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Introduction

This study presents the results of the object-oriented verification of the precipitation radar
nowcasting system of the Hydrometeorological Center of Russia. The verification period is May-
September 2017 and November 2017 — March 2018. The focus is on the ability of the system to
reproduce contiguous precipitation areas (“objects”) with an area exceeding a certain threshold. The
generalized three-parameter Pareto distribution is used, which enables evaluation of the area sizes in
the distribution tails by the shape parameter of the distribution.

The paper [Muraviev 2022b] discusses the problems of constructing correct samples for
verification and the statistical properties of these samples based on the accumulated datasets of
observations and forecasts. Here, the main attention is paid to the precipitation objects in the sense
of object-oriented verification of weather elements [Davis 2006 a, b, Bundel 2021]. The objects are
determined in the following way: 1) spatial smoothing of the field with a certain smoothing radius;
2) identification of connected areas using the precipitation intensity threshold - in fact, objects; 3)
selection of objects with an area exceeding a given threshold value.

The precipitation intensity was derived from radar reflectivity based on the methods of the
Central Aerological Observatory (CAO) [Temporary guidelines 2017].

Since the precipitation fields belong to time series with a 10-minute step, the independence of
sample elements can be violated due to serial correlation. To obtain conditionally independent
objects of maximum area, the concept of a continuous situation is applied, under the assumption
that particular situations in the synoptic sense can be considered as physically partially independent
[Muraviev 2022b].

The area and the object are defined in precipitation fields using the isoline of the same value,
with the difference that the area belongs to the original field, and the object belongs to the same
field, but after spatial averaging. It is possible that the area exists, but the corresponding object is
not defined due to the smoothing procedure, which reduces the initial intensity of precipitation.
From a meteorological point of view, the area of the object corresponds to the spatial scales of
mesoprocesses. It could be more natural to switch to a linear scale by taking the square root of the
number of points in the object [Davis 2006a], but objects in precipitation fields have not only
ellipsoid or square shapes, but also elongated stripes and even connected lines [Isaev 2001,
Lenskaya 2006]. Thus, the number of points seems to be more informative estimate of the object's

scale in this work.



We used four methods for estimating the parameters of generalized distributions of extremes
and threshold exceedances: 1) maximum likelihood, 2) generalized maximum likelihood, 3) L-
moments, and 4) Bayesian estimation using Monte Carlo procedures. Confidence intervals (CI) of
parameter estimates of the generalized Pareto distribution calculated from sets of radar observations
and nowcasts based on the STEPS model are used to integrally assess the quality of the statistical
nowcasting model according to the simplest principle: the greater the intersection of confidence
intervals for estimates of the same parameters in observations and forecasts, the higher quality of
forecasts, in terms of the model ability to reproduce the observed distribution of vast precipitation
areas.

The resulting tables collect CI intersection estimates for network radars for the warm and cold
periods of 2017-2018, and for several area thresholds. Particular attention is paid to the quality of
forecasting the heavy tails of the distribution. In the conclusions, considerations are formulated
about the information content of such quality assessments and about the possibilities of their

generalization.

1. Construction of a sample of objects with large and extreme areas

The correct sample formation is considered in detail in [Muraviev 2022b]. The selection of
objects in a given field is performed using the FeatureFinder function of the SpatialVx library
[Gilleland 2020] based on three parameters: 1) the radius of spatial averaging, 2) the identification
threshold, 3) the minimum area - by the number of connected, or adjacent points of the object. The
following parameter values were tested: averaging radii - 5 and 9 points; object identification
threshold of 1 mm/h; the minimum sizes of objects (according to the number of grid points in the
corresponding area) are 0, 625, 900, 1225 and 1600 points. In areal units, the minimum dimensions
correspond to the squares 50 x50, 60 x60, 70 x70 and 80 x80 [kmxkm]. We do not take into
account the problem of the identified object location at the radar coverage boundary at the present
stage, and cannot evaluate to what extent the objects surpassing the boundary influence the results.
In the most important cases, the visual analysis can be used. When passing to radar composite data
covering the whole territory of European Russia, the influence of the boundaries should
considerably lessen.

To identify an object, it is recommended to use two methods for determining the threshold: as
a fixed value or as a distribution quantile [Davis 1, 2]. Both approaches are complementary, each
has advantages and disadvantages. In our work, we use a fixed threshold due to the large scatter in

precipitation fields for different radars and in different test periods [Muravyov 2019].



The distribution of precipitation object sizes for the fields of radar observations and forecasts
was analyzed over the coverage areas of nine DMRL-S radars and in 10-minute time step. The
distribution of object sizes by quartiles and with an average value (mean) is presented in Table 2. A

somewhat unexpected fact is that in all radar view areas the smallest object is one point, or one cell.

Table 2. Statistical Characteristics of the Size Distribution of Verification Objects in the Observation Fields
of different Radars (RAKU, RATL, etc.) in the Central Federal District of Russia.

‘ min ‘ q25 ‘ median | mean | q75 | max

RAKU 15403 / 7384

warm one 125 317 1054 1133 17989
cold one 76 262 1017 1080 14228
RATL 13269 /4511

warm one 116 304 985 1053 16682
cold one 86 288 1000 1098 22158
RAVN 14094 / 1502

warm one 122 316 848 916 16855
cold one 71 203 511 523 5654
RAVO 21944 / 5689

warm one 92 257 749 731 14820
cold one 65 184 567 514 10560
RUDB 12022 /4120

warm one 134 361 1037 1164 19383
cold one 83 270 9296 980 12528
RUDK 20455 / 3866

warm one 104 290 924 970 14443
cold one 66 180 557 505 11824
RUDL 20479 / 4246

warm one 107 298 936 1007 19812
cold one 72 233 905 841 27128
RUDN 21215 /5281

warm one 113 301 971 1004 17049
cold one 62 193 704 614 14079
RUWJ 22991 / 2445

warm one 95 267 953 895 19551
cold one 54 172 527 478 16530

Note. Convolution radius is 5 grid points, g25 and 75 are the first and third quartiles of the distribution. The
rows next to the radar identifiers indicate the total number of objects in the warm (/) cold periods.

Almost all quantiles (excluding min) of the warm period are larger than the corresponding
quantiles of the cold period, except for mean, q75, and max of the RATL radar and max of the
RUDL radar marked in red. For the RAKU, RATL, RUDB, and RUDL radars, the q75 quartiles for

the cold and warm periods are comparable.



We focus on the significant sizes of objects in observations and forecasts, for which we first
discuss the general methodological and statistical problems of analyzing extreme values. In
[Muraviev et al. 2022, 3] we present a more detailed and, if possible, formally accurate description
of the extreme value theory (EVT) theorems, discuss the practical application of these theorems,

and list some useful methodological and statistical recommendations.

2. Tail heaviness analysis: problems and some recommendations

With the rapid development of the extreme value theory and the abundance of its practical
applications, most researchers are extremely cautious in their conclusions, avoid being categorical,
and often emphasize the exploratory nature of the results obtained [Embrechts2003, Extremes and
Integrated 2000, McNeil 2005, Novak 2011, Extreme events 2017]. Thus, [Paul Embrechts et
al.2003] frankly warn the reader about possible failures calling some of their own graphs of shape
parameter estimates "nightmarish”. The most general recommendations are formulated, for
example, in the fundamental work [Reiss, Thomas 2007] devoted to the statistical analysis of
extreme values applied to insurance, finance, hydrology, and other areas.

Methods for estimating parameters are divided into non-parametric and parametric in the
classification of Reiss and Thomas. In the first case, the object of analysis is a set of data on the
basis of which sample distributions, densities and quantile functions are built. In the second case,
the object of analysis is the generalized Pareto model, whose parameters (shape and scale) are
estimated by different methods, including the methods of maximum likelihood, moments, Bayes
methods, the Hill estimate. In the parametric approach, it is recommended to explicitly allocate the
threshold value beforehand.

[Reiss, Thomas2007] consider the following steps for systematically solving the problem of
statistical inference. First, consider the simplest exponential model, applying all the methods of
parameters estimation mentioned above. If according to the diagnostic results (mostly graphical) it
turns out to be unacceptable, then go to the limited Pareto model (with a zero threshold),
supplementing the above parametric estimates with the Hill estimate. It is recommended to compare
the Bayesian estimate (with the prior gamma distribution of the shape parameter) and the Hill
estimate. In a good case, they should be close. For greater reliability, it is also recommended to
conduct simulation modeling of random variables based on the same Pareto distribution. If
diagnostics (for example, according to the graph of the sample mean function of kurtosis) shows a
significant incorrectness of this model, then further considerations should be made before the next
step. For example, the initial hypothesis about heavy tails, Pareto-type tails, could turn out to be

incorrect, and then it makes no sense to move on to the full Pareto model. If the analysis did not



rule out "heavy-tailedness”, then it is the turn of the full Pareto model with such methods for
estimating parameters as the maximum likelihood, L-moments, probability-weighted moments,
Bayes, etc.

A similar hierarchy has been proposed for the combination of the Pareto model with the
Poisson distribution (Poisson-GP models).

The choice of thresholds is most reliably based on plots of mean kurtosis values, as well as on
the analysis of the behavior of estimates of distribution parameters and their confidence intervals. In
addition to a series of thresholds from some reasonable interval, one can experiment with "random
thresholds™ for order statistics at the end of the original variational series (e.g. [Galambos 1984]).

[Reiss, Thomas2007] recommend using the "pragmatic approach™: we cannot know whether
the resulting analysis of extremes will be useful for extrapolation outside the area in which the
previous data is collected; "cross your fingers for luck™ and publish a risk assessment of future
extremes under the estimated distribution; update the model as more information becomes

available.

3. Estimating Pareto Distribution Parameters Using the ExtRemes Package

We further reduce the term generalized Pareto distribution to Pareto distribution. Our
approach is straightforward: the tail analysis method is parametric [Reiss]; distribution parameters
are estimated by several methods; the location parameter (that is, the Pareto threshold) is fixed (the
threshold on the precipitation object areas; the selection of informative thresholds is based on the
analysis of histograms discussed below). Nonparametric methods for estimating heavy tails (for
example, Hill estimators) are not used because of possibly large errors in small values of the shape

parameter.

