Schweizerische Eidgenossenschaft
Confédération suisse

Confederazione Svizzera
Confederaziun svizra

Swiss Confederation

‘ CONSORTIUM FOR SMALL SCALE MODELING

JM. Bettems &
P. Baumann
MeteoSwiss
November 2025

fieldextra vi 6.0.0

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

The fun and easy way® to make
the most of your cool new Cray XT

Fieldextra

DUMMIES

9th Edition

Covers the latest

Cray mode|
it s,
the iLife: syjte

and moye

-+ Commented example — Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

bettems@tsa: fieldextra control_file

fleldextra is the fortran program executable
control_file contains the namelist defining the program behaviour

Fieldextra 16.0

O

Control_file

Commented example — Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

4

4

4

4

. HEADER ..
&Process

in file = "./support/input/cosmo-e/000/1£f££<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out file = "./support/results/meteogram precipitation.txt"

out type = “METEOG”, out type fmt = "f71 dh prec",

out type textl = "Precipitation rain+snow in the last 3 hours mm

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY",
&Process in field="RAIN GSP", hoper = "c5", toper = "delta,3,hour"
&Process in field="RAIN CON", hoper = "cb5", toper = "delta, 3,hour"
&Process in field="SNOW GSP", hoper = "c5", toper = "delta,3,hour"
&Process in field="SNOW_CON", hoper = "c5", toper = "delta, 3,hour"
&Process out field="TOT PREC" /

mean over 5 gridpoints™“

"pPAY" /

toper mask
toper mask
toper mask
toper mask

"lead time>3"/
"lead time>3"/
"lead time>3"/
"lead time>3"/

Available in ./cookbook/meteogram_precipitation.nl

Fieldextra 16.0

O

Commented example — Meteogram

Table of total precipitation

3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

Define input and output characteristics, define domain subset

&Process
in file = "./support/input/cosmo-e/000/1£££<DDHH>0000"
tstart = 3, tstop = 9, tincr = 3,
out file = "./support/results/meteogram precipitation.txt"

out_type = “"METEOG”, out_type fmt = "£f71_dh_prec",

out_type textl = "Precipitation rain+snow in the last 3 hours mm : mean over 5 gridpoints™
locgroup = "nat"
loclist = "GVE " , "DOL" , "FRE " , "NEU" , IICDF" , IICHA" , IICGI " , " PUY" , " PAY" /

&Process in_field="RAIN GSP", hoper = "c5", toper = "delta, 3, hour" toper mask = "lead_time>3"/

&Process in_field="RAIN CON", hoper
&Process in_field="SNOW_GSP", hoper

"c5", toper
"c5", toper

&Process out field="TOT_ PREC" /

"delta, 3, hour"
"delta, 3, hour"
&Process in_field="SNOW_CON", hoper = "c5", toper = "delta, 3, hour"

toper_mask
toper_ mask
toper_ mask

"lead time>3"/
"lead_time>3"/
"lead time>3"/

Fieldextra 16.0

O

Commented example — Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

&Process

in file = "./support/input/cosmo-e/000/1£££f<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram precipitation.txt"

out_type = “METEOG”, out_ type fmt = "f71 dh prec",

out_type textl = "Precipitation rain+snow in the last 3 hours mm

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY",

Define fields to collect

&Process in_field="RAIN_GSP", |hoper = "c5", toper = "delta,3 hour" ,
&Process in_field="RAIN_CON", |hoper = "c5", toper = "delta, 3 hour" ,
&Process in_field="SNOW_GSP", |hoper = "c5", toper = "delta,3 hour" ,
&Process in_field="SNOW_CON", |hoper = "c5", toper = "delta,3 hour" ,

&Process out_field="TOT_ PREC" /

mean over 5 gridpoints"“

"PpAY" /

toper mask
toper mask
toper mask
toper mask

"lead time>3"/
"lead time>3"/
"lead time>3"/
"lead time>3"/

Fieldextra 16.0

@ Commented example — Meteogram

mean over 5 gridpoints"“

"PpAY" /

4

4

4

&Process

in file = "./support/input/cosmo-e/000/1£££f<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram precipitation.txt"

out_type = “METEOG”, out_ type fmt = "f71 dh prec",

out_type textl = "Precipitation rain+snow in the last 3 hours mm

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY",
&Process in_field="RAIN GSP",|hoper = "c5", toper = "delta, 3, hour"
&Process in_ field="RAIN CON",|hoper = "¢5", toper = "delta, 3, hour"
&Process in_ field="SNOW _GSP",|hoper = "¢5", toper = "delta, 3, hour"
&Process in_ field="SNOW _CON", |hoper = "e¢5", toper = "delta,3,hour"

