number of objects in the warm (/) cold periods. 

 

Almost all quantiles (excluding min) of the warm period are larger than the corresponding 

quantiles of the cold period, except for mean, q75, and max of the RATL radar and max of the 

RUDL radar marked in red. For the RAKU, RATL, RUDB, and RUDL radars, the q75 quartiles for 

the cold and warm periods are comparable.  



We focus on the significant sizes of objects in observations and forecasts, for which we first 

discuss the general methodological and statistical problems of analyzing extreme values. In 

[Muraviev et al. 2022, 3] we present a more detailed and, if possible, formally accurate description 

of the extreme value theory (EVT) theorems, discuss the practical application of these theorems, 

and list some useful methodological and statistical recommendations.  

 

2. Tail heaviness analysis: problems and some recommendations 

With the rapid development of the extreme value theory and the abundance of its practical 

applications, most researchers are extremely cautious in their conclusions, avoid being categorical, 

and often emphasize the exploratory nature of the results obtained [Embrechts2003, Extremes and 

Integrated 2000, McNeil 2005, Novak 2011, Extreme events 2017]. Thus, [Paul Embrechts et 

al.2003] frankly warn the reader about possible failures calling some of their own graphs of shape 

parameter estimates "nightmarish". The most general recommendations are formulated, for 

example, in the fundamental work [Reiss, Thomas 2007] devoted to the statistical analysis of 

extreme values applied to insurance, finance, hydrology, and other areas.  

Methods for estimating parameters are divided into non-parametric and parametric in the 

classification of Reiss and Thomas. In the first case, the object of analysis is a set of data on the 

basis of which sample distributions, densities and quantile functions are built. In the second case, 

the object of analysis is the generalized Pareto model, whose parameters (shape and scale) are 

estimated by different methods, including the methods of maximum likelihood, moments, Bayes 

methods, the Hill estimate. In the parametric approach, it is recommended to explicitly allocate the 

threshold value beforehand. 

[Reiss, Thomas2007] consider the following steps for systematically solving the problem of 

statistical inference. First, consider the simplest exponential model, applying all the methods of 

parameters estimation mentioned above. If according to the diagnostic results (mostly graphical) it 

turns out to be unacceptable, then go to the limited Pareto model (with a zero threshold), 

supplementing the above parametric estimates with the Hill estimate. It is recommended to compare 

the Bayesian estimate (with the prior gamma distribution of the shape parameter) and the Hill 

estimate. In a good case, they should be close. For greater reliability, it is also recommended to 

conduct simulation modeling of random variables based on the same Pareto distribution. If 

diagnostics (for example, according to the graph of the sample mean function of kurtosis) shows a 

significant incorrectness of this model, then further considerations should be made before the next 

step. For example, the initial hypothesis about heavy tails, Pareto-type tails, could turn out to be 

incorrect, and then it makes no sense to move on to the full Pareto model. If the analysis did not 



rule out "heavy-tailedness", then it is the turn of the full Pareto model with such methods for 

estimating parameters as the maximum likelihood, L-moments, probability-weighted moments, 

Bayes, etc. 

A similar hierarchy has been proposed for the combination of the Pareto model with the 

Poisson distribution (Poisson-GP models). 

The choice of thresholds is most reliably based on plots of mean kurtosis values, as well as on 

the analysis of the behavior of estimates of distribution parameters and their confidence intervals. In 

addition to a series of thresholds from some reasonable interval, one can experiment with "random 

thresholds" for order statistics at the end of the original variational series (e.g. [Galambos 1984]). 

[Reiss, Thomas2007] recommend using the "pragmatic approach": we cannot know whether 

the resulting analysis of extremes will be useful for extrapolation outside the area in which the 

previous data is collected; "cross your fingers for luck" and publish a risk assessment of future 

extremes under the estimated distribution; update the model as more information becomes 

available. 

 

3. Estimating Pareto Distribution Parameters Using the ExtRemes Package 

We further reduce the term generalized Pareto distribution to Pareto distribution. Our 

approach is straightforward: the tail analysis method is parametric [Reiss]; distribution parameters 

are estimated by several methods; the location parameter (that is, the Pareto threshold) is fixed (the 

threshold on the precipitation object areas; the selection of informative thresholds is based on the 

analysis of histograms discussed below). Nonparametric methods for estimating heavy tails (for 

example, Hill estimators) are not used because of possibly large errors in small values of the shape 

parameter. 

 

3.1. Pareto Distribution Parameter Estimates and Informative Threshold Selection 

The approximation of the set of maximum object sizes by the Pareto distribution was 

performed using the fevd() function of the extRemes library from the R language repository. The 

main properties of the extRemes package including its theoretical and statistical principles are 

described in [Gilleland and Katz 2016]. 

In the function fevd for parameter estimates, the methods of 1) maximum likelihood, 2) 

generalized maximum likelihood, 3) L-moments and 4) Bayesian estimation based on statistical 

modeling of Markov chains are implemented. It is possible to include additional variables 

(covariates), for example, time, to take into account the seasonal cycle or to adjust the joint Pareto-

Poisson model [Martins 2001, Gilleland, Katz 2011]. The choice of warm and cold periods for 



testing made it possible, at least at this stage, to disregard the time covariate. Experiments with the 

joint Pareto-Poisson model led in some cases to strong computational instability, and it was decided 

to confine ourselves at this stage to the Pareto model. In [Muravyov 2022, 2], we give preliminary 

estimates for the distribution of peaks on the time scale to satisfy the conditions for the Poisson 

distribution. 

 

3.1.1. Generalized maximum likelihood 

The maximum likelihood method (MLM) is well known, so let us focus on its 

"generalization", as it was called by the authors of [Martins2001]; we present the basic formulas, 

using the specified source. If the Poisson distribution of time points with exceeding the threshold  

has intensity , then in formulas (1) the parameters are modified as follows: 

*= – (1 – )/ , * = at 0, 

*= + ln ( ), * = at =0. 

The quantiles of the Pareto-Poisson model are functions of the parameters and the return 

period (the expected time between exceedances): 

x p = – [1 – ( T r ) ]/ at 0, 

x p = + ln ( T p ) at =0. 

The estimate of the intensity parameter is  taken from the data and is equal to the 

exceedance frequency in the selected time interval, from which the original peak values are 

extracted. The log-likelihood function for the parameters of the Pareto-Poisson model with peaks 

{x 1 , x 2 , ... , x m} exceeding the threshold x 0 from a set of n time units is written as 

 

, (2) 

where =(, , ), the expression before the summation symbol represents the likelihood of 

observing exactly m values exceeding the threshold x 0 in an archive of length n time units, and the 

second part represents the likelihood that these m exceedances had observed values xi ; yi =1+ ( xi – 

x0 )/. The intensity  of the Poisson process can be fixed, for example, by the sample frequency of 

exceeding the threshold, and thereby reduce the number of model parameters to two. 

As is known, the maximum likelihood method applied to the scale and shape parameters leads 

to a system of two equations in two unknown variables, the solution of which is found using 



computational algorithms of computational mathematics (in the ExtRemes package - by the 

Newton-Raphson and gradient methods). The generalized maximum likelihood method was 

proposed due to the fact that the standard MLM generated unnatural estimates of the shape 

parameter on small samples in the hydrological analysis of extrema. The authors [Martins 2000, 

2001] used a "truncated" Bayesian approach, assuming that the shape parameter can be limited to 

reasonable limits (for example, by the usual interval for hydrology [-0.5, +0.5]) and made it a 

random variable with a beta distribution B (p, q), p =6, q =9. The a priori distribution density of the 

shape parameter has the form () = (0.5 + ) p -1 (0.5 – ) q -1 / B (p, q), while the mean value is 

shifted to the positive region and is equal to 0.1, the variance is (0.122)2 . The generalized 

likelihood function was expressed as follows: GL (, , | x) = L (, , | x ) (). The approach is 

considered truncated, since the joint prior distribution is not used here. In formula (2) for the 

Pareto-Poisson model, the function () is added additively and the solution is found for the 

maximum value of the logarithm of the generalized likelihood function by the same methods of 

computational mathematics. 

 

3.1.2. L-moments 

To estimate the parameters  and  the Pareto-Poisson model using L-moments, the main 

coefficients br are first determined using the rank series of the initial peak values (maximum areas of 

objects) x (1) x (2) ... x ( n ), where n is the number of elements in the sample (in our case, selected 

situations during the test period): 

 

The first three L -moments are calculated by the formulas: 

l1\u003d b0 , l2\u003d 2 b1 - b0 , l3 \u003d 6b2 - 6b1 + b 0 . 

Using the notation t2\ u003d l2 /l1 , we write the calculation formulas for the estimates: 

 

standard method of moments , these estimates are calculated using simple formulas: 

 

where a and s 2 are the sample mean and sample variance, respectively. 

Formally, L -moments are defined using the formula 

 



where X k : n is the k - th smallest value in a sample of size n from the distribution of a random 

variable X, E is the expectation operator. In statistics, the first four L -moments are called L -mean 

(or L -position ), L -scale , L -skewness , and L -kurtosis . 

