
Working with the ICON Model
F. Prill, D. Reinert, D. Rieger, G. Zängl

Max-Planck-Institut
 für Meteorologie

March
2023 ICON Tutorial

Publisher
Deutscher Wetterdienst
Business Area “Research and Development”
Frankfurter Straße 135
63067 Offenbach
www.dwd.de

Editors
Daniel Reinert, DWD,

daniel.reinert@dwd.de
Daniel Rieger, DWD,

daniel.rieger@dwd.de
Florian Prill, DWD,

florian.prill@dwd.de

This work may not be translated or copied in whole or in part without the written
permission of the publisher.

DOI: 10.5676/DWD_pub/nwv/icon_tutorial2023

Acknowledgments
Many people contributed to this manuscript.
The section on ICON physics was partly provided by S. Schäfer (radiation, Section 3.8.1),
J. Helmert (land-soil model TERRA, Section 3.8.11), D. Klocke (convection parame-
terization, Section 3.8.4), M. Köhler (cloud-cover parameterization and turbulence, Sec-
tions 3.8.5, 3.8.6), D. Mironov (summary of sea-ice and lake model, Sections 3.8.9, 3.8.10),
M. Raschendorfer (turbulence, Section 3.8.6), and A. Seifert (grid-scale microphysics pa-
rameterization, Section 3.8.3), DWD Physical Processes Division.
Section 6.2 (ICON-LAM nudging) includes contributions by S. Borchert, DWD. Section 6.5
was created mostly based on experiences by U. Blahak, DWD, for tuning the COSMO
model for tropical setups.
M. Jacob has provided Section 8.5 which contains an introduction to the accelerator-
specific code in ICON.
S. Rast (MPI-M) provided useful specifics on the grid construction, internal representation
of fields and other details, see Rast (2017), in particular in Ch. 9.
The Section 10.4.2 (Post-Processing using Fieldextra) has been provided by P. Baumann
and J.-M. Bettems, MeteoSwiss.
Section 10.3.4 (Visualization with R) has been contributed by J. Förstner, DWD Physical
Processes Division.
Chapter 11 was in its original form provided by R. Potthast and A. Fernandez del Rio,
DWD Data Assimilation Division.
The Appendix A on the basic usage of DWD’s HPC platform is based on T. Steinert’s
and U. Schättler’s (DWD) documentation of the NEC SX-Aurora.

Contents

0. Preface 1
0.1. How This Document Is Organized . 1
0.2. How to Obtain a Copy of the ICON Model Code 2
0.3. Further Documentation . 3

1. Installation of the ICON Model Package 5
1.1. The ICON Model Package . 5

1.1.1. Directory Layout . 6
1.1.2. Libraries Needed for Data Input and Output 7
1.1.3. Namelist Input for the ICON Model 10

1.2. Configuring and Compiling the Model Code 10
1.2.1. Computer Platforms . 11
1.2.2. Configuring and Compiling . 12

1.3. The DWD ICON Tools . 14
1.3.1. General Overview . 14
1.3.2. Configuring and Compiling the DWD ICON Tools 16

2. Necessary Input Data 19
2.1. Horizontal Grids . 19

2.1.1. ICON Grid Files . 21
2.1.2. ICON “Nests” . 23
2.1.3. Mapping of Geodesic Coordinates to the Sphere 24
2.1.4. Download of Predefined Grids . 25
2.1.5. Grid Generator: Invocation from the Command Line 26
2.1.6. Grid Generator: Invocation via the Web Interface 28
2.1.7. Offline ExtPar Subgrid Extraction 32
2.1.8. Which Grid File is Related to My Simulation Data? 33
2.1.9. Planar Torus Grids . 34

2.2. Initial Conditions . 34
2.2.1. Obtaining DWD Initial Data . 35
2.2.2. Obtaining ECMWF IFS Initial Data 41
2.2.3. Remapping Initial Data to Your Target Grid 43

2.3. Boundary Data Preparation for ICON-LAM 47
2.4. External Parameter Files . 53

2.4.1. ExtPar Software . 55
2.4.2. Topography Information . 56
2.4.3. Additional Information for Surface Tiles 56
2.4.4. Parameter Files for Radiation . 57

3. Model Description 59
3.1. Governing Equations . 60

i

ICON Model Tutorial

3.2. The Model Reference State . 63
3.3. Simplifying Assumptions in the Recent Model Version 64
3.4. Vertical Coordinates . 66

3.4.1. Terrain-following Hybrid Gal-Chen Coordinate 67
3.4.2. SLEVE Coordinate . 68

3.5. Temporal Discretization . 70
3.5.1. Basic Idea . 70
3.5.2. Implementation Details . 71

3.6. Tracer Transport . 77
3.6.1. Directional Splitting . 78
3.6.2. Horizontal Transport . 79
3.6.3. Vertical Transport . 81
3.6.4. Reduced Calling Frequency . 84
3.6.5. Some Practical Advice . 85

3.7. Physics-Dynamics Coupling . 89
3.7.1. ICON Time-Stepping . 89
3.7.2. Fast and Slow Processes . 90
3.7.3. Isobaric vs. Isochoric Coupling Strategies 91

3.8. ICON NWP-Physics in a Nutshell . 93
3.8.1. Radiation . 93
3.8.2. Saturation Adjustment . 96
3.8.3. Cloud Microphysics . 98
3.8.4. Cumulus Convection . 99
3.8.5. Cloud Cover . 100
3.8.6. Turbulent Diffusion . 101
3.8.7. Sub-grid scale orographic drag . 105
3.8.8. Non-orographic gravity wave drag 108
3.8.9. Lake Parameterization Scheme FLake 108
3.8.10. Sea-Ice Parameterization Scheme . 110
3.8.11. Land-Soil Model TERRA . 112
3.8.12. Reduced Model Top for Moist Physics 115

3.9. Variable Resolution Modeling . 116
3.9.1. Parent-Child Coupling . 118
3.9.2. Processing Sequence . 126
3.9.3. Technical and Performance Aspects 128

3.10. Reduced Radiation Grid . 129

4. Running Idealized Test Cases 131
4.1. Main Switches for Idealized Test Cases . 131

4.1.1. Activating/De-activating Main Model Components 131
4.1.2. Specifying the Computational Domain(s) 132
4.1.3. Integration Time Step and Simulation Length 133

4.2. Jablonowski-Williamson Baroclinic Wave Test 134
4.2.1. Recommended Namelist Settings . 134
4.2.2. Enabling Passive Tracers . 135
4.2.3. Activation of Nested Domains . 137

4.3. Straka Density Current Test . 138
4.3.1. Relevant Namelist Switches in nh_testcase_nml: 140

ii

Contents

5. Running Real Data Test Cases 143
5.1. Model Initialization . 143

5.1.1. Basic Settings for Running Real Data Runs 143
5.1.2. Starting from Uninitialized DWD Analysis 147
5.1.3. Starting from Uninitialized DWD Analysis with IAU 149
5.1.4. Starting from Initialized DWD Analysis 151
5.1.5. Starting from IFS Analysis . 152

5.2. Starting or Terminating Nested Domains at Runtime 152

6. Running ICON-LAM 153
6.1. Limited Area Mode vs. Nested Setups . 153
6.2. Nudging in the Boundary Region . 154
6.3. Model Initialization . 157
6.4. Reading Lateral Boundary Data . 159

6.4.1. Naming Scheme for Lateral Boundary Data 161
6.4.2. Pre-Fetching of Boundary Data (Mandatory) 162

6.5. Tropical Setup . 163

7. Model Output 167
7.1. Settings for the Model Output . 167

7.1.1. Output on Regular Grids and Vertical Interpolation 169
7.1.2. Remarks on the Horizontal Interpolation 170
7.1.3. Interpolation onto Rotated Lat-Lon Grids 172
7.1.4. Output Rank Assignment . 173

7.2. Checkpointing and Restart . 174
7.3. Meteogram Output . 176

8. Parallelization and Performance Aspects 179
8.1. Modes of Parallel Execution . 179
8.2. Settings for Parallel Execution . 180
8.3. Best Practice for Parallel Setups . 181

8.3.1. MPI Tasks and OpenMP Threads 181
8.3.2. Blocking (nproma) . 182
8.3.3. Mixed Single/ Double Precision in ICON 182
8.3.4. Bit-Reproducibility . 182

8.4. Basic Performance Measurement . 183
8.5. ICON on Accelerator Devices (GPUs) . 184

8.5.1. Configuring and Compiling ICON-OpenACC 185
8.5.2. Special Namelist Options for ICON-OpenACC 186
8.5.3. Implementation Details . 187

9. Programming ICON 189
9.1. Representation of 2D and 3D Fields . 189
9.2. Data Structures . 193

9.2.1. Description of the Model Domain . 193
9.2.2. Date and Time Variables . 194
9.2.3. Data Structures for Physics and Dynamics Variables 195
9.2.4. Parallel Communication . 197

iii

ICON Model Tutorial

9.3. Implementing Own Diagnostics . 198
9.4. NWP Call Tree . 202

10.Post-Processing and Visualization 205
10.1. Retrieving Data Set Information . 205

10.1.1. The ncdump Tool . 205
10.1.2. CDO – Climate Data Operators . 206

10.2. Plotting Data Sets on Regular Grids: ncview 207
10.3. Plotting Data Sets on the Triangular Grid 208

10.3.1. Visualization with Python . 208
10.3.2. Visualization with PyNGL . 209
10.3.3. NCL – NCAR Command Language 214
10.3.4. Visualization with R . 217
10.3.5. GMT – Generic Mapping Tools . 220

10.4. Post-Processing of Data Sets . 223
10.4.1. Post-Processing using the CDO . 223
10.4.2. Post-Processing using Fieldextra 224

11.ICON’s Data Assimilation System and Analysis Products 227
11.1. Data Assimilation . 227

11.1.1. Variational Data Assimilation . 228
11.1.2. Ensemble Kalman Filter . 229
11.1.3. Hybrid Data Assimilation . 229
11.1.4. Surface Analysis . 230

11.2. Assimilation Cycle at DWD . 230
11.3. Analysis Products . 232

11.3.1. Uninitialized Analysis for IAU . 232
11.3.2. Uninitialized Analysis . 235
11.3.3. Initialized Analysis . 237

Appendix A. The Computer System at DWD 241

Appendix B. Table of ICON Output Variables 245

Bibliography 259

Index of Namelist Parameters 269

iv

0. Preface

The ICON (ICOsahedral Nonhydrostatic) modeling framework (Zängl et al., 2015) is a
joint project between the Deutscher Wetterdienst (DWD), the Max-Planck-Institute for
Meteorology (MPI-M), the Deutsches Klimarechenzentrum (DKRZ) and the Karlsruhe
Institute of Technology (KIT) for developing a unified next-generation global numerical
weather prediction (NWP) and climate modeling system.

The main goals formulated in the initial phase of the collaboration are

• better conservation properties than in the existing global models, with the obligatory
requirement of exact local mass conservation and mass-consistent transport,

• better scalability on future massively parallel high-performance computing architec-
tures,

• the availability of some means of static mesh refinement. ICON is capable of mixing
one-way nested and two-way nested grids within one model application, combined
with an option for vertical nesting. This allows the global grid to extend into the
mesosphere (which facilitates the assimilation of satellite data) whereas the nested
domains extend only into the lower stratosphere in order to save computing time.

• applicability on a wide range of scales down to O(1 km) and beyond (which of course
requires a nonhydrostatic dynamical core).

The ICON modeling framework became operational in DWD’s forecast system in Jan-
uary 2015. During the first six months only global simulations were executed with a hor-
izontal grid spacing of 13 km and 90 vertical levels. Starting from July 21st, 2015, model
simulations have been complemented by a nesting region over Europe.

In January 2018, the global 40 member ICON-EPS (Ensemble Prediction System) was
released for the operational service at DWD. Since February 10th, 2021 it is complemented
by the convection-permitting model setup ICON-D2 (-EPS) with 20 ensemble members
and one deterministic run, which replaces the COSMO-D2 (-EPS) model (Baldauf et al.,
2011). It uses a limited-area domain covering Germany and some neighboring states, with
approximately 2 km horizontal mesh size and 60 vertical levels.

The model source code has been made available for scientific use under an institutional
license since 2015.

0.1. How This Document Is Organized

Not all topics in this manuscript are covered during the workshop. Therefore, the
manuscript can be used as a textbook, similar to a user manual for the ICON model.

1

ICON Model Tutorial

Readers are assumed to have a basic knowledge of the design and usage of numerical
weather prediction models.

Even though the chapters in this textbook are largely independent, they should preferably
not be treated in an arbitrary order.

• For getting started with the ICON model: read Chapters 1 – 5.

• New users who are interested in the regional model should read Chapter 6 in addition.

• More advanced topics are covered by Chapters 7 – 11.

To some extent this document can also be used as a reference manual. We refer to the
index on page 269 for a quick look-up of namelist parameters.

Paragraphs describing common pitfalls and containing details for advanced users are
marked by the symbol .

0.2. How to Obtain a Copy of the ICON Model Code

To institutions, the ICON model is distributed under an institutional license issued by
DWD. To obtain a grant of license that must be signed and returned to the DWD, please
contact icon@dwd.de or follow the information on the public ICON web site

https://code.mpimet.mpg.de/projects/iconpublic

To individuals, the ICON model is distributed under a personal non-commercial re-
search license distributed by MPI-M, see also the instructions on the public ICON web
site. Access to the source code management system git is limited to the development
partners of the ICON project.

Additionally, we have established the mailing list icon-community@mpimet.mpg.de to stay
in touch with the ICON community. Please visit https://listserv.gwdg.de/mailman/
listinfo/icon-community and subscribe to this list in order to receive announcements
about new releases and features.

Data Services

On the ICON web page under the mentioned URL you will also find the access to the
grid generator web service (see Section 2.1.6), and the web links to ICON’s official
grid download site and GRIB2 definitions.

DWD has made a number of model forecast data sets publicly available, mostly
free of charge. This service has started in July 2017 and can be reached under https:
//opendata.dwd.de/weather/nwp. See the content description under https://www.dwd.
de/EN/ourservices/opendata/opendata.html for a list of available data sets.

For further data requests with respect to DWD operational data products please contact
klima.vertrieb@dwd.de.

2

mailto:icon@dwd.de
https://code.mpimet.mpg.de/projects/iconpublic
mailto:icon-community@mpimet.mpg.de
https://listserv.gwdg.de/mailman/listinfo/icon-community
https://listserv.gwdg.de/mailman/listinfo/icon-community
https://opendata.dwd.de/weather/nwp
https://opendata.dwd.de/weather/nwp
https://www.dwd.de/EN/ourservices/opendata/opendata.html
https://www.dwd.de/EN/ourservices/opendata/opendata.html
mailto:klima.vertrieb@dwd.de

0.3 Further Documentation

0.3. Further Documentation

The ICON model is accompanied by various other manuals and documentation. An exten-
sive list is available and constantly kept up-to-date in the documentation section of the
public ICON web site https://code.mpimet.mpg.de/projects/iconpublic.

We restrict ourselves to a small subset in the following.

Scientific Documentation

Up to now there is no comprehensive scientific documentation available. In this respect,
we refer to the publications Zängl et al. (2015, 2022) and the references cited therein.

Recent information on ICON’s hydrostatic dynamical core1 and the LES model can be
found in Wan et al. (2013), Dipankar et al. (2015), Heinze et al. (2017).

Detailed information and evaluation of the atmospheric component of ICON using the
climate physics package is given by Giorgetta et al. (2018), Crueger et al. (2018). The
ICON-Sapphire configuration which targets a representation of the Earth system at kilo-
meter and subkilometer scales is described in Hohenegger et al. (2023).

The Reports on ICON are a new series of non-peer-reviewed articles dedicated to ICON:

https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html

These are not attributed to DWD or MPI-M alone and allow for a fast and straightforward
publication of technical and scientific contributions. All ICON developers are invited to
contribute.

The extended modules for Aerosols and Reactive Trace gases (ART) are described in
Rieger et al. (2015), Schröter et al. (2018). Not covered by this tutorial, a description of
the ocean component ICON-O within the ICON modeling system can be found in Korn
(2017), Korn and Danilov (2017), Korn et al. (2022).

Technical Documentation

For model users who intend to process data products of DWD’s operational runs, the
DWD database documentation may be a valuable resource, see Reinert et al. (2020). It
can be found (in English language) on the DWD web site

www.dwd.de/SharedDocs/downloads/DE/
modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.pdf.

A complete list of namelist switches can be found in the namelist documentation

icon/doc/Namelist_overview.pdf

1ICON’s hydrostatic dynamical core has been removed with version 2.6.4.

3

https://code.mpimet.mpg.de/projects/iconpublic
https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html
http://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.pdf
http://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/icon/icon_dbbeschr_aktuell.pdf

ICON Model Tutorial

which is deployed together with the code.

The pre- and post-processing tools of the DWD ICON Tools collection are described in
more detail in the DWD ICON Tools manual, see Prill (2020).

Finally, please note the FAQ section on the ICON web site which covers a variety of
common pitfalls.

4

1.
In

st
al

la
tio

n

1. Installation of the ICON Model Package

The purpose of this tutorial is to give you some practical experience in installing and run-
ning the ICON model package. Exercises are carried out on the supercomputers at DWD
but the principal steps of the installation can directly be transferred to other systems.

1.1. The ICON Model Package

The source code for the ICON model package consists of the following three components:

• The ICOsahedral Nonhydrostatic model (ICON)
For this tutorial the release v2.6.6 of the ICON code is used (state February 2023). It
is close to DWD’s currently operational icon-nwp version (see below for explanation).
The code also contains the ocean model developed at MPI-M which is, however, not
covered by this tutorial.

• ICON-ART for aerosols and reactive trace gases
The ART module, where ART stands for Aerosols and Reactive Trace gases, is an
extension of the ICON model to enable the simulation of gases, aerosol particles
and related feedback processes in the atmosphere. The module is provided by the
Karlsruhe Institute of Technology (KIT) and requires a separate license.

• DWD ICON Tools
The ICON Tools are a set of command-line tools for remapping, extracting and
querying ICON data files. They are based on a common library and written in
Fortran 90/95 and Fortran 2003.

ICON-NWP code version: The versioning of ICON is a bit complex and reflects the
parallel development in several “flavors” like “atmosphere”, “ocean”, and several more.
There are five important branches tagging versions that reached certain milestones: icon-
mpim (common repository for MPI-M, mainly AES physics in the atmosphere, land, ocean
and infrastructure), icon-nwp (numerical weather prediction, mainly dynamics and physics
of the LEM and NWP configurations of the atmospheric model), icon-dkrz (development
and integration of new infrastructure components), icon-cscs (focus on parallelization, like
porting ICON to GPUs), icon-kit (development and integration of the latest ART features).
The common release version integrates the stable components of all branches.

Each tag contains all model components, but the latest tag of, say, icon-mpim may not
contain the most recent developments of the NWP physics although these are already
included into the latest icon-nwp tag.

5

1.Installation

ICON Model Tutorial

1.1.1. Directory Layout

Figure 1.1 shows a brief description of the directory structure of the ICON model, located
in the directory icon.

Root directory: icon

src

support

config

include

externals

build

Fortran sources

C99 support library and utility routines

platform configuration, see Section 1.2.1

C library interface

external submodules (ART, calendar etc.)

build directory with sources and binary

Figure 1.1.: Directory structure of the ICON model.

The most important subdirectories are described in the following:

Subdirectory build
Within the build directory, a subdirectory with the name of your computer architec-
ture is created during compilation. When you open this newly created folder you find
a bin subdirectory containing the ICON binary icon and several other subdirectories
containing the compiled module files.

Subdirectory config
Inside the config directory, different machine-dependent configurations are stored
in configuration script files (see Section 1.2.1).

Subdirectory src
Within the src directory we have the source code of ICON including the main
program and ICON modules. The modules are organized in several subdirectories:

The main program icon.f90 can be found inside the subdirectory src/drivers.
Additionally, this directory contains the modules for the nonhydrostatic setup.

The configuration of ICON run-time settings is implemented within the modules
inside src/configure_model and src/namelists. Modules regarding the configu-
ration of idealized test cases can be found inside src/testcases.

The dynamics of ICON are implemented inside src/atm_dyn_iconam and the phys-
ical parameterizations inside src/atm_phy_nwp. Surface parameterizations can be
found inside src/lnd_phy_nwp.

Shared infrastructure modules for 3D and 4D variables are located within
src/shared. Routines that are primarily related to horizontal grids and 2D fields
(e.g. external parameters) are stored within src/shr_horizontal.

6

1.
In

st
al

la
tio

n

1.1 The ICON Model Package

Modules handling the parallelization can be found in src/parallel_infrastructure.

Input and output modules are stored in src/io.

The ICON code comes with its own LAPACK and BLAS sources. For performance reasons,
these libraries may be replaced by machine-dependent optimizations. However, please note
that LAPACK and BLAS routines are not actively used by the nonhydrostatic model.

1.1.2. Libraries Needed for Data Input and Output

The ICON model package lets you integrate a whole variety of external libraries. See the
corresponding table in the document README.md in the root directory of the ICON source
code for a detailed list of required and optional libraries for ICON.

The libraries play a particularly important role in the execution of I/O tasks. Two data
formats are implemented in the package to read and write data from or to disk: GRIB
and NetCDF.

• GRIB (GRIdded Binary) is a standard defined by the World Meteorological Organi-
zation (WMO) for the exchange of processed data in the form of grid point values
expressed in binary form. GRIB coded data consists of a continuous bit-stream made
of a sequence of octets (1 octet = 8 bits). Please note that the ICON model does
support only the GRIB2 version of the standard.

• NetCDF (Network Common Data Form) is a set of software libraries and machine-
independent data formats that support the creation, access, and sharing of array-
oriented scientific data. NetCDF files contain the complete information about the
dependent variables, the history, and the fields themselves. The NetCDF file format
is also used for the definition of the computational mesh (grid topology).
For more information on NetCDF see http://www.unidata.ucar.edu.

To work with the formats described above the following libraries are utilized by the ICON
model package. For this training course, the paths to access these libraries on the used
computer system are already specified in the Makefile.

The Climate Data Interfaces (CDI) – externals/cdi

This library has been developed and implemented by the Max-Planck-Institute for Mete-
orology in Hamburg. It provides a C and Fortran interface to access climate and NWP
model data. Among others, supported data formats are GRIB1/2 and NetCDF.

For more information see https://code.mpimet.mpg.de/projects/cdi.

A copy of the CDI is distributed together with the ICON model package. However, users
can download and install this library before configuring ICON and use it instead. Note
that the CDI are also used by the DWD ICON Tools.

7

http://www.unidata.ucar.edu
https://code.mpimet.mpg.de/projects/cdi

1.Installation

ICON Model Tutorial

The NetCDF library – libnetcdf.a

A special library, the NetCDF library, is necessary to write and read data using the
NetCDF format. This library also contains tools for manipulating and visualizing the
data (ncdump utility, see Section 10.1.1).

If the library is not yet installed on your system, you can get the source code and docu-
mentation from

http://www.unidata.ucar.edu/software/netcdf/index.html

This includes a description how to install the library on different platforms. Please make
sure that the F90 package is also installed, since the model reads and writes grid data
through the F90 NetCDF functions.

Note that there exists a restriction regarding the file size. While the classic NetCDF format
could not deal with files larger than 2 GiB the new NetCDF-4/HDF5 format permits
storing files as large as the underlying file system supports. However, NetCDF-4/HDF5
files are unreadable to the NetCDF library before version 4.0.

The ECMWF ecCodes package1 – libeccodes.a, libeccodes_f90.a

The European Centre for Medium-Range Weather Forecasts (ECMWF) has developed an
application programmers interface (API) to pack and unpack GRIB1 as well as GRIB2
formatted data. For reading and setting meta-data, the ecCodes package uses the so-called
key/value approach, which means that all the information contained in the GRIB message
is retrieved through alphanumeric names. Indirect use of this ecCodes library in the ICON
model is implemented through the CDI.

In addition to the GRIB library, there are some command-line tools to provide an easy way
to check and manipulate GRIB data from the shell. Amongst them, the most important
ones are grib_ls and grib_dump for listing the contents of a GRIB file, and grib_set for
(re)-setting specific key/value pairs.

For more information on ecCodes we refer to the ECMWF web page:

https://confluence.ecmwf.int/display/ECC

Installation: The source code for the ecCodes package can be downloaded
from the ECMWF web page.

Please refer to the README for installing the ecCodes libraries, which is done
with a configure script. Check the following settings:

1ecCodes is an evolution of the former GRIB-API software package. To facilitate the alternative use
of both libraries, ICON implements only backward-compatible API function names. The GRIB-API
libraries, however, would be libgrib_api.a, libgrib_api_f90.a.

8

http://www.unidata.ucar.edu/software/netcdf/index.html
https://confluence.ecmwf.int/display/ECC

1.
In

st
al

la
tio

n

1.1 The ICON Model Package

• The ecCodes package can make use of optional JPEG packing of the
GRIB records, but this requires the installation of additional libraries.
Since the ICON model does not apply this packing algorithm, the support
for JPEG can be disabled during the configure step with the option
–disable-jpeg.

• To use statically linked libraries and binaries you should set the configure
option –enable-shared=no.

./configure --prefix=/your/install/dir \
--disable-jpeg --enable-shared=no

After the configuration has finished, the ecCodes library can be built with
make and then make install.

GRIB Definition Files

An installation of the ecCodes package always consists of two parts: First, there is the
binary compiled library itself with its functions for accessing GRIB files. But, second,
there is the definitions directory which contains plain-text descriptions of meta data.

GRIB definition files are external text files which constitute a kind of parameter database.
They describe the decoding rules and the keys which are used to identify the meteorological
fields. For example, these definition files contain information about the variable short name
and the corresponding GRIB code triplet.

Example. In contrast to the GRIB triplet, the short name, e.g., “OMEGA” for vertical
velocity (pressure), is not stored in data files. The definition file therefore constitutes an
essential link: If the definition files in two institutes are different from each other it is
possible that the same data file shows the record “OMEGA” on one site (our DWD system),
while the same GRIB record bears the short name “w” on the other site (both have the
same GRIB triplet discipline=0,parameterCategory=2,parameterNumber=8).

DWD-specific definition files. The ICON model accesses its input data by their name
("shortName" key). Therefore the DWD-specific definition files ("EDZW"=DWD Offen-
bach) are essential for the read-in process. In theory, the above situation could be solved
by changing all field names in the ICON name list setup, where possible. However, it is
likely that further related errors may follow in the ICON model when this searches for a
specific variable name. In this case you might need to change the definition files after all.

The DWD definition files for the ecCodes package can be obtained via

https://opendata.dwd.de/weather/lib/grib/

9

https://opendata.dwd.de/weather/lib/grib/

1.Installation

ICON Model Tutorial

The new directory needs to be communicated to the ecCodes package at run-time by
setting the ECCODES_DEFINITION_PATH environment variable2:

export \
ECCODES_DEFINITION_PATH=/yourpath/definitions.edzw:/yourpath/definitions

Here, the definitions directory provided by ECMWF is extended by DWD’s own instal-
lation (definitions.edzw). Note that both paths have to be specified in this environment
variable, and that definitions.edzw has to be the first! The current setting of the defi-
nition files path can be displayed with the command-line tool codes_info.

Note that for writing GRIB2 files, the ICON model does not use DWD-specific shortNames.
Therefore, the model output can be written in GRIB2 format without the proper definition
files at hand.

Remark on Versioning: The ecCodes library does not check the version of
the definition files. In case of a mismatch between these versions, ecCodes
will throw an error which can not be easily attributed to a version mismatch.
Thus, the user has to make sure that the ecCodes version and the definition
files version matches.

1.1.3. Namelist Input for the ICON Model

In general, the ICON model is controlled by a so-called parameter file which uses Fortran
NAMELIST syntax. Default values are set for all parameters, so that you only have to
specify values that differ from the default.

Assuming that ICON has been compiled successfully, the next step is to adapt these ICON
namelists. The run scripts in this tutorial create a file NAMELIST_NWP which contains all
user-defined namelist parameters, together with some substituted shell script variables.
Discussing all available namelist switches is definitely beyond the scope of this tutorial.
We will merely focus on the particular subset of namelist switches that is necessary to
setup an idealized model run as well as real case runs using the NWP physics package. A
complete list of namelist switches can be found in the namelist documentation

icon/doc/Namelist_overview.pdf

1.2. Configuring and Compiling the Model Code

This section explains the configuration process of the ICON model. It is assumed that the
libraries and programs discussed in Section 1.1.2 are present on your computer system.
For convenience, the compiler version and the ecCodes version are documented in the log
output of each model run.

2Setting the GRIB_DEFINITION_PATH environment variable is still accepted as a fallback by the ecCodes
package for backward compatibility reasons.

10

1.
In

st
al

la
tio

n

1.2 Configuring and Compiling the Model Code

1.2.1. Computer Platforms

For a small number of HPC platforms settings are provided with the code. The two most
important examples of ICON-NWP are the NEC system in Offenbach/Ludwigshafen and
“Levante” at the DKRZ in Hamburg. As of September 2022, the technical specifications
of these platforms are as follows:

NEC SX-Aurora cluster (Research Cluster Ludwigshafen “rcl.dwd.de“)

3520 NEC SX-Autora Tsubasa vector engine CPUs

• 1.584 GHz, double precision peak performance
ca. 2.15 TFLOPS,

• 48 GiB HBM2 3D-stacked memory

440 x86 Vector Hosts with 8 Vector Engines attached to each host
AMD EPYC “Rome” (24 cores, 2.8GHz, 512 GiB memory)

MPI: NEC MPI 2.22.0
NetCDF: Version 4.7.3
Compiler: NEC Fortran 4.0.0 / gcc v9.2.0

HLRE-4 cluster “Levante“ (DKRZ Hamburg)

CPU-Partition
2520 compute nodes AMD 7763 (2 CPUs/node, 64 cores/CPU, 256 Gb)
294 compute nodes AMD 7763 (2 CPUs/node, 64 cores/CPU, 512 Gb)
18 compute nodes AMD 7763 (2 CPUs/node, 64 cores/CPU, 1024 Gb)
GPU-Partition
60 compute nodes AMD 7713 (2 CPUs/node, 64 cores/CPU, 512 Gb)

compute nodes Nvidia A100 (4 GPUs/node, 80/40 Gb)

MPI: OpenMPI 4.1.2
NetCDF: Version 4.5.3
Compiler: Intel Fortran compiler ifort 2021.5.0

Due to the usage of modern Fortran 2003/2008 features, ICON places high demands on
the compilers. Please make also sure that a compatible compiler for the C99 routines in
the package is available. Both components, the Fortran parts and the C parts use a source
pre-processor. Table 1.1 provides a list of compilers which are regularly tested and known
to successfully build the recent ICON code. There is a good chance that more recent
compiler versions might work as well. However, be aware that this is not necessarily the
case.

Intel ifort compiler: When compiling with ifort before version 17.0.1, the
default behavior is for the compiler not to use the Fortran rules for auto-
matic allocation on intrinsic assignment. You will need to use an option like
-assume realloc-lhs.

11

https://docs.dkrz.de/doc/levante/index.html

1.Installation

ICON Model Tutorial

Fortran Compiler Working Version(s)

GNU gcc v11.2.0
gcc v12.1.0
gcc v12.2.0

Cray ftn v12.0.3

Intel ifort v2021.5.0
ifort v2021.6.0

NAG nagfor v7.1.7101
nagfor v7.1.7114

NEC nfort v4.0.0

NVIDIA (CPU) nvfortran v21.3.0
nvfortran v22.7.0

NVIDIA (GPU) nvfortran v21.3.0
nvfortran v22.7.0

Table 1.1.: Compiler versions which are tested regularly and which are known to success-
fully build the ICON code (state February 2023).