3.1. Pareto Distribution Parameter Estimates and Informative Threshold Selection

The approximation of the set of maximum object sizes by the Pareto distribution was
performed using the fevd() function of the extRemes library from the R language repository. The
main properties of the extRemes package including its theoretical and statistical principles are
described in [Gilleland and Katz 2016].

In the function fevd for parameter estimates, the methods of 1) maximum likelihood, 2)
generalized maximum likelihood, 3) L-moments and 4) Bayesian estimation based on statistical
modeling of Markov chains are implemented. It is possible to include additional variables
(covariates), for example, time, to take into account the seasonal cycle or to adjust the joint Pareto-

Poisson model [Martins 2001, Gilleland, Katz 2011]. The choice of warm and cold periods for



testing made it possible, at least at this stage, to disregard the time covariate. Experiments with the
joint Pareto-Poisson model led in some cases to strong computational instability, and it was decided
to confine ourselves at this stage to the Pareto model. In [Muravyov 2022, 2], we give preliminary
estimates for the distribution of peaks on the time scale to satisfy the conditions for the Poisson

distribution.

3.1.1. Generalized maximum likelihood

The maximum likelihood method (MLM) is well known, so let us focus on its
"generalization”, as it was called by the authors of [Martins2001]; we present the basic formulas,
using the specified source. If the Poisson distribution of time points with exceeding the threshold p
has intensity A, then in formulas (1) the parameters are modified as follows:

w*=p—o(1 - A%/ &, o* = chsat £20,

u*=p+o In (1), o* = cat £=0.

The quantiles of the Pareto-Poisson model are functions of the parameters and the return
period (the expected time between exceedances):

Xp=pu—o[l— (AT /) )/ Eat £E20,

Xp=p+o In (AT p) at £=0.

The estimate of the intensity parameter is X taken from the data and is equal to the

exceedance frequency in the selected time interval, from which the original peak values are

extracted. The log-likelihood function for the parameters € of the Pareto-Poisson model with peaks

{X1,X2,..,Xm}exceeding the threshold x o from a set of n time units is written as

INF[LE |x) ] =m[P(M =m{] v=24an)]+ X1 = 1)'m= KlaE[fryi 4] x = x,0)]10 =

1 m
=min(A)— An-min(c) + (1 — —) In(y;)
: Z (2)

where 6=(A, o, §), the expression before the summation symbol represents the likelihood of
observing exactly m values exceeding the threshold x ¢ in an archive of length n time units, and the
second part represents the likelihood that these m exceedances had observed values Xi; yi =1+ §( Xi—
Xo)/o. The intensity A of the Poisson process can be fixed, for example, by the sample frequency of
exceeding the threshold, and thereby reduce the number of model parameters to two.

As is known, the maximum likelihood method applied to the scale and shape parameters leads

to a system of two equations in two unknown variables, the solution of which is found using



computational algorithms of computational mathematics (in the ExtRemes package - by the
Newton-Raphson and gradient methods). The generalized maximum likelihood method was
proposed due to the fact that the standard MLM generated unnatural estimates of the shape
parameter on small samples in the hydrological analysis of extrema. The authors [Martins 2000,
2001] used a "truncated" Bayesian approach, assuming that the shape parameter can be limited to
reasonable limits (for example, by the usual interval for hydrology [-0.5, +0.5]) and made it a
random variable with a beta distribution B (p, q), p =6, g =9. The a priori distribution density of the
shape parameter has the form n(¢) = (0.5 + &) P2 (0.5 - &) 91/ B (p, g), while the mean value is
shifted to the positive region and is equal to 0.1, the variance is (0.122)? . The generalized
likelihood function was expressed as follows: GL (A, o, | X) = L (A, o, &| X ) =n(§). The approach is
considered truncated, since the joint prior distribution is not used here. In formula (2) for the
Pareto-Poisson model, the function =(§) is added additively and the solution is found for the
maximum value of the logarithm of the generalized likelihood function by the same methods of

computational mathematics.

3.1.2. L-moments

To estimate the parameters ¢ and & the Pareto-Poisson model using L-moments, the main
coefficients byrare first determined using the rank series of the initial peak values (maximum areas of
objects) X (1) <X (2) <... <X (n), Where n is the number of elements in the sample (in our case, selected

situations during the test period):

I[f}],l" = 0,1,2,

y _N[E-De—i-D.—i-r+ 1)
re Z[ nm—1n—-2)...(n —r)
=1

The first three L -moments are calculated by the formulas:
1:\u003d bg, 12\u003d 2 b1 - bg, I3\u003d 6b2- 6b1+ b g.
Using the notation t2\ u003d I2 /11, we write the calculation formulas for the estimates:

3:31(1—1), F=o 1

t

standard method of moments , these estimates are calculated using simple formulas:

.1 2 s 1 _CI=
6= za (s_=+1)’ f—i(l s=)

where a and s 2 are the sample mean and sample variance, respectively.

Formally, L -moments are defined using the formula

r—1

Ly :% Z (_ljk(r E IJEXr—k:r

k=o



where X k: n is the k - th smallest value in a sample of size n from the distribution of a random
variable X, E is the expectation operator. In statistics, the first four L -moments are called L -mean
(or L -position ), L -scale , L -skewness , and L -kurtosis .

Convenient property of L-moments is the use of order statistics based on the values of a
ranked series of realizations of the initial random variable, which, firstly, provides more robust
statistical characteristics compared to the usual method of moments, and, secondly, guarantees the
presence of higher moments at the only condition for the boundedness of the mathematical
expectation. A consequence of this favorable feature is a lack of sensitivity: for example, the
Laplace distribution has a kurtosis of six and light exponential tails, while the Student's distribution
with three degrees of freedom has an infinite kurtosis and heavy tails; at the same time, the L -
skewness for the Laplace distribution is higher than the same estimate for the indicated Student's

distribution.

3.1.3. Bayesian method

This method is implemented in the ExtRemes package as a Markov chain simulation using
Monte Carlo methods (Markov Chain Monte Carlo methods, MCMC). An algorithm for the
automated generation of Markov chain states for symmetric target distributions was published in
1952 by a group of researchers at the Los Alamos Laboratory led by N. Metropolis, who conducted
statistical computer experiments in the field of nuclear and thermonuclear weapons. In 1970, an
article by W. Hastings appeared, in which the restriction by symmetric distributions was effectively
removed, and at present this algorithm is called Metropolis-Hastings and consists of the following.
Samples are taken from the probability distribution P(x), the parameters of which are to be
determined, and for which only the function f ( x ) is known, which is proportional to the target
probability function P(x). The algorithm collects the states of the chain, which together approximate
the desired distribution P(x) with increasing accuracy. The selections are made iteratively with the
only condition that each next value (“sentence™) depends only on the previous value (hence the
Markov property of the chain). The selection of the considered candidate for the completion of the
sample depends on the comparison of the values of the function f ( x ) taking into account the
desired distribution P(x).

The sequence of specific actions that reflect the essence of the Bayesian strategy is that a non-
zero likelihood function h (x|) is used as a function 6f (x) and c, where 6 is the vector of estimated
parameters, and x is the initial sample of observations of length n. In its final form, f ( x ) is the
negative sum of n logarithms of the corresponding distribution densities of implementations of x

under the condition 0.



The candidate selection function ( sampler ) is an unconditional and a priori specified
distribution density of the parameter vector g ( 0), acting as a matrix g ( 6*, 0) of transition
probabilities 6to 6*.

fevd() calculation module implements the following iterative procedure.

1. The initial value 8° ™ ysually close to some average position of the a priori distribution
g , which is assumed to be normal by default (with parameters previously estimated by the
maximum likelihood method). Using a random number generator tuned to the distribution g , a
candidate ©6* is extracted, considered as the 6element of a random walk following © (the simplest
version of the Markov chain [Feller1984, v.1]).

2. The Hastings ratio is calculated

r(6°,6%) =[h (x| 6%)g(6*,6°)]/[h (x]6° g (6°, 6%)],
which eliminates the need to evaluate the unknown denominator (the integral of the likelihood over
the probability measure of the parameter) in the Bayes formula for conditional probability.

3. An operation is performed, which is called the failure of the Metropolis :

+ calculated a ( 6°, 6*%) =min (1, r (06°, 6%)), treated as a probability a,

+ using the encoder of uniformly distributed numbers on [0, 1], the number u is extracted and
the decision is made: for u < a the transition of the state 6°to 6* is allowed, for u > a the transition
is not allowed and the new state coincides with the previous one.

Recursion at steps 2-3 leads to the generation of a sample of values that reproduce the desired
distribution of the parameter P( 6), the average value (or mode ) of which can be taken as a
Bayesian estimate of the distribution parameter of the original random variable X. From the
resulting sample of states of the Markov chain, rank estimates of the reliable interval ( credible
interval ), which differs from the confidence interval ( confidence interval ) by the fact that in the
first case the boundaries of the interval are fixed, and the parameter is variable, in the second case
the boundaries are variable, and the parameter is constant.

Remark. In the Bayesian strategy for estimating parameters, a theory of optimal solutions is
constructed using the so-called conjugate prior distributions, which greatly facilitate the solution of
emerging problems [DeGroot 1974]. If the a priori distribution function (or density) of the random
parameter distribution ® is g, and the conditional distribution function of the random variable X at
®=0is f (x| 0), then the posterior distribution g ( 6| x ) of the parameter ® at X=x is proportional
tog (0)f(x]06)for every 0. Then we say that the family of distributions g is conjugate to the

family of distributions f.



Example. Let X 1, ..., X n be a resampling of the Bernoulli distribution with an unknown
parameter 6. Suppose the prior distribution of a parameter is a beta distribution with parameters p
>0, g >0. Then the posterior distribution 6 for Xi = xj (i =1,..., n ) is the beta distribution with
parametersp+y,q+n-y,y=XXi.