Convenient property of L-moments is the use of order statistics based on the values of a 

ranked series of realizations of the initial random variable, which, firstly, provides more robust 

statistical characteristics compared to the usual method of moments, and, secondly, guarantees the 

presence of higher moments at the only condition for the boundedness of the mathematical 

expectation. A consequence of this favorable feature is a lack of sensitivity: for example, the 

Laplace distribution has a kurtosis of six and light exponential tails, while the Student's distribution 

with three degrees of freedom has an infinite kurtosis and heavy tails; at the same time, the L -

skewness for the Laplace distribution is higher than the same estimate for the indicated Student's 

distribution. 

 

3.1.3. Bayesian method 

This method is implemented in the ExtRemes package as a Markov chain simulation using 

Monte Carlo methods (Markov Chain Monte Carlo methods, MCMC). An algorithm for the 

automated generation of Markov chain states for symmetric target distributions was published in 

1952 by a group of researchers at the Los Alamos Laboratory led by N. Metropolis, who conducted 

statistical computer experiments in the field of nuclear and thermonuclear weapons. In 1970, an 

article by W. Hastings appeared, in which the restriction by symmetric distributions was effectively 

removed, and at present this algorithm is called Metropolis-Hastings and consists of the following. 

Samples are taken from the probability distribution P(x), the parameters of which are to be 

determined, and for which only the function f ( x ) is known, which is proportional to the target 

probability function P(x). The algorithm collects the states of the chain, which together approximate 

the desired distribution P(x) with increasing accuracy. The selections are made iteratively with the 

only condition that each next value ("sentence") depends only on the previous value (hence the 

Markov property of the chain). The selection of the considered candidate for the completion of the 

sample depends on the comparison of the values of the function f ( x ) taking into account the 

desired distribution Р(х). 

The sequence of specific actions that reflect the essence of the Bayesian strategy is that a non-

zero likelihood function h (x|) is used as a function f (x) and c, where  is the vector of estimated 

parameters, and x is the initial sample of observations of length n. In its final form, f ( x ) is the 

negative sum of n logarithms of the corresponding distribution densities of implementations of x 

under the condition . 



The candidate selection function ( sampler ) is an unconditional and a priori specified 

distribution density of the parameter vector g ( ), acting as a matrix g ( *, ) of transition 

probabilities to *. 

fevd() calculation module implements the following iterative procedure. 

1. The initial value o is fixed , usually close to some average position of the a priori distribution 

g , which is assumed to be normal by default (with parameters previously estimated by the 

maximum likelihood method). Using a random number generator tuned to the distribution g , a 

candidate * is extracted, considered as the element of a random walk following o (the simplest 

version of the Markov chain [Feller1984, v.1]). 

2. The Hastings ratio is calculated  

r (o , *) = [h ( x | *)g(*, o )] / [h (x | o) g (o , *)], 

which eliminates the need to evaluate the unknown denominator (the integral of the likelihood over 

the probability measure of the parameter) in the Bayes formula for conditional probability. 

3. An operation is performed, which is called the failure of the Metropolis : 

+ calculated a ( o , *) = min (1, r ( o , *)), treated as a probability a,  

+ using the encoder of uniformly distributed numbers on [0, 1], the number u is extracted and 

the decision is made: for u  a the transition of the state o to * is allowed, for u > a the transition 

is not allowed and the new state coincides with the previous one. 

Recursion at steps 2-3 leads to the generation of a sample of values that reproduce the desired 

distribution of the parameter P( ), the average value (or mode ) of which can be taken as a 

Bayesian estimate of the distribution parameter of the original random variable X. From the 

resulting sample of states of the Markov chain, rank estimates of the reliable interval ( credible 

interval ), which differs from the confidence interval ( confidence interval ) by the fact that in the 

first case the boundaries of the interval are fixed, and the parameter is variable, in the second case 

the boundaries are variable, and the parameter is constant. 

Remark. In the Bayesian strategy for estimating parameters, a theory of optimal solutions is 

constructed using the so-called conjugate prior distributions, which greatly facilitate the solution of 

emerging problems [DeGroot 1974]. If the a priori distribution function (or density) of the random 

parameter distribution  is g, and the conditional distribution function of the random variable Х at 

=  is f ( x | ), then the posterior distribution g ( | x ) of the parameter  at Х=х is proportional 

to g ( ) f ( x | ) for every . Then we say that the family of distributions g is conjugate to the 

family of distributions f. 



Example. Let X 1 , ..., X n be a resampling of the Bernoulli distribution with an unknown 

parameter . Suppose the prior distribution of a parameter is a beta distribution with parameters p 

>0, q >0. Then the posterior distribution  for Xi = xi ( i =1,..., n ) is the beta distribution with 

parameters p + y , q + n - y , y = xi . 

The simplification of the solutions of statistical problems lies in the fact that the desired a 

posteriori function does not require any parametric estimation - it is only necessary to modify the 

parameters according to simple formulas. Correspondence tables of distributions are compiled 

according to the principle of conjugation in Bayesian problems. 

However, it is known that the postulation of a family of prior distributions of a parameter is 

the most vulnerable side of the Bayesian methodology, and the application of this methodology in 

practice, including, in particular, the contingency condition, must be accompanied by additional 

checks. In addition to the general critical problems of the Bayesian methodology, there are two 

significant statistical disadvantages of the particular MCMC algorithm. First, the samples are 

correlated, which is why even a large set of samples will not quite correctly reflect the desired 

distribution P(x). Secondly, with the inevitable convergence of the Markov chain to the desired 

distribution, the initial samples may belong to a different distribution, which requires setting a 

rejection period (burn-in period). 

In recent decades, many variations of the MCMC algorithm have been developed, designed to 

eliminate the most serious shortcomings, however, the simple and stable Metropolis-Hastings 

algorithm turned out to be by the end of the last century "a universal tool both in Bayesian inference 

and in solving numerous problems outside the Bayesian community" [Geyer 2011]. 

 

3.2. Description of the mathematical package extRemes  

A detailed description of the extRemes package and training materials can be found in 

[Gilleland and Katz 2016, Gilleland 2020 I, II]. This package (in R terms, the library) contains 

general functions for analyzing extreme values with the possibility of including additional variables 

(covariate) and declustering intervals according to the methodology [Ferro and Segers, 2003]. 

fevd() and ci() are used as the main operational functions. Parentheses indicate the presence of 

configuration options, the equal sign indicates the specified values of these options. 

The following parameter estimation methods are provided: 1) maximum likelihood (MLE), 

2) L-moments, 3) generalized maximum likelihood method (GMLE), 4) Bayesian strategy 

(Bayesian). Statistical inference (calculation of confidence and confidence intervals) is carried out 

using 1) normal distribution, 2) likelihood profile, 3) Bayesian estimates for the posterior function, 



4) bootstrap. Variants of two-dimensional analysis and dependency testing are connected: 1) 

dependence plot on the tails of distributions, 2) estimation of the extremality index according to 

[Geyer 2011]. 

Let us make some remarks about the criteria used for modeling quality. The Akaike criterion 

is calculated by the fevd() function, while for the Chi-square criterion, histograms were made by 

hist() of the R language, which implements the Sturges algorithm, which may not be optimal for 

extrema analysis due to the equidistant graduation of histograms. However, the use of the kernel 

smoothing histogram algorithm built into fevd() is unacceptable due to the coverage of the entire 

domain of definition, including values both after and before the Pareto threshold. The Akaike 

criterion is not calculated in the fevd() module for the L-moments and Bayes methods due to 

assessments of the model quality for these methods by other criteria (BIC and DIC). Chi-square is a 

common criterion for all methods of model quality. 

 

3.2.1. Setting initial values and basic options for the fevd() function 

In the case of MLE / GMLE, it is important to have good initial estimates of the parameters, 

while the fevd function tries to find these approximations itself (by default). The initial list 

specifies the initial values of the estimates for running a numerical optimization procedure (MLE / 

GMLE) or for MCMC iterations (Bayesian). By default, L -moment estimates and estimates based 

on the moments of the Gumbel distribution will be calculated; those estimates for which the log-

likelihood takes the smallest negative value are used below. For the Bayesian method, it is 

recommended to test several initial values to make sure that they do not affect the final result. But if 

the initial values are not suitable, the standard MLE method is used. 

Since there is some "spin-up" in the Monte Carlo simulation of the Markov chain, the first 

few hundred realizations should be removed from the resulting sample using the rejection (burn-in) 

option. By default, the number of steps in the random walk process is taken equal to 10000 with 

burn-in = 500 of the first realizations. 

To take into account temporal and calendar characteristics, the options period . basis and 

time are used; units specifies the base period (default is “ years ”) and time units (default is “ 

days ”), respectively. 

For GMLE and Bayesian methods, it is possible to order the prior distribution function using 

the priorParams list. As mentioned above, by default for GMLE , the beta distribution is used in the 

interval from -0.5 to 0.5 with parameters p =9 and q =6 (at which the mathematical expectation is 

shifted to the positive region and equals 0.1), and default Bayesian estimation uses normal 



distribution functions with MLE parameter estimates of means with a standard deviation of 10 for 

all parameters. 

Only in the Bayesian method, there is a symbolic variable proposalFun that orders the name 

of the function that generates the proposal parameters at each iteration of MCMC. By default, a 

random walk chain is used: at the current value of the parameter, a candidate is proposed in the 

form of an additive to the current value of a normally distributed random variable with given 

parameters. 

 

3.2.4. Calculating confidence intervals using the ci() function 

The ci() function calculates confidence (and Bayesian confidence) intervals (CI) from the 

fevd() output, using the selected parameter estimation method in fevd() and the interval calculation 

method specified in ci(). 