1.2.2. Configuring and Compiling

The process of building ICON consists of two parts: configuring the options and compiler
flags, and building the source code with those options and flags.

The configuration step is normally done by running the configure script (which is part
of the GNU Autotools) with command-line arguments, which, among other things, tell
the script where to locate libraries and tools required for building. Again we refer to the
document README.md in the root directory of the ICON source code which contains a very
detailed description of the configuration process.

The configure command scans the build environment and generates an appropriate
Makefile. The list of arguments enabling a successful configuration might be quite long
and difficult to compose, therefore, instead of running the generic configure script di-
rectly, users are recommended to execute a corresponding platform- or machine-specific
configuration wrapper that sets the required compiler and linker flags as well as the rec-
ommended set of configure options.

The wrapper scripts can be found in the respective subdirectories of the directory
icon/config. If your platform is not among the list of presets, or if you need to add
a specific compiler or change your compiler flags, you have to set up the appropriate call
of the configure yourself. Numerous platform-dependent options are allowed. Some more
details on configure options can be found in the help of the configure command:

./configure --help

12

1.
In

st
al

la
tio

n

1.2 Configuring and Compiling the Model Code

Be warned that you need some knowledge about Unix / Linux, compilers and Makefiles
to make the necessary adjustments w.r.t. the computing environment. If the configuration
process fails, take a look at the text file config.log that is created during the configuration
process. This technical log file may contain hints on which particular library has been found
missing.

The building stage is done with GNU make upon successful completion of the configuration
stage. On most machines you can also compile the routines in parallel by using the GNU-
make with the command gmake -j np, where np gives the number of processors to use
(np typically about 8).

If you wish to re-configure ICON it is advisable first to clean the old setup by giving:

make distclean

Example: Configuration and build process for the NEC SX-Aurora. The NEC platform
represents a special case in the sense that two separate ICON binaries are created, which
will be simultaneously executed on the x86 hosts nodes and the vector engines.

It is advisable to create a build subdirectory which will contain the binaries for your com-
puter architecture. The building system of ICON supports so-called out-of-source builds.
This means that you can build ICON in a directory other than the source root directory.
The main advantage of this is that you can easily switch between several different config-
urations and compilers later (each in its own build directory), while working on the same
source code. For the case of the NEC SX-Aurora, we will have different builds for the x86
hosts nodes and the vector engines.

In order to start the compilation process, please log into the NEC SX-Aurora cross-
compilation node rcl and change into the subdirectory icon. Please type:

mkdir -p build/VE,VH

cd build/VE
../../config/dwd/rcl.VE.nfort
make -j6

cd ../../build/VH
../../config/dwd/rcl.VH.gcc
make -j6

Pre-compiled Binaries: Users of the NEC SX-Aurora system may find re-
cent pre-compiled binaries in the following subdirectory $NWP_BIN. Note that
the nwp module needs to be pre-loaded, and the directory path depends on
whether the parent module x86 (i. e. binaries for the Linux cluster) or module
sx (i. e. binaries for the SX compute cluster) was previously loaded.

Users of the ECMWF system may find recent pre-compiled binaries in the
following subdirectory:

/sc1/home/zde/routfox/abs

13

1.Installation

ICON Model Tutorial

1.3. The DWD ICON Tools

The DWD ICON Tools provide a number of utilities for the pre- and post-processing of
ICON model runs. The DWD ICON Tools are not generally available ICON software but
were developed by the DWD as an add-on. Note that the software is not distributed under
the personal license that is provided by the Max-Planck Institute for Meteorology.

1.3.1. General Overview

All tool binaries can run in parallel on multi-core systems (OpenMP) and some offer
an MPI-parallel execution mode in addition. The DWD ICON utilities use the ecCodes
package for reading data in GRIB2 format. The ecCodes package is indirectly accessed by
the Climate Data Interface (CDI).

Root directory: dwd_icon_tools

doc

example

externals

icontools

libicontools
src/libiconbase

src/libicongrid

src/libicongridgen

src/libiconio

src/libiconremap

src/libicontools

configure

do_configure

LaTeX documentation

(few) example programs and scripts

sub-libraries, e. g. the CDI

command-line tools (binaries)

sub-library: ICON Tools algorithms

GNU Autotools configure script

Pre-set options for some compile targets

Figure 1.2.: Directory structure of the DWD ICON tools, published as a separate soft-
ware package. Only the most relevant directories are shown.

The directory structure of the DWD ICON tools is shown in Fig. 1.2. We give a short
overview over several tools in the following and refer to the documentation Prill (2020) for
details.

14

1.
In

st
al

la
tio

n

1.3 The DWD ICON Tools

ICONGRIDGEN – Used in Section 2.1.5

The icongridgen tool is a simple grid generator. It creates icosahedral grids from scratch,
which can be fed into the ICON model. Alternatively, an existing global or local grid file
is taken as input and parts of this input grid (or the whole grid) are refined via bisection.
No storage of global grids is necessary and the tool also provides an HTML plot of the
grid. The grid generator provides the basis for the DWD grid generator web tool under
https://webservice.dwd.de/cgi-bin/spp1167/webservice.cgi.

ICONREMAP – Used in Sections 2.2.3, 2.3

The iconremap utility is especially important for pre-processing the initial data for the
basic test setups in this manuscript. iconremap (ICOsahedral Nonhydrostatic model
REMAPping) is a utility program for horizontally interpolating ICON data onto regu-
lar grids and vice versa. Besides, it offers the possibility to interpolate between triangular
grids of different grid spacing.

The iconremap tool reads and writes data files in GRIB2 or NetCDF file format. For
triangular grids an additional grid file in NetCDF format must be provided.

Several interpolation algorithms are available: Nearest-neighbor remapping, radial basis
function (RBF) approximation of scalar fields, area-weighted formula for scalar fields, RBF
interpolation for wind fields from cell-centered zonal, meridional wind components u, v to
normal and tangential wind components at edge midpoints of ICON triangular grids (and
reverse), and barycentric interpolation. For more remarks on the available interpolation
methods, see Section 7.1.2.

Note that iconremap only performs a horizontal remapping, while the vertical
interpolation onto the model levels of ICON is handled by the model itself.

ICONSUB – Used in Section 2.3

The iconsub tool (ICOsahedral Nonhydrostatic model SUBgrid extraction) allows “cut-
ting” sub-areas out of ICON data sets.

After reading a data set on an unstructured ICON grid in GRIB2 or NetCDF file format,
the tool comprises the following functionality: It may “cut out” a subset, specified by two
corners and a rotation pole (similar to the COSMO model). Alternatively, a boundary
region of a local ICON grid, specified by parent-child relations, may be extracted. This
execution mode is especially important for the setup of the limited area model ICON-LAM.

Multiple sub-areas can be extracted in a single run of iconsub. Finally, the extracted data
is stored in GRIB2- or NetCDF file format.

15

https://webservice.dwd.de/cgi-bin/spp1167/webservice.cgi

1.Installation

ICON Model Tutorial

ICONGPI

The icongpi tool (ICOsahedral Nonhydrostatic model Grid Point I nformation) is a utility
program for searching / accessing individual grid points of an ICON grid. It can be used
to determine cells in a triangular grid corresponding to a given geographical position and
to determine the geographical position for a given cell index.

ICONDELAUNAY – see Section 7.1.2

The icondelaunay tool processes existing ICON grid files. It appends a Delaunay trian-
gulation of the cell circumcenters to the grid file. This auxiliary triangulation can then be
used for interpolation purposes.

1.3.2. Configuring and Compiling the DWD ICON Tools

To compile the DWD ICON Tools binaries, log into the Linux cluster node rclh3 for NEC
SX-Aurora cross-compilation and change into the base directory:

cd dwd_icon_tools

This directory contains a GNU Autotools configure script which, when run, scans the
build environment and generates a Makefile appropriate for that build environment.

The configure expects numerous platform-dependent options which can be listed by the
command configure –help.

After the configuration has finished, the binary can be created by typing

make

Pre-compiled Binaries: Similar to the pre-compiled binaries of the ICON
model, users of the NEC SX-Aurora system or the rcl.dwd.de may find recent
pre-compiled binaries for the DWD ICON Tools in the following subdirectory
$NWP_BIN_UTIL.

Note that the nwp module needs to be pre-loaded, and the directory path
depends on whether the parent module x86 (i. e. binaries for the Linux cluster)
or module sx (i. e. binaries for the SX compute cluster) was previously loaded.

3Note that rclh serves as an alias for one of the Linux cluster nodes rcnl*.

16

1.
In

st
al

la
tio

n

1.3 The DWD ICON Tools

List of pre-configured platforms: Pre-set options for a short list of available compile
targets are contained in the do_configure.sh auxiliary script.

Hostname Target description

oflws*, omlws* Generic Linux platform without MPI support;
compiled with the gcc compiler.

rcnl*,
target=="rcl"

DWD Linux cluster.

rcnl*,
target == "VH"

cross compilation for DWD NEC SX-Aurora vector host
with MPI support.

breeze4* DKRZ “breeze” Linux cluster.

levante* DKRZ BullSequana XH2000 supercomputer “Levante”.

a*6-1*.bullx ECMWF Atos Sequana XH2000 system.

daint* compilation for CSCS Daint cluster.

The o[fm]lw* target in the do_configure.sh helper script is related to a more or less
generic Linux workstation but probably requires adaptation.

In the following, we list the invocation of the do_configure.sh helper script in detail:

DWD, rcnl: Cross compilation for NEC vector hosts

module purge && \
module load sx/default apps gcc/9.1.0 mpi/2.3.1 \

netcdf4/4.7.3-VH-gnu hdf5/1.10.5-VH-gnu \
eccodes/2.23.0-VH-gnu aec/1.0.3-VH-gnu \
szip/2.1.1-VH-gnu

./do_configure.sh

DWD, rcnl: Compilation for Linux cluster with GNU compiler (without MPI)

module purge && \
module load x86/default apps gcc/9.1.0 \

netcdf4/4.7.3-x86-gnu hdf5/1.10.5-x86-gnu \
eccodes/2.23.0-x86-gnu aec/1.0.3-x86-gnu \
szip/2.1.1-x86-gnu

target=rcl ./do_configure.sh

DKRZ, levante: Compilation for "Levante"

module purge && \
module load gcc/11.2.0-gcc-11.2.0 openmpi/4.1.2-gcc-11.2.0
./do_configure.sh

17

1.Installation

2.
In

pu
t

D
at

a

2. Necessary Input Data

Before anything else, preparation is
the key to success.

Alexander Graham Bell

Besides the source code of the ICON package and the technical libraries, several data
files are needed to perform runs of the ICON model. There are four categories of necessary
data: Horizontal grid files, external parameters, and data describing the initial state (DWD
analysis or ECMWF IFS data). Finally, running ICON in limited-area mode in addition
requires accurate boundary conditions sampled at regular time intervals.

2.1. Horizontal Grids

In order to run ICON, it is necessary to load the horizontal grid information as an input
parameter. This information is stored within so-called grid files. For an ICON run, at
least one global grid is required. For model runs with nested domains, additional grids are
necessary. Optionally, a reduced radiation grid for the global domain may be used (see
Section 3.10).

The following nomenclature has been established: In general, by RnBk we denote a grid
that originates from an icosahedron whose edges have been initially divided into n parts,
followed by k subsequent edge bisections. See Figure 2.1 for an illustration of the grid
creation process. The total number of cells in a global ICON grid RnBk is given by
ncells := 20n2 4k. The cell circumcenters serve as data sites for most ICON variables. As
an exception, the orthogonal normal wind is given at the midpoints of the triangle edges
and is measured orthogonal to the edges.

The effective mesh size can be estimated as

∆x ≈ 5050/(n 2k) [km] . (2.1)

This formula is motivated as follows:

The average triangle area is calculated from the surface of the Earth divided by the number
of triangles of the grid. Then, we imagine a square with the same area and define its edge
length as the effective mesh size of the triangular grid. This results in

∆x =
√
Searth/ncells =

√
4R2

earth π

ncells
= Rearth

n 2k

√
π

5 ≈ 5050/(n 2k) [km] ,

where Searth and Rearth define the Earth’s surface and radius, respectively.

19

2.Input
D

ata

ICON Model Tutorial

Figure 2.1.: Left: Illustration of the grid construction procedure. The original spherical
icosahedron is shown in red, denoted as R1B00 following the nomenclature
described in the text. In this example, the initial division (n=2; black dot-
ted), followed by one edge bisection (k=1) yields an R2B01 grid (solid lines).
Right: Graphical representation of the 12 pentagon points. Here, the base
icosahedron is rotated exactly like the DWD operational grids.

Pentagon Points

Note that by construction, each vertex of a global grid is adjacent to exactly 6 triangular
cells, with the exception of the original vertices of the icosahedron, the pentagon points,
which are adjacent to only 5 cells.

The grids used in production at DWD have their pentagon points located at the following
longitude/latitude positions (in degrees):

(−180,±90), (0,−m), (−180,m), (±36,m), (±72,−m), (±108,m), (±144,−m)

where the constant m is derived from the golden ratio ϕ := 1+
√

5
2 as

m := 90 − 180
π

atan
(√

1 + ϕ2 + ϕ4

ϕ

)
≈ 26.565 [degrees].

See Fig. 2.1 for a graphical representation of the pentagon points.

Cell Neighborhoods

Apart from areas with pentagon cells, the number of cells in an area covered by a central
cell and Nr rings of cells around the central cell is

Nc(Nr) = 1 + 12
∑Nr

r=1
r = 6Nr(Nr + 1) + 1 .

Then Nc(1) = 13, Nc(2) = 37, Nc(3) = 73, . . .

20

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

Proof by mathematical induction. For the inductive step it is convenient to visualize all
cells organized in horizontal rows. If the statement holds for Nr then we need to count
the number of additional steps for Nr + 1: We have 2Nr + 1 horizontal cell rows in the
area covered by Nr. Therefore we get 4 (2Nr + 1) new cells in these horizontal cell rows.
Furthermore, we have two additional horizontal cell rows, containing 2(Nr + 1) + 1 cells
and 2(Nr + 2) + 1 cells. In total we get the following number of new cells:

4 (2Nr + 1) + 2 (Nr + 1) + 1 + 2 (Nr + 2) + 1 = 12 (Nr + 1) .

This is Nc(Nr + 1) −Nc(Nr) from the formula above.

Dual Hexagonal Grid

The centers of the equilateral triangles contained in each triangle of the original icosahe-
dron after triangulation are defined by the intersection of the angle bisectors (which are at
the same time also altitudes) of the triangle. The centers of the triangles form a hexagonal
grid that is called to be dual to the grid of triangle vertices. On the ICON grid, the centers
of the slightly distorted triangles form a dual grid of slightly distorted hexagons.

Spring Dynamics Optimization

This grid on the sphere is optimized in a next step by so-called spring dynamics. We
give the idea of the optimization only and refer to Tomita et al. (2002) for an in-depth
description of the algorithm.

Imagine that we have a collection of springs all of them of the same strength and length.
First, we attach a mass to each triangle vertex and fix it with glue on the circumscribed
sphere. We replace each edge by one of the springs. Depending on the actual length of the
edge, we have to tension some springs a bit more for the larger triangles, less for smaller
ones. Now, the glue is melted away and the vertices move until an equilibrium is reached
provided that there is some friction of the mass points on the sphere.

By this procedure, we will obtain a slightly different grid of triangles which are still slightly
distorted and of unequal size, however, the vertices reached positions that reflect some
“energy minimum”. These triangles are the basis of the ICON horizontal grid. Such a grid
has particularly advantageous numeric properties. The North and South Pole of the Earth
are chosen to be located at two vertices of the icosahedron that are opposite to each other.

2.1.1. ICON Grid Files

The unstructured triangular ICON grid resulting from the grid generation process is rep-
resented in NetCDF format. This file stores coordinates and topological index relations
between cells, edges and vertices.

The most important data entries of the main grid file are

• cell (INTEGER dimension)
number of (triangular) cells

21

2.Input
D

ata

ICON Model Tutorial

• vertex (INTEGER dimension)
number of triangle vertices

• edge (INTEGER dimension)
number of triangle edges

• clon, clat (double array, dimension: #triangles, given in radians)
longitude/latitude of the midpoints of triangle circumcenters

• vlon, vlat (double array, dimension: #triangle vertices, given in radians)
longitude/latitude of the triangle vertices

• elon, elat (double array, dimension: #triangle edges, given in radians)
longitude/latitude of the edge midpoints

• cell_area (double array, dimension: #triangles)
triangle areas

• vertex_of_cell (INTEGER array, dimensions: [3, #triangles])
The indices vertex_of_cell(:,i) denote the vertices that belong to the triangle i.
The vertex_of_cell index array is ordered counter-clockwise for each cell.

• edge_of_cell (INTEGER array, dimensions: [3, #triangles])
The indices edge_of_cell(:,i) denote the edges that belong to the triangle i.

• clon/clat_vertices (double array, dimensions: [#triangles, 3], given in radians)
clon/clat_vertices(i,:) contains the longitudes/latitudes of the vertices that
belong to the triangle i.

• neighbor_cell_index (INTEGER array, dimensions: [3, #triangles])
The indices neighbor_cell_index(:,i) denote the cells that are adjacent to the
triangle i.

• zonal/meridional_normal_primal_edge: (INTEGER array, #triangle edges)
components of the normal vector at the triangle edge midpoints. Note that the edge’s
primal normal must not be mixed up with a primal cell’s outer normal.

• adjacent_cell_of_edge: (INTEGER array, [2, #triangle edges])
For cells i1, i2 adjacent to a given edge i, moving from i1 to i2 follows the direction
of the edge’s primal normal.

• zonal/meridional_normal_dual_edge: (INTEGER array, #triangle edges)
These arrays contain the components of the normal vector at the facets of the dual
control volume.
Note that each facet corresponds to a triangle edge and that the dual normal matches
the direction of the primal tangent vector but signs can be different.

• uuidOfHGrid (global attribute)
Grid fingerprint (see Section 2.1.8).

22

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

0

1
2

3 0

1
2

3
0

1
2

3

0

1
2

3

~en~et

Figure 2.2.: Illustration of the parent-child relationship in refined grids. Left: Triangle
subdivision and local cell indices. Right: The grids fulfill the ICON require-
ment of a right-handed coordinate system [e⃗t, e⃗n, e⃗w]. Note: the primal tan-
gent and the dual cell normal are aligned but do not necessarily coincide!

2.1.2. ICON “Nests”

ICON has the capability for running

• global simulations on a single grid,

• limited area simulations (see Chapter 6), and

• global or limited-area simulations with refined nests (so called patches or domains).

For the subtle difference between nested and limited-area setups the reader is referred to
Section 6.1. Section 3.9.1 explains the exchange of information between the domains.

Additional topological information is required for ICON’s refined nests: Each “parent”
triangle is split into four “child” cells, and each parent edge is split into two child edges.
In the grid file only child-to-parent relations are stored while the parent-to-child relations
are computed in the model setup. The local numbering of the four child cells (see Fig. 2.2)
is also computed in the model setup.

The refinement information is stored in the following data entries of the grid file:

• uuidOfParHGrid (global attribute)
Fingerprint of the parent grid (see Section 2.1.8). If your grid does not contain
the uuidOfParHGrid global attribute, then you’ll need the namelist parameter
dynamics_parent_grid_id, see below.

• parent_cell_index (INTEGER array, dimension: #triangles)
Global index of coarser parent triangle in the parent grid.

• parent_edge_index (INTEGER array, dimension: #triangle edges)
Global index of parent edge (with double length) in the parent grid.

• parent_vertex_index (INTEGER array, dimension: #triangle vertices)
Global index of parent vertex in the parent grid.

Since the grids of the different refinement levels are stored in separate files, the usual way to
establish a parent-child relationship between these grids is to read the header information

23

2.Input
D

ata

ICON Model Tutorial

from the list of provided grid files, see Section 4.1.2. Then, the parent-child relationships
can be inferred from the NetCDF attributes uuidOfHGrid and uuidOfParHGrid.

However, there are still older grid files in circulation which do not contain these descrip-
tive attributes. In this case there is no other possibility than defining the parent-child
relationship by a namelist parameter.

dynamics_parent_grid_id (namelist grid_nml, list of INTEGER values)
This parameter array is closely related to the namelist parame-
ter dynamics_grid_filename. The ith entry of dynamics_parent_grid_id contains
the index of the parent grid of domain i. Indices start at 1, an index of 0 indicates
no parent.

For older grid files that are still in circulation, the refinement information may be provided
in a separate file (suffix -grfinfo.nc), which happens to be the case especially for legacy
data sets. This optional grid connectivity file acts as a fallback at model startup if the
expected information is not found in the main grid file.

Finally, note that the data points on the triangular grid are the cell circumcenters. There-
fore the global grid data points are located closely to nest data points, but they do not
coincide exactly.

2.1.3. Mapping of Geodesic Coordinates to the Sphere

Usually, geographic coordinate data is given with respect to an ellipsoidal reference system.
The WGS84 ellipsoid, for example, is given by the following semi-major and minor axes:

a := 6.378137 · 106 m , b := 6.356752314245 · 106 m

Input data usually refers to the geographic (geodetic) latitude of this ellipsoid, which is
the angle that a line perpendicular to the surface of the ellipsoid at the given point makes
with the plane of the Equator, see the blue line in Fig. 2.3. It must not be confused with
the geocentric latitude (red in Fig. 2.3), which is the angle made by a line to the center
of the ellipsoid with the equatorial plane, see Snyder (1987). A post-processing tool that
misinterprets geocentric and geographic latitudes will notice a shift of up to 22 km.

The ICON model, however, uses a spherical approximation with an earth radius of

re = 6.371229 · 106 m.

Generally speaking, a mapping rule needs to be defined between the ellipsoid and the
sphere. For the ICON model this mapping is prescribed by the ExtPar tool which pre-
processes numerous invariant parameter fields, e. g. the topography, the land-sea mask,
the soil type and atmospheric aerosols. The ExtPar data set will be in detail described in
Section 2.4.

Here, the important fact is that the ExtPar tool re-interprets coordinates with a trivial
mapping rule, i. e. WGS84 latitudes are directly applied without transformation to the
sphere.

24

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

equator

pole

φφg

Figure 2.3.: Illustration of an ellipsoid with geodetic (geographic) latitude ϕ and geocen-
tric latitude ϕg. The dashed line shows a spherical surface for comparison.

This definition must be kept consistent for all pre-processing parts of the model (grids,
namelists, etc.): For example, when the user specifies meteogram locations, he usually
applies a mapping from ellipsoidal to spherical coordinates, often without realizing this
transformation. For ICON, however, the user must provide WGS84 coordinates to comply
with the calculation rule of the ExtPar tool. The same argument holds for point source
locations, geometric tracks, the center and corner locations of a grid, etc.

2.1.4. Download of Predefined Grids

For fixed domain sizes and resolutions a list of grid files has been pre-built for the ICON
model together with the corresponding reduced radiation grids and the external parame-
ters.

The contents of the primary storage directory are regularly mirrored to a public web site
for download, see Figure 2.4 for a screenshot of the ICON grid file server. The download
server can be accessed via

http://icon-downloads.mpimet.mpg.de

The pre-defined grids are identified by a centre number, a subcentre number and a num-
berOfGridUsed, the latter being simply an integer number, increased by one with every
new grid that is registered in the download list. Also contained in the download list is
a tree-like illustration which provides information on parent-child relationships between
global and local grids, and global and radiation grids, respectively.

Also available on the grid file server are ICON grids provided by the Max-Planck-Institute
for Meteorology (MPI-M). Note, however, that MPI grids generally have no matching
reduced radiation grid, and are rotated 37◦ around the z-axis, while DWD grids are rotated

25

http://icon-downloads.mpimet.mpg.de

2.Input
D

ata

ICON Model Tutorial

Figure 2.4.: Screenshots of the ICON download server hosted by the Max Planck Insti-
tute for Meteorology in Hamburg.

36◦. Finally, note that the grid information of some of the older DWD grids (no. 23 – 40)
is split over two files: The user needs to download the main grid file itself and a grid
connectivity file (suffix -grfinfo.nc).

2.1.5. Grid Generator: Invocation from the Command Line

There are (at least) three grid generation tools available for the ICON model: One grid gen-
eration tool has been developed at the Max Planck Institute for Meteorology by L. Linar-
dakis1. Second, in former releases, the ICON model itself was shipped together with a
standalone tool grid_command. This program has finally been replaced by another grid
generator which is contained in the DWD ICON Tools.

In this section we will discuss the grid generator icongridgen that is contained in the
DWD ICON Tools, because this utility also acts as the backend for the publicly available
web tool. The latter is shortly described in Section 2.1.6. It is important to note, however,
that this grid generator is not capable of generating non-spherical geometries like torus
grids, see Section 2.1.9.

Minimum version required: Grid files that have been generated by the
icongridgen tool contain only child-to-parent relations while the parent-to-
child relations are computed in the model setup. Therefore these grids only
work with ICON versions newer than ∼ September 2016.

Grid Generator Namelist Settings

The DWD ICON Tools utility icongridgen is mainly controlled using a Fortran namelist.
1see the repository https://gitlab.dkrz.de/mpim-sw/grid-generator.

26

https://gitlab.dkrz.de/mpim-sw/grid-generator

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

The command-line option that is used to provide the name of this file and other available
settings are summarized via typing

icongridgen --help

The Fortran namelist gridgen_nml contains the filename of the parent grid which is to be
refined and the grid specification is set for each child domain independently. For example
(COSMO-EU nest) the settings are

dom(1)%region_type = 3
dom(1)%lrotate = .true.
dom(1)%hwidth_lon = 20.75
dom(1)%hwidth_lat = 20.50
dom(1)%center_lon = 2.75
dom(1)%center_lat = 0.50
dom(1)%pole_lon = -170.00
dom(1)%pole_lat = 40.00

For a complete list of available namelist parameters we refer to the documentation (Prill,
2020).

The icongridgen grid generator checks for overlap with concurrent refinement regions, i.e.
no cells are refined which are neighbors or neighbors-of-neighbors (more precisely: vertex-
neighbor cells) of parent cells of another grid nest on the same refinement level. Grid cells
which violate this distance rule are “cut out” from the refinement region. Thus, there is
at least one triangle between concurrent regions.

Minimum distance between child nest boundary and parent boundary: A
second, less well-known constraint sometimes leads to unexpected (or even
empty) result grids: In the case that the parent grid itself is a bounded re-
gional grid, no cells can be refined that are part of the indexing region (of
width bdy_indexing_depth) in the vicinity of the parent grid’s boundary.

Settings for ICON-LAM

When the grid generator icongridgen is targeted at a limited area setup (for ICON-LAM),
two important namelist settings must be considered:

• Identifying the grid boundary zone. In Section 2.3 we will describe how to drive
the ICON limited area model. Creating the appropriate boundary data makes the
identification of a sufficiently large boundary zone necessary.

This indexing is enabled through the following namelist setting in gridgen_nml:
bdy_indexing_depth = 14.

This means that 14 cell rows starting from the nest boundary are indexed and can be
identified in the ICON-LAM setup, which is described in Section 2.3. See Fig. 2.12
for an illustration of such a boundary zone.

27

2.Input
D

ata

ICON Model Tutorial

Figure 2.5.: Web browser screenshot of the web-based ICON grid generator tool.

• Generation of a coarse-resolution radiation grid (see Section 3.10 for details).

The creation of a separate (local) parent grid with suffix *.parent.nc is enabled
through the following namelist setting in gridgen_nml:

dom(:)%lwrite_parent = .TRUE.

Note that a grid whose child-to-parent indices are occupied by such a coarse grid
can no longer be used in a nested configuration together with a global grid.

2.1.6. Grid Generator: Invocation via the Web Interface

A web service has been made available to help users with the generation of custom grid
files. After entering grid coordinates through an online form, this web service creates a
corresponding ICON grid file together with the necessary external parameter file (NetCDF
4 format).

You will need to log in via the user icon-web. For the necessary login password – or if
you have trouble accessing the web service – please contact icon@dwd.de. Then, visit the
web page of the grid generator

https://webservice.dwd.de/cgi-bin/spp1167/webservice.cgi

28

mailto:icon@dwd.de
https://webservice.dwd.de/cgi-bin/spp1167/webservice.cgi

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

The web form is mostly self-explanatory. The settings reflect the namelist parameters of
the icongridgen grid generator tool that runs as the first stage of the web service. The
second stage, the ExtPar tool, does require (almost) no further settings.

The tool is capable of generating multiple grid files at once. Please note that the web-
based grid generation submits a batch job to DWD’s HPC system and takes
some time for processing! Due to limited computing resources a threshold is imposed:
the maximum grid size which can be generated is 3 000 000 cells. Of course, larger grid
sizes are possible when invoking the grid generator from the command line.

Finally all results (and log files) are packed together into a ∗.zip archive and the user is
informed via e-mail about its FTP download site. Additionally, a web browser visualization
of the grids based on OpenStreetMap is provided, see Fig. 2.5.

Step 1: Choosing the Base Grid

The web-based generation of ICON grids and their corresponding external parameter
(ExtPar) data sets starts from an “input file”, which can be chosen from a pull-down
menu with a pre-defined list of grids. These grids are identical to those of the download
list described in Section 2.1.4.

Alternatively, it is also possible to start from a “synthetic” base grid RnBk by specifying
n and k, following the algorithm by Sadourny et al. (1968), see page 19. Synthetic grids
are always global domains. Optionally, the location of the grid’s pentagon points may be
adjusted by a rotation of the base icosahedron, see also Section 2.1.

Note that when starting from an already existing file, the base grid will not be modified by
the grid generator, and it will not be stored together with the generator output. The user
merely chooses a sub-region on the globe where the base grid is extracted. If, additionally,
the subgrid is refined, it will have half of the grid size of the base grid.

“ASTER” orography. In ExtPar the ICON orography will be generated from the
“GLOBE” or the “ASTER” raw data set. The selected data set depends on the horizontal
resolution of the target grid. For grid spacings below 3 km the high-resolution, non-global
orography “ASTER” will be used, while for spacings greater than 3 km the the coarser and
global data set “GLOBE” is selected. The MERIT orography cannot (yet) be requested
via the webinterface.

Please kindly note that “ASTER” orography data are only available in the latitude range
60◦S – 60◦N . Requests with spacings below 3 km and with parts or all of the domain
located outside this range will fail. To avoid such problems please switch off high-resolution
“ASTER” orography for poleward regions by enabling the corresponding checkbox.

Step 2: Specify Global Options

A number of options will be applied to all produced data sets (“global options”):

29

2.Input
D

ata

ICON Model Tutorial

• “centre”, “subcentre”
These numbers are stored in the output meta-data section for the identification of
the originating / generating (sub)-center. The values are defined by the WMO, e.g.
DWD: 78/0 (see WMO’s Common Code Table C-11 for additional values).

• “spring dynamics optimization”
The ICON grids are based on the spherical icosahedron, but they are post-processed
by an iterative algorithm inspired by elastostatics, see the explanation on “spring
dynamics optimization” in Section 2.1.

– “max. number of iterations”
maximum number of pseudo-time stepping steps of the elastostatics model.

– “beta factor”
stiffness coefficient of the elastostatics model.

– “fixed lateral boundary”
If this checkbox is set, then the boundary vertices of regional grids are not
moved during the optimization. Thus they will still coincide with vertices of
the base grid.

Recommendation: For nested domains, do not alter the default settings unless you
know the details of the underlying algorithm. The “optimized” grid points of the
refined computational grids can deviate substantially from those of the coarser parent
grid. Of course, if one considers only a single regional grid, i.e. no nesting hierarchy,
then the settings for “spring dynamics” are less critical. We advise a visual inspection
of the resulting grids.