The simplification of the solutions of statistical problems lies in the fact that the desired a
posteriori function does not require any parametric estimation - it is only necessary to modify the
parameters according to simple formulas. Correspondence tables of distributions are compiled
according to the principle of conjugation in Bayesian problems.

However, it is known that the postulation of a family of prior distributions of a parameter is
the most vulnerable side of the Bayesian methodology, and the application of this methodology in
practice, including, in particular, the contingency condition, must be accompanied by additional
checks. In addition to the general critical problems of the Bayesian methodology, there are two
significant statistical disadvantages of the particular MCMC algorithm. First, the samples are
correlated, which is why even a large set of samples will not quite correctly reflect the desired
distribution P(x). Secondly, with the inevitable convergence of the Markov chain to the desired
distribution, the initial samples may belong to a different distribution, which requires setting a
rejection period (burn-in period).

In recent decades, many variations of the MCMC algorithm have been developed, designed to
eliminate the most serious shortcomings, however, the simple and stable Metropolis-Hastings
algorithm turned out to be by the end of the last century "a universal tool both in Bayesian inference

and in solving numerous problems outside the Bayesian community" [Geyer 2011].

3.2. Description of the mathematical package extRemes

A detailed description of the extRemes package and training materials can be found in
[Gilleland and Katz 2016, Gilleland 2020 I, 11]. This package (in R terms, the library) contains
general functions for analyzing extreme values with the possibility of including additional variables
(covariate) and declustering intervals according to the methodology [Ferro and Segers, 2003].
fevd() and ci() are used as the main operational functions. Parentheses indicate the presence of
configuration options, the equal sign indicates the specified values of these options.

The following parameter estimation methods are provided: 1) maximum likelihood (MLE),
2) L-moments, 3) generalized maximum likelihood method (GMLE), 4) Bayesian strategy
(Bayesian). Statistical inference (calculation of confidence and confidence intervals) is carried out

using 1) normal distribution, 2) likelihood profile, 3) Bayesian estimates for the posterior function,



4) bootstrap. Variants of two-dimensional analysis and dependency testing are connected: 1)
dependence plot on the tails of distributions, 2) estimation of the extremality index according to
[Geyer 2011].

Let us make some remarks about the criteria used for modeling quality. The Akaike criterion
is calculated by the fevd() function, while for the Chi-square criterion, histograms were made by
hist() of the R language, which implements the Sturges algorithm, which may not be optimal for
extrema analysis due to the equidistant graduation of histograms. However, the use of the kernel
smoothing histogram algorithm built into fevd() is unacceptable due to the coverage of the entire
domain of definition, including values both after and before the Pareto threshold. The Akaike
criterion is not calculated in the fevd() module for the L-moments and Bayes methods due to
assessments of the model quality for these methods by other criteria (BIC and DIC). Chi-square is a

common criterion for all methods of model quality.

3.2.1. Setting initial values and basic options for the fevd() function

In the case of MLE / GMLE, it is important to have good initial estimates of the parameters,
while the feva function tries to find these approximations itself (by default). The initial list
specifies the initial values of the estimates for running a numerical optimization procedure (MLE /
GMLE) or for MCMC iterations (Bayesian). By default, L -moment estimates and estimates based
on the moments of the Gumbel distribution will be calculated; those estimates for which the log-
likelihood takes the smallest negative value are used below. For the Bayesian method, it is
recommended to test several initial values to make sure that they do not affect the final result. But if
the initial values are not suitable, the standard MLE method is used.

Since there is some "spin-up" in the Monte Carlo simulation of the Markov chain, the first
few hundred realizations should be removed from the resulting sample using the rejection (burn-in)
option. By default, the number of steps in the random walk process is taken equal to 10000 with
burn-in = 500 of the first realizations.

To take into account temporal and calendar characteristics, the options period . basis and
time are used; units specifies the base period (default is “ years ) and time units (default is
days ), respectively.

For GMLE and Bayesian methods, it is possible to order the prior distribution function using
the priorParams list. As mentioned above, by default for GMLE , the beta distribution is used in the
interval from -0.5 to 0.5 with parameters p =9 and g =6 (at which the mathematical expectation is

shifted to the positive region and equals 0.1), and default Bayesian estimation uses normal



distribution functions with MLE parameter estimates of means with a standard deviation of 10 for
all parameters.

Only in the Bayesian method, there is a symbolic variable proposalFun that orders the name
of the function that generates the proposal parameters at each iteration of MCMC. By default, a
random walk chain is used: at the current value of the parameter, a candidate is proposed in the
form of an additive to the current value of a normally distributed random variable with given

parameters.

3.2.4. Calculating confidence intervals using the ci() function

The ci() function calculates confidence (and Bayesian confidence) intervals (CI) from the
fevd() output, using the selected parameter estimation method in fevd() and the interval calculation
method specified in ci().

For L moments, the only method available in the package is a parametric bootstrap with the
number of iterations R. It is recommended to determine R through trial and error, say by starting
with R = 100 and gradually increasing (by one or two hundred) until the results stabilize. By default
R =100.

For MLE/GMLE, when setting the method = “normal” option, the normal distribution
approximation is used. If method = "boot", then the parametric bootstrap is applied.

To calculate the CI of parameter estimates by the Bayesian method, the extreme percentiles
from the resulting MCMC sample are used (after removing the first burn.in values).

Finally, ci (method="profliker") specifies the search for bounds on the likelihood function
profile. Calculating Cls in this way is often the best tool for estimating the shape parameter and
return periods when the distribution is skewed and the normal distribution is unsuitable. The
likelihood profile is calculated based on the likelihood maximization for each individual parameter
within a certain range of its values (option xrange) with fixed values of the remaining model
parameters.

Let us briefly describe the parametric bootstrap algorithm.

(1) Generate a sample of length n from the input data of the model being approximated.

(2) Fit the distribution of the extreme value to this sample and store the resulting parameter
estimates (and, for example, return periods).

(3) Repeat steps (1) and (2) R times.

(4) Based on the resulting sample of the previous steps, calculate confidence intervals using

the corresponding extreme percentiles given by the alpha option.



3.2.3. Digital and graphic output

The parameter estimates and their standard errors are placed in a vector (par, se.theta),
respectively. The cross-covariance matrix is contained in an array called cov.theta. Approximation
quality scores are available under the names AIC (Akaike Information Criterion [Akaike, 1974]),
BIC (Bayesian Information Criterion, [Schwarz, 1978]), and DIC (Deviation Information
Criterion). The characteristics of the output information are specified by the options of the summary
and print functions. In Bayesian Estimation, the type = trace ” option creates a plot panel
indicating the posterior distribution function and a trace panel of the MCMC method for each
parameter. By default, the resulting mean is calculated from the posterior sample as the parameter

estimate, but setting the run = “ postmode ™ option will plot the posterior sample mode .

3.3. Estimates of the quality of nowcasting using Pareto distribution parameters

The fevd() function, together with estimates of the scale and shape parameters, returns
estimates of the standard error, which will be used below to calculate the boundaries of confidence
intervals (L, U), the main tool for the precipitation nowcasting quality assessment in this study.

3.3.1. Archive of results of verification of nowcasting of precipitation areas

For each of the eight radars, the two periods of the year, and each of the Pareto thresholds,
two tables of numerical data (sizes of maximum objects and histograms) and one set of graphs are
built. For eight radars, two periods of the year, three Pareto thresholds, the total set is 8*2*3 = 48
tables of object characteristics, 48 tables with histograms and 48 graphics files.

Output tabular data. Each table with area characteristics consists of six columns: 1) names,
2) observations on the locator, 3 - 6) forecasts according to the STEPS model - for 30, 60, 90 and
120 minutes. Two groups of characteristics are organized by rows: 1) general characteristics of the
areas of objects and for four methods of estimating parameters 2) criteria for the quality of
modeling (Akaike and Chi-square), and estimates of the scale and shape parameters with their
confidence intervals.

Table 3 presents the general statistical properties of object areas according to the RUDL

locator (Smolensk), with an area size of at least 625 points, for forecasts for four periods.

Table 3. General characteristics of the areas of maximum objects in continuous precipitation situations
according to observations (obs) of DMRL-S radar of Smolensk (RUDL) in the warm season (May -
September 2017) and in STEPS nowecasting precipitation fields (30-120 min)

| obs 30 60 90 120 ]




peaks 92 119 123 131 130
area_min 625 654 630 630 639
area_med 2496 2394 2380 2195 2150
area_max 19812 19982 20023 19579 18426
ndegf 11 11 12 11 11

Note. Row names: peaks - the number of maximum objects; area _ min / med / max - minimum, median and
maximum area, respectively; ndegf - the number of bins on the corresponding histograms (the number of
degrees of freedom for the Chi-square test, Sturges' rule).

The characteristics of Table 3 reflect the general properties of objects with a large area in the
coverage areas of all radars. On the one hand, the number of objects with the maximum area in the
prognostic fields exceeds the similar number in the observation fields by approximately 20-25%.
On the other hand, in such statistics as the mean, median, and maximum values of these areas, the
sets of observation fields and forecast fields are quite comparable.

The median area in the observation fields is 2496 points, and in the prognostic fields this area
gradually decreases to 2150 points with the lead time; a similar trend is seen in the maximum values
(decrease from 19812 to 18426). In this, one can see a trend in the distribution density of prognostic
areas towards positive asymmetry, that is, more objects with sizes not exceeding the median and
maximum values of the areas in the observation fields compared to the forecast. Such phenomenon
reflects the main characteristic of most statistical models devoid of sources and sinks of energy:
smoothing and corresponding suppression of extrema both in the values of quantities and in their
areal characteristics, along with the splitting of connected objects into different parts.

Checking the statistical significance of the estimated scale and shape parameters should be
preceded by an assessment of the quality of the simulation: if the quality of the model is
unsatisfactory, no estimates of the model parameters can be taken seriously. However, some model
quality metrics depend (explicitly or implicitly) on the model parameters, so that they also depend
on the methods for estimating these parameters. For example, the Akaike information criterion is
calculated using the likelihood function, which is used in the numerical methods of estimating MLE
and GMLE, and therefore is a direct by-product of parameter estimates and depends on the features
of the calculated cross-covariance matrix of parameters. In other methods, the covariance matrix of
parameters is not used, and the quality of the simulation is assessed by other measures.