For L moments, the only method available in the package is a parametric bootstrap with the 

number of iterations R. It is recommended to determine R through trial and error, say by starting 

with R = 100 and gradually increasing (by one or two hundred) until the results stabilize. By default 

R =100. 

For MLE/GMLE, when setting the method = “normal” option, the normal distribution 

approximation is used. If method = "boot", then the parametric bootstrap is applied. 

To calculate the CI of parameter estimates by the Bayesian method, the extreme percentiles 

from the resulting MCMC sample are used (after removing the first burn.in values). 

Finally, ci (method="profliker") specifies the search for bounds on the likelihood function 

profile. Calculating CIs in this way is often the best tool for estimating the shape parameter and 

return periods when the distribution is skewed and the normal distribution is unsuitable. The 

likelihood profile is calculated based on the likelihood maximization for each individual parameter 

within a certain range of its values (option xrange) with fixed values of the remaining model 

parameters. 

Let us briefly describe the parametric bootstrap algorithm.  

(1) Generate a sample of length n from the input data of the model being approximated. 

(2) Fit the distribution of the extreme value to this sample and store the resulting parameter 

estimates (and, for example, return periods). 

(3) Repeat steps (1) and (2) R times. 

(4) Based on the resulting sample of the previous steps, calculate confidence intervals using 

the corresponding extreme percentiles given by the alpha option. 

  



3.2.3. Digital and graphic output 

The parameter estimates and their standard errors are placed in a vector (par, se.theta), 

respectively. The cross-covariance matrix is contained in an array called cov.theta. Approximation 

quality scores are available under the names AIC (Akaike Information Criterion [Akaike, 1974]), 

BIC (Bayesian Information Criterion, [Schwarz, 1978]), and DIC (Deviation Information 

Criterion). The characteristics of the output information are specified by the options of the summary 

and print functions. In Bayesian Estimation, the type =“ trace ” option creates a plot panel 

indicating the posterior distribution function and a trace panel of the MCMC method for each 

parameter. By default, the resulting mean is calculated from the posterior sample as the parameter 

estimate, but setting the FUN = “ postmode ” option will plot the posterior sample mode . 

 

 

3.3. Estimates of the quality of nowcasting using Pareto distribution parameters 

The fevd() function, together with estimates of the scale and shape parameters, returns 

estimates of the standard error, which will be used below to calculate the boundaries of confidence 

intervals (L, U), the main tool for the precipitation nowcasting quality assessment in this study. 

 

3.3.1. Archive of results of verification of nowcasting of precipitation areas 

For each of the eight radars, the two periods of the year, and each of the Pareto thresholds, 

two tables of numerical data (sizes of maximum objects and histograms) and one set of graphs are 

built. For eight radars, two periods of the year, three Pareto thresholds, the total set is 8*2*3 = 48 

tables of object characteristics, 48 tables with histograms and 48 graphics files. 

Output tabular data. Each table with area characteristics consists of six columns: 1) names, 

2) observations on the locator, 3 - 6) forecasts according to the STEPS model - for 30, 60, 90 and 

120 minutes. Two groups of characteristics are organized by rows: 1) general characteristics of the 

areas of objects and for four methods of estimating parameters 2) criteria for the quality of 

modeling (Akaike and Chi-square), and estimates of the scale and shape parameters with their 

confidence intervals. 

Table 3 presents the general statistical properties of object areas according to the RUDL 

locator (Smolensk), with an area size of at least 625 points, for forecasts for four periods. 

 

Table 3 . General characteristics of the areas of maximum objects in continuous precipitation situations 

according to observations (obs) of DMRL-S radar of Smolensk (RUDL) in the warm season (May - 

September 2017) and in STEPS nowcasting precipitation fields (30-120 min) 

 

   obs             30             60              90              120 



    peaks     92                  119               123                131                 130 

area_min     625                654               630                630                 639 

area_med     2496              2394             2380             2195              2150 

area_max     19812           19982           20023           19579           18426 

ndegf     11                  11                 12                  11                   11 

 
Note. Row names: peaks - the number of maximum objects; area _ min / med / max - minimum, median and 

maximum area, respectively; ndegf - the number of bins on the corresponding histograms (the number of 

degrees of freedom for the Chi-square test, Sturges' rule). 
 

The characteristics of Table 3 reflect the general properties of objects with a large area in the 

coverage areas of all radars. On the one hand, the number of objects with the maximum area in the 

prognostic fields exceeds the similar number in the observation fields by approximately 20-25%. 

On the other hand, in such statistics as the mean, median, and maximum values of these areas, the 

sets of observation fields and forecast fields are quite comparable.  

The median area in the observation fields is 2496 points, and in the prognostic fields this area 

gradually decreases to 2150 points with the lead time; a similar trend is seen in the maximum values 

(decrease from 19812 to 18426). In this, one can see a trend in the distribution density of prognostic 

areas towards positive asymmetry, that is, more objects with sizes not exceeding the median and 

maximum values of the areas in the observation fields compared to the forecast. Such phenomenon 

reflects the main characteristic of most statistical models devoid of sources and sinks of energy: 

smoothing and corresponding suppression of extrema both in the values of quantities and in their 

areal characteristics, along with the splitting of connected objects into different parts. 

Checking the statistical significance of the estimated scale and shape parameters should be 

preceded by an assessment of the quality of the simulation: if the quality of the model is 

unsatisfactory, no estimates of the model parameters can be taken seriously. However, some model 

quality metrics depend (explicitly or implicitly) on the model parameters, so that they also depend 

on the methods for estimating these parameters. For example, the Akaike information criterion is 

calculated using the likelihood function, which is used in the numerical methods of estimating MLE 

and GMLE, and therefore is a direct by-product of parameter estimates and depends on the features 

of the calculated cross-covariance matrix of parameters. In other methods, the covariance matrix of 

parameters is not used, and the quality of the simulation is assessed by other measures. 

However, in the output of all methods, parameter estimates are available, which can be used 

to check their compliance with the original observations. The simplest, although not the most 

reliable way is to build histograms and calculate the Chi-square test. Consider, for example, the 

Akaike test and Chi-square as applied to samples of maximum areas, the characteristics of which 



are shown in Table 3. Table 4 shows estimates of the scale and shape parameters of the Pareto 

distribution of the maximum areas of continuous precipitation observed during the warm period of 

2017 in the fields of the Smolensk radar and in the fields of nowcasting. Parameter estimates are 

provided with confidence intervals (with a confidence level of 95%), which are calculated 1) from 

the standard error se for the MLE and GMLE methods by adding  1.62 se to the parameter 

estimate, 2) from the variation series of hundreds of bootstrap implementations for the L-moments 

method, and 3) from extreme percentiles of the resulting sample of the Markov chain for the 

Bayesian method . 

The values of the scale parameter are given for information, since it is difficult to comment on 

them (on the Pareto density plot, the reciprocal of the scale is the value of the distribution density at 

conditional zero, in this case at point 625) and we will henceforth focus on the shape parameter. It 

can be seen that the distribution has a heavy tail - all shape parameter estimates are positive along 

with the confidence intervals (with a minor exception in the obs observation column where the 

lower CI is -0.043). The quality of the GPD (Generalized Pareto distrivution) according to the 

Akaike criterion and according to Chi-square decreases with the transition to the forecast fields of 

30 min. In both series of criteria values, there are "local" maxima: weak one at 90 min (Akaike) and 

noticeable one at 60 min (Chi-square) (in red in Table 4). The postition and the value of the Chi-

square maximum are most likely due to sample effects, and are associated, first of all, with the 

histogram construction technique and partially stochastic nature of the GMLE method. Such rare 

cases require separate consideration; for illustration, the values of the respective histograms are 

given in Table 5. 

 

Table 4 . Quality criteria for modeling by the general Pareto distribution of the maximum areas of objects 

(Akaike and Chi-square), and estimates of the scale and shape parameters with the boundaries of their 

confidence intervals according to data similar to those in Table 3. The parameter estimation method is the 

generalized maximum likelihood ( GMLE ). 
   obs      30      60       90      120 

GML_Akaik      1661     2150    2225     2364     2352 

GML_XI2  9.001    11.797  28.153   16.109   16.163 

GML_scl_1  1471     1518    1531     1475     1564 

GML_scl_2  2468     2270    2261     2155     2279 

GML_scl_3   3464     3023    2991     2834     2995 

GML_shp_1 -0.043    0.025   0.049    0.080    0.053 

GML_shp_2  0.336    0.326   0.337    0.356    0.333 

GML_shp_3   0.715    0.627   0.625    0.632    0.613 

Note. Generalized Pareto distribution parameter estimation method - GMLE , Akaik - Akaike criterion, XI 2 

- Chi-square criterion, scl - scale parameter estimation, shp - shape parameter estimation. Indices for 

parameter estimates: 1 - lower (2.5%) limit of CI, 2 - parameter estimate, 3 - upper limit (97.5%) of CI. 

Local maxima in the rows of quality criteria are highlighted in red. 
 



Despite the fact that in the GMLE method the shape parameter has a prior beta distribution, 

which limits the values of the parameter to the interval [-0.5, +0.5], the posterior distribution of the 

parameter does not have such restrictions, and the resulting estimate of the shape parameter will 

contain values outside the prior interval. In Table 4, the upper bounds of the confidence intervals 

noticeably exceed 0.5, which turns out to be quite a common feature of other radars as well. 