• “initial refinement”
Sometimes the grid region “Domain 1” (or the first level of a grid hierarchy) shall
not be refined, because only a cut-out subset of the base grid is needed. Disable this
checkbox in order to simply extract the first domain from the base grid rather than
refining.

• “include base grid”
This setting is disabled by default but it becomes useful when a global base grid has
been created from scratch: In this situation the base grid domain # 0 may not only
serve the purpose of being the starting point for the subsequent refinement hierarchy,
but it can be used in the ICON simulation itself. Selecting “include base grid” will
run the ExtPar process and include this dataset into the resulting zip file.

Step 3: Sub-domain Name and Parent Grid ID

By default, the web form contains only the input fields to specify a single grid. However,
more domain specifications can be added to the generator by a click on the “Add another
domain” button (or removed by clicking “Remove latest domain”).

Numbering: In the web form the base grid is denoted by “#0” while the created domains
are denoted by numbers “#1”, “#2” and so on.

30

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjo1qThudngAhWSxYUKHTjuDdgQFjAAegQIABAC&url=https%3A%2F%2Fwww.wmo.int%2Fpages%2Fprog%2Fwww%2FWMOCodes%2FWMO306_vI2%2FLatestVERSION%2FWMO306_vI2_CommonTable_en.pdf&usg=AOvVaw1IBcGFu0FYj2KYBdS5UvjM

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

In the simplest case the domains specify multiple nests
on the same refined level. In this case, the “parent
grid ID” is always set to “0” (base grid).
Besides, domains can be nested, for example

Germany → Europe → Global.

Then, the grid for Germany has “parent grid ID=1”,
and the Europe grid has “parent grid ID=0”.
The chosen hierarchy of grids is graphically depicted
in the top right corner of the web form.

• “domain name”
Each domain requires a name (string) which will be used as a name prefix for the
resulting files. Here, it is a good idea to choose (or later rename) file names match-
ing ICON’s popular nomenclature iconR<nroot>B<jlev>_DOM<idom>.nc, see Sec-
tion 5.1.2.

• “number of grid used”
This setting will be written into the grid meta-data. It is part of a GRIB2 mech-
anism to link data files to their underlying grid files – see also the explanation in
Section 2.1.4. For regional domains which are not used operationally, we suggest to
choose arbitrary but distinguishable integer numbers.

• “write parent grid”
Enable this checkbox when your grid file is to be used with ICON-LAM and a reduced
radiation grid. Note that in this case the grid cannot be used as a nest in standard
(non-LAM) mode – see the corresponding remark in Section 2.1.5. Also note that
writing a parent grid requires at least one refinement step, i.e. this option cannot be
combined with deactivating “initial refinement”.

The effect of the switches “include base grid” and “write parent grid” is different when
creating ICON-LAM domains: For example, assume that a regional computational grid
(domain 1) for ICON-LAM is to be created from the refinement of a global grid. In this
case, the “base grid” refers to the global grid, while the “parent grid” denotes a regional
grid that includes only the “parent cells” of domain 1.

Step 4: Specify the Grid Type/Shape

• “rectangular”

This specifies a sub-region to be refined by a cen-
ter latitude/longitude (in degrees) and a size of 2 ×
“half height” for the latitude and 2 × “half width” in
terms of the longitude, see, for example, the figure on
the right.

– “rotate” / “north-pole”
By default, the latitude-longitude coordinates for the rectangular refinement
area are based on the standard North Pole 90N 0E. You may use, however, a

31

2.Input
D

ata

ICON Model Tutorial

rotated pole similar to the grids of the COSMO model. This pole rotation value
should not be confused with the rotation of the base icosahedron which specifies
the location of the grid’s pentagon points.

• “circular”
This defines a circular-shaped refinement region with a given center and radius (in
degrees).

• “refine all cells of parent domain”
In this case, all cells of the base grid are refined, resulting in a grid with (4N)
triangles if the base grid consists of N triangles. No further settings are required to
specify this grid.

Finally, having filled out all necessary fields of the web form, click on the “Proceed” button
– but do not forget to provide your e-mail address! The grid generation job is inserted into
DWD’s processing queue and you will be informed via e-mail about its completion.

2.1.7. Offline ExtPar Subgrid Extraction

There is a global setting generate script for ExtPar subset extraction available in the web
form which leads to a fundamentally different grid generation mode: If you prefer to use
your own installation of the DWD ICON Tools grid generator, then you can select this
option to prepare the grid generation in an “offline mode”.

The option requires a local installation of the ICON Tools version > 2.4.0, which (besides
other changes) contain a utility script

icontools/extpar_subset_extraction.py

This Python script loads a “config” script (similar to a Fortran namelist) where the user
specifies the desired grid parameters:

config = {
"centre" : 1,
"subcentre" : 2,
"initial_refinement" : ".FALSE.",
"filename" : ["icon_grid_0026_R03B07_G.nc"],
"dom(1)%outfile" : ["mydomain"],
"dom(1)%number_of_grid_used" : 99,
...

Here is where the web grid generator comes in handy: The configuration is automatically
created by the web form option generate script for ExtPar subset extraction.

After the Python configuration config ... has been generated, the user can execute the
extpar_subset_extraction.py locally on his own machine:

./extpar_subset_extraction.py --config=config.py

32

2.
In

pu
t

D
at

a

2.1 Horizontal Grids

The necessary base grid and ExtPar data are then automatically determined and down-
loaded from ICON’s public web site. The required grid region is cut out from this data set
and no separate run of the ExtPar tool is necessary. If there exists a parent grid (reduced
radiation grid), then the corresponding part is extracted, too. The whole operation greatly
reduces the computational effort to generate the grid data for a custom ICON run.

As a final remark, the extraction script accepts two optional command-line arguments
(which are listed with extpar_subset_extraction.py –help):

• The option –icontoolsdir allows to specify a directory where the ICON Tools grid
generator binary is located.

• The option –localcopy greatly accelerates the script execution for large data sets
by loading the base grid data from a local directory.

Also note that the extpar_subset_extraction.py is not fully “offline”, since
it requires access to the XML metadata and the base grids available under

http://icon-downloads.mpimet.mpg.de.

2.1.8. Which Grid File is Related to My Simulation Data?

ICON data files do not (completely) contain the description of the underlying grid. This
is an important consequence of the fact that ICON uses unstructured, pre-generated com-
putational meshes which are the result of a relatively complex grid generation process.
Therefore, given a particular data file, one question naturally arises: Which grid file is
related to my simulation data?

The answer to this question can be obtained with the help of two meta-data items which
are part of every ICON data and grid file (either a NetCDF global file attribute or a
GRIB2 meta-data key):

• numberOfGridUsed
This is simply an integer number, as explained in the previous sections. The
numberOfGridUsed helps to identify the grid file in the public download list. If the
numberOfGridUsed differs between two given data files, then these are not based on
the same grid file.

• uuidOfHGrid
This acronym stands for universally unique identifier and corresponds to a binary
data tag with a length of 128 bits. The UUID can be viewed as a fingerprint of
the underlying grid. Even though this is usually displayed as a hexadecimal number
string, the UUID identifier is not human-readable. Nevertheless, two different UUIDs
can be tested for equality or inequality.

The meta-data values for numberOfGridUsed and uuidOfHGrid offer a way to track the
underlying grid file through all transformations in the scientific workflow, for example in

• external parameter files

• analysis data for forecast input

• data files containing the diagnostic output

• checkpointing files (restarting).

33

http://icon-downloads.mpimet.mpg.de

2.Input
D

ata

ICON Model Tutorial

x = 0

y = 0

edge length

√
3

2
e
d
g
e
l
e
n
g
t
h

e3

e3

e4

e4

e5

e5

e6

e6

e1 e1

e2 e2

Figure 2.6.: Topological representation of the torus geometry and its triangulation.

2.1.9. Planar Torus Grids

As a special mode for numerical experiments, ICON allows for planar torus grids. Note
that the torus geometry and the corresponding global meta-data (NetCDF attributes) are
not generated by the ”standard grid generator” in Section 2.1.5, but require L. Linardakis’
grid generator tool2.

The torus grid has double periodic boundaries. It consists of equal-sided triangles, with
edge length edge_length, which is a namelist parameter of the grid generator, and height√

3
2 edge_length, see Fig. 2.6.

The lon-lat parameterization of the torus is

(lon, lat) = [0, 2π] × [−max_lat, max_lat]

where max_lat := π
18 ≡ 10 degrees (hard-coded in the torus grid generator).

Variables related to the lon-lat parameterization are stored as the data type
t_geographical_coordinates in the ICON code.

The Cartesian coordinates of the torus grid are: v = (x, y, 0) where

(x, y) ∈ [0, domain_length] × [0, domain_height]

The lengths domain_length, domain_height are stored as global attributes in the
grid file. Variables related to the Cartesian mesh are stored as the data type
t_cartesian_coordinates in the ICON code.

2.2. Initial Conditions

Global numerical weather prediction (NWP) is an initial value problem. The ability to
make a skillful forecast heavily depends on the accuracy with which the present atmo-
spheric (and surface/soil) state is known. In addition to that, running forecasts with a
limited area model requires accurate boundary conditions sampled at regular time inter-
vals.

2see the repository https://gitlab.dkrz.de/mpim-sw/grid-generator.

34

https://gitlab.dkrz.de/mpim-sw/grid-generator

2.
In

pu
t

D
at

a

2.2 Initial Conditions

Initial conditions are usually generated by a process called data assimilation. Data assimi-
lation combines irregularly distributed (in space and time) observations with a short term
forecast of a general circulation model (e.g. ICON) to provide a ”best estimate” of the
current atmospheric state. Such analysis products are provided by several global NWP
centers.

In the following we will present various data sets that can be used to drive the ICON
model and explain how these data can be retrieved. In addition we will explain how these
data can be remapped to the targeted ICON grid, if necessary. Remapping is one of the
basic pre-processing steps which are visualized in Figure 2.7.

In general, each computational domain, i.e. also a nested domain, requires a separate initial
data file. A “workaround” to start a nested simulation without the need to provide initial
data for the nest is discussed in Section 5.2.

initial data (forecast/analysis)

Driving Model / Data Assimilation

grid file

external
parameters

Grid Generator

iconsub remap

ExtPar

boundary
grid

ICON

IniData Preprocessing

remap
in
it
ia
l

d
at
a

Figure 2.7.: Basic pre-processing steps for ICON (without limited area mode) which in-
clude the generation of grids and external parameters as well as the remap-
ping of initial conditions. The grid generation process and the external pa-
rameters are described in the Sections 2.1 and 2.4. The initial data processing
is covered by Section 2.2.3.

2.2.1. Obtaining DWD Initial Data

The most straightforward way to initialize ICON is to make use of DWD’s analysis prod-
ucts, which are generated operationally every 3 hours and stored in GRIB2 format on

35

2.Input
D

ata

ICON Model Tutorial

the native ICON grid. Deterministic as well as ensemble analysis products are available.
Deterministic products are generated by a hybrid Ensemble Variational Data assimilation
(En-Var), which combines variational and ensemble methods. Ensemble products are based
on a Localized Ensemble Transform Kalman Filter (LETKF) approach. See Chapter 11
for more information on DWD’s data assimilation system.

Choosing the Right Product

DWD provides a set of different analysis products. They all constitute a ”best estimate”
of the atmospheric state, but differ in some physical and technical aspects. Choosing the
right product is crucial and depends on the targeted application.

Some of the analysis products consist of two files: a first guess file and an analysis file. The
term first guess denotes a short-range forecast of the NWP model at hand, whereas the
term analysis denotes all fields which have been updated by the assimilation system.

Several combinations of these files exist, with specific pros and cons:

Uninitialized analysis for IAU
This product consist of a first guess file and an analysis file. The latter contains
analysis increments, which is the difference between the analysis and the first guess.
The validity dates of both files differ. The validity date of the first guess is shifted
ahead of the analysis date by 90 min (5 min for ICON-D2). This product is meant
for starting the model in Incremental Analysis Update (IAU) mode. IAU is a model
internal filtering technique for reducing spurious noise introduced by the analysis
(see Section 11.3.1).

While this initialization method performs best in terms of noise reduction, it bears
the disadvantage that the corresponding analysis product cannot be interpolated
horizontally in a straightforward manner. This prevents its use on custom target
grids. The underlying reason is that the analysis product contains tiled surface data.
Remapping of tiled data sets makes no sense, since the tile-characteristics can differ
significantly between individual source and target grid cells. Only aggregated surface
fields can safely be remapped (see Section 3.8.11 for more details on the surface tile
approach).

A list of included fields can be found in Section 11.3.1.

Plain uninitialized analysis
This product consists of a first guess file and an analysis file, with the latter contain-
ing full analysis fields instead of increments. The validity date of both files matches
the analysis date.

When using this product, the model state is abruptly pulled towards the analyzed
state right before the first time integration step. Thus, no noise filtering procedure is
included. This conceptually easy approach comes at the price of a massively increased
noise level at model start. Due to the lack of tiled surface data, this product can be
interpolated horizontally to arbitrary custom target grids without any hassle.

A list of included fields can be found in Section 11.3.2.

36

2.
In

pu
t

D
at

a

2.2 Initial Conditions

Figure 2.8.: Area averaged absolute surface pressure tendency in hPa as a function of
simulation time for a deterministic global model run. Curves differ in terms
of the way the model is initialized, with the uninitialized analysis for IAU
in blue, the uninitialized analysis in red and the initialized analysis in green.

Initialized analysis
This product consists of a single file only, containing the analyzed state. First guess
and analysis fields have already been merged and filtered by means of an asymmet-
ric IAU. The noise level induced by this product is very moderate. In addition, this
product can safely be interpolated to arbitrary custom target grids.

A list of included fields can be found in Section 11.3.3.

The level of spurious noise that emerges from each of these analysis products is compared
in Figure 2.8. It shows the area averaged absolute surface pressure tendency as a func-
tion of simulation time, which is a measure of spurious gravity-noise induced by spurious
imbalances in the initial conditions. It is defined as〈∣∣∣∣dpsdt

∣∣∣∣〉 = 1
A

∑
i

∣∣∣∣dpsdt

∣∣∣∣∆ai
= 1
A

∑
i

(∑
k

|−g∇h · (ρv̂h) ∆zk|
)

∆ai ,

with A denoting the earth’s surface and ∆ai denoting the area of the ith cell. The math-
ematical steps to obtain the pressure tendency equation are discussed at the end of Sec-
tion 3.3. It can be seen that for the uninitialized analysis (red line) the noise level at
simulation start is significantly increased when compared to the other two products. It
takes about two days of model forecast for the noise levels to align. The uninitialized anal-
ysis for IAU (blue) performs best in terms of noise-level, but keep in mind that some data

37

2.Input
D

ata

ICON Model Tutorial

Table 2.1.: Characteristics of DWD’s analysis products. The recommended product for
standalone model runs (without data assimilation) is highlighted in blue .

Uninitialized
analysis for IAU

Uninitialized
analysis

Initialized
analysis

of files 2 2 1
noise level low high moderate
analysis
increments

yes no no

surface tile
information

yes no no

interpolation
possible

no yes yes

available for
det/ens

yes/yes yes/yes yes/yes

fields cannot easily be interpolated in the horizontal, such that the application of this mode
is typically restricted to the horizontal grids used operationally at DWD (Det/Ens/D2:
13 km/26 km/2 km grid spacing)

The specific pros and cons of the different analysis products is summarized in Table 2.1.

Important note: For external users we strongly recommend to use the initial-
ized analysis for model initialization, since it constitutes a good compromise
between accuracy and practicability.

Downloading Initial Conditions

ICON initial conditions are stored in DWD’s meteorological data management sys-
tem SKY. Here, for better performance, meta and binary data are stored separately: The
meta data are stored in a relational database, sorted by data category and time. The bi-
nary data are stored temporarily on a hard drive and subsequently moved into the DWD’s
tape archive using the archiving components in SKY.

A prerequisite for data retrieval is a valid account for the database “roma”. The database
can be accessed in the following ways:

• If you have access to DWD’s Linux cluster rcnl*, please contact
klima.vertrieb@dwd.de, in order to gain additional access to the database. Data
retrieval will then be possible by using either SKY’s query language directly, or by
using the PAMORE command-line tool (the latter will be explained below).

• An alternative way to access the database is to use the web-based PAMORE
service, see the web page (German description only)

38

mailto:klima.vertrieb@dwd.de

2.
In

pu
t

D
at

a

2.2 Initial Conditions

https://www.dwd.de/DE/leistungen/pamore/pamore.html

This website is meant for external users who do not have direct access to DWD’s
computer systems and requires a user account. To this end please fill out the
registration form

Registration form for PAMORE web service
- https://www.dwd.de/DE/leistungen/pamore/pamore_registrierung.html

DWD’s operational analysis and forecast products for the ICON model are
being stored in the SKY database since 2015-01-20. However, the set of data
fields stored is subject to continuous changes and improvements. I. e. the in-
clusion of additional fields has become necessary with the activation of more
advanced physical parameterizations. Similarly, horizontal and vertical reso-
lution have been increased, as more powerful HPC systems became available.
In November 2022 the number of vertical levels of the global deterministic
and ensemble system has changed from 90 to 120 levels. At the same time the
horizontal resolution of the ensemble system has been enhanced from 40 km
to 26 km.

Further note that the set of data fields of the early months is likely to be
incomplete with regard to the initialization procedure that is explained in
this tutorial. For example, the surface tile approach (see Section 3.8.11) has
been activated no earlier than December 2015.

Data retrieval with PAMORE via command-line. PAMORE (PArallel MOdel data
REtrieve from Oracle databases) is a high-level tool for the retrieval of (model) data
from DWD’s meteorological data management system SKY.

A full set of command-line options can be obtained via pamore -h. Alternatively, they are
accessible on the web via

https://webservice.dwd.de/pamore.html

In order to retrieve, for example, initial data on the native ICON grid from February 1,
2019 00 UTC, the following command lines can be used for the different analysis products:

Uninitialized analysis for IAU (deterministic)
Global domain with 13 km grid spacing

pamore -d 2019

yea
r

02

m
onth

01

day

00

hour

-lt m -iglo_startdata -iau

Global domain (13 km) and nested EU domain (6.5 km)

pamore -d 2019020100 -lt m -iglo_eu_startdata -iau

Note that the EU domain lacks a separate analysis for the atmosphere. If required,
it must be interpolated (horizontally) from the global domain.

39

https://www.dwd.de/DE/leistungen/pamore/pamore.html
https://www.dwd.de/DE/leistungen/pamore/pamore_registrierung.pdf;jsessionid=CCA6E20F5FE18276BFF207CB1567AF18.live21062?__blob=publicationFile&v=4
https://webservice.dwd.de/pamore.html

2.Input
D

ata

ICON Model Tutorial

Uninitialized analysis (deterministic)
Global domain with 13 km grid spacing

pamore -d date -lt m -iglo_startdata

Global domain (13 km) and nested EU domain (6.5 km)

pamore -d date -lt m -iglo_eu_startdata

Here, date must be replaced by the desired date in the format YYYYMMddhh (see
above).

Initialized analysis (deterministic)
Global domain with 13 km grid spacing

pamore -d date -hstart 0 -hstop 0 -lt a \
-model iglo -iglo_startdata_0

Nested EU domain (6.5 km):

pamore -d date -hstart 0 -hstop 0 -lt a \
-model ieu -iconlam_startdata_0

ICON-D2 limited area domain (2.1 km):

pamore -d date -model ilam -iles_startdata_0

Please note that for the nested domain the optional input field TKE is not available
and that Z0 and H_SNOW are only available since 2018-03-14.

Important note for ensemble products: With the additional options

• -ires r3b06 and

• -enum num, where num specifies an ensemble member (e.g. 3) or a range
of ensemble members (e.g. 3 − 8),

analysis products can also be picked from the global LETKF analysis ensemble
consisting of 40 members with 26/13 km horizontal grid spacing. This does,
however, not hold for initialized analysis products.

Initialized analysis products for ICON ensemble members are not
archived and, hence, are not available from DWD’s database.

Data retrieval with PAMORE via the web form. The PAMORE web service allows the
user-defined selection of model fields by navigating through a sequence of HTML forms.
Alternatively, the web site offers a plain command-line interface.

For the specific task of retrieving ICON initial data, we strongly suggest to take the latter
path. By making direct use of the above PAMORE command-lines and pasting them into
the HTML form (see Figure 2.9), you can minimize the risk of missing some fields.

40

2.
In

pu
t

D
at

a

2.2 Initial Conditions

Figure 2.9.: Screenshot of the PAMORE web service. It shows the HTML form where
you can place your PAMORE command line request directly.

After submitting your database request, the data will be extracted from the database and
stored on an FTP server for download. Once your request has been processed, you will
receive an e-mail with information about the FTP server address and the path to your
data.

2.2.2. Obtaining ECMWF IFS Initial Data

Model runs may also be initialized by “external” analysis files produced by the Integrated
Forecasting System (IFS) that has been developed and is maintained by the European
Centre for Medium-Range Weather Forecasts (ECMWF).

The ICON code contains a script for the automatic request for IFS data from the MARS
data base on non-rotated regular lat-lon grids. The Meteorological Archival and Retrieval
System (MARS)

https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation

is the main repository of meteorological data at ECMWF. A full list of recommended IFS
analysis fields is provided in Table 2.2.

The script for importing from MARS must be executed on the ECMWF computer system.
It is located in the subdirectory

icon/scripts/preprocessing/mars4icon_smi

In order to retrieve, for example, T1279 grid data with 137 levels for the July 1, 2013, the
following command line is used:

./mars4icon_smi -r 1279 -l 1/to/137 -d 2013070100 -O -L 1 -o 20130701.grb -p 5

41

https://software.ecmwf.int/wiki/display/UDOC/MARS+user+documentation

2.Input
D

ata

ICON Model Tutorial

Further options are shown by typing ./mars4icon_smi -h

Note that prior to 2013-06-25 12 UTC, only 91 instead of 137 vertical levels were used
by the operational system at ECMWF. For more information, regarding changes in the
ECMWF model, see

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model

Table 2.2.: Recommended IFS analysis fields on a regular lat-lon grid, as retrieved by
the script mars4icon_smi. Optional fields are marked in blue. The second
column indicates ICON’s query name during read in. This is the name which
the field must be given to when it is remapped onto the native ICON grid
(see also Section 2.2.3).

shortName shortName Unit Description
ECMWF ICON
U, V U, V m s−1 horizontal velocity components
OMEGA W Pa s−1 vertical velocity
T T K Temperature
FI GEOP_ML m2 s−2 model level geopotential (only the

surface level is required)
QV QV kg kg−1 specific humidity
CLWC QC kg kg−1 cloud liquid water content
CIWC QI kg kg−1 cloud ice content
CRWC QR kg kg−1 rain water content
CSWC QS kg kg−1 snow water content

SST SST K sea surface temperature
CI CI [0,1] sea-ice cover
LNSP LNPS - logarithm of surface pressure
Z GEOP_SFC m2 s−2 surface geopotential
TSN T_SNOW K snow temperature
SD W_SNOW m of water eqv. water content of snow
RSN RHO_SNOW kg m−3 density of snow
ASN ALB_SNOW [0,1] snow albedo
SKT SKT K skin temperature
STL[1/2/3/4] STL[1/2/3/4] K soil temperature level 1/2/3/4
SWVL[1/2/3/4] SMI[1/2/3/4] m3 m−3 soil moisture index (SMI) layer

1/2/3/4
SRC W_I m of water eqv. water content of interception stor-

age
LSM LSM [0,1] land/sea mask

The iconremap tool contains an example script xce_ifs2icon.run for the interpolation
of IFS data onto the ICON grid.

When initializing from “external” analysis files, ICON requires the soil moisture index SMI
and not the volumetric soil moisture content SWV as input. The conversion from SWV to SMI

42

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model

2.
In

pu
t

D
at

a

2.2 Initial Conditions

is performed as part of the MARS request (mars4icon_smi). However, this conversion is
not reflected in the variable short names. The fields containing SMI are still named SWVLx,
with x denoting the surface layer index. The ICON model, however, expects them to be
named SMIx. Therefore, the proper output name SMIx must be specified explicitly in the
namelist input_field_nml of iconremap (see the example namelist on p. 45).

Other field names must be adjusted as well during the remapping process described in
Section 2.2.3. In order to read the data with ICON, it is necessary to rename the fields to
the ICON-internal short names, according to the second column of Table 2.2.

If IFS data are retrieved on rotated lat-lon grids, care must be taken regarding the defi-
nition of the basis vectors of vector quantities (i.e. horizontal wind components). Usually,
basis vectors of vector quantities are rotated in accordance with the rotated coordinate
axes. This, however, would be inconsistent with the implicit assumption made by the
iconremap tool, where the local basis vectors always point into zonal and meridional di-
rections. Therefore, before the remapping tool can be applied, it is necessary to rotate any
vector quantities into the zonal/meridional geographical reference system. Please see also
the discussion on ICON’s native interpolation onto lat-lon grids in Section 7.1.3.

Note on IFS vertical coordinate: During the initialization phase of ICON,
the 3D height coordinate field for IFS input data is derived from three fields:
the surface geopotential, the surface pressure and the virtual temperature on
model levels. As some IFS fields use orography in transformed space and some
do not, it is important to choose consistent fields. The MARS script provided
with the ICON code usually retrieves the lowermost level of the 3D geopoten-
tial GEOP_ML (FI in IFS naming), and the logarithm of the surface pressure
LNPS (LNSP in IFS naming). Alternatively, GEOP_SFC (Z in IFS naming) might
also be used to create the 3D vertical height field, but this requires the usage
of PS instead of LNPS, in order to be consistent.

When using IFS data for surface initialization, GEOP_SFC must be available
for topography-dependent corrections of the soil temperatures. As a fallback,
GEOP_ML can be used instead of GEOP_SFC.

ICON does not perform any cross checks for this. The best way is to provide
GEOP_ML and GEOP_SFC together with LNPS to ICON.

2.2.3. Remapping Initial Data to Your Target Grid

Often it is desirable to run ICON at horizontal resolutions which differ from those of
the available initial data. Common examples are high-resolution limited area runs, which
start from operational ICON analysis, or the initialization from IFS analysis, which is
provided on a lat-lon grid (see Section 2.2.2). In these cases horizontal remapping of the
initial data is necessary. Note that there is no need for vertical interpolation as a separate
pre-processing step. The ICON model itself will take care of the interpolation onto the
model levels, assumed that the user has provided the height level field HHL and set the
appropriate namelist options (see the namelist parameter init_mode).

43

2.Input
D

ata

ICON Model Tutorial

We shortly describe the basic steps of remapping: After the successful download, the
analysis data must be interpolated from a regular or triangular grid onto the ICON target
grid. To this end, the iconremap utility from the DWD ICON Tools will be used in batch
mode.

A typical namelist for processing initial data has the following structure:

&remap_nml
in_grid_filename = INPUT_GRID_FILENAME
in_filename = INPUT_FILENAME_GRB
in_type = 1 ! 1: regular grid, 2: ICON grid
out_grid_filename = ICON_GRIDFILE
out_filename = OUTPUT_FILENAME_NC
out_type = 2 ! ICON grid
out_filetype = 4 ! NetCDF format

/

! DEFINITIONS FOR INPUT DATA
!
&input_field_nml ! temperature
inputname = "T"
outputname = "T"

/
&input_field_nml ! horiz. wind comp. U
inputname = "U"
outputname = "U"

/
&input_field_nml ! horiz. wind comp. V
inputname = "V"
outputname = "V"

/
...

For each of the variables to be remapped, the script must contain a namelist
input_field_nml which specifies details of the interpolation methods and the output
name. In this example, the 3D temperature field T and the horizontal wind components U,
V are remapped from a regular grid onto a triangular ICON grid3. Variables are usually
accessed through their name (character string), but note that for GRIB1 input data the
correct field parameter must be provided with the namelist parameter code.

Multiple time steps in data file: The remap tool can process files only if they
contain a single time step. Furthermore, the tool requires that GRIB records
corresponding to a particular variable are stored in contiguous sections. Third,
the remapping process fails, if GRIB records are not ordered with respect to
levels.

3Note that in this example, the GRIB2 input data file also contains the specification of the input grid.
Therefore the two namelist parameters INPUT_GRID_FILENAME and INPUT_FILENAME_GRB are identical!

44

2.
In

pu
t

D
at

a

2.2 Initial Conditions

Submitting jobs to the DWD system: ICONREMAP binaries that are pre-
compiled for use on the rcl.dwd.de should be submitted without MPI. If the
subdomain is large, the request may have to be sent to rc_big with increased
memsz setting.

An alternative pre-compiled binary for remapping (but not subsetting) with
MPI is available here:

/hpc/rhome/for0adm/nwp/x86_vh/util/bin/iconremap

This binary should be submitted with mpiexec -vh -np 4, to the sx_norm
queue.

A detailed documentation of the ICON remap command-line options and namelist param-
eters can be found under dwd_icon_tools/doc/icontools_doc.pdf, i. e. Prill (2020). If
the DWD ICON tools fail and if the cause of the error does not become clear from the
error message, you may increase the output verbosity by setting the command-line options
-v, -vv, -vvv etc.

For both, DWD analysis data and ECMWF IFS data, the DWD ICON Tools contain exam-
ple scripts which generate the required namelists (i.e. remap_nml and input_field_nml).
These scripts are

DWD initial data:
dwd_icon_tools/example/runscripts/create_ic_dwd2icon

IFS initial data:
dwd_icon_tools/example/runscripts/create_ic_ifs2icon

The scripts contains a machine dependent batch system header and job launch command
which must be adapted to the respective target platform.

Some comments are in order for particular data fields:

Soil Moisture Fields SMI1, SMI2, SMI3, SMI4. In accordance with the remark in Sec-
tion 2.2.2, care must be taken to properly rename the fields SWVLx to SMIx in the case
that ”external“ IFS analysis files are remapped. An example namelist input_field_nml
is given below:

&input_field_nml ! soil moisture index layer 1
inputname = "SWVL1"
outputname = "SMIL1"

/

Wind fields. For the wind fields, the standard remapping would interpolate the samples
from each component U, V separately. This approach has been chosen in the example script

45

2.Input
D

ata

ICON Model Tutorial

above. However, the standard method completely decouples the components of the vector
fields. It does not take into account the fact that it is a vector-field tangent to the sphere.

Therefore the ICON Tools are also capable of interpolating the edge-normal wind compo-
nents vn. See the ICON Tools namelist documentation regarding the interpolation U, V
↔ vn. A special namelist parameter (RBF shape parameter, see Section 7.1.2) must be
set for this vector field interpolation with radial basis functions.

Soil water content W_SO. The soil water content W_SO is the prognostic soil moisture
variable of ICON. ICON is able to read in either W_SO or SMI, with the latter being
converted automatically to W_SO during the initialization phase.

If soil moisture fields need to be remapped, it is strongly recommended to remap SMI
instead of W_SO. Remapping of W_SO might lead to nonphysical soil water contents, which
is related to the fact that the soil types of the source and target grid points might well
differ.

If SMI is unavailable1 in the initial data, it can be diagnosed from W_SO prior to the remap-
ping step with the help of a small Fortran program named smi_w_so.f90. It ships with the
ICON code and can be found in the subdirectory icon/scripts/postprocessing/tools.
Note that smi_w_so.f90 requires the soil type field SOILTYP as additional input. It can
be extracted from the external parameter file matching the source grid (see Section 2.4)
and must then be concatenated with the file containing W_SO.