4

toper_mask
toper mask
toper mask
toper_mask

"lead time>3"/
"lead time>3"/
"lead_ time>3"/
"lead time>3"/

&Process

out_field="TOT_ PREC" /

Define operations to apply on collected fields
(large choice of operators available)

Fieldextra 16.0

@ Commented example — Meteogram

&Process

in file = "./support/input/cosmo-e/000/1£££<DDHH>0000"

tstart = 3, tstop = 9, tincr = 3,

out_file = "./support/results/meteogram precipitation.txt"

out_type = “METEOG”, out_type_fmt = "f71 _dh prec",

out_type textl = "Precipitation rain+snow in the last 3 hours mm

locgroup = "nat"

loclist = "GVE", "DOL", "FRE", "NEU", "CDF", "CHA", "CGI", "PUY",
&Process in_field="RAIN_GSP", hoper = "c5", toper = "delta,3,hour" ,
&Process in_field="RAIN_CON", hoper = "c5", toper = "delta,3,hour" ,
&Process in_field="SNOW_GSP", hoper = "c5", toper = "delta,3,hour" ,
&Process in_field="SNOW_CON", hoper = "c5", toper = "delta,3,hour" ,

&Process out_field="TOT_PREC" /

Define fields to compute
(refers to some fieldextra internal procedure, easily extensible)

mean over 5 gridpoints"“

"PpAY" /

toper_mask
toper mask
toper mask
toper mask

"lead time>3"/
"lead time>3"/
"lead time>3"/
"lead time>3"/

Fieldextra 16.0

-+ Commented example — Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

« control_file contains the namelist defining the program behaviour

header

product definition

« external resources

definition of field names
definition of locations

&RunSpecification
&GlobalResource
&GlobalSettings
&ModelSpecification
&Process (repeated)

dictionary in &GlobalResource
location_list in &GlobalResource

Fieldextra 16.0

Commented example — Meteogram

Table of total precipitation
3-hourly precipitation sum, mean over 5 grid points, every 3 hours at chosen locations

« program diagnostic and profiling

standard error & output
file fieldextra.diagnostic

controlled by the values of verbosity and additional _diagnostic
verbosity = ‘high’ in &RunSpecification
additional_diagnostic = .true. in &RunSpecification
additional_profiling = .true. in &RunSpecification

Fieldextra 16.0

O

Selected topics

Fieldextra 16.0

10

Design — Input & output

input 1

input 2

input 3

First pass (INCORE)

INCORE

INCORE

input 1

input 2

input 3

Second pass (standard output)

Output 1

Output 2

Output 3

Output 4

* INCORE storage used to store resources for
common operations (see next slide).

* Each input is read once.
« Storage is allocated on demand for each output.

« Eachinput record is evaluated, and dispatched in
the corresponding output storage as required
(in memory).

— io optimization at the cost of memory usage !

» When all data for some output have been
collected, the corresponding data is written to disk
and the memory is released.

» For output supporting append mode, data is
processed piecewise after reading each related
validation time (,just on time * mode).

Fieldextra 16.0

11

O

Design — Incore storage

« INCORE global persistent storage is used e.g. to :

associate grid points to specified locations & regions
produce grid point height information for some ASCII output

specify model base grid when working with staggered fields,
or fields defined on a larger domain

specify target grid for re-gridding
merge and compare different fields
provide access to programmatically derived constant fields (see below)

* Programmatically derived constant fields will be available from
INCORE storage, e.g. when HSURF is present:

RLAT, RLON (geog. latitude, longitude [deg])

CLAT, CLON, ELAT, ELON, VLAT, VLON (geog. latitude, longitude [deq])
SWISS WE / SWISS_SN (swiss coord. [m])

BOAGAW_WE / BOAGAW_SN (Gauss-Boaga coord., west sector [m])
BOAGAE_WE / BOAGAE_SN (Gauss-Boaga coord., east sector [m])
HHL /HFL (COSMO height of model levels [m])

TOFL, POFL, DPOFL (COSMO reference atmosphere)

Fieldextra 16.0 12

-+ Design — lterative processing (1)

— % ngut n ﬁ F.«(W) : 1to 1 field operator —

input 1 INCORE F..(¥) : nto 1 field operator
(non volatile) Fom(W) @ nto m field operator
in field =
in_ f:|.eld =

Fon(W)
X\ FM(LP)R KFM(LP)E /
B8 -8 &

tmpl field = out_field =

Fieldextra 16.0 13

O

Design — lterative processing (2)

« For each output, define the set of associated input files
+ data can only be extracted from this set
* INCORE storage can be part of this set