 

Table 5 . The number of cases in gradations of the histogram of the distribution of maximum areas according 

to data similar to Table 4 

 
observations/ 

forecasts (min) 

histogram gradations 

 1   2   3   4  5  6  7  8  9 10 11 

DMRL-S RUDL 38  23  10   7  5  3  3  2  0  1 

STEPS-030 

STEPS-060 

STEPS-090 

STEPS-120 

55  29  10   9  7  3  2  3  0  1 

57  30  10  10  4  6  0  5  0  0  1 

63  31  10   9  5  7  1  3  1  1 

63  30   9  10  6  6  0  3  2  1 

Note. Initial data: DMRL-S Smolensk, warm period, Pareto threshold equals 625. Equidistant gradations 

were selected using the Sturges method. 
 

Let us summarize the shape parameter data with the values of the Chi-square criterion in a 

separate table (Table 6). The degrees of freedom estimated by the number of histogram gradations 

and used for determining the critical values of the Chi-square test are between 6 and 12 for both 

periods of the year. The 5% critical values of the Chi-square test for the degrees of freedom in 

brackets are 12.592 (6), 16.919 (9), 18.307 (10), 19.675 (11), and 21.026(12). 

The values of the Chi-square criterion in the forecast fields of 60 min have the character of 

outliers, while in the remaining rows of the table there is a quite regular change in the estimates of 

the shape parameter and their confidence intervals for all forecast periods without exception. Let us 

pay attention to the ranks of the parameter estimation methods. Peak objects in the fields of 

observations and forecasts at all times are modeled best by the Bayes method according to the 

quality criterion, worst by the L -moments method, while the shape parameter estimates turn out to 

be the largest mainly by the Bayes method and the smallest, by the L -moments method. All 

estimates of the shape parameter and confidence intervals, except for the lower bounds of the CI for 

the observation fields, are positive, which unambiguously confirms the “heavy-tailed” Pareto 

distribution of those areas of continuous precipitation whose area exceeds 625 grid points (which is 

equivalent to a square of 50 km × 50 km). 

 

Table 6. Chi-square test and shape parameter estimates with confidence interval boundaries based on data 

similar to those in Table 4 



 
   obs     30       60       90       120 

GML_XI2  9.001   11.797   28.153   16.109   16.163 

MLЕ_XI2 10.21    13.354   30.346   16.923   17.769 

Lmo_XI2 10.777   14.121   32.105   18.581   19.092 

 Bay_XI2  7.773   11.125   26.734   15.132   15.404 

best 

worst 

Bay_XI2  Bay_XI2  Bay_XI2  Bay_XI2  Bay_XI2 

Lmo_XI2  Lmo_XI2  Lmo_XI2  Lmo_XI2  Lmo_XI2 

GML_shp_1 -0.043   0.025    0.049    0.08     0.053 

MLE_shp_1 -0.044   0.016    0.041    0.075    0.045 

Lmo_shp_1  -0.007   0.034    0.047    0.069    0.052 

Bay_shp_1 -0.008   0.037    0.063    0.11     0.091 

larger 

smaller 

 Bay/Lmo Bay/Lmo Bay/GML    Bay      Bay 

 MLE/GML  MLE      MLE    LMO/MLE    MLE    

GML_shp_2  0.336   0.326    0.337    0.356    0.333 

MLE_shp_2  0.294   0.289    0.309    0.34     0.304 

Lmo_shp_2   0.278   0.274    0.29     0.312    0.284 

Bay_shp_2  0.343   0.328    0.344    0.396    0.354 

larger 

smaller 

 Bay/GML Bay/GML  Bay/GML   Bay      Bay    

 Lmo     Lmo      Lmo/MLE   Lmo     Lmo/MLE   

GML_shp_3  0.715   0.627    0.625    0.632    0.613 

MLE_shp_3  0.632   0.561    0.577    0.604    0.562 

Lmo_shp_3   0.506   0.496    0.492    0.503    0.47 

Bay_shp_3  0.831   0.681    0.676    0.731    0.698 

larger 

smaller 

 Bay     Bay      Bay      Bay      Bay 

 Lmo     Lmo      Lmo      Lmo      Lmo  

 
Note. Initial data: the warm period of 2017, the Pareto threshold is 625. All methods for estimating 

parameters were used - GMLE , MLE , L _ moment , Bayesian . Indices for parameter estimates: 1 - lower 

(2.5%) limit of CI, 2 - parameter estimate, 3 - upper limit (97.5%) of CI. The values of the Chi-square test 

that do not contradict the acceptance of the hypothesis about the validity of the generalized Pareto 

distribution model are highlighted in green; cases of excess of the values of the Chi-square test for the 95% 

significance level are highlighted in red (local maxima on the 60-minute forecast). Oblique font marks the 

ranks of methods according to the principle of the largest and smallest values of the corresponding 

characteristics. 

 

Comparing the estimates of the Chi-square criterion, we can state that, in terms of the quality 

of modeling, all values of the criterion, except for forecasts for 60 minutes, do not reject the 

hypothesis of the applicability of the generalized Pareto distribution model to selected objects. 

Ranking the methods by the Chi-square criterion provides the following information: the best 

quality of modeling for a given radar, a given period of the year and for a specified Pareto threshold 

is provided by the Bayesian method, the use of the L-moments method leads to the worst quality of 

modeling. For other radars, there is a wider variety of rankings, making it difficult to generalize 

preferences or systematic features to all radars and to all lead times. 



Table 7 gives the shape parameter characteristics for all radars (Table 7). For brevity, we 

exclude confidence intervals and consider the warm period data with a Pareto threshold of 625 and 

using the Akaike criterion of the quality of the shape parameter estimate. 

 

Table 7. Sample volumes of maximum precipitation areas (peaks) and evaluation of the quality of modeling 

of the generalized Pareto distribution (GPD) (625 grid points threshold) by the Akaike criterion for radars of 

the Central Federal District of Russia, observations (obs) and forecasting (30-120 min) in the warm period of 

2017. Method parameter estimates - GMLE 

 
 

DMRL-S 

 observations 

DMRL-S radar 

forecast period, STEPS model (min) 

obs 30 60 90 120 

Kursk, 

RAKU 

peaks 

Akaike 

     86        117       118        121       123   

   1496       2098      2123       2179      2219 

Tula 

RATL 

peaks 

Akaike 

     79        117       117        128       132 

   1463       2103      2115       2298      2367 

Voyekovo 

RAVO 

peaks 

Akaike 

     89        133       141        145       157 

   1620       2381      2534       2609      2816 

Bryansk 

RUDB 

peaks 

Akaike 

     76         90        96         99        99 

   1360       1609      1709       1760      1768 

Kursk 

RUDK 

peaks 

Akaike 

     96        130       142        145       155 

   1740       2346      2564       2631      2800 

Smolensk 

RUDL 

peaks 

Akaike 

     92        119       123        131       130 

   1661       2150      2225       2364      2352 

Nizhny 

Novgorod 

RUDN 

peaks 

Akaike 

     84        122       129        141       147 

   1713       2415      2379       2588      2689 

Valdai 

RUWJ 

peaks 

Akaike 

     85        119       128        138       152 

   1582       2202      2359       2533      2772 

 

 

As noted in [Muraviev2022], the number of objects, and, hence, the number of objects of 

significant and maximum area in the prognostic fields, gets overforecasted noticeably already at the 

first steps of nowcasting (up to 30 min), it also grows in other periods, although not so much. Let’s 

consider, for example, the ratio of the number of objects at the forecast step of 120 min to the 

number of objects in observations (123/86 = 1.43, etc.) and compare it with the respective ratio of 

the values of the Akaike criterion (2219/1496 = 1.48, etc.). A slightly surprising fact is revealed: the 

larger the sample, the worse the quality of modeling this sample using the Pareto distribution. Thus, 

for the Bryansk (RUDB) radar, a 130% increase in the sample size corresponds to the same 

decrease in the modeling quality. The values of the Akaike criterion for the RUDB locator data turn 

out to be the best for all columns of the table. 

Using a similar scheme, we composed a table of shape parameter values estimated by all four 

methods (Table 8). 