Masking of surface fields When remapping, it is possible to make use of the land sea
mask information of the source grid (var_in_mask="FR_LAND" in input_field_nml) in
order to mask out specific points. This can be particularly useful when remapping surface
fields. In the example below we mask out water points so that only land points contribute
to the interpolation stencil for soil moisture.

&input_field_nml ! soil moisture index layer 1
inputname = "SWVL1"
outputname = "SMIL1"
var_in_mask = "FR_LAND" ! field to be used for masking
in_mask_threshold = 0.5 ! threshold for masking values of input grid
in_mask_below = .TRUE. ! values <= mask_theshold are masked on input grid

/

This feature, however, should be used with caution, as it can lead to uninitialized points
(missing values) on the target grid. It might happen that isolated land points on the target
grid, e.g. small islands, do not have a counterpart on the source grid, which then leads to
a zero-sized interpolation stencil. In general, masking and the occurrence of missing values
in iconremap is based on four mechanisms:

1Starting from 2018-03-14 (2018-07-11), DWD’s operational forecast products contain the soil moisture
index SMI on the EU domain (global domain) (vv=0 output, initialized analysis).

46

2.
In

pu
t

D
at

a

2.3 Boundary Data Preparation for ICON-LAM

1. First, input data may contain missing values already from the beginning. These are
removed for (cell-based) data fields from the interpolation stencils, e. g., of the RBF
interpolation. Of course, an interpolation stencil can not only shrink by this process,
but even disappear, especially the trivial 1-point stencil of the nearest-neighbor in-
terpolation. As mentioned above, a missing value is also created at the target point
in this case.

2. Second, the user can specify masking of the input data, based on a separate data
field. There are several namelist parameters for this purpose:
The option var_in_mask (input_field_nml) specifies the name of a 2D variable
in the input file. This field is then evaluated cell by cell according to a threshold
criterion specified by the threshold in_mask_threshold (input_field_nml) and
the LOGICAL flag in_mask_below (input_field_nml).

3. Third, masking can also be specified for the output grid, for example to set missing
values on water points that did not exist in the source grid. For this purpose there
are the following namelist parameters:

• The out_mask_filename (remap_nml) namelist parameter allows to read a sep-
arate file containing the land-sea mask.

• Similar to var_in_mask, a 2D field var_out_mask (input_field_nml) is
evaluated cell-by-cell according to a threshold criterion specified by the
threshold out_mask_threshold (input_field_nml) and the LOGICAL flag
out_mask_below (input_field_nml).

4. A final, special type of masking occurs when the iconremap target area is not con-
tained in the (regionally bounded) source grid, but extends beyond its boundaries.
Here there is a switch linside_domain_test (remap_nml) test, which performs an
appropriate test.

2.3. Boundary Data Preparation for ICON-LAM

When running ICON in limited area mode (LAM), lateral boundary conditions must
be provided. In real case applications these are time dependent and must be updated
periodically by reading input files. To this end, forecast or analysis data sets from a
driving model may be used which, however, need to be interpolated horizontally to the
ICON grid first.

In this section we briefly describe the process of generating these lateral boundary condi-
tions (LBCs). Again, the basic pre-processing steps for ICON are visualized in Figure 2.10,
where the additional pre-processing of boundary data constitutes the main difference to
Figure 2.7.

Boundary Data Retrieval

The raw data files which are intended to be used as LBCs must contain one of the sets of
variables depicted in Figure 2.11, on either a triangular ICON grid, or a regular latitude-
longitude grid.

47

2.Input
D

ata

ICON Model Tutorial

forecast/analysis initial data

Driving Model / Data Assimilation

local grid
file

external
parameters

Grid Generator

iconsub remap

ExtPar

boundary
grid

ICON-LAM

LatBCData Preprocessing IniData Preprocessing

remap

in
it
ia
l

d
at
a

b
ou

n
d
ar
y

d
at
a

Figure 2.10.: Basic pre-processing steps for ICON-LAM (compare to Fig. 2.7). The grid
generation process and the external parameters are described in the Sec-
tions 2.1 and 2.4. The initial data processing is covered by Section 2.2.3.
Finally, the lateral boundary data (LatBCData) pre-processing, which ex-
tracts the boundary data, is described in Section 2.3. This pre-processing
step is necessary for the limited area mode ICON-LAM.

The fact that different sets of variables can be used provides some flexibility in terms of
the driving model. As indicated in Figure 2.11, sets I to III are typical for ICON, COSMO
and IFS, respectively.

Important note: The 3D field HHL (geometric height of model half levels above
mean sea level) is constant data. It needs only be contained in the raw data
file whose validity date matches the envisaged model start date. In case of set
III (IFS) the field HHL is computed by ICON during read-in.

In situations where the user forgets to provide the HHL field, the ICON model
aborts with a non-intuitive error. ICON complains that geopotential is miss-
ing, when in fact the HHL variable is missing. The details for this behavior
are explained in Section 6.4: ICON follows a “decision tree” to deduce the
contents of the input data. When HHL is missing in the data set, the model
initialization assumes a pressure based coordinate system.

Similar to the retrieval of initial conditions in Section 2.2.1, it also possible to download
lateral boundary data from the DWD database.

48

2.
In

pu
t

D
at

a

2.3 Boundary Data Preparation for ICON-LAM

Set I (e.g. ICON)
U, V
or
VN

, W, THETA_V, DEN, QV, QC, QI, QR, QS, HHL

Set II (e.g. COSMO)

U, V, W, T, P, QV, QC, QI, QR, QS, HHL

Set III (e.g. IFS)

U, V, OMEGA, T, LNSP, QV, QC, QI, QR, QS, FI

Figure 2.11.: Sets of variables that may serve as lateral boundary conditions for ICON-
LAM, with examples of driving models given in brackets. Optional fields
are marked in gray. Blending of the sets is not allowed. In case of IFS
please see Table 2.2 for the requested internal ICON names to which these
GRIB2 short names must be mapped. LNSP denotes the logarithm of the
surface pressure, and FI is the surface geopotential.

Lateral boundary conditions from deterministic ICON forecasts
The following PAMORE command retrieves lateral boundary conditions from
DWD’s forecast database category:

pamore -d date -hstart hh -hstop hh -hinc hh -model xx -ilam_boundary

Use -model iglo, for retrieving global 13 km forecast data, -model ieu for 6.5 km
forecast data on the ICON-EU domain, and -model ilam for 2.1 km forecast data
on the ICON-D2 domain4. The meaning of the remaining command line arguments
is as follows:

• -d date
specifies the start date in the format YYYYMMddhh

• -hstart hh -hstop hh
specifies the requested time range in hours

• -hinc hh
specifies the temporal resolution (increments) in hours

• -ilam_boundary
enables the variable set II (see Fig. 2.11) for lateral boundary conditions.

Example: The following example retrieves lateral boundary conditions from the
ICON-EU domain for a time range of 36 hours and a temporal resolution of 2 hours,
starting at 2020092212:

pamore -d 2020092212 -hstart 0 -hstop 36 -hinc 2 -model ieu -ilam_boundary
4If you run into problems, the command pamore -d date -model ilam -iles_boundary might serve as

a fallback option for ICON-D2 boundary data.

49

2.Input
D

ata

ICON Model Tutorial

Important note: Please note that ICON forecast data have an expiration date.
They are deleted from DWD’s data base after 18 months. If you are interested
in lateral boundary data which date back longer than 18 months, please use
the following PAMORE command:

Lateral boundary conditions from ICON’s assimilation cycle
The following PAMORE command retrieves lateral boundary conditions from
DWD’s assimilation database category:

pamore -d date -hstart hh -hstop hh -model xx -hindcast_ilam

Use -model iglo, for retrieving global 13 km forecast data, -model ieu for 6.5 km
forecast data on the ICON-EU domain, and -model ilam for 2.1 km forecast data on
the ICON-D2 domain. Similar to the previous PAMORE command, the parameter
-hindcast_ilam enables set II (see Fig. 2.11) for lateral boundary conditions. It
extracts the data from the assimilation database category, for which there exists no
expiration date. The command line argument -hinc is not applicable in this case.
The temporal resolution is pre-set to 1 hour.

Example: The following example retrieves lateral boundary conditions from the
global domain for a time range of 48 hours and a temporal resolution of 1 hour,
starting at 2017092200:

pamore -d 2017092200 -hstart 0 -hstop 48 -model iglo -hindcast_ilam

In particular the above example extracts the 1 h, 2 h, 3 h forecast data from consec-
utive first guess runs (which are launched every 3 hours in the global assimilation
cycle), starting at 2017092200. The final product consists of hourly lateral boundary
data spanning the time range [2017092200, 2017092400].

This PAMORE command is particularly useful, if the user wants to perform so called
hindcast experiments.

ICON-LAM Pre-Processing Script

Here we describe the individual steps of the interpolation onto the boundary zone of a
limited area grid. This sequence is carried out, for example, in the practical exercises of
the ICON Workshop. However, it can also be found summarized in an example script
of the DWD ICON tools, namely the run script create_lbc_dwd2icon in the directory
dwd_icon_tools/icontools, which processes a whole directory of raw data files (hereafter
referred to as the script variable “DATADIR”). The create_lbc_dwd2icon script can be
submitted to the PBS batch system of DWD’s NEC SX-Aurora. In order to run it on other
machines, the batch system header and mpirun command must be adapted accordingly.

The output files are written to the directory specified in the variable OUTDIR. The input
files are read from DATADIR, therefore this directory should not contain other files and
should not be identical to the output folder.

50

2.
In

pu
t

D
at

a

2.3 Boundary Data Preparation for ICON-LAM

The second necessary input besides the directory names DATADIR and OUTDIR are the grid
file names. For the mapping procedure that is described in the following two sections, these
are specified by

INGRID="input_grid_file" # file name of input grid
LOCALGRID="grid_file.nc" # file name of limited-area (output) grid

Step 1: Extract Boundary Region from the Local Grid File

In the first pre-processing step for ICON-LAM we create an auxiliary grid file which
contains only the cells of the boundary zone. This step needs to be performed only once
before generating the boundary data.

Important note: Note that this step is not allowed if vertical boundary nudg-
ing is used in addition to lateral boundary nudging. This corresponds to the
namelist parameter setting nudge_type=1 (namelist nudging_nml). In this
case, boundary data must be provided for the entire local (limited-area) grid,
rather than for a boundary strip only, see Section 6.2.

We use the iconsub program from the collection of ICON Tools, see Section 1.3, with the
following namelist:

&iconsub_nml
grid_filename = "${LOCALGRID}",
output_type = 4,
lwrite_grid = .TRUE.,

/
&subarea_nml

ORDER = "${OUTDIR}/grid_file_lbc.nc",
grf_info_file = "${LOCALGRID}",
min_refin_c_ctrl = 1
max_refin_c_ctrl = 14

/

Running the iconsub tool creates a grid file grid_file_lbc.nc for the boundary strip.
The cells in this boundary zone are identified by their index in a special meta-data field,
the refin_c_ctrl index, e. g. refin_c_ctrl = 1,...,14, see Figure 2.12.

The width of the extracted boundary strip in terms of cell rows is specified by the namelist
parameters min_refin_c_ctrl and max_refin_c_ctrl. The maximum allowed value for
max_refin_c_ctrl is given by max(refin_c_ctrl) == bdy_indexing_depth, i. e. the
boundary indexing depth that has been chosen when generating the limited area grid (see
Section 2.1.5). The width of the extracted boundary strip must be equal or larger than the
width of the lateral nudging zone in the limited-area run for which it is foreseen. A safe
setting would be max_refin_c_ctrl = max(refin_c_ctrl), as used in this example.

51

2.Input
D

ata

ICON Model Tutorial

Figure 2.12.: Illustration of the ICON-LAM boundary zone. The cells are identified by
their refin_c_ctrl index, e. g. refin_c_ctrl = 1,...,14.

Reference to the original grid: For a given boundary region file
grid_file_lbc.nc the question may arise, which original grid was used for
its creation. This is analogous to the explanation in Section 2.1.8: The bound-
ary region files contain a link to the original grid file in the form of a unique
fingerprint uuidOfOriginalHGrid.

Step 2: Creating Boundary Data

Any of the data sources explained in the Sections 2.2.1 and 2.2.2 can be chosen for the
extraction of boundary data. To be more precise, boundary data originating from ICON,
IFS, and COSMO have successfully been used. Data sets from other global or regional
models may work as well, but have not been tested yet.

We define the following namelist for the iconremap program from the collection of ICON
Tools. This happens automatically in our ICON-LAM pre-processing script:

&remap_nml
in_grid_filename = "${INGRID}"

52

2.
In

pu
t

D
at

a

2.4 External Parameter Files

in_filename = "input_data_file"
in_type = 2
out_grid_filename = "${OUTDIR}/grid_file_lbc.nc"
out_filename = "${OUTDIR}/data_file_lbc.nc"
out_type = 2
out_filetype = 4

/

For the usual case that the directory ${DATADIR} contains several input files at once, they
must be processed one after the other. So for the parameter in_filename the name of each
raw data file is used successively. With respect to the output filename data_file_lbc.nc
it is a good idea to follow a consistent naming convention. See Section 6.4.1 on the corre-
sponding namelist setup of the ICON model.

The parameters in_type=2 and out_type=2 specify that both grids correspond to triangu-
lar ICON meshes (in_grid_filename and out_grid_filename). Additionally, a namelist
input_field_nml is appended for each of the pre-processed variables.

Note that the input_data_file must contain only a single time step when running the
iconremap tool. The iconremap tool therefore must be executed repeatedly in order to
process the whole list of boundary data samples.

After the specification of the filenames, the remapping parameters for all variables of the
Set I in Fig. 2.11 are defined. Regarding the HHL field an additional remark is in order:
Since this variable needs only be contained in the raw data file whose validity date matches
the envisaged model start date (see the remark in Section 2.3), we set this field as optional:

&input_field_nml
inputname = "HHL"
outputname = "z_ifc"
intp_method = 3
loptional = .TRUE.

/

The fully assembled namelist can then be used to call the iconremap interpolation tool.

In this context the following technical detail may considerably speed up the pre-processing:
The iconremap tool allows to store and load interpolation weights to and from a NetCDF
file. When setting the namelist parameter ncstorage_file (character string) in the
iconremap namelist remap_nml, the remapping weights are loaded from a file with this
name. If this file does not exist, the weights are created from scratch and then stored for
later use. Note that for MPI-parallel runs of the iconremap tool multiple files are created.
Re-runs require exactly the same number of processes.

2.4. External Parameter Files

External parameter fields describe properties of the Earth’s surface and atmosphere, which
can be assumed to be invariant during the course of a typical NWP forecast (i. e. a couple
of days). Examples are the topography, the land-sea mask, the soil type and atmospheric

53

2.Input
D

ata

ICON Model Tutorial

aerosols. Most of the fields are constant in time while some are available on a monthly
basis in order to represent the seasonal cycle. They are read by the model during startup.
The full list of external parameter fields is given in Table 2.3.

Table 2.3.: External parameter fields which are requested by ICON during startup (in
alphabetical order). Fields marked in blue are not read by ICON in opera-
tional NWP runs. In general they are only requested, if the respective depicted
namelist parameter is set.

shortName Description

AER_SS12 Sea salt aerosol climatology (monthly mean)
irad_aero=6,9 (namelist radiation_nml)

AER_DUST12 Total soil dust aerosol climatology (monthly mean)
irad_aero=6,9 (namelist radiation_nml)

AER_ORG12 Organic aerosol climatology (monthly mean)
irad_aero=6,9 (namelist radiation_nml)

AER_SO412 Total sulfate aerosol climatology (monthly mean)
irad_aero=6,9 (namelist radiation_nml)

AER_BC12 Black carbon aerosol climatology (monthly mean)
irad_aero=6,9 (namelist radiation_nml)

ALB_DIF12 Shortwave (0.3 − 5.0µm) albedo for diffuse radiation (monthly mean)
albedo_type=2 (namelist radiation_nml)

ALB_UV12 UV-visible (0.3 − 0.7µm) albedo for diffuse radiation (monthly mean)
albedo_type=2 (namelist radiation_nml)

ALB_NI12 Near infrared (0.7−5.0µm) albedo for diffuse radiation (monthly mean)
albedo_type=2 (namelist radiation_nml)

DEPTH_LK Lake depth

EMIS_RAD Surface longwave (thermal) emissivity
itype_lwemiss=1 (namelist extpar_nml)

EMISS Surface longwave (thermal) emissivity derived from satellite measure-
ments (monthly mean)

itype_lwemiss=2 (namelist extpar_nml)
FOR_D Fraction of deciduous forest

ntiles=1 (namelist lnd_nml)
FOR_E Fraction of evergreen forest

ntiles=1 (namelist lnd_nml)
FR_LAKE Lake fraction (fresh water)

FR_LAND Land fraction (excluding lake fraction but including glacier fraction)

FR_LUC Land-use class fraction

HSURF Topographic height at cell centers

LAI_MX Leaf area index in the vegetation phase
ntiles=1 (namelist lnd_nml)

NDVI_MAX Normalized differential vegetation index

NDVI_MRAT Proportion of monthly mean NDVI to yearly maximum (monthly mean)

Continued on next page

54

2.
In

pu
t

D
at

a

2.4 External Parameter Files

Table 2.3.: Continued from previous page

PLCOV_MX Plant covering degree in the vegetation phase
ntiles=1 (namelist lnd_nml)

ROOTDP Root depth
ntiles=1 (namelist lnd_nml)

RSMIN Minimum stomatal resistance
ntiles=1 (namelist lnd_nml)

SOILTYP Soil type

SSO_STDH Standard deviation of sub-grid scale orographic height

SSO_THETA Principal axis-angle of sub-grid scale orography

SSO_GAMMA Horizontal anisotropy of sub-grid scale orography

SSO_SIGMA Average slope of sub-grid scale orography

T_2M_CL Climatological 2m temperature (serves as lower boundary condition for
soil model)

T_2M_CLIM Climatological 2m temperature (monthly mean)
itype_vegetation_cycle>1 (namelist extpar_nml)

TOPO_CLIM Interpolated topographic height for T_2M_CLIM data
itype_vegetation_cycle>1 (namelist extpar_nml)

T_SEA Sea surface temperature climatology (monthly mean)
sstice_mode=2 (namelist lnd_nml)

Z0 Surface roughness length (over land), containing a contribution from
subgrid-scale orography

itype_z0=1 (namelist nwp_phy_nml)

2.4.1. ExtPar Software

The ExtPar software (ExtPar – External Parameters for numerical weather prediction
and climate application) is able to generate external parameters for the different models
GME, COSMO, HRM and ICON. Experienced users can run ExtPar on UNIX or Linux
systems to transform raw data from various sources into domain-specific data files. For
ICON, ExtPar will output the fields given in Table 2.3 in the NetCDF file format and
GRIB2 on the native triangular grid. For a more detailed overview of ExtPar, the reader
is referred to the User and Implementation Guide of ExtPar, Asensio and Messmer (2014),
and, additionally Smiatek et al. (2008, 2016).

The ExtPar pre-processor is a COSMO software and not part of the ICON training course
release. Still, the ExtPar tool can be accessed via the ICON grid generator web service
(see Section 2.1.6). Similar as for the grid files, for fixed domain sizes and resolutions some
external parameter files for the ICON model are available for download via

http://icon-downloads.mpimet.mpg.de

55

http://icon-downloads.mpimet.mpg.de

2.Input
D

ata

ICON Model Tutorial

The generation of the data represents a resource-intensive process. At the moment, it is
not possible to generate the Extpar file for R2B10 grid at DWD on the rcl.dwd.de.

2.4.2. Topography Information

Among various other fields, the external parameter files provide topography information,
see Table 2.3. The HSURF dataset contains the geometric height of the earths surface above
sea level (unit: m), where the raw data of the terrain model used (GLOBE, ASTER) is
aggregated over the grid box/triangle and the aggregated value is assigned to the triangle
center point. Therefore, HSURF is not identical to the specific mean sea level height of the
point lying under the center of the triangle or the maximum altitude of the area lying
under the triangle (as e.g. in aeronautical charts).

Besides, please note the following remark: The topography contained in the ExtPar data
files is in general not identical to the topography data which is used by the model. This
is because at start-up, after reading the ExtPar data, the topography field is optionally
filtered by a smoothing operator (n_iter_smooth_topo >0 in extpar_nml). Therefore,
for post-processing purposes it is necessary to specify and use the topography height
topography_c (GRIB2 short name HSURF) from the model output (cf. Section 7 and
Appendix B). The same applies to the fields DEPTH_LK, FR_LAND, FR_LAKE, and Z0, which
are unconditionally modified by ICON.

2.4.3. Additional Information for Surface Tiles

ExtPar data files are available for download with and without additional information for
surface tiles. See Section 3.8.11 for details on the tile approach.

ExtPar files suitable for the tile approach are indicated by the suffix _tiles. They are also
applicable when running the model without tiles. ExtPar files without the suffix “_tiles”,
however, must only be used when running the model without tiles (ntiles = 1, namelist
lnd_nml).

The data files do not differ in the number or type of fields, but rather in the way some fields
are defined near coastal regions. Without the _tiles suffix, various surface parameters
(e.g. SOILTYP, NDVI_MAX) are only defined at so-called dominant land points, i. e. at grid
elements where the land fraction exceeds 50%. With the _tiles suffix, however, these
parameters are additionally defined at cells where the land fraction is below 50%. By this,
we allow for mixed water-land points. The same holds for the lake depth (DEPTH_LK) which
is required by the lake parameterization scheme FLake. For files without the _tiles suffix,
DEPTH_LK is only defined at dominant lake points.

56

2.
In

pu
t

D
at

a

2.4 External Parameter Files

2.4.4. Parameter Files for Radiation

In addition to the ExtPar fields, input fields for radiation are loaded into the ICON model.
These constants fields are distributed together with the model code.

ecRad

Input files for the ecRad radiation scheme are located in the folder
icon/externals/ecrad/data. The correct folder path must be passed to ICON via
the ICON namelist parameter ecrad_data_path in the namelist radiation_nml.

RRTM

Input files for the RRTM radiation scheme are located in the folder icon/data. The RRTM
scheme is ICON’s old implementation variant for radiation and is rarely used anymore.

rrtmg_lw.nc
parameters for radiative transfer calculation used for the underlying RRTMG algo-
rithm, thermal radiation.

ECHAM6_CldOptProps.nc
Cloud optical properties for liquid clouds at 30 wavelengths used for the underlying
RRTMG algorithm.

On default, ICON expects the RRTMG parameter files to be named as above. Renaming
is possible, however the modified name must then be passed into ICON via the namelist
parameters lrtm_filename and cldopt_filename in the namelist nwp_phy_nml.

57

2.Input
D

ata

3.
M

od
el

D
es

cr
ip

tio
n

3. Model Description

Before I came here I was confused
about this subject. Having listened to
your lecture I am still confused. But
on a higher level.

Enrico Fermi

This chapter is devoted to a summary of ICON’s model structure. The principal compo-
nents are illustrated in Fig. 3.1:

Dynamics The centerpiece of the numerical weather prediction system is
the dynamical core, which integrates the discrete equations for
fluid motion forward in time. ICON’s dycore will be shortly de-
scribed in Sections 3.1–3.5.

Tracer Advection The dynamical core is followed by the numerical advection
scheme, e. g. for humidity and cloud water. Section 3.6 focuses
on the different methods available in ICON.

Physics The former components are then coupled to parameterizations
for processes such as convection that occur on scales too small
to be resolved directly. We present a comprehensive overview of
the physics parameterizations (NWP-mode) in Sections 3.7–3.8.

Finally, the chapter is concluded with the discussion of variable resolution modeling.

DynamicsDynamics

Fast Physics

Tracer Advection

Slow Physics

Output

∂
v
n

∂
t
,
∂
π ∂
t

Figure 3.1.: ICON’s model structure. This flow chart will be revisited in detail in Fig. 3.8.

59

3.M
odelD

escription

ICON Model Tutorial

3.1. Governing Equations

The equation system of the ICON model is based upon the prognostic variables suggested
by Gassmann and Herzog (2008). It describes a two-component system consisting of dry
air and water, where water is allowed to occur in all three phases, including precipitating
drops and ice particles.

As described in Wacker and Herbert (2003), an equation set for the mixture can be derived
by first introducing a reference velocity into the governing equations. The equations for
momentum, mass and energy of the mixture, as given below, are then formed as a sum of
the constituent-specific equation sets. The specific form of the governing equations for the
mixture depends on the choice of the reference velocity.

Here we have chosen the barycentric velocity as reference velocity. It is defined as

vb =
∑

k ρkvk∑
k ρk

,

with the partial density ρk of constituent k and its advective velocity vk. For simplicity,
vb will be denoted as v in the following.

In order to separate turbulent fluctuations from the mean flow, a density weighted av-
eraging (known as Hesselberg averaging) is applied. Every field ϕ is decomposed into a
density-weighted mean and a deviation (Hesselberg, 1925)

ϕ = ϕ̂+ ϕ′′ ,

with

ϕ̂ = ρϕ

ρ

and subsequent averaging. ϕ denotes the classical Reynolds average. More details on
density-weighted average calculus can be found e.g. in Zdunkowski and Bott (2003).

The basic Hesselberg-averaged equation system, including the shallow atmosphere approx-
imations, reads as follows

∂v̂n
∂t

+ ∂K̂h

∂n
+ (ζ̂ + f)v̂t + ŵ

∂v̂n
∂z

= −cpdθ̂v
∂π

∂n
− F (vn) (3.1)

∂ŵ

∂t
+ v̂h · ∇ŵ + ŵ

∂ŵ

∂z
= −cpdθ̂v

∂π

∂z
− g (3.2)

cvdcpd
Rd

ρθ̂v
∂π

∂t
= cpdπ

∂ρθ̂v
∂t

= −cpdπ∇ · (ρv̂θ̂v) +Q (3.3)

∂ρ

∂t
+ ∇ · (ρv̂) =

∑
k
σconvk (3.4)

∂ρq̂k
∂t

+ ∇ · (ρq̂kv̂) = −∇ ·
(
J
z
kk + ρq′′

kv′′
)

+ σk (3.5)

60

3.
M

od
el

D
es

cr
ip

tio
n

3.1 Governing Equations

Prognostic equations are solved for the horizontal velocity component normal to the tri-
angle edges v̂n (3.1), the vertical wind component ŵ (3.2), virtual potential temperature
θ̂v (3.3), the total density of the air mixture ρ (3.4), with

ρ =
∑

k
ρk , (3.6)

and mass fractions (3.5)

q̂k = ρ̂k/ρ , (3.7)

with the exception of the dry air mass fraction qd, which is diagnostic. The index k ∈
{d, v, c, i, r, s, g} represents a specific constituent of the mixture. We use

k = d for dry air,
k = v for water vapor,
k = c for cloud water,
k = i for cloud ice,
k = r for rain,
k = s for snow, and
k = g for graupel.

Further explanation of symbols and variables is given in Table 3.1. Note that the corre-
sponding data structures containing the physics and dynamics variables are outlined in
Section 9.2.

The equation system (3.1)–(3.5) is supplemented by the lower boundary conditions

ŵ|s =
Ev −

∑
kprec

Sk|s
ρ|s −

∑
kprec

ρk|s
(3.8)

J
z
k|s =

Ek − ρkŵ|s, if k ≡ v

−ρkŵ|s, if k ≡ non-prec. constituent
−Sk|s, if k ≡ prec. constituent

and the equation of state

p = Rd ρ T̂ (1 + α) ,

with

α =
(
Rv
Rd

− 1
)
q̂v −

∑
k ̸=v,d

q̂k .

When expressed in terms of the prognostic variables, the equation of state reads

π =
(
Rdρθ̂v
p00

) Rd
cvd

(3.9)

In contrast to the original formulation by Gassmann and Herzog (2008), we make use of
the two-dimensional rather than the three-dimensional Lamb transformation to convert

61

3.M
odelD

escription

ICON Model Tutorial

Table 3.1.: Explanation of symbols in the model equations

Symbol Description
∂
∂n horizontal derivative in edge-normal direction
K̂h = 0.5

(
v̂2
n + v̂2

t

)
horizontal component of the kinetic energy

ζ̂ = (∇ × v̂) · k vertical component of relative vorticity
f = 2Ω sinϕ Coriolis parameter
π Exner function

cpd, cvd specific heat capacity for dry air at constant
pressure/volume

F (vn) turbulent momentum fluxes
g acceleration of gravity
Q diabatic heat source
J
z
k = ρk (ŵk − ŵ) vertical diffusion flux for constituent k
σk internal conversion rate for kth constituent (i.e.

conversion among different phases or particle
forms)

σconvk internal conversion rate for kth constituent due
to convection only

ρq′′
kv′′ turbulent flux of kth partial mass fraction
Ev = ρq′′

vv′′|s surface evaporation flux
Sk = ρq̂kv̂

T
k sedimentation flux of kth constituent

v̂T terminal fall velocity of kth constituent

the nonlinear momentum advection term into a vector-invariant form. Vector-invariant
means that no gradients of vectors appear in this equation, which avoids derivatives of
the coordinate basis that would otherwise arise in an arbitrary coordinate frame from the
nonlinear momentum advection term.

Note that we do not explicitly solve a prognostic equation for the density of dry air. From
Equation (3.6) it becomes clear that the partial density of one constituent (here ρd) can
be diagnosed, given that a prognostic equation for the total density and all but one partial
densities is solved. The reconstructed tangential velocity component is denoted as v̂t, and
in accordance with the model code, it is assumed here that (v̂t, v̂n, ŵ) form a right-handed
system.

From the Equations (3.4), (3.5) for total density and partial densities some important
constraints can be derived which must hold in the discretized analogue in order to achieve
mass conservation. First of all, the total density is defined as the sum of all partial densities,
as shown by Eq. (3.6). From Eq. (3.7) it follows that

∑
k
q̂k = 1 .

62

3.
M

od
el

D
es

cr
ip

tio
n

3.2 The Model Reference State

Likewise, the prognostic equation for total density (3.4) should be obtained by summing
the budget equations (3.5) of all constituents. As a consequence the following constraints
hold: ∑

k
Jk = 0 ,

∑
k
ρq′′
kv′′ = 0 .

3.2. The Model Reference State

Dynamics in the atmosphere are characterized by small variations of thermodynamic quan-
tities with respect to some background state. Therefore, like many other modeling frame-
works, ICON makes use of an atmospheric reference state, i. e. the thermodynamic vari-
ables are defined as the sum of a reference state and a deviation from that. The reference
state is assumed to be at rest and horizontally homogeneous, constant in time, dry and
hydrostatically balanced.

Any grid-scale thermodynamic variable ψ̂ can then be written as

ψ̂(λ, ϕ, z, t) = ψ0(z) + ψ′(λ, ϕ, z, t) .

The suffix 0 denotes the reference state while the prime denotes the grid-scale deviation.
Thus, for the prognostic thermodynamic variables one gets

ρ(λ, ϕ, z, t) = ρ0(z) + ρ′(λ, ϕ, z, t)
π(λ, ϕ, z, t) = π0(z) + π′(λ, ϕ, z, t)

θ̂v(λ, ϕ, z, t) = θv0(z) + θ′
v(λ, ϕ, z, t) .

The background state components ρ0, π0, and θv0 are related by the equation of state (3.9)
and are hydrostatically balanced, i. e.

π0 =
(
Rdρ0θv0
p00

) Rd
cvd

dπ0
dz = − g

cpdθv0
(3.10)

The actual vertical reference profiles can be obtained by integration of Eq. (3.10) given
that suitable boundary values are provided. The reference state in ICON is identical to
the state used by the COSMO model.