- First iteration: collect all necessary input fields
- all fields must be unique (condition can be relaxed with out_duplicate_infield)
- all field must be defined on a compatible grid (cropping & re-gridding are available)
- fields required in a subsequent iteration must be collected at that stage

 Next iterations (repeated up to 6 times): collect or compute fields
* only data in previous recipient are available

« if fields are not available, they must be computed:
in this case the parent fields must be available in the previous recipient

« the main parent (defined in dictionary or by the type of required operator)
defines the characteristics of the produced field

* Only the last recipient is available for output generation
« allfields available in the last recipient are written in the output file

Fieldextra 16.0 14

O

Q

Design — Iterative processing (3)

in field =

\

\~———

Y

T,
/

Fam(¥)
A4

2

First iteration:

Each extracted field may be transformed by one or more operators, in the order
regridding (regrid), change meta-information (set_%),
merge (merge_with), compare (compare_with), lateral transform (hoper),
scale/offset, vertical transform (voper, voper2 ... voperb),
temporal transform (toper), local transform (poper, poper?2 ... poper5),
spatial filter (*_filter), reset identity (new _field id)

Next iteration(s):

Each extracted field may be transformed by one or more operators, in the order
lateral transform (hoper), scale/offset,
vertical transform (voper, voper?2 ... voperb), temporal transform (foper),
local transform (poper, poper2 ... poperd), spatial filter (*_filter),
change meta-information (set_*) , reset identity (new _field id)

After last iteration:

A last set of global operations may be applied, in the order
n to m operator (out_postproc_module), regridding (out_regrid_target),
reset meta-info (set_*...), filter data (out filter_*)

Fieldextra 16.0

15

@ Design - Iterative processing (4)

INCORE .

m a2
- .—

This procedure ...

INCORE

m m/
& —E-a—a

« write a temporary GRIB file at the end of the first iteration
* use this temporary file as input for the second iteration
dependencies are detected and files are processed

in the correct order

.. can be repeated once!

Fieldextra 16.0

16

O

A single namelist file
to produce n output

Global settings

* resources files

* run specifications
* default values

Definitions for output_1

Definitions for output_2

Definitions for output_n

Design — Namelist : basic

Collecting fields for output_2,
from input_1

T e A
|Definitions for output_2 R S
+ input characteristic
inp_/1/ Fields to collect from input_1 *) out_file = output 2
2 + output characteristics
' " + geographical subset E
, I v + computation mode 8
+) . . - N
/inp_n | Fields to collect from input_m more (filter, interpolation, dictionary) E
selection_mode = interpretation of in_field s
o
(@]
it_1]| Fields to generate, first iteration in_field = infield_1,
+ associated transformations
i : in_field = infield_i,
! | + associated transformations v
it K| Fields to generate, last iteration *\ out file information must be
repeated with each new
definition of in_file
i . Generation of fields for output_2
! " |last iteration
. H) ‘
inp_1 e['MP-" out_field = outfield_1 i
+ associated transformations 3:1
e (N : 2
= E—w ! =
i1 T itk out_field = outfield j G
- - + associated transformations v
Fieldextra 16.0 17

ion_mode

selecti

Design — Namelist

+

Typical usage:

Product generation

Output
file

IIIIIIIIIII

out_field
—

tmp1_field
—

IIIIIIIIIII

IIIIIIIIIII

in_field
—

Input

IIIIIIIIIII

(31nejap)

ATNO 3IANTONI

Transformation of input file

Output

out_field
—

]

tmp1_field
—

in_field
—

Input

IIIIIIIIIII

IIIIIIIIIII

IIIIIIIIIII

IIIIIIIIIII

TV 3ANTONI

INCLUDE_ONLY

Merging 2 input

2>
EXCLUDE

IIIIIIII

out_field
—_—

in_field
=

IIIIIIIIIII

Input

IIIIIIIIIII

AN19X3

OPTIONAL

COMPULSORY

18

Fieldextra 16.0

-+ Design — Namelist : time levels (1)

A generic name may be used to loop over a set of input files
- typically to process a standard set of model output, characterized by one file per validation date
« akey is inserted in the input fle name (<DDHH>, <DDHHMMSS>, <YYYYMMDDHH:initial_date> ...)
- alist of times is defined explicitly (tlist) or by an implicit loop (tstart, tstop, tincr)
— the key is replaced in turn for each time of the list, the same extraction pattern is applied on each input.