 



Table 8 . Estimates of the shape parameter of the generalized Pareto distribution (GPD) (at a threshold of 

625) for the Central Federal District radars based on observational data (obs) and forecasting (30-120 min) in 

the warm period of 2017 

 
 

DMRL-S 

GPD 

evaluation 

method 

observations 

DMRL-S 

 

forecast period, STEPS model (min) 

obs thirty 60 90 120 

Kursk 

RAKU 

 

 

GMLE 

MLE 

Lmom 

bayes 

  0.428      0.405     0.413      0.390     0.366 

  0.472      0.419     0.434      0.394     0.353 

  0.379      0.354     0.360      0.336     0.312 

  0.681      0.560     0.628      0.533     0.447 

Tula 

RATL 

GMLE 

MLE 

Lmom 

bayes 

  0.278      0.360     0.344      0.376     0.371 

  0.161      0.342     0.316      0.370     0.363 

  0.181      0.307     0.290      0.329     0.324 

  0.179      0.424     0.361      0.432     0.436 

Voyekovo 

RAVO 

GMLE 

MLE 

Lmom 

bayes 

  0.228      0.294     0.307      0.326     0.314 

  0.074      0.241     0.264      0.294     0.280 

  0.094      0.238     0.255      0.275     0.267 

  0.109      0.260     0.273      0.341     0.307 

Bryansk 

RUDB 

GMLE 

MLE 

Lmom 

bayes 

  0.327      0.303     0.328      0.348     0.322 

  0.271      0.236     0.284      0.319     0.276 

  0.266      0.237     0.275      0.301     0.268 

  0.342      0.280     0.355      0.397     0.311 

Kostroma 

RUDK 

GMLE 

MLE 

Lmom 

bayes 

  0.284      0.331     0.328      0.303     0.361 

  0.199      0.299     0.298      0.259     0.350 

  0.206      0.281     0.281      0.252     0.316 

  0.234      0.355     0.336      0.288     0.417 

Smolensk 

RUDL 

GMLE 

MLE 

Lmom 

bayes 

  0.336      0.326     0.337      0.356     0.333 

  0.294      0.289     0.309      0.340     0.304 

  0.278      0.274     0.290      0.312     0.284 

  0.357      0.322     0.354      0.385     0.336 

Nizhny 

Novgorod 

RUDN 

GMLE 

MLE 

Lmom 

bayes 

  0.000      0.000     0.253      0.308     0.322 

  0.000     -0.002     0.165      0.262     0.287 

  0.038      0.153     0.180      0.250     0.267 

  0.038      0.135     0.167      0.307     0.320 

Valdai 

RUWJ 

GMLE 

MLE 

Lmom 

bayes 

  0.287      0.249     0.262      0.291     0.327 

  0.190      0.153     0.184      0.237     0.296 

  0.202      0.169     0.194      0.234     0.276 

  0.203      0.162     0.196      0.247     0.318 

 

Note. Pareto distribution parameters are estimated using generalized maximum likelihood (GMLE), 

maximum likelihood (MLE), L-moments (Lmom), and Markov chain simulations using the Metropolis-

Hastings algorithm (Bayesian). 
 

The main property of the shape parameter estimates – positivity and a noticeable difference 

from zero – indicates “heavy” tails of the distribution. The only exception is the data for the Nizhny 

Novgorod radar. It is the only case of almost zero and even slightly negative values of the shape 

parameter for observations and for forecasts for 30 min. However, the Akaike estimates in Table 7 

on the RUDN radar line do not differ significantly from estimates for other radars. 



When switching to a 30-min forecast, the value of the shape parameter can either increase 

(RATL, RAVO, RUDK) or decrease (RAKU, RUDB, RUDL, RUWJ), for all methods of parameter 

estimation. 

Comparison of the shape parameter estimates obtained by different methods can be carried 

out by the minimum and maximum values in the corresponding columns. So, for example, in the 

data for the RAKU locator in the observation column, the maximum value of the shape parameter is 

0.681 and obtained by the Bayes method, and the minimum value is 0.379 and obtained by the L -

moment method. The ranking of methods in all columns of the table led to the following statistics. 

The highest shape parameter values are provided by the Bayesian methods (21 cases) and the 

generalized maximum likelihood method (19 cases); the minimum values of the shape parameter 

were obtained mainly by the L-moment method (30 cases) and only in 10 cases by the maximum 

likelihood method. The reasons for the similarity of the methods that generate the maximum shape 

parameter estimates are quite obvious: both are based on the Bayesian approach, either entirely 

(Bayesian), or in a "truncated" form (GMLE). As a rule, estimates by the MLE method are lower 

than those of the related GMLE method. Interestingly, there are cases of maximum discrepancy 

between the MLE and GMLE estimates: in the observational data of RATL (0.161 and 0.278), 

RAVO (0.074 and 0.228), RUDK (0.199 and 0.284), RUWJ (0.190 and 0.287), as well as in two or 

three columns predictive data. 

 

Output graphic data. The graphical output reveals other aspects of modeling large areas of 

precipitation using the generalized Pareto distribution. The graphics for each radar and each Pareto 

threshold are displayed in one pdf file, consisting of 20 pages (slides) as follows. For each of the 

four methods, there are five pages corresponding to an observation and four predictions. Each of the 

pages for GMLE, MLE and L-moments methods contains four panels: 1) quantile diagram "model-

observation", 2) quantile diagram with regression line "observation-simulation", 3) distribution 

density of observations (in kernel smoothing) and model Pareto density, 4) return period (in 

conditional "years") with confidence intervals. Each of the pages for the Bayesian method contains 

four panels: 1) and 2) the posterior distribution density of the scale and shape parameters, 

respectively (in kernel smoothing), 3) and 4) "traces" - implementations of the Markov sequence for 

the posterior distribution densities of the scale and shape parameters (10 000 steps, with the level of 

"burnout" in burn in = 500 steps). 

For modeling quality estimates all the criteria, which are available in the fevd module (AIC , 

BIC and DIC) were partially analyzed, criterion 2 was additionally calculated for histograms built 

by the function hist () of the R language. Unfortunately, none of the built-in quality criteria apply to 



all four parameter estimation methods. However, since the Akaike criterion, assuming a normal 

distribution of model errors, coincides up to an additive constant with the number 2 +2 k , where k 

is the number of parameters in the model (in our case, always k = 2), then for a comparative 

assessment of the quality of modeling it is perfectly acceptable to confine ourselves to criterion 2 

in its simplest form. Recall that the Akaike information criterion is calculated by the formula 4k - 

2ln(L), where L is the maximum of the likelihood function. 

Let’s illustrate the data of Tables 3-6 for the Smolensk locator (RUDL) with examples of the 

graphical output of the fevd() module, limiting ourselves to observations and forecasts for 90 

minutes. Figures 2 and 4 show the quantile diagrams of the GMLE, MLE and L-moments methods, 

Figures 3 and 5 show the posterior distribution densities of the scale and shape parameters along 

with their traces of the random walk by the Bayesian method. Quantile diagrams are built in two 

ways: 1) between observations and the model data restored from the corresponding quantiles by the 

inverse transformation of the generalized Pareto distribution with estimated scale and shape 

parameters; 2) between observations and simulated data generated by a random number generator 

tuned to a Pareto distribution with specified parameter estimates. On Figures 2 and 4, the first set of 

diagrams (obs - model) is placed in the left column of panels, and the second set of diagrams (simul 

- obs) is placed in the right column of panels. 

The first and, perhaps, the main remark should immediately be made about the objects of the 

largest sizes that were stored in the samples of peaks above the threshold , although sometimes such 

objects were precipitation areas that went beyond the survey circles of the locators, violating the 

physical, and hence the statistical correctness of the sample. The exclusion of such objects 

(selection censoring) is provided by the max option size in the FeatureFinder() function of the 

SpatialVx library used to generate the spatial objects for verification [Ants2022] , however, it was 

difficult to do this in an automated mode. One can understand the need for censoring when 

analyzing the quantile plots in the left columns of Figs. 2 and 4. For example, a greater agreement 

between the model and observed data could be achieved by excluding objects of more than about 

20000 points in size, which is equivalent to a square with a side of about the radar viewing circle 

radius (250 km). 

Despite the presence of outliers in the quantile plots of the left column, it is possible to obtain, 

albeit with a wide range of confidence intervals, an acceptable match with the simulation data. For 

example, in Fig. 2, a noticeable deviation from the line of coincidence of one or two extrema in the 

diagrams of the left column is compensated by quite successful imitation in the diagrams of the 

right column for the GMLE and MLE methods . This, unfortunately, cannot be said about the data 

for the 90-minute forecast fields (Fig. 4), where the quality of modeling according to the Chi-square 



criterion is noticeably inferior to the quality of modeling of observation objects (Fig. 2). It is 

obvious that when the sizes of objects are censored by the upper bound (about 15 thousand points), 

the diagrams of both columns will be more attractive. 

The posterior distribution densities and traces of the random walk of the estimates of the scale 

and shape parameters are shown in Figs. 3 for objects in the observation fields and in Fig. 6 for 

objects in the forecast fields for 90 min (Fig. 6). On the trace graphs, the burn-in line is highlighted, 

which excludes from the construction of a posteriori densities all realizations of the Markov chain 

to the left of the point 500. Thus, the full set is 9500 realizations of the randomized parameters of 

the Pareto distribution. Comparing Fig.3 and 5, we note the following. Density modes for scale and 

shape in predictive samples deviate in different directions - the scale decreases by about 500 points 

(the Pareto distribution density curve at "zero" rises), and the shape increases from about 0.4 to 0.5 

(the tail of the Pareto distribution density "gets heavier") . In particular, this behavior of the Pareto 

distribution density curve suggests that, when forecasting for 90 minutes, the STEPS model in the 

vicinity of the conditional "zero" (equivalent to the threshold of 625 points) systematically 

overestimates, then underestimates, and starting from a certain size of objects, begins to 

systematically overestimate the areas of objects. An increase in the shape parameter to 0.5 means, in 

particular, that the Pareto distribution for predicted objects can only have a mathematical 

expectation, and the variance estimate based on such data will lose its meaning. 