However, in the output of all methods, parameter estimates are available, which can be used
to check their compliance with the original observations. The simplest, although not the most
reliable way is to build histograms and calculate the Chi-square test. Consider, for example, the

Akaike test and Chi-square as applied to samples of maximum areas, the characteristics of which



are shown in Table 3. Table 4 shows estimates of the scale and shape parameters of the Pareto
distribution of the maximum areas of continuous precipitation observed during the warm period of
2017 in the fields of the Smolensk radar and in the fields of nowcasting. Parameter estimates are
provided with confidence intervals (with a confidence level of 95%), which are calculated 1) from
the standard error se for the MLE and GMLE methods by adding +1.62 se to the parameter
estimate, 2) from the variation series of hundreds of bootstrap implementations for the L-moments
method, and 3) from extreme percentiles of the resulting sample of the Markov chain for the
Bayesian method .

The values of the scale parameter are given for information, since it is difficult to comment on
them (on the Pareto density plot, the reciprocal of the scale is the value of the distribution density at
conditional zero, in this case at point 625) and we will henceforth focus on the shape parameter. It
can be seen that the distribution has a heavy tail - all shape parameter estimates are positive along
with the confidence intervals (with a minor exception in the obs observation column where the
lower ClI is -0.043). The quality of the GPD (Generalized Pareto distrivution) according to the
Akaike criterion and according to Chi-square decreases with the transition to the forecast fields of
30 min. In both series of criteria values, there are "local” maxima: weak one at 90 min (Akaike) and
noticeable one at 60 min (Chi-square) (in red in Table 4). The postition and the value of the Chi-
square maximum are most likely due to sample effects, and are associated, first of all, with the
histogram construction technique and partially stochastic nature of the GMLE method. Such rare
cases require separate consideration; for illustration, the values of the respective histograms are

given in Table 5.

Table 4 . Quality criteria for modeling by the general Pareto distribution of the maximum areas of objects
(Akaike and Chi-square), and estimates of the scale and shape parameters with the boundaries of their
confidence intervals according to data similar to those in Table 3. The parameter estimation method is the
generalized maximum likelihood ( GMLE).

obs 30 60 90 120
GML Akaik 1661 2150 2225 2364 2352
GML XI2 9.001 11.797 28.153 16.109 16.163
GML scl 1 1471 1518 1531 1475 1564
GML scl 2 2468 2270 2261 2155 2279
GML scl 3 3464 3023 2991 2834 2995
GML shp 1 | -0.043  0.025 0.049  0.080 0.053
GML_shp 2 0.336 0.326  0.337 0.356  0.333
GML_shp 3 0.715  0.627 0.625 0.632 0.613

Note. Generalized Pareto distribution parameter estimation method - GMLE , Akaik - Akaike criterion, X1 2
- Chi-square criterion, scl - scale parameter estimation, shp - shape parameter estimation. Indices for
parameter estimates: 1 - lower (2.5%) limit of Cl, 2 - parameter estimate, 3 - upper limit (97.5%) of CI.
Local maxima in the rows of quality criteria are highlighted in red.



Despite the fact that in the GMLE method the shape parameter has a prior beta distribution,
which limits the values of the parameter to the interval [-0.5, +0.5], the posterior distribution of the
parameter does not have such restrictions, and the resulting estimate of the shape parameter will
contain values outside the prior interval. In Table 4, the upper bounds of the confidence intervals

noticeably exceed 0.5, which turns out to be quite a common feature of other radars as well.

Table 5. The number of cases in gradations of the histogram of the distribution of maximum areas according
to data similar to Table 4

observations/ histogram gradations
forecasts (min) 1 2 3 4 5 6 7 8 910 11
DMRL-S RUDL | 38 23 10 7 5 3 3 2 0 1
STEPS-030 | 55 29 10 9 7 3 2 3 0 1
STEPS-060 |57 30 10 10 4 6 0 5 0 0 1
STEPS-090 ( 63 31 10 9 5 71 3 1 1
STEPS-120 | 63 30 9 10 6 6 0 3 2 1

Note. Initial data: DMRL-S Smolensk, warm period, Pareto threshold equals 625. Equidistant gradations
were selected using the Sturges method.

Let us summarize the shape parameter data with the values of the Chi-square criterion in a
separate table (Table 6). The degrees of freedom estimated by the number of histogram gradations
and used for determining the critical values of the Chi-square test are between 6 and 12 for both
periods of the year. The 5% critical values of the Chi-square test for the degrees of freedom in
brackets are 12.592 (6), 16.919 (9), 18.307 (10), 19.675 (11), and 21.026(12).

The values of the Chi-square criterion in the forecast fields of 60 min have the character of
outliers, while in the remaining rows of the table there is a quite regular change in the estimates of
the shape parameter and their confidence intervals for all forecast periods without exception. Let us
pay attention to the ranks of the parameter estimation methods. Peak objects in the fields of
observations and forecasts at all times are modeled best by the Bayes method according to the
quality criterion, worst by the L -moments method, while the shape parameter estimates turn out to
be the largest mainly by the Bayes method and the smallest, by the L -moments method. All

estimates of the shape parameter and confidence intervals, except for the lower bounds of the CI for

the observation fields, are positive, which unambiguously confirms the “heavy-tailed” Pareto

distribution of those areas of continuous precipitation whose area exceeds 625 grid points (which is

equivalent to a square of 50 km x 50 km).

Table 6. Chi-square test and shape parameter estimates with confidence interval boundaries based on data
similar to those in Table 4



obs 30 60 90 120
GML XI2 9.001 11.797 28.153 16.109 16.163
MLE XI2 10.21 13.354 30.346 16.923 17.769
Lmo XI2 10.777 14.121 32.105 18.581 19.092
Bay XI2 7.773 11.125 26.734 15.132 15.404
best Bay XI2 Bay XI2 Bay XI2 Bay XI2 Bay XI2
worst Lmo XI2 Lmo XI2 Imo XI2 Lmo XI2 Lmo XI2
GML shp 1 -0.043 0.025 0.049 0.08 0.053
MLE shp 1 -0.044 0.016 0.041 0.075 0.045
Lmo shp 1 -0.007 0.034 0.047 0.069 0.052
Bay shp 1 -0.008 0.037 0.063 0.11 0.091
larger Bay/Lmo Bay/Lmo Bay/GML Bay Bay
smaller
MLE/GML MLE MLE LMO/MLE MLE
GML shp 2 0.336 0.326 0.337 0.356 0.333
MLE shp 2 0.294 0.289 0.309 0.34 0.304
Lmo shp 2 0.278 0.274 0.29 0.312 0.284
Bay shp 2 0.343 0.328 0.344 0.396 0.354
larger Bay/GML Bay/GML Bay/GML Bay Bay
smaller Lmo Lmo Lmo/MLE Lmo Lmo/MLE
GML shp 3 0.715 0.627 0.625 0.632 0.613
MLE shp 3 0.632 0.561 0.577 0.604 0.562
Lmo shp 3 0.506 0.496 0.492 0.503 0.47
Bay shp 3 0.831 0.681 0.676 0.731 0.698
larger Bay Bay Bay Bay Bay
smaller Lmo Lmo Lmo Lmo Lmo

Note. Initial data: the warm period of 2017, the Pareto threshold is 625. All methods for estimating
parameters were used - GMLE , MLE , L _ moment , Bayesian . Indices for parameter estimates: 1 - lower
(2.5%) limit of ClI, 2 - parameter estimate, 3 - upper limit (97.5%) of Cl. The values of the Chi-square test
that do not contradict the acceptance of the hypothesis about the validity of the generalized Pareto
distribution model are highlighted in green; cases of excess of the values of the Chi-square test for the 95%
significance level are highlighted in red (local maxima on the 60-minute forecast). Oblique font marks the
ranks of methods according to the principle of the largest and smallest values of the corresponding
characteristics.

Comparing the estimates of the Chi-square criterion, we can state that, in terms of the quality
of modeling, all values of the criterion, except for forecasts for 60 minutes, do not reject the
hypothesis of the applicability of the generalized Pareto distribution model to selected objects.

Ranking the methods by the Chi-square criterion provides the following information: the best
quality of modeling for a given radar, a given period of the year and for a specified Pareto threshold
is provided by the Bayesian method, the use of the L-moments method leads to the worst quality of
modeling. For other radars, there is a wider variety of rankings, making it difficult to generalize

preferences or systematic features to all radars and to all lead times.



Table 7 gives the shape parameter characteristics for all radars (Table 7). For brevity, we
exclude confidence intervals and consider the warm period data with a Pareto threshold of 625 and

using the Akaike criterion of the quality of the shape parameter estimate.

Table 7. Sample volumes of maximum precipitation areas (peaks) and evaluation of the quality of modeling
of the generalized Pareto distribution (GPD) (625 grid points threshold) by the Akaike criterion for radars of
the Central Federal District of Russia, observations (obs) and forecasting (30-120 min) in the warm period of
2017. Method parameter estimates - GMLE

observations forecast period, STEPS model (min)

DMRL-S DMRL-S radar
obs 30 60 90 | 120
Kursk, peaks 86 117 118 121 123
RAKU Akaike 1496 2098 2123 2179 2219
Tula peaks 79 117 117 128 132
RATL Akaike 1463 2103 2115 2298 2367
Voyekovo peaks 89 133 141 145 157
RAVO Akaike 1620 2381 2534 2609 2816
Bryansk peaks 76 90 96 99 99
RUDB Akaike 1360 1609 1709 1760 1768
Kursk peaks 96 130 142 145 155
RUDK Akaike 1740 2346 2564 2631 2800
Smolensk peaks 92 119 123 131 130
RUDL Akaike 1661 2150 2225 2364 2352
Nizhny peaks 84 122 129 141 147
Novgorod Akaike 1713 2415 2379 2588 2689

RUDN

Valdai peaks 85 119 128 138 152
RUWJ Akaike 1582 2202 2359 2533 2772

As noted in [Muraviev2022], the number of objects, and, hence, the number of objects of
significant and maximum area in the prognostic fields, gets overforecasted noticeably already at the
first steps of nowcasting (up to 30 min), it also grows in other periods, although not so much. Let’s
consider, for example, the ratio of the number of objects at the forecast step of 120 min to the
number of objects in observations (123/86 = 1.43, etc.) and compare it with the respective ratio of
the values of the Akaike criterion (2219/1496 = 1.48, etc.). A slightly surprising fact is revealed: the
larger the sample, the worse the quality of modeling this sample using the Pareto distribution. Thus,
for the Bryansk (RUDB) radar, a 130% increase in the sample size corresponds to the same
decrease in the modeling quality. The values of the Akaike criterion for the RUDB locator data turn
out to be the best for all columns of the table.