« Time operators may be applied on collected and generated fields
« all collected time levels are available, and only those

« It is possible to filter the times collected in output

« another list of times defined by an implicit loop (out_tstart, out_tstop, out_tincr) is used, when available,
to filter the list of times defined by (tlist) or (tstart, tstop, tincr)

— the validation dates available in output are those associated with the filtered input list
« this filter does not influence the set of time levels available for the time operators

Example: &Process

centered T2m mean, j, fje="|fffi<DDHH>0000" in_type="GRIB", « key in input file name

DRI E tstart=0, tstop=24, tincr=1, — implicit time loop
out_file="product”, out_type="GRIB1",
out_tstart=3, out_tincr=6/ «— filter output date, implicit time loop
&Process

in_field=“T_2m"“ | toper= “mean,-3,3,1,hour*/ « time operator

Fieldextra 16.0 19

Design — Namelist : time levels (2)

Instead of collecting all validation times in the same output, one file per validation time is
created by using a generic name for the output file

« akey is inserted in the output file name (<DDHH>, <DDHHMMSS>, <YYYYMMDDHH:initial_date> ...)

« the list of times defined by (tlist) or by (tstart, tstop, tincr) is used to set the key values

- filtering defined by (out_tstart ...) is respected

« in this case, the set of input files contributing to each output must be explicitely specified!
- use tlag (see next slide)

These mechanisms are based on the assumption that any file whose name matches
...<key>... , keyin {DDHH, DDHHMMSS...}
contains fields valid for the same date, and that the value of <key> represents this date!

Example: &Process

centered T2m mean, j, fje="|fffi<DDHH>0000" in_type="GRIB",

6-hourly output, tstart=0, tstop=24, tincr=1,

one output per date o " . . .
out_file=" product <DDHH>*, out_type="GRIB1", «— key in output file name
out_tstart=3, out_tincr=6, tlag=-3,3,1 / «— input/output association (for toper)
&Process
in_field=“T_2m*“, toper= “mean,-3,3,1,hour” /

Fieldextra 16.0

20

-+ Design — Namelist : tlag

« Explicit specification of contributing input files

- for each output file, fieldextra constructs the set of contributing input files
« data can only be collected from this set

- the set of contributing input files is not univoquely defined when multiple output files are defined within the
same &Process group, which is the case when a time key is also used in the name of the output file

* inthis case a one to one correspondence is assumed, meaning that each output has only access to a
single input, i.e. a single time level (see below)

- when temporal operators requiring multiple time levels are used, the set of input files contributing to each
output must be explicitly specified

- this is done by using the namelist variable tlag; tlag defines an interval of contributing input files
relative to the currently processed output (and refers to the list of times defined by tlist or tstart...)

tlist = 9,10,11
inkDDHH>.grb

out<DDHH>.grb

<ddhh>| |<ddhh>| [<ddhh>
0009 0010 0011
i i |
<ddhh>| [<ddhh>| [<ddhh>
0009 0010 0011

Each output has only access to one time level!

tlist = 9,10,11,
inkDDHH>.grb

out<DDHH>.grb

<ddhh>| [<ddhh>| |<ddhh>
0009 0010 0011
LS U] |
<ddhh>| [<ddhh>| [<ddhh>
0009 0010 0011

Use tlag — Multiple time levels are available!

Fieldextra 16.0

21

O

Design — Computation of new fields (1)

Meteorological operator, activated via the name of the new field [F,,(‘V)]

parent 1

parent n

\\/

iteration k

iteration k+1

Example

RELHUM_2M from &Process in_field = “

“/

T_2M and TD_2M &Process in_field = “T_2M*“/

&Process out_field = “RELHUM_2M” /

« parent 2 (main parent, defined in
field dictionary)

«— new field

Implementation

Operators of common interest
» add new routine in fxtr_operator_generic

* extend case statement in fxtr_operator_generic:field_compute_generic

Operators of local interest
* add new routine in fxtr_operator_specific

+ extend case statement in fxtr_operator_specific:field_compute_specific

Fieldextra 16.0

22

O

Design — Computation of new fields (2)

Named operator, activated by setting “use_operator=...” [F,(V¥)]

- parent 2 e parent n

iteration k

|

use_operator = “operator name”
use_tag = “parent 1, ..., ?

}

iteration k+1

+ extend module parameter fxtr_operator_specific:allowed_specific_ nm_operator

W_SO_CST from &Process in_field = “W_S0O“/ « parent 1 (main parent)
W_SO, FR_LAND, &Process in_field = * “/ —
and SOILTYP &Process in_field = " —

%_ &Process out_field = “W_SO_CST”", «— new field

g use_operator = “wso_offset_v001”, « operator to use

i use tag = “W_SO, , " « list of parents (main parent first)
Operators of common interest
» add new routine in fxtr_operator_generic

c * extend case statement in fxtr_operator_generic:field_compute_generic

-g + extend module parameter fxtr_operator_generic:allowed _generic_nm_operator

©

é Operators of local interest

o » add new routine in fxtr_operator_specific

g— + extend case statement in fxtr_operator_specific:field_compute_specific

Fieldextra 16.0

23

L+ Design — Computation of new fields (3)