 

obs-model qq-diagram simul-obs qq-diagram 

 

 
GMLE, XI2 = 9.00 

 

 
MLE, XI2 = 10.21 



 

 
L-moments, XI2 = 10.78 

 

 

Fig.2. Quantile charts for comparing observational data and Pareto distribution simulation data with 

estimated scale and shape parameters (obs - model, left panel column), as well as simulation data with 

stochastic sampling on estimated Pareto distribution parameters (simul - obs, right panel column). Pareto 

distribution threshold - 625 points. Parameter estimation methods: generalized maximum likelihood 

(GMLE), maximum likelihood (GMLE), L - moments (L - moments ). Radar data Smolensk (RUDL), warm 

period 2017 
 

 

Fig.3 . Posterior distribution densities of the scale parameter (upper left panel) and shape parameter (upper 

right panel) and random walk traces of the scale parameter (lower left panel) and shape parameter (lower 

right panel) plotted by Bayesian method using Markov chain generation Metropolis-Hastings (Monte Carlo) 

algorithm. Chi-squared test = 8.3. Radar data Smolensk (RUDL), warm period 2017 
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GMLE, XI2 = 16.109 

 

 

 
MLE, XI2 = 16.923 

 

 
L-moments, XI2 = 18.581 

 

 

Fig.4. Quantile charts for comparing observational data and Pareto distribution simulation data with 

estimated scale and shape parameters (obs - model , left panel column), as well as simulation data with 

stochastic sampling on estimated Pareto distribution parameters (simul - obs, right panel column). Pareto 

distribution threshold - 625 points. Parameter estimation methods: generalized maximum likelihood 

(GMLE), maximum likelihood (GMLE), L-moments. STEPS model forecasts for 90 min, field of view and 

initial data of the Smolensk (RUDL) radar, warm period 2017 
 

 



 

Fig.5. Posterior distribution densities of the scale parameter (upper left panel) and shape parameter (upper 

right panel) and random walk traces of the scale parameter (lower left panel) and shape parameter (lower 

right panel) plotted by Bayesian method using Markov chain generation Metropolis-Hastings (Monte Carlo) 

algorithm. Chi-squared test = 14.885. STEPS model forecasts for 90 min, field of view and initial data of the 

Smolensk ( RUDL ) radar, warm period 2017 

 

 

3.3.2. Choice of parameter estimation method and Pareto distribution threshold 

It is necessary to limit the number of methods for estimating distribution parameters and to 

reduce the set of thresholds to obtain verification results of nowcasting objects of a large area 

common for all radars. Based on the shape estimates obtained and their confidence intervals, it can 

be argued that all four methods led to consistent conclusions about the shape parameter for the 

threshold of 625 grid points. The standard method of estimating is undoubtedly the maximum 

likelihood method (MLE) associated with a modified Chi-square minimum method [Kramer1975], 

which, as mentioned above, can also replace the Akaike information criterion under some general 

assumptions. However, on small samples, MLE can lead to unnatural parameter estimates, which 

has led to the suggestion of a truncated Bayesian correction (GMLE) [MartinsSted 2000, 2001]. 

The L-moments methods are attractive due to the simplicity of calculations and the statistical 

robustness of the estimates. However, in [MartinsSted 2001], statistical experiments with the 

estimation of large quantiles showed the advantage of the GMLE method over the L-moments for 

samples of medium size and heavy tails, i.e. when the shape parameter is at least positive. Full 

confidence in the Bayesian parameter estimation strategy is hindered by a lack of experience in the 

broad sense, including insufficient mastery of the methodology, and experience in applying this 

strategy to extreme values in particular. The existence of many methods for estimating parameters 



confirms, on the one hand, the complexity of the statistical analysis of extrema, and, on the other 

hand, excludes the existence of one general and universally applicable method. In this regard, we 

will use the GMLE method to bring the estimates of the nowcasting quality to a small number of 

observable results. 

Let's try to solve the issue of thresholds choice for the Pareto distribution using histograms 

and Chi-square estimates, combining the graphic images with the values of the criterion assessment 

of the modeling quality. 

Figure 6 shows the histograms of the size distribution of objects no smaller than 625, 900, 

1225, and 1600 points and the GPD density values connected by linear segments. Parameter 

Estimation Method is GMLE. The titles of the panels indicate the sample sizes, number of 

gradations automatically calculated, extreme values and median sizes, as well as the parameter 

estimates. Differences and similarities between the histograms and approximating Pareto 

distribution density curves are visually visible for objects with sizes above the thresholds of 625, 

900, 1225 and 1600 points. Let us recall that, on average, the number of objects in the forecast 

fields is bigger than in the observation fields. Since a larger Pareto threshold selects a subset of the 

maxima selected for a smaller threshold, the approximation of the higher-threshold subset by the 

Pareto distribution must increase the scale (going to the right along the tail) and change the shape. 

Let us write out the estimates of the χ-square criterion for Fig. 6 for the warm period: 

625: χ 2 ( RAKU ) = 13.190, χ 2 ( STEPS -60) = 14.721, 

900: χ 2 ( RAKU ) = 13.106, χ 2 ( STEPS -60) = 14.201, 

1225: χ 2 ( RAKU ) = 13.420, χ 2 ( STEPS -60) = 15.788, 

1600: χ 2 ( RAKU ) = 14.099, χ 2 ( STEPS -60) = 24.245. 

 

Surveillance: RAKU Locator 60 min forecast: STEPS 

 
size >= 625 vol 87 - 119   



 
size >= 900 vol 69 - 97 

 
size >= 1225 vol 53 - 74 

 
size >= 1600 vol 46 - 65 

 

Figure 6. Warm period . Histograms and Pareto distribution approximation of object sizes in precipitation 

fields in Kursk radar observations (RAKU, left column) and forecasts (STEPS-60, right column) for 60 min. 

The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are given in 

size/1000 scale. 

 

  

Surveillance: RAKU Locator 60 min forecast: STEPS 

 
size >= 625 vol 59 - 106 



 
size >= 900 vol 51 - 81 

 
size >= 1225 vol 44 - 68 

 
size >= 1600 vol 41 - 55 

 

Figure 7. Cold period. Histograms and Pareto distribution approximation of object sizes in precipitation 

fields in Kursk radar observations (RAKU, left column) and forecasts (STEPS-60, right column) for 60 min. 

The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are given in 

size/1000 scale. 

 

Let us write out the estimates of the χ-square criterion for Fig. 7 for the cold period: 

625: χ 2 ( RAKU ) = 10.849, χ 2 ( STEPS -60) = 13.646, 

900: χ 2 ( RAKU ) = 12.427, χ 2 ( STEPS -60) = 10.810, 

1225: χ 2 ( RAKU ) = 16.501, χ 2 ( STEPS -60) = 10.982, 

1600: χ 2 ( RAKU ) = 22.069, χ 2 ( STEPS -60) = 15.124. 

 

For the Kursk radar for the period May-September 2017, the threshold size of an object of the 

about 600-900 grid points is the most suitable for modeling with generalized Pareto distribution, 

while objects with a size of 1200 and above are unsatisfactorily modeled with GPD. A similar 

analysis for the rest of the radars makes it possible to generalize this conclusion to all radars in the 



Central Federal District of Russia, which means that using the GPD parameters for verification 

purposes is justified under the specified limitations. 

Along this path, one can approach the solution of the issue of choosing an appropriate 

threshold (for the specified method of estimating the distribution parameters) for the resulting 

estimates of the quality of the nowcasting, that is, assessing the correctness of the construction of 

samples for applications of the Pareto distribution. This choice is based both on the visual 

representation (Figures 6 and 7) and on the values of the Chi-square test (Table 9)  

Table 9 summarizes Chi-square estimates for object areas in radar fields (RADAR columns) 

and in 60 min forecast fields (STEPS -60 MIN columns) for tests in warm and cold periods of the 

year. In the hist() function, the number k of gradations is determined using the Sturges rule : k = 1 + 

[lg2(n)], where n is the sample size. The analysis was carried out according to the joint data of 

observations and forecasts for each period and for each observation-forecast pair. 

 

Table 9. Chi-square test values for assessing the quality of histogram approximation by the Pareto 

distribution with estimated scale and shape parameters at thresholds of 625, 900, 1225, and 1600 points. 

 

 WARM PERIOD 

 RADAR STEPS-60 MIN 

RADAR(cases; 

ndeg) 

 625            900          1225         1600  625            900          1225         1600 

RAKU (87-46;11) 

RATL (80-57;11) 

RAVO (90-65;11) 

RUDB (77-52;11) 

RUDK (97-66;10) 

RUDL (93-61;12) 

RUDN (85-61;13) 

RUWJ (86-61;11) 

13.190  13.106  13.420  14.009 

 4.097   5.674   8.708  12.476 

 6.921   8.417  13.148  19.733 

 6.690   9.289  13.859  21.479 

 6.862   8.432  13.818  18.803 

 4.711   6.310   9.959  13.958 

 4.301   5.301   9.213  12.080 

 4.059   4.499   9.204  12.638 

14.721  14.201  15.788  24.245 

11.395  12.140  10.565  17.086 

 4.637   7.423  11.288  21.318 

 7.695  10.024  15.256  21.446 

 5.947   8.044  13.332  20.265 

14.335  16.637  22.859  30.741 

 7.474  10.088  14.666  22.267 

 5.220   7.727  13.841  21.949 

 COLD PERIOD 

 RADAR STEPS-60 MIN 

RADAR  625            900          1225         1600  625            900          1225         1600 
RAKU (59-41;12) 

RATL (48-25;13) 

RAVO (54-29;10) 

RUDB (46-25;10) 

RUDK (41-18;10) 

RUDL (47-25;7) 

RUDN (41-20;11) 

RUWJ (27-16;12) 

10.849  12.427  16.501  22.069 

10.775  10.747  11.624  11.623 

10.296  11.282  15.997  23.012 

 7.617   8.678  11.632   9.365 

11.502  13.442  13.641  16.047 

 3.604   3.020   2.056   1.888 

12.630  11.117  10.904  12.481 

 8.370  10.298  14.593  24.938 

13.646  10.810  10.982  15.125 

13.599  12.759  10.450   7.272 

 8.947   9.096  15.831  23.653 

 7.689   7.192  10.107  14.690 

12.697  12.139  15.109  22.009 

12.928   4.424   3.651   2.909 

 6.423   5.255   7.355  10.534 

13.222  12.296  13.484  18.493 

Note . In the RADAR column, next to the identifier, in brackets are indicated ("sample size of observations" 

for a threshold of 625 points - for a threshold of 1600 points; an estimate of the number of degrees of 

freedom). 