Using a similar scheme, we composed a table of shape parameter values estimated by all four
methods (Table 8).




Table 8 . Estimates of the shape parameter of the generalized Pareto distribution (GPD) (at a threshold of
625) for the Central Federal District radars based on observational data (obs) and forecasting (30-120 min) in
the warm period of 2017

GPD observations
DMRL-S evaluation DMRL-S forecast period, STEPS model (min)
method obs thirty | 60 | 90 [ 120
Kursk GMLE 0.428 0.405 0.413 0.390 0.366
RAKU MLE 0.472 0.419 0.434 0.394 0.353
Lmom 0.379 0.354 0.360 0.336 0.312
bayes 0.681 0.560 0.628 0.533 0.447
Tula GMLE 0.278 0.360 0.344 0.376 0.371
RATL MLE 0.1l61 0.342 0.316 0.370 0.363
Lmom 0.181 0.307 0.290 0.329 0.324
bayes 0.179 0.424 0.361 0.432 0.436
Voyekovo GMLE 0.228 0.294 0.307 0.326 0.314
RAVO MLE 0.074 0.241 0.264 0.294 0.280
Lmom 0.094 0.238 0.255 0.275 0.267
bayes 0.109 0.260 0.273 0.341 0.307
Bryansk GMLE 0.327 0.303 0.328 0.348 0.322
RUDB MLE 0.271 0.236 0.284 0.319 0.276
Lmom 0.266 0.237 0.275 0.301 0.268
bayes 0.342 0.280 0.355 0.397 0.311
Kostroma GMLE 0.284 0.331 0.328 0.303 0.361
RUDK MLE 0.199 0.299 0.298 0.259 0.350
Lmom 0.206 0.281 0.281 0.252 0.316
bayes 0.234 0.355 0.336 0.288 0.417
Smolensk GMLE 0.336 0.326 0.337 0.356 0.333
RUDL MLE 0.294 0.289 0.309 0.340 0.304
Lmom 0.278 0.274 0.290 0.312 0.284
bayes 0.357 0.322 0.354 0.385 0.336
Nizhny GMLE 0.000 0.000 0.253 0.308 0.322
Novgorod MLE 0.000 -0.002 0.165 0.262 0.287
RUDN Lmom 0.038 0.153 0.180 0.250 0.267
bayes 0.038 0.135 0.167 0.307 0.320
Valdai GMLE 0.287 0.249 0.262 0.291 0.327
RUWJ MLE 0.190 0.153 0.184 0.237 0.296
Lmom 0.202 0.169 0.194 0.234 0.276
bayes 0.203 0.162 0.196 0.247 0.318

Note. Pareto distribution parameters are estimated using generalized maximum likelihood (GMLE),
maximum likelihood (MLE), L-moments (Lmom), and Markov chain simulations using the Metropolis-
Hastings algorithm (Bayesian).

The main property of the shape parameter estimates — positivity and a noticeable difference

from zero — indicates “heavy” tails of the distribution. The only exception is the data for the Nizhny

Novgorod radar. It is the only case of almost zero and even slightly negative values of the shape
parameter for observations and for forecasts for 30 min. However, the Akaike estimates in Table 7

on the RUDN radar line do not differ significantly from estimates for other radars.




When switching to a 30-min forecast, the value of the shape parameter can either increase
(RATL, RAVO, RUDK) or decrease (RAKU, RUDB, RUDL, RUWJ)), for all methods of parameter
estimation.

Comparison of the shape parameter estimates obtained by different methods can be carried
out by the minimum and maximum values in the corresponding columns. So, for example, in the
data for the RAKU locator in the observation column, the maximum value of the shape parameter is
0.681 and obtained by the Bayes method, and the minimum value is 0.379 and obtained by the L -
moment method. The ranking of methods in all columns of the table led to the following statistics.
The highest shape parameter values are provided by the Bayesian methods (21 cases) and the
generalized maximum likelihood method (19 cases); the minimum values of the shape parameter
were obtained mainly by the L-moment method (30 cases) and only in 10 cases by the maximum
likelihood method. The reasons for the similarity of the methods that generate the maximum shape
parameter estimates are quite obvious: both are based on the Bayesian approach, either entirely
(Bayesian), or in a "truncated" form (GMLE). As a rule, estimates by the MLE method are lower
than those of the related GMLE method. Interestingly, there are cases of maximum discrepancy
between the MLE and GMLE estimates: in the observational data of RATL (0.161 and 0.278),
RAVO (0.074 and 0.228), RUDK (0.199 and 0.284), RUWJ (0.190 and 0.287), as well as in two or
three columns predictive data.

Output graphic data. The graphical output reveals other aspects of modeling large areas of
precipitation using the generalized Pareto distribution. The graphics for each radar and each Pareto
threshold are displayed in one pdf file, consisting of 20 pages (slides) as follows. For each of the
four methods, there are five pages corresponding to an observation and four predictions. Each of the
pages for GMLE, MLE and L-moments methods contains four panels: 1) quantile diagram "model-
observation"”, 2) quantile diagram with regression line "observation-simulation”, 3) distribution
density of observations (in kernel smoothing) and model Pareto density, 4) return period (in
conditional "years") with confidence intervals. Each of the pages for the Bayesian method contains
four panels: 1) and 2) the posterior distribution density of the scale and shape parameters,
respectively (in kernel smoothing), 3) and 4) "traces" - implementations of the Markov sequence for
the posterior distribution densities of the scale and shape parameters (10 000 steps, with the level of
"burnout™ in burn in = 500 steps).

For modeling quality estimates all the criteria, which are available in the fevd module (AIC ,
BIC and DIC) were partially analyzed, criterion y2 was additionally calculated for histograms built

by the function hist () of the R language. Unfortunately, none of the built-in quality criteria apply to



all four parameter estimation methods. However, since the Akaike criterion, assuming a normal
distribution of model errors, coincides up to an additive constant with the number %2 +2 k , where k
is the number of parameters in the model (in our case, always k = 2), then for a comparative
assessment of the quality of modeling it is perfectly acceptable to confine ourselves to criterion y?
in its simplest form. Recall that the Akaike information criterion is calculated by the formula 4k -
2In(L), where L is the maximum of the likelihood function.

Let’s illustrate the data of Tables 3-6 for the Smolensk locator (RUDL) with examples of the
graphical output of the fevd() module, limiting ourselves to observations and forecasts for 90
minutes. Figures 2 and 4 show the quantile diagrams of the GMLE, MLE and L-moments methods,
Figures 3 and 5 show the posterior distribution densities of the scale and shape parameters along
with their traces of the random walk by the Bayesian method. Quantile diagrams are built in two
ways: 1) between observations and the model data restored from the corresponding quantiles by the
inverse transformation of the generalized Pareto distribution with estimated scale and shape
parameters; 2) between observations and simulated data generated by a random number generator
tuned to a Pareto distribution with specified parameter estimates. On Figures 2 and 4, the first set of
diagrams (obs - model) is placed in the left column of panels, and the second set of diagrams (simul
- obs) is placed in the right column of panels.

The first and, perhaps, the main remark should immediately be made about the objects of the
largest sizes that were stored in the samples of peaks above the threshold , although sometimes such
objects were precipitation areas that went beyond the survey circles of the locators, violating the
physical, and hence the statistical correctness of the sample. The exclusion of such objects
(selection censoring) is provided by the max option size in the FeatureFinder() function of the
SpatialVx library used to generate the spatial objects for verification [Ants2022] , however, it was
difficult to do this in an automated mode. One can understand the need for censoring when
analyzing the quantile plots in the left columns of Figs. 2 and 4. For example, a greater agreement
between the model and observed data could be achieved by excluding objects of more than about
20000 points in size, which is equivalent to a square with a side of about the radar viewing circle
radius (250 km).

Despite the presence of outliers in the quantile plots of the left column, it is possible to obtain,
albeit with a wide range of confidence intervals, an acceptable match with the simulation data. For
example, in Fig. 2, a noticeable deviation from the line of coincidence of one or two extrema in the
diagrams of the left column is compensated by quite successful imitation in the diagrams of the
right column for the GMLE and MLE methods . This, unfortunately, cannot be said about the data
for the 90-minute forecast fields (Fig. 4), where the quality of modeling according to the Chi-square



criterion is noticeably inferior to the quality of modeling of observation objects (Fig. 2). It is
obvious that when the sizes of objects are censored by the upper bound (about 15 thousand points),
the diagrams of both columns will be more attractive.