Post-processing operator, activated by setting “out_postproc_module=...” [F..(‘*P)]

parent 1 parent 2 parent n final iteration

out_postproc_module
= “post-processing routine name”

m # n is possible, l
- - - children defined
T in pp routine output file

Transform wind and SRoeess
I d t d o in_file = “Ifff<DDHH>0000",
cloud cover to derive tstart = 0, tstop = 24, tincr = 1,

MeteoSwiss forecast locgroup = “nat”, loclist = “GVE”,

matrix input out_file = “forecast_matrix.txt”,
out_type = “FLD_TABLE”,

out_postproc_module = “pp_forecast_matrix” / «— operator applies to entire output

&Process out_field = “ " —

Example

&Process out_field = “ " «—

Operators of common interest

* add new post-processing routine in fxtr_operator_generic

* extend case statement in fxtr_operator_generic.data_postprocess_generic

+ extend module parameter fxtr_operator_generic:allowed_generic_pp_procedure

Operators of local interest

» add new post-processing routine in fxtr_operator_specific

* extend case statement in fxtr_operator_specific:data_postprocess_specific

» extend module parameter fxtr_operator_specific.allowed_specific_pp_procedure

Implementation

Fieldextra 16.0 24

Design — Shared memory parallelism (1)

Shared memory multitasking is available and implemented with OpenMP
directives

 File import : multiple input files are read and decoded concurrently.
In addition, in the case of fields defined on the native ICON grid:
» Parallel import and processing of each ICON grid definition
« Parallel re-gridding from native ICON grid to any regular grid

 Product generation : two levels of parallelism are implemented and can be
simultaneously used
« parallel product generation, including export (outer loop parallelism)
« parallelization of algorithms used in product generation (inner loop parallelism)
« Two (exclusive) types of algorithm parallelization are available
« Grid points partitioning (horizontal grid), if possible

« Otherwise, parallel computation of multiple 2D field lateral slices, when the same
operator is applied on multiple records within the current iteration

Only shared memory parallelism

Fieldextra 16.0 25
See the example./cookbook/multiple products.nl

¢ Design — Shared memory parallelism (2)

Parallel production of output (outer loop parallelism, marked with

below)

| O For each record of each input

input 1
| \
input 2

input 3

v

® Once a complete set of records is available

Storage

Storage

Storage

Storage

VVVYV

Output 1

Output 2

Output 3

Output 4

The following operations are applied in parallel (loop over output):

(1) For each record in turn :

check use of current record by output, process and store record
(2) Once a complete set of records is available :
iterative processing of fields , format and write output

Fieldextra 16.0

26

-+ Design — Shared memory parallelism (3)

Algorithm parallelization (inner loop parallelism, marked with

input 1 s

Output 1
\ Storage 1 QDerivation of new field SRR

below)

re-gridding

input 2

| Storage 2 [>3 Output 2
input 3

Storage 3 l > Output 3

> Output 4

Storage 4

v

Within each processing iteration associated with each output,
for each operator in turn (hoper, poper...) :
parallel computation using grid points partitioning in (i,j) space, when no halo required
or
parallel computation using fields partitioning, when the same transformation is applied
on multiple fields

Fieldextra 16.0 27

-+ Code structure

O

Modules

Main

Parse namelist

Driver for product generation
Driver for field manipulation
Transform field

Compute new field

Support procedures (thermo...)
Generate output

Type, symbolic constants ...
External resources
Storage / Meta info / Code profiling

GRIB1 / GRIB2 / NetCDF
Vert. coordinates / ICON grid
Storage / Code diagnostic
OpenMP

Date / Hor. Coordinates / ...

PROGRAM:
fieldextra

MODULES (core functionality):
fxtr_control,

fxtr_kernel,

fxtr_operator_main,

fxtr_operator_column, fxtr_operator_regrid,

fxtr_operator_generic, fxir operator_specific, fxtr_operator_probability,
fxtr_operator_support,

fxtr_write_generic, fxtr_write_specific

MODULES (program specific support):
fxtr_definition,

fxtr_resource_dictionary, fxtr_resource gis, fxtr_resource_stat,
fxtr_storage, fxtr_attribute, fxtr_profiling

MODULES (generic support):
support_grib1, support_grib2, support_netcdf, support_blk table

support_vertical_mesh, support_icon_grid,

support_storage, support_diagnostic,

support_openmp

support_datetime, support_gis, support_math, support_misc

MODULES (imported from COSMO):
cosmo_data_parameters

cosmo_meteo_utilities, cosmo_pp_utilities, cosmo_utilities

Fieldextra 16.0

29

O

Main data structure

TYPE ty_out_store (— see fxtr_definition)

Variables of this type are used as
main repository for fields values and meta-information associated with each output.