 



The yellow background highlights the values that exclude the Pareto distribution from the set 

of suitable approximations; on the histogram, this is, as a rule, the second bin being larger than the 

first one, that is, the violation of the characteristic Pareto distribution density curve. 

The values highlighted in red reflect, at first glance, one of the most important conditions of 

the second extremum theorem, threshold stability: the larger the threshold, the more accurately the 

data is modeled by the Pareto distribution. In real samples of a limited size rapidly decreasing with 

increasing threshold, this phenomenon should be recognized as a rare success. Let us consider in 

more detail the corresponding observational data and forecast for 60 min in the field of view of the 

Smolensk radar during the cold period. Figure 8 contains histograms of the sizes of the maximum 

objects in the fields of observations and forecasts for 60 min with a size of 625, 900, 125, and 1600 

grid points. The decrease in the value of the Chi-square criterion with increasing threshold is 

ensured by an increasingly accurate approximation of the Pareto distribution density curve of the 

first bin of histograms. 

 

Obesrvations: RUDL radar 60 min forecast: STEPS 

 
size >= 625 vol 47 - 127 

 
size >= 900 vol 38 - 91 

 
size >= 1225 vol 29 - 74 



 
size >= 1600 vol 24 - 58 

 

Figure 8. Cold period. Histograms and Pareto distribution approximation of object sizes in precipitation 

fields in Smolensk locator observations (RUDL, left column) and in forecasts (STEPS-60, right column) for 

60 min. The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are 

given in size/1000 scale. Blue lines!!! 

 

The full set of situations that generated the peaks above the thresholds is presented in Table 

10 for a threshold of 625 points; as the threshold increases, the sample is made up of the sizes of the 

same objects. In the presented set, there are two situations, in which the maximum object turned out 

to be the only one: at numbers 32 and 33, while at number 33 the situation had a duration of 60 

minutes, but the generated object had a size of 13044 points, which is equivalent to a square with a 

side of about 230 km (almost a quarter from the field of view of the radar). However, the largest 

object appeared in situation 18, which lasted 1280 min (almost a day), while in 128 fields of radar 

observations there were a total of 125 objects with a size of at least 632 points. It is quite possible 

that in a real synoptic situation, the total number of objects constructed by spatial averaging at 9 

grid nodes and an isohyet of 1 mm constituted one system of frontal-type precipitation. 

    

Table 10. Spatial, statistical and temporal characteristics of situations with objects with a size of at least 625 

points in a two-kilometer resolution grid observed in the Smolensk radar zone during the cold period 

November 2017 - March 2018 The objects are marked with a 1 mm/h isoline after spatial averaging with a 

radius of 9 points. 

 



 

Note. The situation numbers are indicated in the sit column . Then follow the quartile characteristics of the 

sizes of objects in this situation ( min , q 25, med , q 75 and max ). The number of selected objects is 

indicated by the name valid , the duration of the situation in minutes is mins ; the term of the first field of the 

situation is d _ time _ start ; date and time of the last field of the situation - d _ time _ stop . If hours and 

minutes are not specified in the date and time columns, then this corresponds to the time of day 00:00. 

 

The favorable property of the set of extreme values in the max column noted above is due 

both to the constant number of equidistant gradations (only 6 intervals) for all thresholds, and to the 

dense arrangement of the forty-two first values of the variation series in the range from 632 to 5617 

(Fig. 9). If the first circumstance is artificial, then the second circumstance really reflects the 

threshold stability of the analyzed sample. 

 



 

Figure 9 . Graph of the variational series, made up of a set of forty-seven extrema in Table 10 (column max). 

 

 

3.3.3. Integral Quality Estimates Using Distribution Parameters  

Let’s compare the parameters of the Pareto distribution for maximum objects in situations of 

observations and forecasts based on the data of the Kursk (RAKU) radar (Table 11). Consider, for 

example, the result of a forecast for 60 minutes. For observations in the warm period, the results are 

as follows: 87 situations were identified; scale parameter estimate and standard error are 1956 and 

472.9, respectively; shape parameter estimate and standard error are 0.428 and 0.212. Recall that 

the boundaries of the confidence interval are determined in a standard way (estimate ± 1.96 * error). 

Similar numbers for the forecast for 60 minutes are as follows: 119 situations are identified; scale 

parameter estimate and standard error are 1979 and 391.1, respectively; shape parameter estimate 

and standard error are 0.413 and 0.180. Let's write lower and upper limits of the confidence 

intervals like (L1 , U1) and (L2 , U2), respectively. The intersection ratio (IR), visually obvious, is 

determined as follows:  

IR = (min (U1 , U2) - max (L1, L2))/(max(U1 , U2) - min(L1 , L2)), 

when DP < 0, DP = 0 is assigned. For the scale parameter in the selected case, IR = 0.83, for the 

shape parameter, IR = 0.85. In the cold period of 2017-2018, the following results were obtained: 

for the scale parameter IR = 0.50, and for the shape parameter IR = 0.68. 

 

Table 11. Number of situations (# situations), estimates of scale parameters (scale), shape (shape) of the Pareto 

distribution of object sizes with thresholds of 625, 1225, 900 and 1600 grid points, the intersection ratio 

(intersect) of confidence intervals of parameter estimates. Objects are extracted from situations in series of 

fields of observations (RAKU) and forecasts (STEPS) with lead times of 30, 60, 90 and 120 min. 

Observation and forecast data refer to two periods: warm - May-September 2017 (yellow) and cold - 

November 2017 - March 2018 (green). 

 



Lead time  30 min 

         

Threshold 

 WARM PERIOD COLD PERIOD 

scale shape #situations scale shape #situations 

  625 RAKU 1956     0.428     87 2617     0.294     59 

STEPS 1859     0.420    117 2105     0.410     87 

intersect 0.80     0.84        0.75     0.78        

  900 RAKU 2497     0.362     69 3415     0.000     51 

STEPS 2504     0.321     94 2833     0.324     70 

intersect 0.74     0.74        0.68     0.47        

Lead time  60 мин 

  625 STEPS 1979     0.413    119 1875     0.457    106 

intersect 0.83     0.85        0.50     0.68        

  900 STEPS 2621     0.320     97 2891     0.320     81 

intersect 0.77     0.76        0.63     0.44        

Lead time  90 мин 

  625 STEPS 1958     0.409    121 1342     0.558    129 

intersect 0.83     0.83        0.23     0.54        

  900 STEPS 2268     0.368    103 2248     0.395     96 

intersect 0.73     0.76        0.38     0.33        

Lead time  120 мин 

  625 STEPS 2062     0.382    123 1338     0.548    142 

intersect 0.79     0.80        0.21     0.54        

  900 STEPS 2250     0.364    107 1837     0.459    112 

intersect 0.68     0.72        0.20     0.23        

 

The question arises about the statistical significance of the obtained numbers. The IR 

distribution is rather complicated (an attempt to derive a distribution formula for the Gaussian case 

is given in [Ants 1990]), although mathematically the problem is reduced to estimating the 

probability of a joint event. However, according to the percentage of intersection, it can be argued 

that the quality of forecasting objects of a significant size for a period of 60 minutes in the cold 

period (2017-2018) according to the Kursk radar exceeds the quality of forecasting in the warm 

period. We note that only the data of this radar differ in this property (see Table 12 for comparison). 

Let's continue generalizing the verification results for all radars used in the 2017-2018 tests. 

We choose Pareto thresholds of 625 and 900 points as the most informative, which provide a 

reliable basis for data analysis. Note that for a more stable estimate of the Pareto parameters for the 

selected situations, only the samples with at least 20 precipitation situations were allowed. For both 

periods, the Vnukovo (RAVN , in winter) and Valdai (RUWJ) radars did not satisfy this condition 

to a large extent - these data were completely excluded. In the set of cold period fields for the 

Kostroma (RUDK) and Nizhny Novgorod (RUDN) locators , the condition turned out to be critical 

only at a threshold of 1600 points. 

Let’s recall the interpretation of the parameters of the Pareto distribution of maximum values 

over the selected threshold. The scale determines the value of the GPD at the zero point (GPD(0)=1/ 

scale). The larger the scale, the smaller the GPD value at zero and the lower the probability of 



having an object with a size close to the Pareto threshold. Thus, we can say that the scale 

characterizes more clearly the probabilistic features of objects with sizes closer to the Pareto 

threshold. The shape parameter is more important in GPD analysis, since it determines the 

characteristic of the "tail of the distribution", that is, the probability of the largest areas of 

precipitation. The convenience of the shape parameter lies in the meaning of the parameter sign: the 

negative sign, the zero form, and the positive sign indicate, respectively, the beta distribution, the 

exponential distribution, and the actual Pareto distribution. The value of the positive shape 

parameter is also significant: it ensures the existence of moments of different orders for a 

distribution of this type. 