The posterior distribution densities and traces of the random walk of the estimates of the scale
and shape parameters are shown in Figs. 3 for objects in the observation fields and in Fig. 6 for
objects in the forecast fields for 90 min (Fig. 6). On the trace graphs, the burn-in line is highlighted,
which excludes from the construction of a posteriori densities all realizations of the Markov chain
to the left of the point 500. Thus, the full set is 9500 realizations of the randomized parameters of
the Pareto distribution. Comparing Fig.3 and 5, we note the following. Density modes for scale and
shape in predictive samples deviate in different directions - the scale decreases by about 500 points
(the Pareto distribution density curve at "zero" rises), and the shape increases from about 0.4 to 0.5
(the tail of the Pareto distribution density "gets heavier") . In particular, this behavior of the Pareto
distribution density curve suggests that, when forecasting for 90 minutes, the STEPS model in the
vicinity of the conditional “zero" (equivalent to the threshold of 625 points) systematically
overestimates, then underestimates, and starting from a certain size of objects, begins to
systematically overestimate the areas of objects. An increase in the shape parameter to 0.5 means, in
particular, that the Pareto distribution for predicted objects can only have a mathematical

expectation, and the variance estimate based on such data will lose its meaning.
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Fig.2. Quantile charts for comparing observational data and Pareto distribution simulation data with
estimated scale and shape parameters (obs - model, left panel column), as well as simulation data with
stochastic sampling on estimated Pareto distribution parameters (simul - obs, right panel column). Pareto
distribution threshold - 625 points. Parameter estimation methods: generalized maximum likelihood
(GMLE), maximum likelihood (GMLE), L - moments (L - moments ). Radar data Smolensk (RUDL), warm

period 2017
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Fig.3 . Posterior distribution densities of the scale parameter (upper left panel) and shape parameter (upper
right panel) and random walk traces of the scale parameter (lower left panel) and shape parameter (lower
right panel) plotted by Bayesian method using Markov chain generation Metropolis-Hastings (Monte Carlo)
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Fig.4. Quantile charts for comparing observational data and Pareto distribution simulation data with
estimated scale and shape parameters (obs - model , left panel column), as well as simulation data with
stochastic sampling on estimated Pareto distribution parameters (simul - obs, right panel column). Pareto
distribution threshold - 625 points. Parameter estimation methods: generalized maximum likelihood
(GMLE), maximum likelihood (GMLE), L-moments. STEPS model forecasts for 90 min, field of view and
initial data of the Smolensk (RUDL) radar, warm period 2017
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3.3.2. Choice of parameter estimation method and Pareto distribution threshold

It is necessary to limit the number of methods for estimating distribution parameters and to
reduce the set of thresholds to obtain verification results of nowcasting objects of a large area
common for all radars. Based on the shape estimates obtained and their confidence intervals, it can
be argued that all four methods led to consistent conclusions about the shape parameter for the
threshold of 625 grid points. The standard method of estimating is undoubtedly the maximum
likelihood method (MLE) associated with a modified Chi-square minimum method [Kramer1975],
which, as mentioned above, can also replace the Akaike information criterion under some general
assumptions. However, on small samples, MLE can lead to unnatural parameter estimates, which
has led to the suggestion of a truncated Bayesian correction (GMLE) [MartinsSted 2000, 2001].
The L-moments methods are attractive due to the simplicity of calculations and the statistical
robustness of the estimates. However, in [MartinsSted 2001], statistical experiments with the
estimation of large quantiles showed the advantage of the GMLE method over the L-moments for
samples of medium size and heavy tails, i.e. when the shape parameter is at least positive. Full
confidence in the Bayesian parameter estimation strategy is hindered by a lack of experience in the
broad sense, including insufficient mastery of the methodology, and experience in applying this

strategy to extreme values in particular. The existence of many methods for estimating parameters



confirms, on the one hand, the complexity of the statistical analysis of extrema, and, on the other
hand, excludes the existence of one general and universally applicable method. In this regard, we
will use the GMLE method to bring the estimates of the nowcasting quality to a small number of
observable results.

Let's try to solve the issue of thresholds choice for the Pareto distribution using histograms
and Chi-square estimates, combining the graphic images with the values of the criterion assessment
of the modeling quality.

Figure 6 shows the histograms of the size distribution of objects no smaller than 625, 900,
1225, and 1600 points and the GPD density values connected by linear segments. Parameter
Estimation Method is GMLE. The titles of the panels indicate the sample sizes, number of
gradations automatically calculated, extreme values and median sizes, as well as the parameter
estimates. Differences and similarities between the histograms and approximating Pareto
distribution density curves are visually visible for objects with sizes above the thresholds of 625,
900, 1225 and 1600 points. Let us recall that, on average, the number of objects in the forecast
fields is bigger than in the observation fields. Since a larger Pareto threshold selects a subset of the
maxima selected for a smaller threshold, the approximation of the higher-threshold subset by the
Pareto distribution must increase the scale (going to the right along the tail) and change the shape.

Let us write out the estimates of the y-square criterion for Fig. 6 for the warm period:

625: ¢ 2( RAKU ) = 13.190, y 2 ( STEPS -60) = 14.721,

900: x 2( RAKU ) = 13.106, 2 ( STEPS -60) = 14.201,

1225: y 2(RAKU ) = 13.420, 3 2 ( STEPS -60) = 15.788,

1600: x 2 ( RAKU ) = 14.099, y 2 ( STEPS -60) = 24.245.
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Figure 6. Warm period . Histograms and Pareto distribution approximation of object sizes in precipitation
fields in Kursk radar observations (RAKU, left column) and forecasts (STEPS-60, right column) for 60 min.
The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are given in
size/1000 scale.
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Figure 7. Cold period. Histograms and Pareto distribution approximation of object sizes in precipitation
fields in Kursk radar observations (RAKU, left column) and forecasts (STEPS-60, right column) for 60 min.
The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are given in

size/1000 scale.

Let us write out the estimates of the y-square criterion for Fig. 7 for the cold period:
625: y 2( RAKU ) = 10.849, y 2 ( STEPS -60) = 13.646,

900:  2( RAKU ) = 12.427, x 2 ( STEPS -60) = 10.810,

1225: % ?2( RAKU ) = 16.501, % 2 ( STEPS -60) = 10.982,

1600: % 2 ( RAKU ) = 22.069, % 2 ( STEPS -60) = 15.124.

For the Kursk radar for the period May-September 2017, the threshold size of an object of the
about 600-900 grid points is the most suitable for modeling with generalized Pareto distribution,
while objects with a size of 1200 and above are unsatisfactorily modeled with GPD. A similar

analysis for the rest of the radars makes it possible to generalize this conclusion to all radars in the



Central Federal District of Russia, which means that using the GPD parameters for verification
purposes is justified under the specified limitations.

Along this path, one can approach the solution of the issue of choosing an appropriate
threshold (for the specified method of estimating the distribution parameters) for the resulting
estimates of the quality of the nowcasting, that is, assessing the correctness of the construction of
samples for applications of the Pareto distribution. This choice is based both on the visual
representation (Figures 6 and 7) and on the values of the Chi-square test (Table 9)

Table 9 summarizes Chi-square estimates for object areas in radar fields (RADAR columns)
and in 60 min forecast fields (STEPS -60 MIN columns) for tests in warm and cold periods of the
year. In the hist() function, the number k of gradations is determined using the Sturges rule : k =1 +
[1g2(n)], where n is the sample size. The analysis was carried out according to the joint data of

observations and forecasts for each period and for each observation-forecast pair.

Table 9. Chi-square test values for assessing the quality of histogram approximation by the Pareto
distribution with estimated scale and shape parameters at thresholds of 625, 900, 1225, and 1600 points.

WARM PERIOD
RADAR STEPS-60 MIN

RADAR(cases; 625 900 1225 1600 | 625 900 1225 1600
ndeg)

RAKU (87-46;11) 13.190 13.106 13.420 14.009 |14.721 14.201 15.788 24.245
RATL (80-57;11) 4.097 5.674 8.708 12.476 |11.395 12.140 10.565 17.086
RAVO (90-65;11) 6.921 8.417 13.148 19.733 4.637 7.423 11.288 21.318
RUDB (77-52;11) 6.690 9.289 13.859 21.479 7.695 10.024 15.256 21.446
RUDK (97-66;10) 6.862 8.432 13.818 18.803 5.947 8.044 13.332 20.265
RUDL (93-61;12) 4.711 6.310 9.959 13.958 |[14.335 16.637 22.859 30.741
RUDN (85-61;13) 4.301 5.301 9.213 12.080 7.474 10.088 14.666 22.267
RUWJ (86-61;11) 4.059 4.499 9.204 12.638 5.220 7.727 13.841 21.949

COLD PERIOD
RADAR STEPS-60 MIN

RADAR 625 900 1225 1600 | 625 900 1225 1600
RAKU (59-41;12) 10.849 12.427 16.501 22.069 |13.646 10.810 10.982 15.125
RATL (48-25;13) 10.775 10.747 11.624 11.623 |13.599 12.759 10.450 7.272
RAVO (54-29;10) 10.296 11.282 15.997 23.012 8.947 9.096 15.831 23.653
RUDB (46-25;10) 7.617 8.678 11.632  9.365 7.689 7.192 10.107 14.690
RUDK (41-18;10) 11.502 13.442 13.641 16.047 |12.697 12.139 15.109 22.009
RUDL (47-25;7) 3.604 3.020 2.056 1.888 |12.928 4.424 3.651 2.909
RUDN (41-20;11) 12.630 11.117 10.904 12.481 6.423 5.255 7.355 10.534
RUWJ (27-16;12) 8.370 10.298 14.593 24.938 |13.222 12.296 13.484 18.493

Note . In the RADAR column, next to the identifier, in brackets are indicated ("sample size of observations"
for a threshold of 625 points - for a threshold of 1600 points; an estimate of the number of degrees of
freedom).



The yellow background highlights the values that exclude the Pareto distribution from the set
of suitable approximations; on the histogram, this is, as a rule, the second bin being larger than the
first one, that is, the violation of the characteristic Pareto distribution density curve.

The values highlighted in red reflect, at first glance, one of the most important conditions of
the second extremum theorem, threshold stability: the larger the threshold, the more accurately the
data is modeled by the Pareto distribution. In real samples of a limited size rapidly decreasing with
increasing threshold, this phenomenon should be recognized as a rare success. Let us consider in
more detail the corresponding observational data and forecast for 60 min in the field of view of the
Smolensk radar during the cold period. Figure 8 contains histograms of the sizes of the maximum
objects in the fields of observations and forecasts for 60 min with a size of 625, 900, 125, and 1600
grid points. The decrease in the value of the Chi-square criterion with increasing threshold is
ensured by an increasingly accurate approximation of the Pareto distribution density curve of the

first bin of histograms.
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Figure 8. Cold period. Histograms and Pareto distribution approximation of object sizes in precipitation
fields in Smolensk locator observations (RUDL, left column) and in forecasts (STEPS-60, right column) for
60 min. The Pareto threshold is (from top to bottom) 625, 900, 1225 and 1600 field points. Dimensions are
given in size/1000 scale. Blue lines!!!