* Field values are collected in values(:,:,:) array, where:
first dim. is for location index , second dim. is for field index , third dim. is for validation date index

A field in this context is a 2D field on a specific surface (ground, model, pressure...) and on a specific subgrid
(cell, vertex, edge) of the horizontal base grid.

A location is a grid point, but the set of active locations is not necessarily a rectangular domain.
Note that the field values are stored in a 1-dimensional section of the values array.

The number of locations for each subgrid is given by nbr_gp(:), the number of fields by
nbr_field, and the number of validation dates by nbr_vdate.

* The characteristics of a field are documented in

field_id(:), field_epsid(:), field_pdfid(:), field_hgrid(:), field_level(:), field_product(:), field_trange(:,:) ...
(field_id(:)%name is field name, field_id(:)%tag is user defined tag)

The characteristics of a locations are documented in
gp_lat(:,:), gp_lon(:,:), gp_coord(:,:,:) ...

The validation date are documented in
validation_date(:)

Other information, common to all fields of the considered output, is available in:
ofile_name, grid_hcoord, grid_vcoord, ...

Fieldextra 16.0 30

-+ Main program

0. Initialization sequence, first part.
1. Read parameters defining program behaviour.
2. Initialization sequence, second part.

[input_file_group: DO] Loop through all groups of input files.
This loop is executed twice: first to collect fields for special
output (INCORE, INSPECT), then to collect fields for standard
output.

3. Generate output file
(just on time mode, all fields collected, last call).

4. Skip or open input file.

4.1 Skip input when all associated input/output pairs are
inactive
4.2 Select files to process
4.3 Wait for file
4.4 Process file
4.4.1 Detect type of first record, set calling order for API
GRIB file: DWD lib (GRIB1), ECMWF lib (GRIB2)

NetCDF file: NETCDF lib
BLK_TABLE file: internal API

[loop_over_api: DO] Loop over decoding API
4.4.2 Skip record if non matching API
4.4.3 Open file

4.4.4 Get global header

[input_file_loop: DO] Loop through all input files in current group.

[input_records_loop: DO] Loop through all records in current input file.
5. Read and decode input field.

5.1 Clone cache (input missing)
5.2 Standard input file.

5.2.1 Read next record (skip data section, data will be
read and decoded on request later on)

5.2.2 Decode meta-information

5.2.3 Process meta-information

5.2.4 Check meta-information
5.3 Pseudo input file _ INCORE__ .

[output_file_loop: DO] Loop through all output files

6. Dispatch input field in output storage.
6.1 Does the current field contributes to the current output?
6.2 Unpack or generate field values

6.3 (On demand) mask & regrid field
6.3.1 Masking based on template field (in_mask)

6.3.2 Masking with frame (in_crop_size)
6.3.3 Lateral re-griding
6.4 Dispatch field in output storage.

[END DO output_file_loop, input_records_loop, loop_over_api,
input_file_loop, input_file_group]

7. Operations requiring access to special storage
(INCORE, INSPECT).

8. Diagnostic about missing fields.
9. (Repeat mode) store production diagnostic,
10. Final diagnostic, profiling and clean-up.

Fieldextra 16.0

31

-+ Calling tree : product generation

Fieldextra

fxtr_control: process_namelist fxtr_kernel: store_field fxtr_kernel. generate_output

fxtr_kernel: prepare_data fxtr_write_generic

Q fxtr_write_specific

fxtr_operator_main: compute_field
(sc_pcat_*, field_id%name)
fxtr_operator_generic: field_compute_generic

fxtr_operator_specific : field_compute_specific
fxtr_operator_probability : eps_derived_product, neighbourhood_probability

Fieldextra 16.0 32

O

Iterative data processing : implementation

1.

2.

In main procedure
+ horizontal re-gridding (in_regrid_target)

In fxtr_kernel:store_field

+ modification of field meta-information
(set_units, set_reference_date ...)

+ merge with another field (merge_with)
+ compare with another field (compare_with)

+ horizontal reduction of field
(in advance of B2. when possible)

T TYPE(ty_out store) = i .
)\

collect_field

N e
o — - —

prepare_data

3. In fxtr_kernel:prepare_data
A. Processing of constant fields with respect to the time dimension
B. Iterative processing of fields
B1.1 build extended information about generated fields

B1.1.1 look for field in previous set

B1.1.2 look for main parent in previous set

B1.1.3 derive relationship between child and parent
B1.1.4 build full list of fields to generate/extract

B1.2 calculate new fields or copy fields from previous iteration

B2.