In a global model like ICON, the local deviation from such a horizontally homogeneous
state can be quite substantial. Therefore, no attempt is made to linearize any part of the
governing equations with regard to this reference state as it is done in models based on the
anelastic assumption. Instead, the main effect of introducing a reference state in a global
nonhydrostatic model like ICON is the removal of horizontal base-state pressure gradient
terms in the equation of motion, i.e.

cpdθv
∂π

∂n
= cpdθv

∂π′

∂n
.

63

3.M
odelD

escription

ICON Model Tutorial

This reduces the computational error in the calculation of the pressure gradient force in
case of sloping coordinate surfaces. Having said that, this effect is of minor importance for
ICON, as by default the horizontal pressure gradient is evaluated truly horizontal along
surfaces of constant height, rather than in terrain-following coordinates, along sloping
coordinate surfaces (Zängl, 2012).

Changing the discretization of the horizontal pressure gradient is possible with the namelist
switch igradp_method (nonhydrostatic_nml), but not recommended. Nevertheless, the
reference state is still of some use for ICON. In the standard configuration of ICON, explicit
use of the reference state is made when computing the advective horizontal fluxes for ρ
and θv.

With the base state at hand, the vertical acceleration due to the pressure gradient and
gravity in Eq. (3.2) is rewritten as

−cpdθ̂v
∂π

∂z
− g = −cpd

(
θv0 + θ′

v

) ∂ (π0 + π′)
∂z

= −cpd
(
θv
∂π′

∂z
+ θ′

v

dπ0
dz

)
− cpdθv0

dπ0
dz − g

(3.10)= −cpd
(
θv
∂π′

∂z
+ θ′

v

dπ0
dz

)

The vertical momentum equation finally reads

∂ŵ

∂t
+ v̂h · ∇ŵ + ŵ

∂ŵ

∂z
= −cpd

(
θv
∂π′

∂z
+ θ′

v

dπ0
dz

)
.

The perturbation fields π′ and θ′
v are obtained from the predicted full fields and reference

fields via ψ′ = ψ̂ − ψ0.

3.3. Simplifying Assumptions in the Recent Model Version

The recent model version does not account for mass loss/gain due to precipita-
tion/evaporation. In particular, the following assumptions are made:

The term
∑

k σ
conv
k on the r.h.s. of Eq. (3.4), which describes the net mass tendency of the

convection parameterization, is neglected. Thus the model neither accounts for mass loss
due to convective precipitation, nor mass re-distribution due to convective motions. The
mass continuity equation takes the form

∂ρ

∂t
+ ∇ · (ρv̂) = 0 . (3.11)

At the surface, the boundary condition for ŵ, Eq. (3.8), is approximated as

ρŵ|s =
∑

k
ρkŵk|s = 0 , (3.12)

which in terrain-following coordinates translates to ρŵ|s = ρv̂ · ∇h. h denotes the topog-
raphy height. Thus, the simulated atmospheric system is assumed to be closed w.r.t. total

64

3.
M

od
el

D
es

cr
ip

tio
n

3.4 Vertical Coordinates

mass. The sedimentation fluxes at the surface Sk|s as well as the surface evaporation flux
Ev|s, which appear in the partial mass continuity equations, are retained. In order for
Eq. (3.12) to hold, the (implicit) assumption is that the corresponding mass loss/gain
due to sedimentation/evaporation is compensated by a fictitious flux of dry air across the
surface.

Away from the surface, the diffusion fluxes of all airborne constituents (except for dry
air) are neglected. The diffusive fluxes of all precipitating constituents, however, are taken
into account. The continuity equation for the total mass is used in the form (3.11). Since
Eq. (3.11) only holds if the constraint

∑
k J

z
k = 0 holds, again, the (implicit) assumption

made is that a fictitious diffusion flux of dry air counteracts the sedimentation fluxes such
that the total mass in a volume moving with the barycentric velocity is conserved.

In summary, the simplifying assumptions can be characterized by the following (equivalent)
statements:

• The current model version conserves the total air mass instead of the dry air mass.

• The precipitation mass sink and the evaporation mass source are neglected in the
total mass budget of the model.

• The net mass gain or loss due to precipitation/evaporation does not affect the surface
pressure.

The latter point becomes obvious, when writing down the (hydrostatic) pressure tendency
equation and applying the approximations (3.11)–(3.12) (see also Wacker and Herbert
(2003)). Starting from the hydrostatic equation ∂p

∂z = −ρg it follows:

∂

∂t

∫ 0

ps

dp = −g ∂
∂t

∫ ∞

zs

ρ dz

∂ps
∂t

= g

∫ ∞

zs

∂ρ

∂t
dz

∂ps
∂t

= −g
∫ ∞

zs

∇ · (ρv̂) −
∑

k
σconvk dz

∂ps
∂t

= −g
∫ ∞

zs

∇h · (ρv̂h) dz + g (ρw) |s + gP
conv|s

∂ps
∂t

= −g
∫ ∞

zs

∇h · (ρv̂h) dz +

������������������

g
ρ|s

ρ|s −
∑

kprec ρk|s

Ev −
∑
kprec

Sk|s

 + �����
gP

conv|s ,

with the convective surface precipitation flux

P
conv|s =

∫ ∞

zs

∑
k
σconvk dz .

Thus, dynamical effects of the evaporation/precipitation mass source/sink are neglected.
I.e. related pressure changes are ignored.

65

3.M
odelD

escription

ICON Model Tutorial

half level 1

half level 2

half level 3

half level 4
w

w

vn ,ρ,θv

full level 1

full level 2

full level 3

full levels half levels

Figure 3.2.: Illustration of ICON’s vertical levels. With num_lev layers, there are
num_lev + 1 so-called half levels. The half levels k − 1/2, k + 1/2 enclose
layer k at the centers of which are the corresponding full levels k, for
k = 1, . . . , num_lev. Layer 1 is at the top of the atmosphere and layer n
at the bottom of the atmosphere. Half level num_lev + 1 coincides with the
Earth’s surface.

3.4. Vertical Coordinates

In a nonhydrostatic model, it cannot be taken for granted that the pressure is
monotonously decreasing with increasing altitude. Moreover, the pressure at a certain
point does not necessarily represent the mass of the air column above, as it is the case for
a hydrostatic model. For that reason, a vertical coordinate in terms of geometric altitude
is preferred over a pressure-based coordinate in many nonhydrostatic models.

In ICON the choice is a height based coordinate system that follows the terrain and
consequently, the top and bottom triangle faces are inclined with respect to the tangent
plane on a sphere. Due to the fact that the model levels gradually change into levels of
constant height as the distance from the lower boundary increases, top and bottom triangle
faces of a grid box are also slightly inclined to each other. The exact altitude of each grid
box depends on the geographical position on the globe. The top and bottom faces are
called half levels of the vertical grid, the center of the box is said to be at the full level
of the vertical grid, see Fig. 3.2 for an illustration. Note that the numbering of full and
half levels is top-down, starting with k = 1 for the top half- and full level. A Lorenz-type
staggering is used in the vertical, which means that horizontal velocity, virtual potential
temperature and density are defined at full levels, whereas vertical velocity is defined at
half levels.

When setting up an ICON simulation, the total number of vertical levels has to be specified
for each domain via

66

3.
M

od
el

D
es

cr
ip

tio
n

3.4 Vertical Coordinates

num_lev (namelist run_nml, list of integer value)
Comma-separated list of integer values giving the number of vertical full levels for
each domain.

If the number of vertical levels is desired to vary between domains, setting the namelist
parameter lvert_nest (run_nml) to .TRUE. is required. See Section 3.9.1 for more infor-
mation on vertical nesting.

Two variants of a height-based terrain-following vertical coordinate are available in ICON.
Both of which are briefly described in the following section.

General vertical height coordinate. It will become clear from the description of the
terrain-following coordinate below that the exact vertical axis definition depends on a
multitude of parameter settings. This makes it virtually impossible to encode the exact
vertical coordinate parameters themselves in the appropriate section of the GRIB code.
The data sets which are produced by the ICON model therefore contain only a reference
to a vertical grid. Apart from very basic information like the number of vertical levels, only
a number identifying the special vertical grid used is provided. The actual vertical height
coordinate is then specified by providing a 3D (GRIB2) field which defines the height of
every grid point.

This indirect reference grid approach raises the same questions that played a role in the
handling of the horizontal grid, see Section 2.1.8: In order to find out if identical vertical
coordinate options were used for two given data sets, the GRIB2 data records contain
special meta-data items, namely numberOfVGridUsed and uuidOfVGrid.

3.4.1. Terrain-following Hybrid Gal-Chen Coordinate

The terrain-following hybrid Gal-Chen coordinate (Simmons and Burridge, 1981) is an ex-
tension of the classic terrain-following coordinate introduced by Gal-Chen and Somerville
(1975). As shown by Klemp (2011), it can be expressed in the form

z(x, y, η) = (H −B′(η)h(x, y))
H

η +B′(η)h(x, y)

= η +B′(η)
(

1 − η

H

)
h(x, y) , (3.13)

where z represents the height of the coordinate surfaces defined by η, h(x, y) is the terrain
height, and H denotes the domain height. With B′(η) = 1 the coordinate reverts to
the classic formulation by Gal-Chen and Somerville (1975), i.e. the coordinate is terrain-
following at the surface (η = 0) and becomes flat at model top (η = H). By choosing
B′ appropriately, a more rapid transition from terrain-following at the surface toward
constant height can be achieved. One popular choice is to set

B′(η)
(

1 − η

H

)
= 1 − η

zflat
, with zflat < H

such that coordinate surfaces become constant height surfaces above z = zflat. Oftentimes,
Equation (3.13) is also written in the discretized form

zh(x, y, k) = A(k) +B(k)h(x, y) , k = 1, ..., num_lev + 1 (3.14)

where k denotes the vertical level index and zh is the half level height.

67

3.M
odelD

escription

ICON Model Tutorial

Configuring the Hybrid Gal-Chen Coordinate

The main switch for selecting the Gal-Chen hybrid coordinate is

ivctype = 1 (namelist nonhydrostatic_nml, integer value)

The user has to provide the vertical coordinate table (vct) as an input file, using the
namelist variable vct_filename in the namelist grid_nml. The table consists of the A
and B values (see Equation (3.14)) from which the half level heights zh(x, y, k) can be
deduced. A(k)[m] contains fixed height values, with A(1) defining the model top height
H and A(num_lev + 1) = 0 m. The dimensionless values B(k) control the vertical decay
of the topography signal, with B(1) = 0 and B(num_lev + 1) = 1. Thus, zh(x, y, 1) is
equivalent to the model top height, while zh(x, y, num_lev + 1) is the surface height.

The structure of the expected input file is depicted in Table 3.2. Example files can be
found in icon/vertical_coord_tables.

Please note that for idealized runs (i.e. ltestcase =TRUE (namelist run_nml)) with equidis-
tant vertical levels, it is possible to create the vertical coordinate table on the fly during
the initialization phase of ICON by specifying the layer thickness layer_thickness and
number of flat levels n_flat_lev in the namelist nh_testcases_nml.

File structure

A and B values are stored in arrays vct_a(k) and vct_b(k).
The files in text format are structured as follows:
#

| k vct_a(k) [m] vct_b(k) [] | <- first line of file = header line
| 1 A(1) B(1) | <- first line of A and B values
| 2 A(2) B(2) |
| 3 A(3) B(3) |
| . |
| . |
| nlev+1 A(nlev+1) B(nlev+1)| <- last line of A and B values
|=====================================| <- lines from here on are ignored
|Source: | by mo_hyb_params:read_hyb_params
|<some lines of text> |
|Comments: |
|<some lines of text> |
|References: |
|<some lines of text> |

Table 3.2.: Structure of vertical coordinate table as expected by the ICON model.

3.4.2. SLEVE Coordinate

In the case of a terrain-following hybrid Gal-Chen coordinate the influence of terrain on the
coordinate surfaces decays only linearly with height. The basic idea of the Smooth Level

68

3.
M

od
el

D
es

cr
ip

tio
n

3.4 Vertical Coordinates

Vertical SLEVE coordinate (Schär et al., 2002, Leuenberger et al., 2010) is to increase the
decay rate, by allowing smaller-scale terrain features to be removed more rapidly with
height. To this end, the topography h(x, y) is divided into two components

h(x, y) = h1(x, y) + h2(x, y),

where h1(x, y) denotes a smoothed representation of h(x, y), and h2(x, y) = h(x, y) −
h1(x, y) contains the smaller-scale contributions. The coordinate is then defined as

z(x, y, η) = η +B1(η)h1(x, y) +B2(η)h2(x, y) .

Different decay functions B1 and B2 are chosen for the decay of the large- and small-scale
terrain features, respectively. These functions are selected such that the influence of small-
scale terrain features on the coordinate surfaces decays much faster with height than their
large-scale (well-resolved) counterparts. The squeezing of the model layers above steep
mountains is limited automatically in order to prevent (nearly) intersecting layers that
would cause numerical instabilities.

Configuring the SLEVE Coordinate

The main switch for selecting the SLEVE vertical coordinate is

ivctype = 2 (namelist nonhydrostatic_nml, integer value)

This is the default and recommended setting. The vertical grid is constructed during the
initialization phase of ICON, based on additional parameters defined in sleve_nml. Here
we will only discuss the most relevant parameters. For a full list, the reader is referred to
the namelist documentation.

Namelist sleve_nml:

top_height (namelist sleve_nml, real value)
Height of model top.

flat_height (namelist sleve_nml, real value)
Height above which the coordinate surfaces become constant height surfaces.

min_lay_thckn (namelist sleve_nml, real value)
Layer thickness of lowermost layer.

Note for advanced users: On default, a vertical stretching is applied such
that coordinate surfaces become non-equally distributed along the vertical,
starting with a minimum thickness of min_lay_thckn between the lower-
most and second lowermost half-level. If constant layer thicknesses are de-
sired, min_lay_thckn must be set to a value ≤ 0. The layer thickness is then
determined as top_height/num_lev. Control output of the vertical layer dis-
tribution is written to stderr.

69

3.M
odelD

escription

ICON Model Tutorial

Similar to the Gal-Chen coordinate, it is possible to read the vertical coor-
dinate table from file, by specifying a file name and path via vct_filename
(grid_nml). Please note that the SLEVE coordinate only requires the height
values A(k). It is recommended to set the unused B(k) values to zero. Reading
the vertical grid information from file becomes handy if the same vertical level
distribution is desired as used e.g. by the operational model suite at DWD.
In particular, the reproduction of the level distribution used by the verti-
cally nested ICON-EU domain is not possible with the available sleve_nml
namelist variables. This is due to the fact that the ICON-EU level distribution
is generated by removing the uppermost 30 levels from the level distribution
used by the global model domain.

3.5. Temporal Discretization

In this section we will focus on time differencing in isolation and will neglect any com-
plexity due to space differencing. Before we dive into the (nasty) details of ICON’s time
discretization, let us take a step back and try to grasp the basic idea.

3.5.1. Basic Idea

Consider an arbitrary first-order ordinary differential equation of the form

dψ(x⃗, t)
dt = F (ψ(x⃗, t), t) . (3.15)

Here, ψ : R3 ×R → Rq is the q-dimensional vector of state variables. In real applications,
the vector-valued flux function F : Rq × R → Rq might be very complex.

Let tn−m denote some time in the past and tn+1 some time in the future. Now we integrate
Eq. (3.15) from time tn−m to tn+1, which gives

ψ(x⃗, tn+1) − ψ(x⃗, tn−m) =
tn+1∫

tn−m

F (ψ(x⃗, t), t) dt .

We can try to approximate the integral on the right hand side (r.h.s.) using some weighted
average of F at known discrete time levels. In the following we will restrict ourselves to
simple two-level time-stepping schemes, i.e. we set m = 0 and only make use of F at the
discrete times tn and tn+1 (for a general survey of time-differencing schemes, see Randall
(2017)). With this restriction we get

ψ(x⃗, tn+1) − ψ(x⃗, tn)
∆t = αFn+1 + βFn . (3.16)

The coefficients α and β must satisfy the so called consistency condition

α+ β = 1 ,

70

3.
M

od
el

D
es

cr
ip

tio
n

3.5 Temporal Discretization

such that the r.h.s. of Eq. (3.16) represents some averaged F . Equation (3.16) represents a
whole family of simple two-step schemes. For example, by choosing α = 0, β = 1 we arrive
at the simple Euler forward scheme, while for α = 1, β = 0 we get the (implicit) Euler
backward scheme, both of which are first order accurate. Choosing α = β = 0.5 leads to
the implicit trapezoidal scheme, which is of second order accuracy.

One way to avoid the implicity of the trapezoidal scheme while retaining higher order
is to switch to iterative schemes, also known as predictor-corrector schemes. This is the
way pursued in ICON. The key idea of the predictor-corrector scheme is to replace the
unwieldy Fn+1 by an estimate F ∗

n+1 = F
(
ψ∗
n+1, tn+1

)
with ψ∗

n+1 computed by an explicit
scheme, e.g. a forward Euler scheme. The full predictor-corrector scheme reads

predictor : ψ∗(x⃗, tn+1) = ψ(x⃗, tn) + ∆tFn
corrector : ψ(x⃗, tn+1) = ψ(x⃗, tn) + ∆t

{
F ∗
n+1, Fn

}
α

(3.17)

Here we have introduced the notation

{x, y}α := αx+ (1 − α) y .

Note that for α = 1, Equation (3.17) is an imitation of the Euler backward scheme (termed
Matsuno scheme, (Matsuno, 1966)), while for α = 0.5, it is an imitation of the trapezoidal
scheme (termed Heun’s method). The Matsuno scheme has first-order accuracy, and Heun’s
method has second-order accuracy.

In simplified terms, the time integration scheme of ICON can be regarded as
a mixture of the Matsuno scheme (α = 1) and the Heun scheme (α = 0.5), as
the coefficient α used by ICON varies between these two extremes.

3.5.2. Implementation Details

Now, in the terminology of the previous section, in ICON we have

ψ(x⃗, t) = [vn(x⃗, t), w(x⃗, t), ρ(x⃗, t), π(x⃗, t)]T .

Here, we have omitted the partial densities ρqk from the vector of state variables. They
are treated with a different time discretization scheme, as will be explained in Section 3.6.

For the sake of brevity we omit the notation for Reynolds- and Hesselberg averages. The
superscripts n, n+1∗ and n+1 will be used to denote the current time level, the resulting
time level of the predictor step and the new time level, respectively. They should not be
confused with the subscript n used to denote the normal velocity component vn, or the
horizontal derivative in edge-normal direction ∂/∂n.

The time discretization complies with the explicit two-time level predictor-corrector
scheme which was described in the previous section, except for those terms describing
vertical sound-wave propagation. These terms, i.e. vertical derivatives of w and π, are
treated implicitly for reasons of numerical stability and efficiency. Below, the implicit
terms are marked in blue .

71

3.M
odelD

escription

ICON Model Tutorial

Predictor step:

vn+1∗
n − vnn

∆t = −adv(vnn) − cpdθ
n
v

∂π′,n

∂n
+ F (vnn) (3.18)

wn+1∗ − wn

∆t = −adv(wn) − cpdθ
′,n
v

dπ0
dz − cpdθ

n
v

{
∂π′,n+1∗

∂z , ∂π
′,n

∂z

}
η

(3.19)

ρn+1∗ − ρn

∆t = −∇h ·
(
vn+1∗
n ρn

)
− ∂

∂z

[{
wn+1∗

, wn
}
η
ρn
]

πn+1∗ − πn

∆t = −Rd
cvd

(
πn

ρnθnv

)[
∇h ·

(
vn+1∗
n ρnθnv

)
+ ∂

∂z

[{
wn+1∗

, wn
}
η
ρnθnv

]]
+Qn (3.20)

with

adv(vnn) =
∂Kn

h

∂n
+ (ζn + f) vnt + wn

∂vnn
∂z

adv(wn) = vnh · ∇wn + wn
∂wn

∂z
.

The terms F (vnn) and Qn denote diabatic momentum and Exner pressure tendencies due
to slow physics processes, i.e. parameterized convection, orographic and non-orographic
gravity waves and radiation. See Section 3.7.1 for more details on the distinction between
fast and slow physics processes.

The implicitness parameter η (with 0 ≤ η ≤ 1) for the vertically implicit sound wave solver
has a default value of η = 0.65 which is usually sufficient to ensure numerical stability in
real-case applications. If required, this value can be modified with the namelist parameter
vwind_offctr (nonhydrostatic_nml). Note that vwind_offctr presents the off-centering
from 0.5, i.e. vwind_offctr = η − 0.5. Its permissible range is given by

0 ≤ vwind_offctr ≤ 0.5 ,

and the default value is vwind_offctr = 0.15.

72

3.
M

od
el

D
es

cr
ip

tio
n

3.5 Temporal Discretization

Corrector step:

vn+1
n − vnn

∆t = −
{

adv(vn+1∗
n), adv(vnn)

}
α

− cpd

{
θn+1∗
v , θnv

}
δ

{
∂π′,n+1∗

∂n
,
∂π′,n

∂n

}
δ

− Fd(vn+1∗
n) + F (vnn) (3.21)

wn+1 − wn

∆t = −
{

adv(wn+1∗), adv(wn)
}
α

− cpd

{
θ′,n+1∗
v , θ′,n

v

}
δ

dπ0
dz

− cpd

{
θn+1∗
v , θnv

}
δ

{
∂π′,n+1

∂z , ∂π
′,n

∂z

}
η

ρn+1 − ρn

∆t = −∇h ·
(
vn+1
n ρn

)
− ∂

∂z

[{
wn+1, wn

}
η

{
ρn+1∗

, ρn
}
δ

]
πn+1 − πn

∆t = −Rd
cvd

(
πn

ρnθnv

)[
∇h ·

(
vn+1
n ρnθnv

)
+ ∂

∂z

[{
wn+1, wn

}
η

{
ρn+1∗

, ρn
}
δ

{
θn+1∗
v , θnv

}
δ

]]
+Qn

The term Fd(vn+1∗
n) represents 4th order divergence damping which has been introduced

in order to control checkerboard noise.

The parameter α denotes the Matsuno parameter which was introduced in Section 3.5.1.
With respect to the velocity, it can be used to make the explicit part of the corrector step
resemble either a Matsuno-type scheme (α −→ 1) or Heun’s method (α −→ 0.5). The
default value of the Matsuno-parameter for velocity is given by α = 0.75.

A second Matsuno parameter 0 ≤ δ ≤ 1 exists for the thermodynamic variables ρ and θvn ,
where the default value of the coefficient is δ = 0.4. The corresponding namelist parameters
are named veladv_offctr and rhotheta_offctr in the namelist nonhydrostatic_nml.
Note again that both define the off-centering from 0.5 rather than the absolute value.

In order to close the system of equations, the quantity θv must be calculated from the
state variables π and ρ for both substeps (predictor and corrector). We explain this in the
following, using the notation πnew ≡ πn+1∗ or πnew ≡ πn+1 for the predictor and corrector
step.

Once the updated state vector

ψnew(x⃗, t) = [vnew
n (x⃗, t), wnew(x⃗, t), ρnew(x⃗, t), πnew(x⃗, t)]T

is known, the virtual potential temperature θnew
v is diagnosed from the linearized equation

of state (3.9)

πnew − πn

πn
= Rd
cvd

(ρθv)new − (ρθv)n

(ρθv)n
. (3.22)

73

3.M
odelD

escription

ICON Model Tutorial

The rationale behind that is as follows: Multiplying (3.22) by ∆t−1 and rearranging yields

(ρθv)new − (ρθv)n

∆t = cvd
Rd

(
ρnθnv
πn

)
πnew − πn

∆t . (3.23)

Thus, diagnosing θnew
v from (3.22) can be interpreted as solving two prognostic equations

for the two thermodynamic variables π and θv, instead of one prognostic equation for
π and the equation of state. By doing so, ρθv is exactly conserved (in the absence of
diabatic terms). The two prognostic equations are constrained by (3.23), i.e. the same flux
divergence is used. As a side effect, however, the solution at a particular point in time is
not constrained by the equation of state (3.9) – only its time evolution is. This approach
was first described by Gassmann (2013).

Pragmatic Simplifications

A potential disadvantage of predictor-corrector schemes as compared to non-iterative
schemes is its computational expense. This is because the forcing terms (r.h.s.) must
be evaluated twice per time step. Therefore, several terms have been simplified provided
that the simplification proved to not degrade the quality of the results significantly. The
following pragmatic simplifications have been performed:

• The horizontal and vertical momentum advection at the predictor step is re-used
from the corrector step of the preceding time step. With time level n∗ denoting
n+ 1∗ from the preceding time step this can be written as

Equation (3.18): adv(vnn) ≃ adv(vn∗
n)

Equation (3.19): adv(wn) ≃ adv(wn∗)

By this, in each time step the momentum advection needs to be computed only once.

The first predictor step following the physics step represents an exception. At this
time level the momentum advection from the preceding corrector step does not pro-
vide a suitable estimate, as the physics step might have changed vn considerably.

• Another simplification relates to the horizontal pressure gradient term which occurs
in the predictor and corrector step of vn. Using time level n in the predictor and
an interpolated value between n and n + 1∗ in the corrector provides an effective
damping mechanism for horizontally propagating sound waves, without significantly
impacting gravity waves (Klemp et al., 2007). A very similar effect can be achieved by
using the same horizontal pressure gradient in the predictor and corrector, however,
with the pressure being extrapolated in time.

Equation (3.18): cpdθ
n
v

∂π′,n

∂n
≃ cpdθ

n
v

∂π′,ñ

∂n

Equation (3.21): cpd

{
θn+1∗
v , θnv

}
δ

{
∂π′,n+1∗

∂n
,
∂π′,n

∂n

}
δ

≃ cpdθ
n
v

∂π′,ñ

∂n

By this, in each time step the horizontal pressure gradient needs to be computed only
once. The time level ñ at which the horizontal gradient is taken is an extrapolated
time level using the levels n and n− 1:

π′,ñ = (1 + γ)π′,n − γπ′,n−1

74

3.
M

od
el

D
es

cr
ip

tio
n

3.5 Temporal Discretization

The temporal extrapolation factor is chosen from the range γ ∈
[1

3 ,
2
3
]
, with the

default being γ = 1/3. The corresponding namelist parameter is named exner_expol
(nonhydrostatic_nml).

Vertically Implicit Solver

The solution to the predictor-corrector scheme described above is mostly straightforward,
as the majority of terms are treated in an explicit manner. This, however does not hold for
the prognostic equation for vertical wind, since the solution for wn+1∗ depends on πn+1∗ ,
which itself depends on wn+1∗ (see Equations (3.19) and (3.20)).

The overall solution strategy is as follows: First, π is eliminated from Eq. (3.19) by inserting
the prognostic equation (3.20). This results in a linear system of equations for the unknown
w’s in the vertical direction. Once wn+1∗ is known, the Exner equation (3.20) can be solved.
The derivation for the corrector step is basically identical and differs only w.r.t. the time
levels that are used for ρ and θv.

We start with the vertical discretization of (3.19) and (3.20). When using basic centered
differences, and noting that ∂π/∂t = ∂π′/∂t this leads to

wn+1∗

k+1/2 = Zw expl
k+1/2 − ∆tcpdθnv,k+1/2 η

π′,n+1∗

k − π′,n+1∗

k+1
∆zk+1/2

(3.24)

π′,n+1∗

k = Zπ expl
k − ∆tRd

cvd

(
πnk

ρnkθ
n
v,k

)
η

(wn+1∗
ρnθnv)k−1/2 − (wn+1∗

ρnθnv)k+1/2

∆zk
, (3.25)

with the shorthand notations Zw expl
k+1/2 and Zπ expl

k for the explicit parts

Zw expl
k+1/2 = wnk+1/2 − ∆t

[
adv(wn∗)k+1/2 + cpdθ

′,n
v,k+1/2

dπ0
dz

∣∣∣∣
k+1/2

+ cpdθ
n
v,k+1/2(1 − η)

π′,n
k − π′,n

k+1
∆zk+1/2

]

and

Zπ expl
k = π′,n

k − ∆tRd
cvd

(
πnk

ρnkθ
n
v,k

)[
∇h ·

(
vn+1∗

ρnθnv

)
k

+ (1 − η)
(wnρnθnv)k−1/2 − (wnρnθnv)k+1/2

∆zk

]
+ ∆tQkn .

∆zk = zk−1/2 − zk+1/2 denotes the thickness of the kth cell which is bounded by the half
levels k ± 1/2, whereas ∆zk+1/2 = zk − zk+1 denotes the thickness of the layer bounded
by the full levels k and k + 1 (see also Figure 3.2).

75

3.M
odelD

escription

ICON Model Tutorial

As an intermediate step, we compute π′,n+1∗

k − π′,n+1∗

k+1 from Eq. (3.25):

π′,n+1∗

k − π′,n+1∗

k+1 = Zπ expl
k − Zπ expl

k+1 − ∆tRd
cvd

η

[
(wn+1∗

ρnθnv)k−1/2
Γnk

∆zk

− (wn+1∗
ρnθnv)k+1/2

(
Γnk

∆zk
+

Γnk+1
∆zk+1

)
+ (wn+1∗

ρnθnv)k+3/2
Γnk+1

∆zk+1

]
. (3.26)

Here we have introduced Γnk as an abbreviation for

Γnk =
πnk

ρnkθ
n
v,k

.

Inserting Eq. (3.26) into Eq. (3.24) and collecting terms proportional to wn+1∗

k−1/2, wn+1∗

k+1/2,
wn+1∗

k+3/2 on the left hand side leads to:

− wn+1∗

k−1/2

[
∆tη

cpdθ
n
v,k+1/2

∆zk+1/2
∆tRd

cvd

Γnk
∆zk

ρnk−1/2θ
n
v,k−1/2η

]
︸ ︷︷ ︸

sub-diagonal

+ wn+1∗

k+1/2

[
1 + ∆tη

cpdθ
n
v,k+1/2

∆zk+1/2
∆tRd

cvd

(
Γnk

∆zk
+

Γnk+1
∆zk+1

)
ρnk+1/2θ

n
v,k+1/2η

]
︸ ︷︷ ︸

main diagonal

− wn+1∗

k+3/2

[
∆tη

cpdθ
n
v,k+1/2

∆zk+1/2
∆tRd

cvd

Γnk+1
∆zk+1

ρnk+3/2θ
n
v,k+3/2η

]
︸ ︷︷ ︸

sup-diagonal

= Zw expl
k+1/2 − ∆tη

cpdθ
n
v,k+1/2

∆zk+1/2

(
Zπ expl
k − Zπ expl

k+1

)
(3.27)

Equation (3.27) defines a linear system of equations from which the unknown vertical
velocities wn+1∗

k−1/2 can be computed. The system is tridiagonal and can be solved with the
Thomas algorithm (Press et al., 2007, p. 57), given that suitable boundary conditions are
provided. So far it is assumed that the upper and lower boundary are impermeable w.r.t.
to mass, i.e. we set wn+1∗

1/2 = wn+1∗

nlev+1/2 = 0. In case of vertical nesting, w at the upper
boundary is usually nonzero and is interpolated from the parent domain (see Section 3.9.1
for details).