The full set of situations that generated the peaks above the thresholds is presented in Table
10 for a threshold of 625 points; as the threshold increases, the sample is made up of the sizes of the
same objects. In the presented set, there are two situations, in which the maximum object turned out
to be the only one: at numbers 32 and 33, while at number 33 the situation had a duration of 60
minutes, but the generated object had a size of 13044 points, which is equivalent to a square with a
side of about 230 km (almost a quarter from the field of view of the radar). However, the largest
object appeared in situation 18, which lasted 1280 min (almost a day), while in 128 fields of radar
observations there were a total of 125 objects with a size of at least 632 points. It is quite possible
that in a real synoptic situation, the total number of objects constructed by spatial averaging at 9

grid nodes and an isohyet of 1 mm constituted one system of frontal-type precipitation.

Table 10. Spatial, statistical and temporal characteristics of situations with objects with a size of at least 625
points in a two-kilometer resolution grid observed in the Smolensk radar zone during the cold period
November 2017 - March 2018 The objects are marked with a 1 mm/h isoline after spatial averaging with a
radius of 9 points.



sit min
835

2 630
3 638
4 670
3 1086
[ 062
7 678
8 710
9 637
10 625
11 748
12 631
13 909
14 628
15 1007
16 766
7 866
18 632
19 645
20 660
21 638
22 644
23 647
24 654
25 641
26 638
7 627
28 66l
29 626
30 642
31 857
32 822
33 13044
34 629
35 635
36 657
7 636
38 648
39 625
40 637
41 848
42 634
43 645
44 627
45 626
46 633
7 641

Note. The situation numbers are indicated in the sit column . Then follow the quartile characteristics of the
sizes of objects in this situation ( min , g 25, med , g 75 and max ). The number of selected objects is
indicated by the name valid , the duration of the situation in minutes is mins ; the term of the first field of the
situation is d _ time _ start ; date and time of the last field of the situation - d _ time _ stop . If hours and

q25
1683
831
1215
673
1939
709
971
748
709
674
1066
1793
1860
1391
2023
1352
1556
1630
1163
1516
654
1507
744
710
831
728
1036
695
745
704
678
822
13044
669
1588
1325
882
763
844
762
1479
1479
715
644
858
736

i
i

med
2250
1781
1788
67
2608
857
1138
786
Q06
728
1204
3356
3673
1973
2399
1740
2084
2417
1677
2652
758
5581
894
756
1084
790
1307
721
896
894
698
822
13044
830
2552
2387
1149
742
1190
785
1766
1884
721
676
1221
827
Q00

q75
3412
2894
2164
680
2841
990
1190
824
975
762
1656
4551
4563
2804
3098
1912
2998
4575
1860
6005
871
8989
2404
820
1262
830
1576
793
1027
1180
822
13044
1018
3654
4014
1295
818
1492
829
2131
2224
825
740
1586
953
961

max
3764
5007
3066
683
3266
1164
1522
862
1021
805
2263
9710
5117
4547
4477
2234
5270
27128
2004
10957
993
13571
3273
959
1524
860
2180
858
1089
1229
847
822
13044
1241
5617

077
R

1419

941
2715

831
2440
2652
1179

863
1829
1061
1043

valid

mins
610
80O
1330
140
130
120
140
310
370
360
350
1530
210
430
380
440
560
1280
470
960
400
1330
4490
260
550
230
450
240
330
110
100
10
[5]0]
380
840
600
430
190
630
300
570
510
300
630
4490
380
180

d_time_start

2017-11-02 13:30
2017-11-10 03:50
2017-11-11 03:20
2017-11-13 07:10
2017-11-13 15:10
2017-11-14 01:20
2017-11-14 05:50

2017-11-16
2017-11-20 22:20
2017-11-24 09:40
2017-11-26 19:30
2017-11-30 21:00
2017-12-03 20:10

2017-12-04

2017-12-06
2017-12-10 16:50
2017-12-15 20:00
2017-12-16 05:40
2017-12-18 12:10
2017-12-23 15:50
2017-12-25 18:40
2017-12-29 11:30
2018-01-01 22:00
2018-01-03 06:10

2018-01-06
2018-01-17 04:30
2018-01-18 19:10
2018-01-24 12:40
2018-01-26 20:40
2018-01-27 06:40
2018-01-30 04:20
2018-02-01 09:40
2018-02-01 13:30
2018-02-01 19:30
2018-02-03 00:10
2018-02-03 23:00
2018-02-09 02:30
2018-03-01 09:00
2018-03-03 21:20
2018-03-04 0B:20
2018-03-06 21:10
2018-03-13 18:50
2018-03-26 10:00
2018-03-26 22:00
2018-03-30 03:50
2018-03-30 21:30
2018-03-31 19:50

d_time_sto

2017-11-02 23:30
2017-11-10 17:00
20017-11-12 01:20
2017-11-13 09:20
2017-11-13 17:10
2017-11-14 03:10
2017-11-14 0B:00
2017-11-16 05:00
2017-11-21 04:20
2017-11-24 15:30
2017-11-27 01:10
2007-12-01 22:20
2017-12-03 23:30
2017-12-04 07 :00
2017-12-06 06:10

2017-12-11
2017-12-16 05:10
2017-12-17 02:50
2017-12-18 19:50
2017-12-24 07:40
2017-12-26 01:10
2017-12-30 09:30
2018-01-02 06:00
2018-01-03 10:20
2018-01-06 09:00
2018-01-17 0B8:10
2018-01-19 02:30
2018-01-24 16:30
2018-01-27 02:00
2018-01-27 08:20
2018-01-30 05:50
2018-02-01 09:40
2018-02-01 14:20
2018-02-02 01:40
2018-02-03 14:00
2018-02-04 0B:50
2018-02-09 09:30
2018-03-01 12:00
2018-03-04 07 :40
2018-03-04 13:10
2018-03-07 06:30
2018-03-14 03:10
2018-03-26 14:50
2018-03-27 08:20
2018-03-30 11:50
2018-03-31 03:40
2018-03-31 22:40

minutes are not specified in the date and time columns, then this corresponds to the time of day 00:00.

The favorable property of the set of extreme values in the max column noted above is due
both to the constant number of equidistant gradations (only 6 intervals) for all thresholds, and to the
dense arrangement of the forty-two first values of the variation series in the range from 632 to 5617

(Fig. 9). If the first circumstance is artificial, then the second circumstance really reflects the

threshold stability of the analyzed sample.
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Figure 9. Graph of the variational series, made up of a set of forty-seven extrema in Table 10 (column max).

3.3.3. Integral Quality Estimates Using Distribution Parameters

Let’s compare the parameters of the Pareto distribution for maximum objects in situations of
observations and forecasts based on the data of the Kursk (RAKU) radar (Table 11). Consider, for
example, the result of a forecast for 60 minutes. For observations in the warm period, the results are
as follows: 87 situations were identified; scale parameter estimate and standard error are 1956 and
472.9, respectively; shape parameter estimate and standard error are 0.428 and 0.212. Recall that
the boundaries of the confidence interval are determined in a standard way (estimate + 1.96 * error).
Similar numbers for the forecast for 60 minutes are as follows: 119 situations are identified; scale
parameter estimate and standard error are 1979 and 391.1, respectively; shape parameter estimate
and standard error are 0.413 and 0.180. Let's write lower and upper limits of the confidence
intervals like (L1, U1) and (L2, Uy), respectively. The intersection ratio (IR), visually obvious, is
determined as follows:

IR = (min (U1, Uz) - max (L1, L2))/(max(Uz1, U2) - min(L1, L2)),

when DP < 0, DP = 0 is assigned. For the scale parameter in the selected case, IR = 0.83, for the
shape parameter, IR = 0.85. In the cold period of 2017-2018, the following results were obtained:

for the scale parameter IR = 0.50, and for the shape parameter IR = 0.68.

Table 11. Number of situations (# situations), estimates of scale parameters (scale), shape (shape) of the Pareto
distribution of object sizes with thresholds of 625, 1225, 900 and 1600 grid points, the intersection ratio
(intersect) of confidence intervals of parameter estimates. Objects are extracted from situations in series of
fields of observations (RAKU) and forecasts (STEPS) with lead times of 30, 60, 90 and 120 min.
Observation and forecast data refer to two periods: warm - May-September 2017 (yellow) and cold -
November 2017 - March 2018 (green).



Lead time 30 min
WARM PERIOD COLD PERIOD
Threshold scale |shape |#situations scale |shape I#situations
625 RAKU 1956 0.428 87 2617 0.294 59
STEPS 1859 0.420 117 2105 0.410 87
intersect | 0.80 0.84 0.75 0.78
900 RAKU 2497 0.362 69 3415 0.000 51
STEPS 2504 0.321 94 2833 0.324 70
intersect | 0.74 0.74 0.68 0.47
Lead time 60 Muu
625 STEPS 1979 0.413 119 1875 0.457 106
intersect | 0.83 0.85 0.50 0.68
900 STEPS 2621 0.320 97 2891 0.320 81
intersect | 0.77 0.76 0.63 0.44
Lead time 90 Muu
625 STEPS 1958 0.409 121 1342 0.558 129
intersect | 0.83 0.83 0.23 0.54
900 STEPS 2268 0.368 103 2248 0.395 96
intersect | 0.73 0.76 0.38 0.33
Lead time 120 Muu
625 STEPS 2062 0.382 123 1338 0.548 142
intersect | 0.79 0.80 0.21 0.54
900 STEPS 2250 0.364 107 1837 0.459 112
intersect | 0.68 0.72 0.20 0.23

The question arises about the statistical significance of the obtained numbers. The IR
distribution is rather complicated (an attempt to derive a distribution formula for the Gaussian case
is given in [Ants 1990]), although mathematically the problem is reduced to estimating the
probability of a joint event. However, according to the percentage of intersection, it can be argued
that the quality of forecasting objects of a significant size for a period of 60 minutes in the cold
period (2017-2018) according to the Kursk radar exceeds the quality of forecasting in the warm
period. We note that only the data of this radar differ in this property (see Table 12 for comparison).