B3.
B4.
BS5.

B6.
B7.
B8.
B9.

horizontal operator (hoper) and

horizontal reduction of field

linear transformation (scale, offset)
transformation in a column (voper)

apply time operator (toper)

apply point operator (poper)

apply spatial filter (in_filter ...)

reset field identity (new _field _id)

purge data from dates with inhibited print out

C. Non iterative field transformations

C1.

C2.
Cs.
C4.
C5.

Reset field meta-information with user specified values
(set_units, set_reference_date ...)

Programmatic setting of some local meta-information
Check consistency of meta-information
Post-processing operator (out _postproc_module)
Re-gridding (out regrid_target) or
create rectangular 2d field or
project on user specified domain (slice ...)

D. Prepare data for print out
DA1. filter out undefined fields
D2. filter out constant fields when requested

D3.
D4.
D5.

purge data from dates with inhibited print out
derive information common to all fields
update additional elements of data storage

Fieldextra 16.0

33

Some typical applications

S
v _
N N
\ﬁ»\ |
=
=

See commented exampes in ./cookbook
See standard regression cases in ./test *

Fieldextra 16.0

34

Some typical applications
Pre-processing

* Interpolate Swiss radar composite from kilometric grid onto the COSMO-2 grid for feeding
the latent heat nudging process.

* Merge surface temperature from ERAS over sea and from ICON-CH over land to produce
a single field suited for initial conditions to start ICON-CH re-analysis.

* Rebuild IFS ensemble used as LBC by adding IFS EPS perturbation to a more recent
determinist IFS forecast.

* Interpolate and process pollen fields from the ICON-DE model to produce lateral
boundary conditions for the ICON-CH model.

* Upscale ICON-CH1-EPS analysis from a 1.1km to a 2.2.km ICON grid to produce initial
conditions for ICON-CH2-EPS.

Fieldextra 16.0 35

Some typical applications
Post-processing

 Meteograms (as text) at specified locations

« Cropping and regridding for user specific grids

« Data thinning of model output for verification purposes

« Computation of geostrophic wind and related quantities

* Interpolation of wind field on specified theta and PV surfaces

« Split file with multiple EPS members or validation dates in pieces

* Fill holes in a 2-dimensional field not defined everywhere (e.g HZEROCL)

» Mix multiple model output in a single XML file for seamless forecast

« Convert GRIB1 to GRIBZ, incl. the specification of generalized height based vertical coord.

« Kalman correction at selected locations

* MOS based estimation of fields (including fields not part of model output!)
* Fieldextra expects the coefficients of the statistical model as external resource
- Statistical filter computation is done outside of fieldextra!

« Generation of EPS products
* Generate lagged ensemble from COSMO-2 rapid update cycle

* Clone missing member in ICON output by changing member id

* Real time production: wait for model output, produce partial output every Ah hours

Fieldextra 16.0 36

Some typical applications
More complex products

* Generate a soil type dependent field offset and apply it to correct W_SO

« Find 3D location of points where some conditions are fulfilled
(e.g. over-saturation over ice and temperature above -20C)

« Compute spatially upscaled EPS probability

» Create a bitmap for the condition
‘probability of 6h sum of total precipitation exceeding 25mm is larger than 0’

« Warn product : compute region based quantiles of some fields under side conditions
(e.g. 50% quantile of wind gust for all points below 800m where T_2m below 0C)

* Freezing rain: compute the integral of the temperature between the two lowest 0C
isotherm in case of an inversion over a cold air pool

« CAT for aviation: compute indicators, find the height-surface of maximum CAT, compute
the CAT category (low, medium, high) on this surface

« FABEC product : compute air density on a set of pressure and height above ground
levels, interpolated on a geographical lat/lon grid, in GRIB 2

« Monitoring of model output : field values statistics, when values are outside of pre-
defined validity range

Fieldextra 16.0 37

Access, installation and usage

See ./README.md ,
also available from https.//github.com/COSMO-ORG/fieldextra

Fieldextra 16.0

38

https://github.com/COSMO-ORG/fieldextra
https://github.com/COSMO-ORG/fieldextra
https://github.com/COSMO-ORG/fieldextra

O

Access

 Licenced software
« free to all COSMO members.
- free licences for the R&D community, but without support.

+ The COSMO Steering Committee decided in 2024 to offer this software
under an open-source license, but this is not yet in force.