Let us consider the intersection ratio (IR) of confidence intervals for estimates of the scale and 

shape parameters (Table 12). Let's choose a level of "failure", e.g., intersect <50%, and mark it in 

red. There are various features in the behavior of the IR depending on the lead time and the Pareto 

threshold, some systematic, some random, but here we will indicate only the most noticeable of 

them, based on the values highlighted in red. Prediction of precipitation areas is better in the cold 

period according to the RATL and RAVO radars, and in the warm period, according to the RAKU , 

RUDB and RUDL radars . 

 

Table 12. Intersection ratios of confidence intervals (intersect) of the estimate of the scale parameter and the 

shape parameter for Pareto thresholds of 625, 900, 1225, and 1600 points, for lead times of 30, 60, 90, and 

120 min, for the warm and cold periods of 2017–2018 Values less than 50 are marked in red. Cases of 

insufficient number of situations in observations are marked with an asterisk. 

 

 

RADAR 

 IR (%) 

S C A L E 

 warm 

period 

cold 

period 

threshold\ 

lead time 

 

625 

 

900 

 

625 

 

900 

 

RAKU  

  30 80 74 75 68 

  60 83 77 50 63 

  90 83 73 23 38 

120 79 68 21 20 

 

RATL  

  30 39 27 62 78 

  60 48 23 52 55 

  90 35 17 47 53 

120 34 19 50 62 

 

RAVO  

  30 54 38 70 76 

  60 58 37 64 74 

  90 56 46 61 63 

120 52 35 50 64 

 

RUDB  

  30 92 88 75 78 

  60 87 90 48 67 

  90 81 94 46 56 

IR (%) 

S H A P E 

warm period 

 

cold period 

 

 

625 

 

900 

 

625 

 

900 

84 (+ +) 74 (+ +) 78 (+ +) 47 (0 +) 

85 (+ +) 76 (+ +) 68 (+ +) 44 (0 +) 

83 (+ +) 76 (+ +) 54 (+ +) 33 (0 +) 

80 (+ +) 72 (+ +) 54 (+ +) 23 (0 +) 

74 (+ +) 41 (0 +) 78 (+ +) 87 (+ +) 

72 (+ +) 36 (0 +) 69 (+ +) 71 (+ +) 

66 (+ +) 32 (0 +) 67 (+ +) 69 (+ +) 

65 (+ +) 34 (0 +) 68 (+ +) 73 (+ +) 

78 (+ +) 40 (0 +) 76 (+ +) 71 (+ +) 

76 (+ +) 36 (0 +) 72 (+ +) 67 (+ +) 

77 (+ +) 38 (0 +) 66 (+ +) 63 (+ +) 

69 (+ +) 34 (0 +) 64 (+ +) 60 (+ +) 

93 (+ +) 91 (+ +) 72 (+ +) 72 (+ +) 

91 (+ +) 92 (+ +) 60 (+ +) 64 (+ +) 

92 (+ +) 94 (+ +) 56 (+ +) 57 (+ +) 



120 88 92 44 56 

 

RUDK  

  30 78 85 69 73 

  60 76 80 54 68 

  90 80 82 50 60 

120 72 80 52 50 

 

RUDL  

  30 75 63 47 52 

  60 73 64 32 47 

  90 68 57 40 45 

120 71 66 41 42 

 

RUDN  

  30 78 85 87 70 

  60 52 86 57 71 

  90 38 83 54 58 

120 31 84 57 54 
 

89 (+ +) 92 (+ +) 55 (+ +) 56 (+ +) 

80 (+ +) 79 (+ +) 75 (+ +) 70 (+ +) 

75 (+ +) 74 (+ +) 64 (+ +) 64 (+ +) 

76 (+ +) 74 (+ +) 60 (+ +) 57 (+ +) 

74 (+ +) 73 (+ +) 56 (+ +) 53 (+ +) 

80 (+ +) 76 (+ +) 72 (+ +) 71 (+ +) 

76 (+ +) 73 (+ +) 64 (+ +) 63 (+ +) 

73 (+ +) 69 (+ +) 62 (+ +) 61 (+ +) 

74 (+ +) 70 (+ +) 59 (+ +) 57 (+ +) 

89 (0 0) 80 (0 0) 87 (+ +) 89 (+ +) 

38 (0 +) 78 (0 0) 69 (+ +) 71 (+ +) 

30 (0 +) 79 (0 0) 65 (+ +) 63 (+ +) 

27 (0 +) 80 (0 0) 64 (+ +) 59 (+ +) 
 

 

Let’s analyze the confidence intervals of the shape parameter estimate (shape, Table 12). Let's 

add the sign (+/-) depending on the sign of the shape for observations/predictions, with the sign 0 - 

for the shape interval [-0.1, 0.1]. It is desirable that the forecasting system preserves the sign of the 

shape parameter. According to the table, there is a general dependence of the sign of the shape on 

the Pareto threshold. So, in the warm period, the parameter generally decreases when moving from 

a threshold of 625 to a threshold of 900. We add that when passing to the rejected thresholds 1225 

and 1600, the shape parameter estimate goes to zero and even to negative. This boundary between 

the thresholds provides further evidence that areas larger than 625 points (approximately 50×50 km) 

are most suitable for Pareto analysis in both observations and forecasts. Indeed, for all radars, 

except for RUDN (Nizhny Novgorod), the sign (++) for all lead times and for both periods indicates 

that both observations and forecasts fit the Pareto distribution. At the same time, the value of the 

intersection ratio (at the threshold of 625) is noticeably higher in the warm period for the RAKU 

(Kursk), RAVO (Voeykovo), RUDB (Bryansk), and RUDL (Smolensk) radars. The picture is 

different for the RATL (Tula) and RUDN (Nizhny Novgorod) radars, which are located to the east 

of the above, and where the quality of reproduction of vast contiguous precipitation areas is higher. 

 

Conclusions 

The study considers the problems of modeling of extreme values on the example of 

contiguous precipitation areas observed and predicted by the precipitation nowcasting system in the 

coverage areas of DMRL-S radars deployed in the Central Federal District of Russia. Precipitation 

areas were converted into objects using spatial averaging and the isoline of 1 mm/h. The sets of 

such sizes (or areas) of objects exceeding certain threshold values were formed so that they at least 

partially satisfy the conditions of physical (and at the same time statistical) independence for 

applying the extreme value theory (EVT). The model of "peaks above the threshold" described by 

the generalized Pareto distribution is chosen as the basic model of extreme values. 



All the main computational procedures were performed using the tools and graphical 

representation available in the R language. Objects were selected using the mathematical module 

FeatureFinder() of the SpatialVx library. To estimate the distribution parameters, we selected 

objects with sizes of at least 25×25, 30×30, 35×35, and 40×40 points in a two-kilometer grid. The 

generalized Pareto distribution was used with fixed location thresholds (Pareto thresholds) equal to 

the selected object sizes (625, 900, 1225 and 1600 points). The parameters were estimated using 1) 

maximum likelihood methods, 2) maximum likelihood, 3) L-moments, and 3) Bayes with stochastic 

Markov chain modeling. 

The conclusions are based on the generalized maximum likelihood method and two Pareto 

thresholds, 625 and 900 points. The output standard errors of the estimates are used to construct 

95% confidence intervals (CI) and to subsequently compare estimates of the scale and shape 

parameters based on the intersection ratio (IR). Particular attention is paid to the shape parameter, 

the positivity of which (“Pareto” distribution of extrema) indicates the presence of a heavy tail in 

the distribution: the larger the value of the shape parameter, the heavier the tail and the more 

problematic the existence of distribution moments. 

It is shown that with increasing threshold (from 625 to 1600) the shape parameter tends to 

change sign from positive to zero and, in rare cases, to negative. The zero sign in observations and 

forecasts at a threshold of 625 points was observed for only one radar (RUDN) during the warm 

period. Negative estimates of the shape parameter are even rarer; at the threshold of 625 points, 

such cases are completely absent. 

Assuming the IR of 50% or more as an acceptable error, two conclusions can be drawn. 

First, the precipitation nowcasting system better predicts objects of extreme size in the cold 

season. The number of pairs (++) in the warm period according to the table 12 is about half of the 

cases, and in the cold - about 75%. 

Secondly, the precipitation nowcasting system most accurately reproduces the Pareto 

distribution of precipitation areas in the warm period - in the coverage areas of the RAKU (Kursk), 

RAVO (Voeykovo), RUDB (Bryansk), RUDL (Smolensk) radars, and in the cold period - in the 

coverage areas to the east of the RATL (Tula) and RUDN (Nizhny Novgorod) radars. 

The last conclusion from the work done can be attributed to the methodology: the extreme 

value theory is quite applicable to such objects of analysis and short-term forecasting as significant 

contiguous precipitation areas only with a clear understanding of the theoretical prerequisites and 

using suitable statistical methods and reliable data processing tools. Otherwise, the results obtained 

may be useless, accidental, or even harmful. 
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