In order to be consistent with the implementation in the ICON code, we introduce the
following abbreviations:

αk+1/2 = ρnk+1/2θ
n
v,k+1/2η

βk = ∆tRd
cvd

Γnk
∆zk

γk+1/2 = ∆tη
cpdθ

n
v,k+1/2

∆zk+1/2

76

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

Note that α and γ are defined on half levels, while β is defined on full levels. The tridiagonal
system (3.27) can now be written in the form (a1/2 = 0, cnlev+1/2 = 0)

ak+1/2w
n+1∗

k−1/2 + bk+1/2w
n+1∗

k+1/2 + ck+1/2w
n+1∗

k+3/2 = dk+1/2 , k = 0, . . . ,nlev ,

or in matrix form

b1/2 c1/2

a3/2 b3/2 c3/2

. . .

anlev−1/2 bnlev−1/2 cnlev−1/2

anlev+1/2 bnlev+1/2

wn+1∗

1/2

wn+1∗

3/2
...

wn+1∗

nlev−1/2

wn+1∗

nlev+1/2

=

d1/2

d3/2

...

dnlev−1/2

dnlev+1/2

with the coefficients

ak+1/2 = −γk+1/2 βk αk−1/2

bk+1/2 = 1 + γk+1/2 (βk + βk+1) αk+1/2

ck+1/2 = −γk+1/2 βk+1 αk+3/2

dk+1/2 = Zw expl
k+1/2 − γk+1/2

(
Zπ expl
k − Zπ expl

k+1

)
for k = 1, . . . ,nlev − 1, and the Dirichlet boundary conditions

top: b1/2 = 1 c1/2 = 0 d1/2 = wtop

bottom: anlev+1/2 = 0 bnlev+1/2 = 1 dnlev+1/2 = wbot .

3.6. Tracer Transport

The transport module is an important building block of any numerical weather prediction
(NWP) or climate model, as it predicts the large-scale redistribution of water substances,
chemical constituents or aerosols in the atmosphere due to air motion. Mathematically,
it solves one of the fundamental laws of physics, namely the equation of tracer mass
continuity (3.5). The transport module itself does not take into account tracer sources or
sinks. It only predicts its large scale redistribution. Hence, for each tracer the transport
module solves the simplified continuity equation

∂ρq̂k
∂t

+ ∇ · (ρq̂kv̂) = 0 (3.28)

(compare with Eq. (3.5)). Additional sources and sinks as well as turbulent diffusion are
accounted for in the physics interface with a fractional step approach (see Section 3.7).

The numerical solution of Eq. (3.28) is based on so-called space-time finite volume methods.
By space-time methods we refer to methods where the temporal and spacial discretizations
are combined rather than separated. Space-time methods are also known as cell-integrated

77

3.M
odelD

escription

ICON Model Tutorial

semi-Lagrangian schemes. As will become clear, such schemes are neither purely semi-
Lagrangian, nor Eulerian in the classical sense. They are Eulerian in the sense that the
flux of mass through the stationary walls of grid cells is considered. They are, however,
semi-Lagrangian in the sense that trajectory calculations are needed for flux computation.
In the literature such schemes are sometimes termed Flux Form Semi-Lagrangian (FFSL).
The specific implementation in ICON partly builds upon work by Lauritzen et al. (2010,
2011a), Harris and Lauritzen (2010), Skamarock and Menchaca (2010), Miura (2007) for
the horizontal and Colella and Woodward (1984), Zerroukat et al. (2006) for the vertical.

As we are dealing with a Finite Volume (FV) discretization, it is worth noting that in the
following all scalar variables ψ, whose storage location is at the triangle cell circumcenter,
are interpreted as cell averages rather than point values, i.e.

ψ
n
i = 1

∆Vi

∫∫∫
Vi

ψ(x, y, z, tn) dV ,

with ∆Vi denoting the volume of the ith prismatic cell (the so-called control volume). Here
and in the reminder of this Section, the overbar denotes volume averages rather than
Reynolds averages.

3.6.1. Directional Splitting

By integrating the continuity equation (3.28) in space over a prismatic grid cell and in
time over the time step ∆t, a solution to (3.28) can formally be written as

ρqn+1
i,k = ρqni,k + ∆t [H(qn) + V(qn)] , (3.29)

where H and V denote the horizontal and vertical transport operators acting on qn, and
ρqn+1
i,k denoting the updated cell averaged partial density of constituent k at the time tn+1

(see Reinert, 2020).

Instead of solving this somewhat unwieldy equation in one sweep, a fractional step ap-
proach is taken in ICON such that separate equations for horizontal and vertical trans-
port are solved consecutively. Of course, replacing equation (3.29) by some approximation
involving the two subproblems

ρq∗
i,k = ρqαi,k + ∆tV(qβ)

ρq∗∗
i,k = ρqγi,k + ∆tH(qδ)

will inevitably result in a residual error. This error is known as the splitting error. On
default, the following approximation to (3.29) is used:

ρq∗
i,k =ρqni,k + ∆tV (qn) (3.30)

ρqn+1
i,k =ρq∗

i,k + ∆tH (q∗) (3.31)

In order to maintain O
[
∆t2

]
accuracy, the order of the operators is reversed on alternate

time steps. This might be regarded as a poor man’s Strang splitting (Strang, 1968). Full
Strang-splitting of the form [V(∆t/2)][H(∆t)][V(∆t/2)] has also been tested during the

78

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

implementation phase. Except for being more expensive (the vertical operator is called
twice per time step) no significant impact on the model results has been noted.

A shortcoming of the splitting (3.30), (3.31) is that it does not preserve an initially uni-
form tracer field (e.g. q(x, y, z, t0) = 1) in a deformational flow since there is not enough
information available to correctly do the conversion ρq∗ −→ q∗. Tempting candidates for
this conversion might be ρn or ρn+1 as they are readily available from ICON’s dynam-
ical core. Any such attempt, however, will not preserve an initially uniform tracer field.
In order to do so, it is necessary to keep track of the changes in partial density ρq that
are solely a result of mass convergence/divergence in the directions of splitting. Therefore
we follow the method of Easter (1993) wherein the air mass continuity equation (3.5) is
simultaneously reintegrated in the same split manner as the continuity equation for tracer
mass.

ρq∗
i,k =ρqni,k + ∆tV (qn)
ρ∗
i,k =ρni,k + ∆tV (1)

q∗
i,k =

ρq∗
i,k

ρ∗
i,k

(3.32)

ρqn+1
i,k =ρq∗

i,k + ∆tH (q∗)
ρn+1
i,k =ρ∗

i,k + ∆tH (1)

qn+1
i,k =

ρqn+1
i,k

ρn+1
i,k

(3.33)

Changes in partial density solely due to mass convergence/divergence are corrected for in
equations (3.32) and (3.33). The key point here is that the intermediate density ρ∗ rather
than ρn+1 or ρn is used to recover the mass fraction q∗ in (3.32). The re-integration of (3.4)
(second and fifth equation above) is rather straightforward, as it relies on pre-computed
mass fluxes provided by the dynamical core.

3.6.2. Horizontal Transport

A rigorous derivation of the horizontal transport operator H(q) is beyond the scope of this
document. We will merely concentrate on the general concept and illustrate graphically
how the scheme works. The horizontal transport scheme belongs to the class of so-called
Flux Form Semi-Lagrangian (FFSL) schemes (Harris and Lauritzen, 2010). In the liter-
ature such schemes are sometimes alternatively termed Incremental remapping schemes
(Lipscomb and Ringler, 2005) or streamline subgrid integration method (Yeh, 2007).

Graphical Interpretation

Figure 3.3 provides a graphical interpretation of the FFSL-scheme. Black solid lines show
the triangular grid, with thick solid lines highlighting an arbitrary cell with area ∆Ai
for which the scheme will be explained. In the following we will refer to this cell as the

79

3.M
odelD

escription

ICON Model Tutorial

Eulerian control volume (CV). The basic task is to compute the updated value ρqn+1
i for

that cell on the basis of the old values ρqni , the cell averages qi, and the velocity fields vn

and vn+1.

In order to set the stage, let us first take the Lagrangian viewpoint: Assume that the
time dependent velocity field is known analytically such that the trajectories for all the
air parcels are known, which terminate at the walls of the Eulerian CV at the new time
tn+1. As an example, trajectories for air parcels terminating at the CV vertices at tn+1

are depicted as gray lines. Accordingly we know the position of these air parcels at time
tn which we will denote as the starting points. By connecting the starting points we can
construct the gray shaded area known as the Lagrangian CV. The latter encompasses all
air parcels that are transported into the Eulerian CV (i.e. the grid cell) during the time
interval

[
tn, tn+1]. In a standard semi-Lagrangian scheme the key task is to compute an

estimate of the Lagrangian CV (gray shaded), followed by a computation of the total tracer
mass contained. Then, the solution ρqi

n+1 can easily be deduced from the Lagrangian
finite-volume form of the continuity equation (3.28)

ρqn+1
i ∆Ai = ρqni ∆ai ,

where ∆Ai and ∆ai denote the area of the Eulerian and Lagrangian CV, respectively (see
e.g. Lauritzen et al., 2011b). ρqni is the average tracer mass over the Lagrangian CV area
ai

ρqni = 1
∆ai

∫∫
ai

ρn(x, y)qn(x, y)dA .

As mentioned before, a more Eulerian rather than semi-Lagrangian viewpoint is taken in
ICON. Here we keep track of the flux of mass passing the Eulerian cell walls rather than
the mass in the Lagrangian CV. This is where the yellow areas in Figure 3.3 enter the
game. We will refer to these as flux areas. Since the individual edges of the Lagrangian
CV pass through the flux areas during

[
tn, tn+1], it is the mass inside the flux areas that

is swept across the Eulerian CV walls during one time step. Thus, starting from the mass
ρqni in the Eulerian CV and assuming that we know the shape as well as the tracer mass
contained in the (yellow) flux areas, we can compute the updated value ρqn+1

i .

Mathematically the scheme can be cast into the following flux form:

ρqn+1
i = ρqni − 1

∆Ai

Ne∑
e=1

sie Fie ,with Fie = ⟨ρei ⟩
∫∫
ae

i

qn(x, y) da , (3.34)

where Fie defines the total mass crossing the eth wall during ∆t and aei denotes the flux
area for the eth wall. sei = ±1 distinguishes inward and outward directed fluxes.

Note that this Eulerian viewpoint is fully equivalent to the semi-Lagrangian viewpoint.
It can be shown (Lauritzen et al., 2011b) that all areas involved in our quasi-Eulerian
approach (i.e. the Eulerian CV and the flux areas) sum up to the Lagrangian CV.

80

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

Figure 3.3.: Graphical illustration of the FFSL scheme. Black solid lines show the trian-
gular grid, with thick solid lines highlighting the Eulerian control volume
under consideration. Gray area shows the Lagrangian control volume and
yellow areas show the flux areas (departure region) for each cell wall.

Basic Algorithm

The numerical algorithm which solves Eq. (3.34) for a single Eulerian CV proceeds in 4
major stages:

1. The flux area aei for each cell wall is reconstructed by means of backward trajectories.

2. For each Eulerian CV the unknown tracer subgrid distribution q(x, y, t0) is estimated
from the known cell averages qni of the CV itself and surrounding cells. Several
polynomial reconstructions, from linear to cubic, are available.

3. The total mass Fie crossing the eth wall is estimated by numerically evaluating the
integral in Eq. (3.34). I.e. the estimated subgrid distribution q(x, y, t0) is integrated
over the approximated flux area aei by means of Gauss quadrature.

4. The sum on the r.h.s. of Eq. (3.34) is evaluated which leads to the solution ρqn+1
i .

3.6.3. Vertical Transport

A rigorous derivation of the vertical transport operator V(q) is beyond the scope of this
document. As for the horizontal operator H(q) we will concentrate on the basic concept.
For more details we refer to Reinert (2021).

Piecewise Parabolic Method (PPM)

The vertical transport scheme is based on the Piecewise Parabolic Method (PPM) devel-
oped by Colella and Woodward (1984). It is a finite volume scheme and thus inherently
mass conserving. It makes use of a piecewise parabolic function for approximating the
unknown subgrid distribution of a 1D scalar field q(z). The function is forced to be contin-
uous at cell interfaces. Its construction is based on the known cell averages qk. The PPM
scheme bears some conceptual resemblance to the horizontal FFSL transport scheme. The
basic concept is depicted in Figure 3.4 and described below.

81

3.M
odelD

escription

ICON Model Tutorial

Figure 3.4.: The Piecewise Parabolic Method (PPM). Left: Unknown subgrid distribu-
tion q(z) gets approximated by piecewise parabolic interpolants which are
C0 continuous at cell walls. Right: Polynomial reconstruction is filtered (op-
tional) to render the scheme monotonous. Integration step: Sub-grid distri-
bution is integrated over the “area” w∆t (dark blue) in order to determine
the mass which enters the kth cell during ∆t.

Step 1: The subgrid distribution q(ζ, k) is reconstructed cell-wise in a vertical column
by using the parabolic interpolant

q(ζ, k) = a0 + a1ζ + a2ζ
2 , with ζ =

z − zk+1/2

∆zk
. (3.35)

ζ is a dimensionless coordinate which is 1 at the grid cell top and 0 at its bottom. Specific
to the PPM scheme is the way how this parabola is constructed. The unknown coefficients
ai are derived from the three constraints∫ 1

0
q(ζ, k)dζ = qk ,

q(ζ = 1, k) = qu = qk−1/2 ,

q(ζ = 0, k) = ql = qk+1/2 ,

(3.36)

which, expressed in words, state that the polynomial must be mass conserving, and that
the polynomial equals qu and ql at its upper and lower end, respectively. qu and ql are
appropriately reconstructed estimates at the upper and lower half levels and are shared
between adjacent cells. By this, continuity of the reconstruction across cells is enforced.

When applying the constraints (3.36) the parabolic interpolant (3.35) can finally be written
as a function of the grid scale variables qk, qk+1/2, qk−1/2

q(ζ, k) = qk − ∆qk
(

1
2 − ζ

)
− a6,k

(
1
6 − ζ + ζ2

)
, (3.37)

with

∆qk = qk−1/2 − qk+1/2

a6,k = 6qk − 3qk−1/2 − 3qk+1/2

82

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

The overall accuracy of the parabolic interpolant (3.37) strongly depends on the accuracy
to which the edge values qk±1/2 are known. Edge value estimates must be of at least third-
order in order for the interpolant to exactly reconstruct a parabola. Here we follow Colella
and Woodward (1984) and compute fourth-order edge value estimates, as this turned out
to be beneficial to the overall accuracy of the scheme (see Lauritzen et al. (2011b, p. 228)).

An in-depth derivation of the edge-values is beyond the scope of this tutorial. Here we
simply note that the edge estimate qk+1/2 is computed from a cubic polynomial c(z)
evaluated at zk+1/2. The cubic polynomial is constructed from the constraint that it must
be mass conserving in each of the four cells surrounding half level zk+1/2 (likewise for
qk−1/2, see e.g. Zerroukat et al. (2002)).

Step 2: As depicted in Figure 3.4, it is not guaranteed that the reconstruction preserves
monotonicity or positive definiteness, especially near strong gradients. The scheme can op-
tionally be made (semi-) monotonic or positive definite by filtering the polynomial recon-
struction. The effect of a monotonic filter on the reconstructed parabolas is schematically
depicted in Figure 3.4b. The filtering is controlled with the namelist switch itype_vlimit
(transport_nml).

Step 3: In a last step, the mass that is swept across the cell wall during ∆t is computed
by integrating the subgrid distribution q(ζ, k) over the (upwind) flux area.

Fk−1/2 = 1
∆t

∫ zk−1/2

zk−1/2−wn+1/2
k−1/2 ∆t

ρ(z)q(z)dz , for w > 0 (3.38)

Vividly speaking, an estimate of the flux area can be gained by launching a backward
trajectory at the given cell wall. In this 1D scheme, the flux area for the cell wall at zk−1/2

is simply given as −wn+1/2
k−1/2∆t, where w is the vertical velocity provided by the dynamical

core.

For w > 0 integration of (3.38) finally leads to the time-averaged vertical flux

Fk−1/2 = ρk−1/2wk−1/2

[
qk + 1

2∆qk
(
1 − Ck−1/2

)
− 1

6a6,k

(
1 − 3Ck−1/2 + 2C2

k−1/2

)]
,

with the Courant number Ck−1/2 = wk−1/2∆t/∆zk.

In its standard version, the PPM scheme has a Courant number limitation of |C| ≤ 1. It
can, however, be easily extended to larger Courant numbers by splitting the computation
of the mass fluxes (3.38) into so-called integer and fractional fluxes (Lin and Rood, 1996).
In its current form in ICON, the PPM scheme is stable up to |C| = 5.

Parabolic Spline Method (PSM)

As an alternative to PPM, the Parabolic Spline Method (Zerroukat et al., 2006) is avail-
able as well. PSM is similar to PPM, as both rely on piecewise parabolic functions for
reconstructing the unknown sub-grid distribution in each cell. PSM, however, differs from

83

3.M
odelD

escription

ICON Model Tutorial

PPM in terms of the edge-value estimate. The edge values are determined by imposing
the following additional constraint on the parabola q(ζ, k) in (3.35)

1
∆z k+1

dqk+1
dζ

∣∣∣∣
ζ=1

= 1
∆z k

dqk
dζ

∣∣∣∣
ζ=0

, (3.39)

which states that the parabola’s first derivative must be continuous at cell edges. Hence,
while the PPM parabolas are continuous at cell edges, the PSM parabolas are even con-
tinuously differentiable. The latter turns the piecewise parabolic function into a parabolic
spline. From the condition (3.39) an implicit equation sytem for the unknown edge values
qk+1/2 can be deduced, which is however beyond the scope of this tutorial (see Zerroukat
et al., 2006, Reinert, 2021).

A comparison of PSM and PPM reconstructions for an arbitrary irregular signal is depicted
in Figure 3.5a. The signal is taken from Zerroukat et al. (2005) and is defined on the
unit interval z ∈ [0, 1]. It is given in terms of cell averages (black dots) on a 1D grid
with constant grid spacing. The solid red line depicts the PSM reconstruction, with red
circles showing the reconstructed face values. The reconstruction with piecewise parabolics
(PPM), is shown in blue.

Both reconstructions result in a third-order accurate and smooth representation of the
underlying irregular signal. As expected from the previous discussion, both reconstructions
are continuous at cell faces, but exhibit unphysical over and undershoots in the vicinity of
strong gradients. Available methods for dealing with spurious over- and undershoots are
mentioned in Section 3.6.5. While both reconstructions behave similarly in large parts of
the domain, the effect of PPM being only continuous becomes apparent at some points.
The fact that PPM slopes exhibit discontinuities at cell faces is clearly visible e.g. at
z = 0.15 and z = 0.35. The PSM reconstruction, on the other hand, has continous slopes
throughout the domain, which gives it a more ‘natural’ appearance. The absolute difference
between the PSM and PPM reconstruction is shown in Figure 3.5b. Largest differences
occur close to the cell edges.

3.6.4. Reduced Calling Frequency

Given that explicit time stepping is used, the continuity equation for air, the momentum
and the thermodynamic equation must obey the time-step restrictions imposed by the
fastest waves in the system (i.e. sound waves). While the continuity equation for air is
inherently coupled to the momentum equations, tracer transport equations can be solved
in isolation given prescribed winds and air densities.

Continuity equations for tracers (like water vapour) lack fast wave modes (sound and grav-
ity waves) and, thus, have less restrictive time step limitations. Given the large number of
tracers in state of the art climate and NWP models, significant computational cost savings
can be obtained by sub-cycling the solution of the density, momentum and thermodynamic
equation with respect to the tracer equations. Stated in another way, the tracer equations
can be integrated with a much larger time step. In doing so, care has to be taken in order
to maintain tracer-mass consistency.

In ICON, the number of times by which the integration of the air mass continuity equation
(and the entire dynamical core) is sub-cycled with respect to the tracer mass continuity

84

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

Figure 3.5.: (a) Reconstruction of an irregular 1D signal (gray-dashed) with piecewise
parabolics (blue) and piecewise parabolic splines (red) from known cell av-
erages (black dots) on an equidistant grid. The interpolated face values are
shown by blue and red circles, respectively. (b) Absolute difference between
the piecewise parabolics and piecewise parabolic splines.

equations is typically 5 (see Section 3.7.1). In order to maintain tracer-mass consistency,
the time-averaged rather than the instantaneous mass flux is passed to the transport
module. Thus, ⟨ρei ⟩ in Eq. (3.34) can be expressed in terms of the time-averaged horizontal
mass flux ⟨Fmie ⟩ as

ρei = ⟨Fmie ⟩∆t lie

with ∆t denoting the time step for tracer transport and lie denoting the length of the eth
cell wall.

3.6.5. Some Practical Advice

Here we give some practical guidance on how to configure the tracer transport for stan-
dard NWP runs. The most important namelist parameters are discussed along with rec-
ommended settings.

85

3.M
odelD

escription

ICON Model Tutorial

The main switch for activating tracer transport is ltransport (run_nml). Except for
specific idealized test cases (see Chapter 4) this switch should generally be set to .TRUE..
The namelist run_nml contains a second relevant parameter termed ntracer which is
meant for specifying the total number of tracers that shall be advected. We note, however,
that this parameter is important for idealized cases only. In real case runs, ICON takes
care of initializing the correct number of tracers based on the selected physics packages.
E.g. when selecting the one-moment microphysics scheme without graupel (inwp_gscp=1),
the number of tracers is automatically set to ntracer=5.

The namelist transport_nml contains additional parameters for selecting the transport
scheme and the type of limiter. This can be done individually for each tracer, for horizontal
and vertical directions.

ihadv_tracer (namelist transport_nml, list of Integer values)
Comma separated list of integer values, specifying the type of the horizontal trans-
port scheme. The ith entry corresponds to the ith tracer in ICON’s internal tracer
list. Most relevant options are

1 1st order upwind
2 MIURA (Miura (2007)-type with linear reconstruction)
3 MIURA3 (Miura (2007)-type with cubic reconstruction)
4 FFSL with quadratic or cubic reconstruction (depends on lsq_high_ord

(interpol_nml))
5 hybrid MIURA3/FFSL with quadratic or cubic reconstruction
x2 Sub-cycling versions of MIURA (x = 2), MIURA3 (x = 3), FFSL (x = 4) and

hybrid MIURA3/FFSL (x = 5).

Sub-cycling means that the integration from tn to tn+1 is split into substeps to
meet the stability requirements. By default 3 substeps are used, see nadv_substeps
(transport_nml). Sub-cycling is only applied above a certain height defined by
hbot_qvsubstep (nonhydrostatic_nml), see Section 3.8.12. Above that height
the MIURA scheme (linear reconstruction) is used, irrespective of the settings for
ihadv_tracer.

FFSL and MIURA3 differ w.r.t. the way the integration over the flux area is per-
formed. FFSL can cope with slightly larger Courant numbers while being somewhat
more expensive. Option 5 tries to combine the improved stability of FFSL with the
speed of MIURA3 by calling FFSL only for those edges for which the horizontal
Courant number exceeds a threshold.

ivadv_tracer (namelist transport_nml, list of Integer values)
Comma separated list of integer values, specifying the type of the vertical transport
scheme. The ith entry corresponds to the ith tracer in ICON’s internal tracer list.
Most relevant options are

1 1st order upwind
2 Parabolic Spline Method (PSM)
3 Piecewise Parabolic Method (PPM)

itype_hlimit (namelist transport_nml, list of Integer values)
Comma separated list of integer values, specifying the type of the horizontal limiter.

86

3.
M

od
el

D
es

cr
ip

tio
n

3.6 Tracer Transport

The ith entry corresponds to the ith tracer in ICON’s internal tracer list. Most
relevant options are

0 no limiter
3 monotonic Flux Corrected Transport (Zalesak, 1979)
4 positive definite Flux Corrected Transport

itype_vlimit (namelist transport_nml, list of Integer values)
Comma separated list of integer values, specifying the type of the vertical limiter. The
ith entry corresponds to the ith tracer in ICON’s internal tracer list. Most relevant
options are

0 no limiter
1 semi-monotonic reconstruction filter
2 monotonic reconstruction filter
3 positive definite Flux Corrected Transport

ivlimit_selective (namelist transport_nml, integer value)
Reduces detrimental effect of the vertical limiter by applying a method for identifying
and avoiding spurious limiting of smooth extrema (Reinert, 2021).

0/1 off/on

Example Settings for a Standard NWP Run

Valid settings for a standard NWP run with one-moment microphysics (5 prognostic water
tracers) are depicted in Figure 3.6. The (hardcoded) ordering of tracers in ICON and their
tracer IDs are listed in Table 3.3. In order to set the transport scheme and limiter for a
tracer with ID = i, the ith entry in the respective namelist parameters must be modified.

! transport_nml: tracer transport --------------------------
&transport_nml
ihadv_tracer = 52, 2, 2, 2, 2 ! hor. transport selector

ivadv_tracer = 3, 3, 3, 3, 3 ! vert. transport selector

itype_hlimit = 3, 4, 4, 4, 4 ! hor. limiter

itype_vlimit = 1, 1, 1, 1, 1 ! vert. limiter

ivlimit_selective = 0 ! selective limiting switched off
/

Figure 3.6.: Example namelist settings for tracer transport in a standard NWP run with
one-moment microphysics without graupel (i.e. 5 tracers qv, qc, qi, qr, qs).

This procedure can become unwieldy and error prone if more than a handful of tracers
is used. The ART-package alleviates this problem by providing a more elaborate way of
configuring tracers based on XML files. Note, however that the configuration via XML
files is restricted to ART-specific tracers, only.

87

3.M
odelD

escription

ICON Model Tutorial

Tracer ID 1 2 3 4 5 6 7

Tracer Name water
vapour

qv

cloud
water

qc

cloud
ice
qi

rain
water

qr

snow
qs

graupel
qg

hail
qh

Table 3.3.: Ordering of water tracers in ICON. The tracer ID indicates the position
within ICON’s internal tracer data structure. In order to specify transport
settings for a tracer with ID = i, the ith entry in the respective namelist
parameter must be set (see ihadv_tracer, ivadv_tracer, itype_hlimit,
itype_vlimit). Note that this table is incomplete in the sense that addi-
tional water tracers for two-moment microphysics schemes (like number con-
centrations) are omitted. These indices can be taken directly from the source
code if required.

ivadv_tracer, ihadv_tracer: PPM is the method of choice in the vertical direction
for all tracers. In horizontal directions, MIURA is used for all tracers except vapor
qv. A somewhat more accurate (and more expensive) scheme is selected for qv (hybrid
MIURA3/FFSL).

If time to solution is not absolutely critical (e.g. for non-operational, scientific, applica-
tions), we recommend to select PSM for vertical transport, together with selective vertical
limiting (ivadv_tracer=2, ivlimit_selective=1), as this will slightly improve the accu-
racy of vertical transport with only marginal computational overhead.

One might wonder why sub-cycling is activated only for qv. The reason is that with
standard NWP settings qv is the only tracer which gets transported all the way
up to the model top, where the highest wind speeds are typically encountered. For
all other water tracers transport is switched off above a certain height defined by
htop_moist_proc(nonhydrostatic_nml) (typically around 18 km) such that sub-cycling
is not strictly required (see Section 3.8.12).

Note that sub-cycling must be activated for qv. This is crucial for numerical
stability!

Furthermore, note that if additional non-water tracers are added (e.g. purely diagnostic
passive tracers or chemical tracers), sub-cycling must be activated since htop_moist_proc
is only effective for water tracers.

itype_hlimit, itype_vlimit: In terms of limiters, the rule of thumb is that at least
a positive definite limiter should be used for all water tracers. Otherwise numerical in-
stabilities will occur due to negative water concentrations. For qv it is advisable to use
a more stringent (albeit more expensive) monotonic limiter in order to reduce spurious
condensation/evaporation emerging from nonphysical over-/undershoots in qv.

88

3.
M

od
el

D
es

cr
ip

tio
n

3.7 Physics-Dynamics Coupling

3.7. Physics-Dynamics Coupling

3.7.1. ICON Time-Stepping

For efficiency reasons, different integration time steps are applied depending on the process
under consideration. In the following, the term dynamical core refers to the numerical
solution of the dry Navier-Stokes equations, while the term physics refers to the diabatic,
mostly sub-grid scale, processes that have to be parameterized. In ICON, the following
time steps have to be distinguished:

∆t the basic time step specified via namelist variable dtime, which is used
for tracer transport, numerical diffusion and the fast-physics parameter-
izations.

∆τ the short time step used within the dynamical core; the ratio be-
tween ∆t and ∆τ is specified via the namelist variable ndyn_substeps
(namelist nonhydrostatic_nml, number of dynamics substeps), which
has a default value of 5.

∆ti,slow_physics the process dependent slow physics time steps; they should be integer
multiples of ∆t and are rounded up automatically if they are not.

An illustration of the relationship between the time steps can be found in Figure 3.7.

simulation time

radiation

convection

non-orographic gravity wave drag

orographic gravity wave drag (SSO)

t
= advectiont

τ

Figure 3.7.: ICON internal time stepping. Sub-cycling of dynamics with respect to trans-
port, fast-physics, and slow-physics. ∆t denotes the time step for transport
and fast physics and ∆τ denotes the short time step of the dynamical core.
The time step for slow-physics can be chosen individually for each process.

ICON solves the fully compressible nonhydrostatic Navier-Stokes equations using a time
stepping scheme that is explicit except for the terms describing vertical sound wave prop-
agation (see Section 3.5). Thus, the maximum allowable time step ∆τ for solving the
momentum, continuity and thermodynamic equations is determined by the fastest wave

89

3.M
odelD

escription

ICON Model Tutorial

in the system – the sound waves. As a rule of thumb, the maximum dynamics time step
can be computed as

∆τ = 1.8 · 10−3 ∆x s
m , (3.40)

where ∆x is the effective horizontal mesh size in meters (see Equation (2.1)). This implies
that the namelist variable dtime should have a value of

∆t = 9 · 10−3 ∆x s
m ,

unless ndyn_substeps is set to a non-default value.

Historical remark: Note that historically, ∆τ rather than ∆t was used as basic
control variable specified in the namelist, as appears logical from the fact that
a universal rule for the length of the time step exists for ∆τ only. This was
changed shortly before the operational introduction of ICON in 2015 because
it turned out that an adaptive reduction of ∆τ is needed in rare cases with
very large orographic gravity waves in order to avoid numerical instabilities.
To avoid interferences with the output time control, the long time step ∆t was
then taken to be the basic control variable, which always remains unchanged
during a model integration. The adaptive reduction of ∆τ is now accomplished
by increasing the time step ratio ndyn_substeps automatically up to a value
of 8 if the Courant number for vertical advection grows too large.

Additional time step restrictions for ∆t arise from the numerical stability of the horizontal
transport scheme and the physics parameterizations, in particular due to the explicit
coupling between the turbulent vertical diffusion and the surface scheme. Experience shows
that ∆t should not significantly exceed 1000 s, which becomes relevant when ∆x is larger
than about 125 km.

Even longer time steps than ∆t can be used for the so-called slow-physics parameteriza-
tions, i.e. radiation, convection, non-orographic gravity wave drag, and orographic gravity
wave drag. These parameterizations provide tendencies to the dynamical core, allowing
them to be called individually at user-specified time steps. The related namelist switches
are dt_rad, dt_conv, dt_gwd and dt_sso in nwp_phy_nml. If the slow-physics time step
is not a multiple of the advective time step, it is automatically rounded up to the next
advective time step. A further recommendation is that dt_rad should be an integer mul-
tiple of dt_conv, such that radiation and convection are called at the same time1. The
time-splitting is schematically depicted in Figure 3.7.

3.7.2. Fast and Slow Processes

For efficiency reasons, a distinction is made between so-called fast-physics processes, whose
time scale is comparable or shorter than the model time step, and slow-physics processes
whose time scale is considered slow compared to the model time step.

1This behavior is automatically enforced in the current model version.