Let's continue generalizing the verification results for all radars used in the 2017-2018 tests.
We choose Pareto thresholds of 625 and 900 points as the most informative, which provide a
reliable basis for data analysis. Note that for a more stable estimate of the Pareto parameters for the
selected situations, only the samples with at least 20 precipitation situations were allowed. For both
periods, the Vnukovo (RAVN , in winter) and Valdai (RUWJ) radars did not satisfy this condition
to a large extent - these data were completely excluded. In the set of cold period fields for the
Kostroma (RUDK) and Nizhny Novgorod (RUDN) locators , the condition turned out to be critical
only at a threshold of 1600 points.

Let’s recall the interpretation of the parameters of the Pareto distribution of maximum values
over the selected threshold. The scale determines the value of the GPD at the zero point (GPD(0)=1/

scale). The larger the scale, the smaller the GPD value at zero and the lower the probability of




having an object with a size close to the Pareto threshold. Thus, we can say that the scale
characterizes more clearly the probabilistic features of objects with sizes closer to the Pareto
threshold. The shape parameter is more important in GPD analysis, since it determines the
characteristic of the "tail of the distribution”, that is, the probability of the largest areas of
precipitation. The convenience of the shape parameter lies in the meaning of the parameter sign: the
negative sign, the zero form, and the positive sign indicate, respectively, the beta distribution, the
exponential distribution, and the actual Pareto distribution. The value of the positive shape
parameter is also significant: it ensures the existence of moments of different orders for a
distribution of this type.

Let us consider the intersection ratio (IR) of confidence intervals for estimates of the scale and
shape parameters (Table 12). Let's choose a level of "failure”, e.g., intersect <50%, and mark it in
red. There are various features in the behavior of the IR depending on the lead time and the Pareto
threshold, some systematic, some random, but here we will indicate only the most noticeable of
them, based on the values highlighted in red. Prediction of precipitation areas is better in the cold
period according to the RATL and RAVO radars, and in the warm period, according to the RAKU ,
RUDB and RUDL radars .

Table 12. Intersection ratios of confidence intervals (intersect) of the estimate of the scale parameter and the
shape parameter for Pareto thresholds of 625, 900, 1225, and 1600 points, for lead times of 30, 60, 90, and
120 min, for the warm and cold periods of 2017-2018 Values less than 50 are marked in red. Cases of
insufficient number of situations in observations are marked with an asterisk.

IR (%) IR (%)
RADAR SCALE SHAPE
warm cold warm period cold period
period period
threshold\
lead time | 625 | 900 | 625 | 900 625 900 625 900
30 80 |74 |75 |68 84 (++) 74 (++) 78 (++) | 47(0+)
RAKU 60 83 |77 |50 |63 85 (++) 76 (+4) 68 (++) |44 (0+)
90 83 |73 |23 |38 83 (+4) 76 (++) 54 (++) | 33(0+)
120 79 |68 [21 |20 80 (+ +) 72 (+4) 54 (++) [ 23(0+4)
30 39 |27 |62 |78 74 (+ 4) 41 (0 +) 78 (++) | 87 (+4)
RATL 60 48 |23 |52 |55 72 (+ +) 36 (0 +) 69 (++) | 71 (++)
90 35 |17 |47 |53 66 (++) 32(0+) 67 (++4) |69 (++4)
120 34 |19 |50 |62 65 (+ +) 34 (0 +) 68 (++) | 73 (++)
30 54 |38 |70 |76 78 (+ 4) 40 (0 +) 76 (++4) |71 (+4)
RAVO 60 58 |37 |64 |74 76(++) [36(0+) |72(++) |67 (+4)
90 56 |46 |61 |63 77 (+ +) 38 (0 +) 66 (++) | 63 (++4)
120 52 |35 |50 |64 69 (++) 34 (0 +) 64 (++4) | 60 (++)
30 92 |88 |75 |78 93 (+ +) 91 (+ +) 72(++4) | 72(+4)
RUDB 60 87 |90 |48 |67 91 (+4) 92 (+ +) 60 (++) | 64 (++4)
90 8l |94 |46 |56 92 (+4) 94 (++) 56 (++) | 57 (++)




120 88 192 |44 |56 89 (+ +) 92 (++4) 55(++) |56 (+4)

30 78 |85 |69 |73 80 (+ +) 79 (+ 1) 75(++) |70 (+4)

RUDK 60 76 |80 |54 |68 75 (++) 74 (+ +) 64 (++) | 64 (++)
90 80 |82 |50 |60 76 (+ +) 74 (+ +) 60 (++) | 57 (++)

120 72 180 |52 |50 74 (+ +) 73 (++) 56 (++) | 53 (++)

30 75 |63 |47 |52 80 (++) 76 (++) 72(++) |71 (++)

RUDL 60 73 |64 |32 |47 76 (+ +) 73 (++) 64 (++) | 63 (++)
90 68 |57 |40 |45 73 (++) 69 (+ +) 62 (++) | 61 (++)

120 71 |66 |41 |42 74 (+ +) 70 (+ +) 59 (++) | 57 (++)

30 78 |8 |87 |70 89 (00) 80(00) 87 (++) | 89 (++)

RUDN 60 52 |86 |57 |71 38(0+) 78 (00) 69 (++) |71 (++)
90 38 |83 |54 |58 30 (0 +) 79 (0 0) 65 (++) | 63 (++)

120 31 184 |57 |54 27 (0 +) 80(00) 64 (++) | 59 (++)

Let’s analyze the confidence intervals of the shape parameter estimate (shape, Table 12). Let's
add the sign (+/-) depending on the sign of the shape for observations/predictions, with the sign O -
for the shape interval [-0.1, 0.1]. It is desirable that the forecasting system preserves the sign of the
shape parameter. According to the table, there is a general dependence of the sign of the shape on
the Pareto threshold. So, in the warm period, the parameter generally decreases when moving from
a threshold of 625 to a threshold of 900. We add that when passing to the rejected thresholds 1225
and 1600, the shape parameter estimate goes to zero and even to negative. This boundary between
the thresholds provides further evidence that areas larger than 625 points (approximately 50x50 km)
are most suitable for Pareto analysis in both observations and forecasts. Indeed, for all radars,
except for RUDN (Nizhny Novgorod), the sign (++) for all lead times and for both periods indicates
that both observations and forecasts fit the Pareto distribution. At the same time, the value of the
intersection ratio (at the threshold of 625) is noticeably higher in the warm period for the RAKU
(Kursk), RAVO (Voeykovo), RUDB (Bryansk), and RUDL (Smolensk) radars. The picture is
different for the RATL (Tula) and RUDN (Nizhny Novgorod) radars, which are located to the east

of the above, and where the quality of reproduction of vast contiguous precipitation areas is higher.

Conclusions

The study considers the problems of modeling of extreme values on the example of
contiguous precipitation areas observed and predicted by the precipitation nowcasting system in the
coverage areas of DMRL-S radars deployed in the Central Federal District of Russia. Precipitation
areas were converted into objects using spatial averaging and the isoline of 1 mm/h. The sets of
such sizes (or areas) of objects exceeding certain threshold values were formed so that they at least
partially satisfy the conditions of physical (and at the same time statistical) independence for
applying the extreme value theory (EVT). The model of "peaks above the threshold” described by

the generalized Pareto distribution is chosen as the basic model of extreme values.



All the main computational procedures were performed using the tools and graphical
representation available in the R language. Objects were selected using the mathematical module
FeatureFinder() of the SpatialVx library. To estimate the distribution parameters, we selected
objects with sizes of at least 25x25, 30x30, 35%35, and 40x40 points in a two-kilometer grid. The
generalized Pareto distribution was used with fixed location thresholds (Pareto thresholds) equal to
the selected object sizes (625, 900, 1225 and 1600 points). The parameters were estimated using 1)
maximum likelihood methods, 2) maximum likelihood, 3) L-moments, and 3) Bayes with stochastic
Markov chain modeling.

The conclusions are based on the generalized maximum likelihood method and two Pareto
thresholds, 625 and 900 points. The output standard errors of the estimates are used to construct
95% confidence intervals (Cl) and to subsequently compare estimates of the scale and shape
parameters based on the intersection ratio (IR). Particular attention is paid to the shape parameter,
the positivity of which (“Pareto” distribution of extrema) indicates the presence of a heavy tail in
the distribution: the larger the value of the shape parameter, the heavier the tail and the more
problematic the existence of distribution moments.

It is shown that with increasing threshold (from 625 to 1600) the shape parameter tends to
change sign from positive to zero and, in rare cases, to negative. The zero sign in observations and
forecasts at a threshold of 625 points was observed for only one radar (RUDN) during the warm
period. Negative estimates of the shape parameter are even rarer; at the threshold of 625 points,
such cases are completely absent.

Assuming the IR of 50% or more as an acceptable error, two conclusions can be drawn.

First, the precipitation nowcasting system better predicts objects of extreme size in the cold
season. The number of pairs (++) in the warm period according to the table 12 is about half of the
cases, and in the cold - about 75%.

Secondly, the precipitation nowcasting system most accurately reproduces the Pareto
distribution of precipitation areas in the warm period - in the coverage areas of the RAKU (Kursk),
RAVO (Voeykovo), RUDB (Bryansk), RUDL (Smolensk) radars, and in the cold period - in the
coverage areas to the east of the RATL (Tula) and RUDN (Nizhny Novgorod) radars.

The last conclusion from the work done can be attributed to the methodology: the extreme
value theory is quite applicable to such objects of analysis and short-term forecasting as significant
contiguous precipitation areas only with a clear understanding of the theoretical prerequisites and
using suitable statistical methods and reliable data processing tools. Otherwise, the results obtained

may be useless, accidental, or even harmful.
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