« Access

+ Master code repository on GitHub
hitps://github.com/COSMO-ORG/fieldextra (private repository)

- Package on COSMO web site
http://www.cosmo-model.org/content/support/software/default.htm

* Full installation at ECMWF on atos (UNIX group cfxtra)
/ec/res4/hpcperm/chcosmo/projects/fieldextra

* Full installation at CSCS on balfrin (UNIX group s83c)
/scratch/mch/jenkins/fieldextra/balfrin

Fieldextra 16.0 39

https://github.com/MeteoSwiss-APN/fieldextra
https://github.com/MeteoSwiss-APN/fieldextra
https://github.com/MeteoSwiss-APN/fieldextra
http://www.cosmo-model.org/content/support/software/default.htm
http://www.cosmo-model.org/content/support/software/default.htm
http://www.cosmo-model.org/content/support/software/default.htm

Access
Package on COSMO web site

 Only latest major release!

« Tar file on COSMO web site, password protected
http://www.cosmo-model.org/content/support/software/default.ntm

Source code for libraries (incl. config. script)

Source code for fieldextra

All necessary Makefiles (for gfortran, ifortran ...)

All necessary resources (dictionary, location list ...)
Documentation (admin, compatibility, documentation)
Cookbook (used to validate installation)

Tools (including fx tools)

Fieldextra is only validated against the libraries and the
associated resources included in the distribution package !

Fieldextra 16.0

40

-+ Installation

* Follow steps in ./documentation/INSTALLATION
« New features are documented in ./documentation/HISTORY

« Backward compatibility issues are documented in section
COMPATIBILITY ISSUES™ of ./documentation/HISTORY

Fieldextra 16.0 41

Things never work as planned ...

Problem by installation ?
- carefully read and follow ./documentation/INSTALLATION
« look at ./documentation/usr/FAQ

Namelist not working with newer release?
« consider compatibility issues decribed in ./documentation/HISTORY

Problem by usage ?

« set verbosity to high (or debug) and additional_diagnostic to true
« consider ./documentation/READE.user

« consider ./documentation/usr/FAQ

Do not know how to write the namelist for some application?
« getinspired by the cookbook examples

Get community support at fieldextra@cosmo-model.org

Fieldextra 16.0

42

mailto:cosmo-fieldextra@cosmo-model.org
mailto:cosmo-fieldextra@cosmo-model.org
mailto:cosmo-fieldextra@cosmo-model.org

O

Roadmap

Fieldextra 16.0

43

¢ What shall | expect next?
Release x.x

See https://github.com/COSMO-ORG/fieldextra/milestones

... but planning is very dynamic and may change on short term notice!

Fieldextra 16.0

44

https://github.com/COSMO-ORG/fieldextra/milestones
https://github.com/COSMO-ORG/fieldextra/milestones
https://github.com/COSMO-ORG/fieldextra/milestones

O

Final discussion

Fieldextra 16.0

45

O

Final discussion

Topics to be defined...

Fieldextra 16.0

46

Thank you for your attention!

	Slide 1
	Slide 2: Commented example – Meteogram
	Slide 3: Commented example – Meteogram
	Slide 4: Commented example – Meteogram
	Slide 5: Commented example – Meteogram
	Slide 6: Commented example – Meteogram
	Slide 7: Commented example – Meteogram
	Slide 8: Commented example – Meteogram
	Slide 9: Commented example – Meteogram
	Slide 10: Selected topics
	Slide 11: Design – Input & output
	Slide 12: Design – Incore storage
	Slide 13: Design – Iterative processing (1)
	Slide 14: Design – Iterative processing (2)
	Slide 15: Design – Iterative processing (3)
	Slide 16: Design – Iterative processing (4)
	Slide 17: Design – Namelist : basic
	Slide 18: Design – Namelist : selection_mode
	Slide 19: Design – Namelist : time levels (1)
	Slide 20: Design – Namelist : time levels (2)
	Slide 21: Design – Namelist : tlag
	Slide 22: Design – Computation of new fields (1)
	Slide 23: Design – Computation of new fields (2)
	Slide 24: Design – Computation of new fields (3)
	Slide 25: Design – Shared memory parallelism (1)
	Slide 26: Design – Shared memory parallelism (2)
	Slide 27: Design – Shared memory parallelism (3)
	Slide 28: Code structure
	Slide 29: Modules
	Slide 30: Main data structure
	Slide 31: Main program
	Slide 32: Calling tree : product generation
	Slide 33: Iterative data processing : implementation
	Slide 34: Some typical applications
	Slide 35: Some typical applications Pre-processing
	Slide 36: Some typical applications Post-processing
	Slide 37: Some typical applications More complex products
	Slide 38: Access, installation and usage
	Slide 39: Access
	Slide 40: Access Package on COSMO web site
	Slide 41: Installation
	Slide 42: Things never work as planned …
	Slide 43: Roadmap
	Slide 44: What shall I expect next? Release x.x
	Slide 45: Final discussion
	Slide 46: Final discussion
	Slide 47