90

3.
M

od
el

D
es

cr
ip

tio
n

3.7 Physics-Dynamics Coupling

Fast-physics processes are calculated at every physics time step ∆t and are treated with
time splitting (also known as sequential-update split) which means that (with exceptions
noted below) they act on an atmospheric state that has already been updated by the
dynamical core, horizontal diffusion and the tracer transport scheme. Each process then
sequentially updates the atmospheric variables and passes a new state to the subsequent
parameterization.

The calling sequence is saturation adjustment −→ surface transfer scheme −→ land-surface
scheme −→ boundary-layer / turbulent vertical diffusion scheme −→ microphysics scheme,
and again saturation adjustment in order to enter the slow-physics parameterizations with
an adjusted state. The exceptions from the above-mentioned sequential splitting are the
surface transfer scheme and the land-surface scheme. Both take the input at the ‘old’ time
level because the surface variables are not updated in the dynamical core and the surface
transfer coefficients and fluxes would be calculated from inconsistent time levels otherwise.
The coupling strategy is schematically depicted in Figure 3.8.

Note that in the actual ICON code, the surface transfer scheme is called at the
very end of the sequence of fast physics processes rather than at the beginning,
as depicted in Figure 3.8. In compensation, the input to the surface transfer
scheme is the ‘new’ time level rather than the ‘old’ one claimed in the text.
Without proof, we claim that this is an equivalent implementation of the more
natural sequence shown in Figure 3.8. The natural sequence would necessitate
the allocation of additional memory for storing the ‘old’ atmospheric state, as
this state is no longer available after the dynamics update due to the inherent
substepping. By calling the surface transfer scheme at the end of the previous
time step, the allocation of additional memory and related data transfer can
be avoided.

Slow-physics processes are treated in a parallel-split manner, which means that they are
stepped forward in time independently of each other, starting from the model state pro-
vided by the latest fast-physics process. In ICON convection, subgrid-scale cloud cover,
radiation, non-orographic and orographic gravity wave drag are considered as slow pro-
cesses. Typically, these processes are integrated with time steps longer than the (fast)
physics time step. The slow-physics time steps can be specified by the user. The result-
ing slow-physics tendencies ∂vn/∂t, ∂T/∂t and ∂qx/∂t with x ∈ [v, c, i] are passed to the
dynamical core and remain constant between two successive calls of the parameterization
(Figure 3.8). Since ICON solves a prognostic equation for π rather than T , the tempera-
ture tendencies are converted into tendencies of the Exner function, beforehand. Rather
than treating the moisture tendencies as a forcing term during tracer advection, they are
treated in a time-split manner and added to the updated moisture variables thereafter.

3.7.3. Isobaric vs. Isochoric Coupling Strategies

The physics-dynamics coupling in ICON differs from many existing atmospheric models
in that it is performed at constant density (volume) rather than constant pressure. This is
related to the fact that the total air density ρ is one of the prognostic variables, whereas

91

3.M
odelD

escription

ICON Model Tutorial

DynamicsDynamics

Fast Physics

Tracer Advection

Slow Physics

Surface Transfer

Satur.Adjustment

Land/Lake/Sea-Ice

Turbulent Diffusion

Microphysics

Satur.Adjustment

Output

C
on

ve
ct

io
n

C
lo

ud
C

ov
er

R
ad

ia
ti

on

N
on

-O
ro

gr
ap

hi
c

G
ra

vi
ty

W
av

e
D

ra
g

S
ub

-G
ri

d-
S

ca
le

O
ro

gr
ap

hi
c

D
ra

g

dt
co

nv

dt
co

nv

dt
ra

d

dt
gw

d

dt
ss

o

dtime

dtime

dt dyn = dtime
nsubs

∂
v
n

∂
t
,
∂
π ∂
t

Horizontal Diffusion dtime

Figure 3.8.: Coupling of the dynamical core and the NWP physics package. Processes
declared as fast (slow) are treated in a time-split (process-split) manner.

pressure is only diagnosed for parameterizations needing pressure as input variable. Thus,
it is natural to keep ρ constant in the physics-dynamics interface. As a consequence, heat-
ing rates arising from latent heat release or radiative flux divergences have to be con-
verted into temperature changes using cv, the specific heat capacity at constant volume of
moist air. Some physics parameterizations inherited from hydrostatic models, in which the
physics-dynamics coupling always assumes constant pressure, therefore had to be adapted
appropriately.

Moreover, it is important to note that the diagnosed pressure entering into a variety of
parameterizations is a hydrostatically integrated pressure rather than a nonhydrostatic

92

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

pressure derived directly from the prognostic model variables2. This is motivated by the
fact that the pressure is generally used in physics schemes to calculate the air mass repre-
sented by a model layer, and necessitated by the fact that sound waves generated by the
saturation adjustment can lead to a local pressure increase with height in very extreme
cases, particularly between the lowest and the second lowest model level.

Another important aspect is related to the fact that physics parameterizations traditionally
work on mass points (except for three-dimensional turbulence schemes). While the conver-
sion between different sets of thermodynamic variables is reversible except for numerical
truncation errors, the interpolation between velocity points and mass points potentially
induces errors. To minimize them, the velocity increments, rather than the full velocities,
coming from the turbulence scheme are interpolated back to the velocity points and then
added to the prognostic variable vn.

3.8. ICON NWP-Physics in a Nutshell

An in-depth description of the physical parameterization package for NWP is beyond the
scope of this document. However, the following section provides a short introduction to
the available parameterizations and references for further reading.

Table 3.4 contains a summary of physical parameterizations available in ICON (NWP-
mode). In what follows, an outline (executive summary) of the parameterization schemes
is given.

3.8.1. Radiation
Section author

S. Schäfer, DWD Physical Processes Division

Radiation is a crucial component that drives weather and climate from microscopical to
global scales: Heating by absorption of radiation and cooling by emission determine local
and global temperature and gradients, which in turn drive dynamics and physical processes.
While some other physical effects occur locally, radiation travels throughout the depth
of the atmosphere, therefore the entire atmospheric column has to be considered when
calculating local radiative fluxes. Both visible or shortwave radiation from the sun and
thermal or longwave radiation emitted within the Earth system interact with atmospheric
gases, aerosols, clouds and the surface.

Radiative transfer models for the atmosphere consist of multiple components: opti-
cal property parameterizations for each atmospheric component and the surface, and
a radiation solver that calculates how radiation travels through the optical medium.
The new radiation scheme ecRad (Hogan and Bozzo, 2018; implementation in ICON:
Rieger et al., 2019) allows choices for each component individually, while the radiation
scheme itself is chosen with inwp_radiation=1 for ICON’s RRTM radiation scheme

2Note that the (surface) pressure available for output is as well the hydrostatically integrated pressure
rather than a nonhydrostatic pressure derived directly from the prognostic model variables.

93

3.M
odelD

escription

ICON Model Tutorial

Process Scheme Settings

Radiation RRTM (Rapid Radiative Transfer Model) inwp_radiation=1

Mlawer et al. (1997), Barker et al. (2003)

ecRad inwp_radiation=4

Hogan and Bozzo (2018)

Wave dissipation at critical level inwp_gwd=1Non-orographic
gravity wave drag Orr et al. (2010)

Lott and Miller scheme inwp_sso=1Sub-grid scale
orographic drag Lott and Miller (1997)

Cloud cover Diagnostic PDF inwp_cldcover=1

M. Köhler et al. (DWD)

All-or-nothing scheme (grid-scale clouds) inwp_cldcover=5

Microphysics Single-moment scheme inwp_gscp=1, 2

Doms et al. (2011), Seifert (2008)

Double-moment scheme inwp_gscp=4

Seifert and Beheng (2006)

Convection Mass-flux shallow and deep inwp_convection=1

Tiedtke (1989), Bechtold et al. (2008)

Turbulent transfer Prognostic TKE (COSMO) inwp_turb=1

Raschendorfer (2001)

EDMF-DualM (Eddy-Diffusivity/Mass-Flux) inwp_turb=3

Köhler et al. (2011), Neggers et al. (2009)

3D Smagorinsky diffusion (for LES) inwp_turb=5

Land Tiled TERRA inwp_surface=1

Schrodin and Heise (2001), Schulz et al. (2016)

Flake: Mironov (2008) llake=.TRUE.

Sea-ice: Mironov et al. (2012) lseaice=.TRUE.

Table 3.4.: Summary of ICON’s physics parameterizations for NWP, together with the
related namelist settings (namelist nwp_phy_nml). Parameterizations which
are used operationally (at 13 km horizontal grid spacing) are indicated by .

94

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

and inwp_radiation=4 for ecRad (Namelist nwp_phy_nml). Using ecRad requires the
Compiler-Flag –enable-ecrad in the config command before compiling, and setting the
namelist parameter ecrad_data_path (Namelist radiation_nml). The necessary files are
contained in ‘<ICON-directory>/externals/ecrad/data’. Since both the whole col-
umn and multiple spectral wavelengths have to be considered, the radiation calculation
has to be simplified to be practical. Thus, radiation schemes for global weather and climate
models neglect horizontal radiative transfer and treat only the vertical dimension. Clouds
have a particularly strong radiative effect, and can vary on scales smaller than the model
grid-boxes, therefore radiation is calculated once for the clear-sky part of each grid-box
and once for the cloudy part.

In the spectral dimension, the strongest variability is due to atmospheric gases, which can
absorb and emit radiation of particular, sharply defined wavelengths, according to their
molecular properties. The optical properties of cloud particles, aerosol and the surface
also depend on the wavelength, but vary more slowly. ICON’s RRTM radiation scheme
and ecRad both use the RRTM (Rapid Radiative Transfer Model Mlawer et al., 1997)
gas optics scheme. The spectral range is divided into 30 spectral bands (16 bands in
the longwave spectrum and 14 bands in the shortwave spectrum), and cloud, surface
and aerosol optical properties are described within each band. The bands are subdivided
into sub-intervals with similar gas properties, termed g-points. This so-called correlated-k
method strongly reduces computational costs with an accuracy comparable to spectrally
more detailed line-by-line models. Since we only consider up- and downwelling radiation,
the optical properties are integrated for all angles within a hemisphere, reducing the optical
parameters that are needed to optical depth, single scattering albedo and asymmetry factor
(of scattering).

Cloud particle optical properties depend on the amount of water or ice, on the particle size
and particle shape. Since cloud particles often have sizes similar to the visible or thermal
wavelength ranges, scattering by particles varies strongly according to scattering angle
and to the ratio of particle size to wavelength (Mie scattering). For given particle shape
and size, this complex function can be approximated numerically. Cloud optical property
parameterizations have to make an assumption on cloud particle shape. While liquid water
particles are spherical, real ice particles can have a variety of shapes, so that ice shape
assumptions are uncertain, and vary between parameterizations. Using these assumptions,
the cloud optics parameterization provides optical properties depending on particle size
(which is parameterized within ICON) and wavelength. In ecRad, several cloud water
and ice optics parameterizations are available (namelist parameters iliquid_scat and
iice_scat in radiation_nml).

For aerosol, optical properties are directly provided as an input to the radiation scheme. In
operational settings, we use fixed global aerosol distributions from climatologies. Similarly,
surface optical properties are provided to ICON in an external parameter file, based on
satellite observations of the surface.

All of these optical properties are provided to the radiation solver, which calculates reflec-
tion, transmission and internal radiation sources in each grid-box and model layer, and
the resulting amount of up- and downwelling radiation at each height, for cloudy and clear
sky. Vertical overlap of cloudy and clear regions between neighboring layers is parameter-
ized according to overlap assumptions (Hogan and Illingworth, 2000, chosen by namelist

95

3.M
odelD

escription

ICON Model Tutorial

parameter icld_overlap in radiation_nml). Operationally, ICON uses the exponential-
random overlap assumption, meaning clouds with clear layers in-between are uncorrelated,
while the overlap in continuous clouds decreases exponentially with vertical distance. Since
cloud absorption and reflection depend non-linearly on cloud optical depth, the variability
of thick and thin cloud in a grid-box also has an effect. Highly variable clouds interact less
strongly with radiation than homogeneous clouds that contain the same amount of water.
This effect can be parameterized roughly by reducing cloud optical depth to compensate
(ICON’s RRTM radiation uses a factor of 0.8). In ecRad, the variability is captured by
dividing the cloudy region into two or more sub-regions with different cloud optical depths.
One method to do this in a numerically efficient way is the Monte Carlo Independent Col-
umn Method (McICA, Pincus et al., 2003), which only calculates the radiative transfer for
one spectral band in each sub-column. The distribution of the bands over the sub-columns
introduces random noise, but no bias. Since this McICA method is comparatively cheap,
it is the default method used, However, ecRad also provides a choice of other solvers with-
out random noise: Tripleclouds, and SPARTACUS, which also approximately accounts for
sub-grid horizontal transfer. The solver and further namelist parameters specific to ecRad
are set in the module /src/atm_phy_nwp/mo_nwp_ecrad_init and are described in the
ecRad documentation (https://confluence.ecmwf.int/display/ECRAD).

From the radiative fluxes, radiative heating and cooling is calculated, which feeds back
into dynamics and physics. Despite the simplifying assumptions, radiation is still one of
the most expensive parts of the model. Hence, radiation is calculated only on a coarser
radiation grid (see Section 3.10) and at a coarse radiation time step dt_rad (see Sec-
tion 3.7.1). However, radiative heating rates are updated more frequently, so that they
better represent the diurnal cycle of incoming solar radiation.

3.8.2. Saturation Adjustment
Section author

A. Seifert, DWD Physical Processes Division

In ICON, the atmospheric state which enters the fast physics parameterizations has already
been updated by the dynamical core (see Figure 3.8). As a consequence it is no longer
guaranteed that vapor and liquid phase are in equilibrium. Hence supersaturated but
cloud-free regions might exist, as well as sub- or supersaturated but cloudy ones.

The aim of a saturation adjustment scheme is to adjust the temperature and water vapor
mixing ratio to perfect saturation in supersaturated regions. In subsaturated but cloudy
regions, cloud water is evaporated until either saturation is reached or all cloud water is
evaporated. From a cloud microphysical point of view the saturation adjustment scheme
describes the processes of condensation and evaporation of cloud droplets.

In atmospheric models this adjustment process is usually treated isobarically. In ICON,
however, it is treated isochorically, which is a consequence of ICON’s physics-dynamics
coupling strategy.

We start the description of the saturation adjustment scheme with a short derivation of the
temperature equation emphasizing the difference between the enthalpy (constant pressure)
and internal energy (constant volume) formulation and including water vapor and liquid

96

https://confluence.ecmwf.int/display/ECRAD

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

water. For a more complete derivation of the prognostic temperature equation see, e.g.,
Doms and Baldauf (2018).

To derive the prognostic temperature equation one uses the specific internal energy u or the
specific enthalpy h = u+pv as a starting point. While the internal energy is appropriate for
processes at constant volume, enthalpy would be chosen for processes at constant pressure.
The prognostic temperature equation is derived as an expansion of either h or u as a
function of temperature T , mass fractions of dry air qd, water vapor qv and liquid water
qℓ and either specific volume v or pressure p.

dh

dt
= ∂h

∂p

∣∣∣∣
T, qk

dp

dt
+ ∂h

∂T

∣∣∣∣
p, qk

dT

dt
+
∑

k=d,v,ℓ

∂h

∂qk

∣∣∣∣
p, T

dqk
dt

du

dt
= ∂u

∂v

∣∣∣∣
T, qk

dv

dt
+ ∂u

∂T

∣∣∣∣
v, qk

dT

dt
+
∑

k=d,v,ℓ

∂u

∂qk

∣∣∣∣
v, T

dqk
dt

With

cp = ∂h

∂T

∣∣∣∣
p, qk

cv = ∂u

∂T

∣∣∣∣
v, qk

and
∑
qk = 1 and no phase transitions involving dry air, and therefore dqv/dt = −dqℓ/dt,

we find:

dh

dt
= ∂h

∂p

∣∣∣∣
T, qk

dp

dt
+ cp

dT

dt
+ (hℓ − hv)

dqℓ
dt

du

dt
= ∂u

∂v

∣∣∣∣
T, qk

dv

dt
+ cv

dT

dt
+ (uℓ − uv)

dqℓ
dt

Now we use conservation of energy, i.e. dh = 0 or du = 0, and constant pressure or constant
volume respectively, and find:

cp
dT

dt
= −(hℓ − hv)

dqℓ
dt

= LℓvIℓ, p = const. (3.41)

cv
dT

dt
= −(uℓ − uv)

dqℓ
dt

= L̂ℓvIℓ, V = const. (3.42)

The Lℓv or L̂ℓv are the latent heats of vaporization and Iℓ = dqℓ/dt is the condensation rate
and also known as the ’Phasenfluss’ (in German). The usual latent heat of vaporization
given in most textbooks is the Lℓv or the enthalpy of vaporization. At 0◦C it has a value
of Lℓv,0 = 2.501 × 106 J kg−1. The corresponding internal energy of vaporization L̂ℓv can
be derived from hk = uk + pvk and with vℓ ≪ vd and pvv = RvT we find

L̂ℓv = Lℓv − pvv = Lℓv −RvT

Saturation adjustment is a parameterization of condensation which assumes that vapor
and liquid phase are in equilibrium, i.e., by saturation adjustment we want to ensure or
realize this equilibrium. Therefore we simply assume that the final state with temperature

97

3.M
odelD

escription

ICON Model Tutorial

T1 has a vapor mass fraction of qv,1 = qsat(T1) inside the cloud, i.e., whenever qℓ > 0. From
the temperature equation at constant volume (3.42) we find

cvd(T1 − T0) + L̂ℓv(qsat(T1) − qv,0) = 0 .

Note that we have now replaced cv by the specific heat of dry air at constant volume cvd
and, hence, made the usual approximation to neglect the differences in the specific heats
between dry air, vapor and liquid water in the temperature term. This is justified because
qv and ql are usually small.

This equation is solved for T1, e.g., using a Newton iteration

Tn+1
1 = Tn1 − F (Tn1)

F ′(Tn1) ,

with

F (T1) = T1 − T0 + L̂ℓv
qsat(T1) − qv,0

cvd

F ′(T1) = 1 + L̂ℓv
cvd

dqsat
dT

∣∣∣∣
T=T1

.

In ICON the iteration is stopped if either |Tn+1
1 − Tn1 | < 1E − 3 K, or if the number of

iterations exceeds a hard-coded maximum maxiter = 10. Regarding the internal energy
of vaporization L̂ℓv we actually use

L̂ℓv(T) = Lℓv,0 + (cpv − cl)(T − T0) −RvT .

Hence, in addition to the RvT term arising from the Legendre transformation to internal
energy as discussed above, we take into account the linear temperature dependency of the
latent heat of vaporization according to Kirchhoff’s equation3

∂Lℓv
∂T

∣∣∣∣
p, qk

= ∂hv
∂T

∣∣∣∣
p, qk

− ∂hl
∂T

∣∣∣∣
p, qk

= cpv − cl .

This is consistent with the assumption of water vapor as an ideal gas with constant specific
heat capacity.

3.8.3. Cloud Microphysics
Section author

A. Seifert, DWD Physical Processes Division

Microphysical schemes provide a closed set of equations to calculate the formation and
evolution of condensed water in the atmosphere. The most simple schemes predict only the
specific mass content of certain hydrometeor categories like cloud water, rain water, cloud
ice and snow. This is often adequate, because it is sufficient to describe the hydrological

3see e.g. http://glossary.ametsoc.org/wiki/Kirchhoff’s_equation

98

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

cycle and the surface rain rate, which is the vertical flux of the mass content. Microphysical
schemes of this category are called single-moment schemes.

In ICON two single-moment schemes are available, one that predicts the categories cloud
water, rain water, cloud ice and snow (inwp_gscp=1 in the namelist nwp_phy_nml), and
the other that predicts in addition also a graupel category (inwp_gscp=2). Graupel forms
through the collision of ice or snow particles with supercooled liquid drops, a process called
riming.

Most microphysical processes depend strongly on particle size and although the mean size
is usually correlated with mass content this is not always the case. Schemes that predict
also the number concentrations have the advantage that they provide a size information,
which is independent of the mass content. Such schemes are called double-moment schemes,
because both, mass content and number concentration, are statistical moments of the
particles size distribution.

ICON does also provide a double-moment microphysics scheme (inwp_gscp=4), which
predicts the specific mass and number concentrations of cloud water, rain water, cloud
ice, snow, graupel and hail. This scheme is most suitable at convection-permitting or
convection-resolving scales, i.e., mesh sizes of 3 km and finer. Only on such fine meshes
the dynamics is able to resolve the convective updrafts in which graupel and hail form.
On coarser grids the use of the double-moment scheme is not recommended.

To predict the evolution of the number concentrations the double-moment scheme includes
various parameterizations of nucleation processes and all relevant microphysical interac-
tions between these hydrometeor categories. Currently all choices regarding, e.g., cloud
condensation and ice nuclei, particle geometries and fall speeds etc. have to be set in the
code itself and can not be chosen via the ICON namelist.

3.8.4. Cumulus Convection
Section author

D. Klocke, DWD Physical Processes Division

Convection is an important process in the atmosphere by contributing to forming the large-
scale circulation to local heavy precipitation through thunderstorms. Parameterizations of
atmospheric moist convection provide the effect of an ensemble of sub-grid convective
clouds on the model column as a function of grid-scale variables. The schemes vertically
mix heat, moisture and momentum. They convert available potential energy into kinetic
energy and produce precipitation as a result of atmospheric instability.

Three steps are taken. First, it is determined if the grid-scale conditions allow for the
occurrence of convection in the column, and a decision is taken if convection is triggered. In
the second step, the tendencies of heat, moisture and momentum changes are determined
with a cloud model, which represents an ascending parcel and its interactions with the
environment. Finally the closure decides on the strength of the convection by determining
the amount of energy to be converted, which is linked to precipitation amount generated
by the convection scheme.

99

3.M
odelD

escription

ICON Model Tutorial

In ICON a bulk mass flux convection scheme is available inwp_convection=1(in the
namelist nwp_phy_nml), which treats three convective cloud types. Only one type - shal-
low, mid-level or deep convection - can exist at a time in a column, which is decided
upon by the trigger function. All three types of convection use a cloud model representing
an ascending plume mixing with its environmental air. The cloud base mass flux closure
differs between the three convection types, with a CAPE (convective available potential
energy) based closure for deep convection, a boundary layer equilibrium closure for shal-
low convection, and a large-scale omega (vertical velocity in pressure coordinates) based
closure for mid-level convection.

The full convection scheme can generally be used for horizontal grids coarser than 5 km,
as some resolution dependent adjustments are implemented for grid spacings smaller than
20 km. For convection permitting simulations (1−3 km horizontal grid spacing) the largest
convective clouds can be resolved by the model and the parameterization parts treating
deep and mid-level convection can be switched off (lshallowconv_only=.TRUE. in the
namelist nwp_phy_nml).

The implemented scheme represents a branch of the Tiedtke-Bechtold convection scheme
used in the IFS model. For further reading we refer to Bechtold et al. (2008), Tiedtke (1989),
Bechtold (2017), ECMWF (2017). Similar to the operational IFS scheme it contains an
improved CAPE closure for deep convection (Bechtold et al., 2014) in order to improve the
representation of the diurnal cycle of convection over land (icapdcycle>0 in the namelist
nwp_phy_nml). Note that in the operational ICON scheme the modified closure is only
applied over land and latitudinally restricted to the tropics (icapdcycle=3).

3.8.5. Cloud Cover
Section author

M. Köhler, DWD Physical Processes Division

To prepare optical properties of clouds for the radiative transfer it is necessary to determine
the best estimate of cloud cover, cloud water and cloud ice as well as the precipitation
quantities, such as snow, rain and graupel if those are required by the radiation calculation.
Note that there are various assumptions in the ICON model on the subgrid distribution
of water, such as the up/down/subsidence regions in convection, a uniform distribution in
microphysics, and a Gaussian distribution in turbulence.

The aim of the diagnostic cloud cover scheme is to combine information from the dif-
ferent parameterizations mentioned above: turbulence, convection and microphysics. The
turbulence scheme provides the sub-grid variability of water due to turbulent motions, the
convection scheme detrains cloud into the anvil and the microphysics scheme describes the
supersaturation due to ice, in other words, the distribution between ice and vapor in cold
situations.

The turbulent variability of water is at the moment prescribed by using a top-hat total
water (the sum of water vapor qv, cloud water qc, and cloud ice qi) distribution with a
fixed width of 10% of total water. Work is in progress to replace this crude assumption
with the total water variance from the turbulence scheme.

100

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

The split between water vapor and cloud ice as determined from the microphysics scheme
is replicated in the diagnostic cloud scheme for the turbulent component of ice clouds.

The convective anvil is calculated by writing an equation for the evolution of cloud cover
that depends on the detrainment of volume (from the convection scheme) and a decay
term with a fixed decay time-scale (taken as 30 min). The diagnostic assumption means
that we can neglect the tendency term on cloud cover so that we arrive simply at the
diagnostic anvil cloud cover that is purely a function of detrainment and decay time-scale.
The liquid and ice cloud water is taken also from the convective updraft properties.

In the end the turbulent and convective clouds are combined with a simple maximum
function.

To emphasize, the cloud cover scheme takes into account the subgrid variability of water
and therefore the associated distribution in water vapor, cloud liquid water and cloud
ice (optional 3D diagnostic output variables tot_qv_dia, tot_qc_dia, tot_qi_dia and
their vertically integrated counterparts tqv_dia, tqc_dia, tqi_dia). They are not equal
to their prognostic grid-scale equivalents (standard output variables qv, qc, qi), yet the
sum of all three water quantities is kept the same. This cloud information is then passed
to the radiation, where additional assumptions are made on the vertical overlap of clouds.

3.8.6. Turbulent Diffusion
Section authors

M. Köhler and M. Raschendorfer,
DWD Physical Processes Division

TKE Scheme for Turbulence.

The TKE turbulence scheme consists of two components: one describing the free tropo-
sphere, and the other for the surface layer.

TURBDIFF. The turbulence scheme TURBDIFF developed by Raschendorfer (2001) is
based on a 2nd-order closure on level 2.5 according to Mellor and Yamada (1982) (MY-
scheme). In this scheme, all pressure correlation terms and dissipation terms, being present
in the system of 2nd-order equations for all the turbulent (co-)variances that can be built
from the dynamically active prognostic model variables, are expressed by the standard
closure assumptions according to Rotta (1951a,b) and Kolmogorov (1968) valid for quasi-
isotropic turbulence. These dynamically active model variables are the horizontal wind
components u and v, vertical wind speed w, a variable related to inner energy (like abso-
lute temperature T , potential temperature θ or virtual potential temperature θv), specific
humidity qv and at least one cloud water variable qc (which is a mass fraction and may be
split into liquid ql and frozen qi cloud water).

Among these 2nd-order moments, only the trace of the turbulent stress tensor, which is
twice the Turbulent Kinetic Energy (TKE), is described by a prognostic equation. Each of
the remaining 2nd-order equations (for the elements of the remaining trace-less stress tensor

101

3.M
odelD

escription

ICON Model Tutorial

and for the other 2nd- order moments) is simplified as diagnostic source term equilibrium
being a linear equation in terms of the governing statistical moments.

Further, correlations between any model variable and source terms of scalar model vari-
ables are neglected in these equations. However, by choosing quasi-conserved scalar vari-
ables (total water content qt = qv + qc and liquid-water potential temperature θl =
θ− Lc

cpd
qc), these correlations are taken into account implicitly as far as local condensation

and evaporation within liquid non-precipitating clouds is concerned. Hence, TURBDIFF
is a moist turbulence scheme, which includes the effect of these sub-grid scale phase tran-
sitions. The required conversion of turbulent fluxes of these conserved variables into those
of absolute temperature, specific humidity and liquid water content is performed by means
of turbulent saturation adjustment, assuming a Gaussian distribution-function for local
saturation-deficiency according to Sommeria and Deardorff (1977).

Finally, application of the horizontal boundary layer approximation reduces the linear
system of diagnostic 2nd-order equilibrium equations to a single column scheme with
only two equations for two diffusion coefficients (one for horizontal wind components and
another for scalar variables), which both are proportional to the square root of TKE
and an integral turbulent length scale. This length-scale rises with height above ground
according to Blackadar (1962) with a further limitation related to the horizontal grid scale.
The desired vertical turbulent fluxes of any prognostic variable can then be calculated by
multiplying the (negative) vertical gradient of the latter with the associated diffusion
coefficient.

One main extension of TURBDIFF (compared with a moist MY-scheme) is the formal
separation of turbulence from a possible non-turbulent part of the subgrid-scale energy
spectrum. This separation is related to additional scale-interaction terms in the prognostic
TKE equation, which describe additional shear production of TKE by the action of other
non-turbulent sub-grid-scale flow patterns (such as wakes generated by sub-grid-scale orog-
raphy, convective currents or separated horizontal circulations). Through this formalism,
the scheme describes Separated Turbulence Interacting with non-turbulent Circulations
(STIC), which allows for a consistent application of turbulence closure assumptions, even
though other sub-grid-scale processes may be dominant within a grid cell. Due to this
extension, the scheme is applicable also above the boundary layer and for very stable
stratification. The Eddy Dissipation Rate (EDR) calculated by TURBDIFF can even be
used to forecast the intensity of Clear Air Turbulence (CAT).

TURBTRAN. The turbulence scheme TURBDIFF is closely related to the scheme
TURBTRAN developed by Raschendorfer (2001) for the surface-to-atmosphere transfer
(SAT), which calculates transport resistances for fluxes of prognostic model variables at
the surface of the Earth. Figure 3.9 illustrates the corresponding sub layers of the surface
layer. In TURBTRAN, a constant flux approximation is applied to the sum of turbulent
and laminar vertical fluxes within the transfer layer (between the rigid surface and the
lowest atmospheric main level of the model). By application of the turbulence scheme at
the top of the lowest atmospheric layer as well as the bottom of this layer (which is the top
of the near surface roughness layer being intersected by roughness elements), a vertical
interpolation function for the turbulent diffusion coefficient is derived between these two
levels and is extrapolated down to the rigid surface. With this preparation, a vertical in-
tegration of the flux gradient representation across the transfer layer provides the desired

102

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

Figure 3.9.: Surface layer as described in the parameterization TURBTRAN of Raschen-
dorfer (2001).

transport resistances for the final bulk representation of SAT fluxes. With this formulation,
scale interaction terms considered through STIC in the turbulence scheme also affect the
transfer resistances; and hence, some additional mixing is automatically introduced for
very large bulk Richardson numbers, as soon as non-turbulent sub-grid-scale motions are
present.

Further, with the described procedure, the determination of a specific roughness length
for scalars is substituted by a direct calculation of the partial resistance of scalar transfer
through the laminar layer and the roughness layer. This partial resistance is dependent on
the near-surface model variables, the aerodynamic roughness length and the Surface Area
Index (SAI), which is a measure of the surface area enlargement by land use.

TURBDIFF and TURBTRAN are the default schemes for atmospheric turbulence and
SAT, respectively, in ICON, and they correspond to inwp_turb =1 (namelist nwp_phy_nml).
While TURBTRAN provides the transfer resistances for scalars and horizontal wind com-
ponents, the final surface fluxes of water vapor and sensible heat are determined in TERRA
as a result of updated surface values for qv and (in case of the upcoming implicit treatment
of surface temperature) also for T . Based on these surface fluxes, an implicit equation for
vertical diffusion is solved as a final part of TURBDIFF. In this procedure also horizontal
momentum and TKE is included, while for these 3 quantities the respective surface con-
centration is used as a lower boundary condition. Currently, a lower zero-concentration
condition is applied for cloud-water and –ice, which is always related to a downward flux
for these quantities. For vertical diffusion of passive tracers, the diffusion coefficient for
scalars is applied, and the lower boundary condition can be specified individually. Al-
though the effect of local condensation and evaporation is considered in the solution of
2nd –order equations, and hence, can amplify the intensity of turbulent vertical mixing,
the direct effect of these additional thermodynamic source-terms in the grid-scale budgets
of heat, water vapor and liquid water is not yet considered.

103

3.M
odelD

escription

ICON Model Tutorial

In the namelist turbdiff_nml several parameters or selectors for optional calculations
related to both schemes can be specified. Through this, TURBDIFF can also be config-
ured as a 3D-turbulence scheme, calculating additionally horizontal shear and providing
also horizontal diffusion coefficients. This horizontal shear is the sum of related turbulent
shear by the mean flow itype_sher>0 and (if ltkeshs=.TRUE.) of additional shear by
larger sub-grid scale non-turbulent horizontal circulations (SHS), which are, for their part,
generated by shear of the mean flow, but are formally separated from isotropic turbulence
in the framework of STIC. Similarly, each horizontal diffusion coefficient is the sum of the
isotropic turbulent diffusion coefficient and an optional additional one related to SHS, pro-
vided that this STIC term is active (ltkeshs=.TRUE.). However, in ICON, the calculation
of horizontal diffusion is not yet connected with these non-isotropic diffusion coefficients
from TURBDIFF. Rather, for the time being, isotropic diffusion coefficients calculated by
a Smagorinsky formulation are automatically used for 3D diffusion.

DualM EDMF for Turbulence and Shallow Convection

The Eddy Diffusivity Mass Flux (EDMF) approach - operational at ECMWF (Köhler et al.,
2011) - is based on the decomposition of the turbulent transports proposed by Siebesma
and Cuijpers (1995) into eddy diffusivity and mass-flux components. This is based on the
idea of unifying the eddy diffusivity and mass-flux concepts that are used in many NWP
and climate models within one unified solver. When generalizing to multiple updrafts Mi

one arrives at the following equation for the flux of a scalar quantity ϕ:

w′ϕ′ = −K∂ϕ̄

∂z
+
∑

i
Mi(ϕ

u
i − ϕ̄).

Here, the mass flux is Mi = ai(wui − w) and K is the diffusion coefficient. The averaging
operators ϕui and ϕ

e act on the updraft and environment fractions, respectively.

To arrive at this equation two assumptions are applied: (i) updraft fraction is small a ≪ 1
and (ii) the flux within the environment w′ϕ′

e
e can be approximated by K-diffusion.

The DualM framework by Neggers et al. (2009) postulates that two mass-fluxes are suf-
ficient to treat the transition from a dry boundary layer to stratocumulus and shallow
cumulus. In particular one dry mass-flux stops at cloud base, while the second moist mass-
flux reaches to cloud top. The continuous area partitioning between the dry and moist
updraft is a function of moist convective inhibition above the mixed layer top. Updraft
initialization is a function of the updraft area fraction and is therefore consistent with the
updraft definition. It is argued that the model complexity thus enhanced is sufficient to
allow reproduction of various phenomena involved in the cloud–subcloud coupling, namely
(i) dry countergradient transport within the mixed layer that is independent of the moist
updraft, (ii) soft triggering of moist convective flux throughout the boundary layer, and
(iii) a smooth response to smoothly varying forcings, including the reproduction of gradual
transitions to and from shallow cumulus convection.

104

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

Smagorinsky-Lilly for LES Application

The 3D sub-grid model of Smagorinsky (1963) with the stability correction of Lilly (1962)
is implemented for LES applications. This scheme writes the eddy viscosity Km as

Km = (Cs∆)2 |S|CB,

with the Smagorinsky constant Cs, the filter width ∆, the norm of the strain rate tensor
|S| and the stability correction factor CB.

The filter width is taken to be ∆ = (∆x∆y∆z)
1
3 . The strain rate tensor is defined as

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
,

whose calculation requires special care due to the triangular grid in ICON. A metric
correction has been developed that treats the horizontal gradients over a sloped orography
given a terrain-following coordinate correctly. The norm of Sij is

|S| =
√

2SijSij .

The stability correction factor CB is given by

CB = (1 − Ri /Prt)
1
2

with the gradient Richardson number Ri = N2

|S̄| and the buoyancy frequency N2 = g
θ0
∂θv
∂z .

The Smagorinsky constant usually has the value of Cs = 0.1−0.2. In the ICON implemen-
tation Cs is set by default to smag_constant =0.23 (namelist les_nml) and the Prandtl
number Prt to turb_prandtl =0.333 (namelist les_nml).

3.8.7. Sub-grid scale orographic drag
Section authors

J.-P. Schulz, DWD Numerical Models Division
M. Köhler, DWD Physical Processes Division

S. Borchert, DWD Numerical Models Division

ICON treats the entire sub-grid scale orographic drag with one model based on the work of
Lott and Miller (1997). Other NWP models treat scales smaller than ∼ 5 km with different
ansatzes, for example with the help of turbulent orographic form drag formulations of the
use of an effective roughness length that determines the conductivity of the surface for
momentum fluxes between the atmosphere and the Earth.

The motivation for the implementation of a sub-grid scale orographic drag model into
ICON traces back to experience with the COSMO model. When the 7-km EU domain
of the operational COSMO model at DWD was expanded in order to cover almost all
Europe (see Schulz, 2006), it turned out that the surface pressure in the model forecasts
became systematically biased. In particular, in wintertime high pressure systems of the
model atmosphere tended to develop a positive pressure bias, by 1 to 2 hPa after 48 h, low

105

3.M
odelD

escription

ICON Model Tutorial

pressure systems a negative bias (“highs too high, lows too low”). At the same time the
wind speed tended to be overestimated by up to 1 m s−1 throughout the entire troposphere.
The wind direction near the surface showed a positive bias.

The combination of these deficiencies led to the hypothesis that in the model there is too
little surface drag, causing an underestimation of the cross-isobar flow in the planetary
boundary layer. Consequently, the solution would be to increase the surface drag in the
model. This may be accomplished, for instance, by introducing an envelope orography
(Wallace et al., 1983, Tibaldi, 1986), but this has unfavorable effects, e.g., for the simulated
precipitation. Another option is the inclusion of sub-grid scale orographic (SSO) effects,
which were neglected in the COSMO model before. The SSO scheme by Lott and Miller
(1997) was selected for this purpose. Its implementation in the COSMO-EU model is
described in Schulz (2008), and was later transferred to the ICON model.

The SSO scheme by Lott and Miller (1997) deals explicitly with a low-level flow which
is blocked when the sub-grid scale orography is sufficiently high. For this blocked flow
separation occurs at the mountain flanks, resulting in a form drag. The upper part of
the low-level flow is lead over the orography, while generating gravity waves4. In order to
describe the low-level flow behavior in the SSO scheme a non-dimensional height Hn of
the sub-grid scale mountain is introduced

Hn = NH

|U |
= Fr−1 ,

where H is the maximum height of the mountain, |U | is the wind speed and N is the
Brunt-Väisälä frequency of the incident flow. The latter is defined by

N =
√
g

θ

∂θ

∂z
,

where θ is the potential temperature, g the acceleration of gravity and z the height coor-
dinate. Hn may be also regarded as an inverse Froude number Fr−1 of the system “flow
round a mountain”.

A small Hn means that there is an unblocked regime, all the flow goes over the mountain
and gravity waves (GWs) are forced by the vertical motion of the fluid. A large Hn means
that there is a blocked regime, the vertical motion of the fluid is limited and part of the
low-level flow goes around the mountain. The SSO scheme requires four external param-
eters, which are the standard deviation SSO_STDH, the anisotropy SSO_GAMMA, the slope
SSO_SIGMA and the geographical orientation SSO_THETA of the sub-grid scale orography.
Following Baines and Palmer (1990) these are computed by ExtPar (see Section 2.4.1) from
the GLOBE data set (GLOBE-Task-Team, 1999), which has a resolution of approximately
1 km.

Four tuning parameters in the namelist nwp_tuning_nml control the SSO scheme (see
Figure 3.10). First, the critical Froude number Frc = tune_gfrcrit, which has a twofold
effect. The larger its value the higher the likelihood for low-level blocking to occur, since
it is activated only where Fr < Frc. Conversely, where Fr > Frc all flow goes over the
mountain and the entire stress is associated with GW radiation. In addition, if blocking is

4Propagating, coherent structures consisting of buoyancy and inertial oscillations.

106

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

SSO
momentum

g r i d c e l l c o l u m n

gravity

waves

breaking

level

drag

drag

tune_grcrit

tune_gfrcrit

tune_gkwake

tune_gkdrag

S u b - g r i d s c a l e o r o g r a p h i c d r a g

drag

g r i d c e l l c o l u m n

launch

level

weather

gravity

waves

breaking

level

tune_gfluxlaun

Non-orograph ic g rav i t y wave d rag

Figure 3.10.: Left: Schematic illustration of the two elements of sub-grid scale orographic
drag: First, the low-level blocking, where the horizontal flow (orange) is
forced to flow around the sub-grid scale orography (SSO, colored gray). Sec-
ond, the gravity wave drag on the flow forced to overflow the SSO, and on
the flow at higher altitudes, where the radiated gravity waves (white-blue)
break. (Following Figure 1 in Lott and Miller (1997).) Right: Schematic
illustration of the non-orographic gravity wave drag.

active, Frc controls the thickness of the blocking layer relative to the mountain height (the
larger Frc the larger the layer thickness). Its default value is 0.4. Operational simulations
with horizontal mesh sizes of 13 km and 40 km use the values 0.333 and 0.425, respectively.
Second and third, the magnitudes of the SSO drag and the GW drag are directly propor-
tional to the parameters tune_gkwake and tune_gkdrag, respectively. The default values
are 1.5 and 0.075. Different from this, operational simulations with 13 km horizontal mesh
size use tune_gkwake = 1.8 and tune_gkdrag = 0.09. Finally, the critical Richardson
number Ric = tune_grcrit is a control parameter for the onset of GW breaking. If the
Richardson number of the resolved atmospheric state plus the unresolved GWs

Ri = N2
tot

|∂utot/∂z|2
,

where u denotes the horizontal wind vector, falls below Ric, the flow configuration becomes
unstable and the GWs break (partly). This process is accompanied by a drag effect on the
resolved horizontal flow. Combined with the rule of thumb that Ri decreases with height if
GWs are present, this means that the larger the value of Ric the lower the altitude where
the radiated GWs tend to break and exert a drag. The default value is 0.25.

The scheme computes tendencies of the horizontal wind and the temperature. A detailed
description can be found in ECMWF (2018a).

107

3.M
odelD

escription

ICON Model Tutorial

3.8.8. Non-orographic gravity wave drag
Section authors

M. Köhler, DWD Physical Processes Division
S. Borchert, DWD Numerical Models Division

All kinds of (synoptic-scale) atmospheric flow structures (e.g., fronts, convection, jet
streams) can develop imbalances that force air parcels to oscillate (vertically) and ra-
diate gravity waves (GWs). The interaction of these non-orographically forced GWs with
the atmospheric background flow is assumed to be significant in the middle and upper
atmosphere, and is consequently of interest for models that cover this region (e.g., the
operational global ICON configuration with its model top at 75 km). If the synoptic scale
flow (be it resolved or unresolved by the model) would force GWs, whose horizontal and
vertical wave lengths would be smaller than the horizontal and vertical grid mesh sizes,
they cannot be resolved by the model. But yet this unresolved part of the GW spectrum
could have a significant impact on the resolved flow, and is therefore parameterized (see
Figure 3.10).

The parameterization implemented in ICON follows the ansatz of Scinocca (2003) and
McLandress and Scinocca (2005), which in turn is based on the work of Warner and
McIntyre (1996) to which the simplifying assumption of a hydrostatic, non-rotational
atmosphere has been applied. The parameters of this scheme have been optimized following
Ern et al. (2006). Details can be found in Orr et al. (2010).

The mechanisms of non-orographic GW forcing can be relatively complex and are not
completely understood. For this reason the parameterization assumes a constant source of
GWs. The amount of GWs radiated by this idealized source is directly proportional to the
namelist parameter tune_gfluxlaun (nwp_tuning_nml). Its default value is 0.0025 Pa.

The scheme computes tendencies of the horizontal wind and the temperature. A detailed
description can be found in ECMWF (2018b).

3.8.9. Lake Parameterization Scheme FLake
Section author

D. Mironov, DWD Physical Processes Division

Lakes significantly affect the structure and the transport properties of the atmospheric
boundary layer. The interaction of the atmosphere with the underlying surface strongly
depends on the surface temperature.

In numerical weather prediction (NWP), a simplified approach is often taken that amounts
to keeping the water surface temperature constant over the entire forecast period. This
approach is to some extent justified for ocean and seas. It is hardly applicable to lakes where
diurnal variations of the water surface temperature reach several degrees. The situation is
even more grave for frozen lakes as the diurnal variations of the ice surface temperature
may exceed ten degrees.

Initialization of the NWP model grid boxes that contain water bodies also presents con-
siderable difficulties. When no observational data for some grid boxes are available, those

108

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

grid boxes are initialized by means of interpolation between the nearest grid-boxes for
which the water surface temperature is known (the interpolation procedure may account
for some other variables, e.g., two-meter temperature over land). Such procedure is ac-
ceptable for sea points where large horizontal gradients of the water surface temperature
are comparatively rare, but it is hardly suitable for lakes. Lakes are enclosed water bodies
of a comparatively small horizontal extent. The lake surface temperature has little to do
with the surface temperature obtained by means of interpolation between the alien water
bodies.

In NWP, the lake surface temperature (i.e., the surface temperature of lake water or lake
ice) is a major concern. It is this variable that communicates information between the
lake and the atmosphere, whereas details of the vertical temperature distribution (e.g.,
the temperature near the lake bottom) are of minor importance. Therefore, simplified
lake models (parameterization schemes), whose major task is to predict the lake surface
temperature, the lake freezing and the ice break-up, should be sufficient for NWP and
related applications.

The NWP model ICON (as well as COSMO) utilizes the lake parameterization scheme
FLake (Mironov, 2008, Mironov et al., 2010, 2012). FLake is based on a two-layer paramet-
ric representation of the evolving temperature profile. The structure of the stratified layer
between the upper mixed layer and the basin bottom, the lake thermocline, is described
using the concept of self-similarity (assumed shape) of the temperature-depth curve. The
same concept is used to describe the temperature structure of the thermally active upper
layer of bottom sediments and of the ice and snow cover. In this way, the problem of
solving partial differential equations (in depth and time) for the temperature and turbu-
lence quantities is reduced to solving ordinary differential equations (in time only) for the
time-dependent parameters that specify the temperature profile.

The approach is based on what is actually “verifiable empiricism”. However, it still incor-
porates much of the essential physics and offers a very good compromise between physical
realism and computational economy. FLake incorporates the heat budget equations for the
four layers in question, viz., snow, ice, water and bottom sediments, developed with due re-
gard for the volumetric character of the solar radiation heating. An entrainment equation
is used to compute the depth of a convectively-mixed layer, and a relaxation-type equation
is used to compute the wind-mixed layer depth in stable and neutral stratification. Simple
thermodynamic arguments are invoked to develop the evolution equations for the ice and
snow depths.

Empirical constants and parameters of FLake are estimated, using independent empirical
and numerical data. They should not be re-evaluated when the scheme is applied to a
particular lake. In this way, the scheme does not require re-tuning, a procedure that may
improve an agreement with a limited amount of data but should generally be avoided.
Further information about FLake can be found at http://lakemodel.net.

FLake is activated within ICON if the namelist parameter llake (lnd_nml) is set .TRUE.,
which is the default operational setting at DWD.

FLake requires two external parameter fields. These are the fields of lake fraction (area
fraction of a given numerical-model grid box covered by the lake water) and of lake depth.
These external parameter fields are generated with the ExtPar software (see Section 2.4)

109

http://lakemodel.net

3.M
odelD

escription

ICON Model Tutorial

using the Global Lake Database (Kourzeneva, 2010, Kourzeneva et al., 2012, Choulga et al.,
2014).

ICON makes use of a tile approach to compute the grid-box mean values of temperature
and humidity (and of other scalars) and the grid-box mean fluxes of momentum and scalars.
FLake is applied to the ICON grid boxes whose lake fraction exceeds a threshold value;
otherwise the effect of sub-grid scale lakes is ignored. Currently, the value of 0.05 is used
(see the namelist variable frlake_thrhld (lnd_nml)).

In the current ICON configuration, the lake depth is limited to 50 m. For deep lakes,
the abyssal layer is ignored, a “false bottom” is set at a depth of 50 m, and the bottom
heat flux is set to zero. The bottom sediment module is switched off, and the heat flux
at the water-bottom sediment interface (or at false bottom) is set to zero. The setting
lflk_botsed_use=.FALSE. is hard-coded in mo_data_flake.f90.

Snow above the lake ice is not considered explicitly. The effect of snow is accounted for
in an implicit manner through the temperature dependence of the ice surface albedo with
respect to solar radiation Mironov et al. (2012). There is no logical switch to deactivate
the snow module of FLake. It is sufficient to set the rate of snow accumulation to zero
(hard-coded in mo_flake.f90). Without explicit snow layer of the lake ice, the snow depth
over lakes is set to zero and the snow surface temperature is set equal to the ice surface
temperature.

The attenuation coefficient of lake water with respect to solar radiation is currently set to
a default “reference” value for all lakes handled by ICON. It would be advantageous to
specify the attenuation coefficient as a global external parameter field. This can be done
in the future as the information about the optical properties of lakes becomes available
(not the case at the time being).

Generally, no observational data are assimilated into FLake, i.e., the evolution of the lake
temperature, the lake freeze-up, and break-up of ice occur freely during the ICON runs.
An exception are the Laurentian Great Lakes of North America. Over the Laurentian
Great Lakes, the observation data on the ice fraction (provided by the ICON surface
analysis scheme) are used to adjust the ice thickness, the ice surface temperature, and
(as needed) the water temperature. See the subroutine flake_init in mo_flake.f90 for
details. The use of the ice-fraction data over Great Lakes is controlled by the namelist
parameter use_lakeiceana (initicon_nml).

Finally, a word of caution is in order. Running ICON with the lake parameterization
scheme switched off (llake=.FALSE.) is not recommended as this configuration has never
been comprehensively tested at DWD.

3.8.10. Sea-Ice Parameterization Scheme
Section author

D. Mironov, DWD Physical Processes Division

A major task of the sea-ice parameterization scheme for NWP is to predict the existence
of ice within a given atmospheric-model grid box and the ice surface temperature. The
sea-ice scheme used within ICON NWP accounts for thermodynamic processes only, i.e.,

110

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

no ice rheology is considered (cf. the sea-ice scheme for climate modeling). The hori-
zontal distribution of the ice cover, i.e., the fractional area coverage of sea ice within a
given grid box, is governed by the data assimilation scheme. A detailed description of
the sea-ice scheme for ICON NWP is given in Mironov et al. (2012), where a system-
atic derivation of governing equations, an extensive discussion of various parameterization
assumptions and of the scheme disposable parameters, and references to relevant publica-
tions can be found. Further comments can be found directly in the code, see the module
src/lnd_phy_schemes/mo_seaice_nwp.f90.

A distinguishing feature of the ICON NWP sea-ice scheme is the treatment of the heat
transfer through the ice. As different from many other sea-ice schemes that solve the
heat transfer equation on a finite difference grid, the present scheme uses the integral, or
bulk, approach (cf. the lake parameterization scheme FLake, Section 3.8.9). It is based on
a parametric representation (assumed shape) of the evolving temperature profile within
the ice and on the integral heat budget of the ice slab. Using the integral approach, the
problem of solving partial differential equations (in depth and time) is reduced to solving
ordinary differential equations (in time only) for the quantities that specify the evolving
temperature profile. These quantities are the ice surface temperature and the ice thickness.

In the full-fledged scheme outlined in Mironov et al. (2012), provision is made to account for
the snow layer above the ice. Both snow and ice are modeled using the same basic concept,
that is a parametric representation of the evolving temperature profile and the integral
energy budgets of the ice and snow layers (see Mironov (2008) for a detailed discussion
of the concept). In the current ICON configuration, snow over sea ice is not considered
explicitly. The effect of snow is accounted for implicitly (parametrically) through the ice
surface albedo with respect to solar radiation.

A prognostic sea-ice albedo parameterization is used. The sea-ice surface albedo is com-
puted from a relaxation-type rate equation, where the equilibrium albedo and the relax-
ation (e-folding) time scale are computed as functions of the ice surface temperature. In
order to account for the increase of the sea-ice albedo after snowfall events, the ice albedo
is relaxed to the equilibrium “snow-over-ice” albedo. The equilibrium snow-over-ice albedo
is computed as function of the ice surface temperature, and the relaxation time scale is
related to the snow precipitation rate.

The horizontal distribution of the ice cover, i.e., the existence of sea ice within a given ICON
grid box and the ice fraction, is governed by the data assimilation scheme (cf. the treatment
of lake ice). If an ICON grid box has been set ice-free during the initialization, no ice is
created over the forecast period. If observational data indicate open water conditions for a
given grid box but there was ice in that grid box at the end of the previous ICON run, ice
is removed and the grid box is initialized as ice-free. The new ice is formed instantaneously
if the data assimilation scheme indicates that there is sea ice in a given grid box, but there
was no ice in that grid box in the previous model run. The newly formed ice has the surface
temperature equal to the salt-water freezing point. The thickness of newly formed ice is
computed as function of the ice fraction.

ICON utilizes a tile approach to compute surface fluxes of momentum and scalars. For the
“sea-water type” grid boxes, the grid-box mean fluxes are computed as a weighted mean of
fluxes over ice and over open water, using fractional ice cover fi and fractional open-water
cover 1 − fi as the respective weights. Sea ice in a given ICON grid box is only considered

111

3.M
odelD

escription

ICON Model Tutorial

if fi exceeds its minimum value of 0.015, otherwise the grid box is treated as ice free
(see parameter frsi_min hard-coded in mo_seaice_nwp.f90). Likewise, the open-water
fraction less than frsi_min are ignored, and the grid box in question is treated as fully
ice-covered (fi is reset to 1). The ice fraction is determined during the model initialization
and is kept constant over the entire forecast period. If, however, sea ice melts away during
the forecast, fi is set to zero and the grid box is treated as an open-water water grid box
for the rest of the forecast period (prognostic ice thickness is limited from below by a
value of 0.05 m, i.e., a thinner ice is removed). The water-surface temperature of that grid
box is equal to the observed value from the analysis, or is reset to the salt-water freezing
point. The latter situation is encountered when a grid box was entirely covered by ice at
the beginning of the forecast, but the ice melts away during the forecast.

In order to run ICON with the sea-ice parameterization scheme switched off, the namelist
logical switch lseaice (lnd_nml) should set equal to .FALSE.. This configuration has not
been comprehensively tested at DWD and is not recommended.

3.8.11. Land-Soil Model TERRA
Section author

J. Helmert, DWD Physical Processes Division

The soil-vegetation-atmosphere-transfer component TERRA (Schrodin and Heise, 2001,
Heise et al., 2006, Schulz et al., 2016) in the ICON model is responsible for the exchange
of fluxes of heat, moisture, and momentum between land surface and atmosphere. It estab-
lishes the lower boundary-condition for the atmospheric circulation model and considers
the energy and water budget at the land surface fractions of grid points. Based on a multi-
layer concept for the soil, TERRA considers the following physical processes at each of the
tiled land-surface columns, where an uniform soil type with physical properties is assumed:

Radiation

- Photosynthetically active radiation (PAR) is used for plant evapotranspiration
- Solar and thermal radiation budget is considered in the surface energy budget

Biophysical control of evapotranspiration

- Stomatal resistance concept controls the interchange of water between the
atmosphere and the plant

- One-layer vegetation intercepts and hold precipitation and dew, which lowers water
input to the soil and enhances evaporation

- Roots with root-density profile determines the amount of water available for
evapotranspiration in the soil

- Bare-soil evaporation is considered for land-surface fractions without plants.

Heat and soil-water transport

- Implicit numerical methods are used to solve the vertical soil water transport and
soil heat transfer between the non-equidistant layers.

- In the operational model version seven layers are used in the soil.

112

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

- The lower boundary condition for the heat conduction equation is provided by the
climatological mean temperature.

- Surface and sub-surface runoff of water is considered.
- The lower boundary condition is given by a free-drainage formulation.
- A rise of groundwater into the simulated soil column is not represented.
- Soil heat conductivity depends on soil-water content.
- Freezing of soil water and melting of soil ice is considered in hydraulic active soil

layers.

Snow

- TERRA offers a one-layer snow model (operational in ICON-NWP) and a
multi-layer snow model option (for experiments).

- A prognostic snow density, and snow melting process as well as the time dependent
snow albedo are considered

- Surface fractions partly covered with snow are divided in snow-free and
snow-covered parts (snow tiles)

Coupling to the atmosphere

- Application of the turbulence scheme at the lower model boundary
- Roughness length for scalars implicitly considered by calculation of an additional

transport resistance throughout the turbulent and laminar roughness layer.

TERRA requires a number of external parameter fields, see Section 2.4 for details.

The Tile Approach

The tile approach addresses the problem of calculating proper cell-averaged surface fluxes
in the case of large subgrid variations in surface characteristics. The basic idea following
Avissar and Pielke (1989) is depicted in Figure 3.11. If patches of the same surface type
occur within a grid box, they are regrouped into homogeneous classes (tiles). The surface
energy balance and soil physics are then computed separately for each tile, using parame-
ters which are characteristic of each surface type (roughness length, leaf area index, albedo,
. . .). The atmospheric fields which enter the computations, however, are assumed uniform
over the grid cell, i.e. the so-called blending height is located at the lowermost atmospheric
model level. The contributions from different tiles are then areally weighted to provide the
cell-averaged atmospheric forcing. Note that in this approach the geographical distribution
of subgrid heterogeneities is not taken into account.

In ICON, the number of surface tiles is specified by the parameter ntiles (lnd_nml).
Setting ntiles=1 means that the tile approach is switched off, i.e. only the dominant
land-surface type in a grid cell is taken into account. Setting ntiles to a value n > 1, up
to n dominant land tiles are considered per grid cell. Note, however, that for n > 1 the
total number of tiles ntot is implicitly changed to ntot = n+3, with three additional ”water“
tiles classified as ”open water“ (n + 1), ”lake“ (n + 2), and ”sea-ice“ (n + 3). Additional
snow-tiles can be switched on by setting lsnowtile=.TRUE.. In that case the total number

113

3.M
odelD

escription

ICON Model Tutorial

Figure 3.11.: Tile approach for a grid cell containing various surface types. Patches of the
same surface type within a grid box are regrouped into homogeneous classes
(tiles) for which the soil and surface parameterizations are run separately.

of tiles is further expanded to ntot = 2 ·n+ 3, with the first n tiles denoting the land tiles,
the second n tiles denoting the corresponding snow tiles and 3 water tiles as before.

The process of tile generation in ICON works as follows:
During the setup phase, all land-surface types within a grid box are ranked according to
the fractional area f they cover (see Figure 3.12, outer ring). For efficiency reasons, only
the ntiles (typically about 3) dominating ones are represented by tiles, with the others
being discarded (inner ring). If a grid cell contains non-negligible water bodies (f > 5%),
up to 3 more tiles are created (i.e. open water, lake, and sea-ice) even if they are not
among the dominating ones. By this approach, the surface types represented by tiles can
differ from grid cell to grid cell such that the full spectrum of surface types provided by
the land cover data set is retained.

If the model is initialized from horizontally interpolated initial data and ntiles > 1,
a tile coldstart becomes necessary. This can be done by setting ltile_init=.TRUE. and
ltile_coldstart=.TRUE. in the namelist initicon_nml. Each tile is then initialized with
the same cell averaged value. Note that ltile_init=.TRUE. is only necessary, if the initial
data come from a model run without tiles.

Important note:
Naive horizontal interpolation of tile-based variables is incorrect, since the
dominant tiles and/or their internal ranking will most likely differ between
source and target cell. Only aggregated fields can be interpolated!

114

3.
M

od
el

D
es

cr
ip

tio
n

3.8 ICON NWP-Physics in a Nutshell

Figure 3.12.: Tile generation for ntiles=3, for the case of a heterogeneous land surface.
Outer circles show the fractional areas covered by the respective surface-
type for a given grid cell. Inner circles show the selected tiles. Please note
the re-scaling of fractional areas in the inner circle.

3.8.12. Reduced Model Top for Moist Physics

A notable means for improving the efficiency of ICON is depicted in Figure 3.13. The
switch

htop_moist_proc (namelist nonhydrostatic_nml, floating-point value)

allows to switch off moist physics completely above a certain height. Moist physics in-
clude saturation adjustment, grid scale microphysics, convection, cloud cover diagnos-
tic, as well as the transport of all water species but moisture qv. Of course, moist pro-
cesses should only be switched off well above the tropopause. The default setting is
htop_moist_proc=22500 m.

One variant of the implemented horizontal transport scheme for passive scalars is capable
of performing internal substepping. This means that the transport time step ∆t is split into
n (usually 2 or 3) substeps during flux computation. This proves necessary in regions where
the horizontal wind speed exceeds a value of about 80 m s−1. In real case applications, this
mostly happens in the stratosphere and mesosphere. The recommendation for ∆t given in
Section 3.7.1 then exceeds the numerical stability range of the horizontal transport scheme.
To stabilize the integration without the need to reduce the time step globally, transport
schemes with and without internal substepping can be combined. The switch

hbot_qvsubstep (namelist nonhydrostatic_nml, floating-point value)

indicates the height above which the transport scheme switches from its default version
to a version with internal substepping. The default value is hbot_qvsubstep=22500 m.

115

3.M
odelD

escription

ICON Model Tutorial

top_height (TOA)

htop_moist_proc
moist processes off

moist processes on

hbot_qvsubstep

z

Figure 3.13.: Moist physics are switched off above htop_moist_proc, while
tracer substepping is switched on above hbot_qvsubstep. (Remark:
hbot_qvsubstep is allowed to be lower than htop_moist_proc)

Note that substepping is only performed for a particular tracer if a suitable horizontal
transport scheme is chosen. The horizontal transport scheme can be selected individually
for each tracer via the namelist switch ihadv_tracer (transport_nml). Variants of the
transport scheme with internal substepping are indicated by a two-digit number (i.e. 22, 32,
42, 52). These variants mostly differ w.r.t. the accuracy of the polynomial reconstruction
used for the flux estimation. A linear reconstruction is used by the variant 22, whereas 52
uses a cubic reconstruction. See Section 3.6.5 for additional details regarding the transport
algorithm.

If moist physics are switched off above 22.5 km (default for NWP applications), internal
substepping only needs to be applied for specific humidity qv, since the advection of all
other moisture fields is switched off anyway. However, be aware that you must explicitly
enable internal substepping if moisture physics are not switched off, or if other (non-
microphysical) tracers are added to the simulation.

3.9. Variable Resolution Modeling

ICON has the capability for static mesh refinement in horizontal directions (Zängl et al.,
2022). This is realized through a multi-grid approach which means that one or more addi-
tional higher resolution (child) domains can be overlaid on a coarser base (parent) domain.
This base domain can be a regional or a global domain. Each child domain has a defined
parent domain providing lateral boundary conditions, but a parent domain can have sev-
eral child domains. The child domains can be located in different geographical regions and
can also be parent domains for further subdomains. Technically, the number of nested
domains is arbitrary, but of course not all choices would make sense from a physical point
of view.

116

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

Figure 3.14.: Basic example of a multi-grid setup, consisting of a global ICON domain
and a child domain over Europe with half grid spacing. This is similar to
the deterministic forecast setup that is operationally used at DWD with a
horizontal grid spacing of 13 km globally and 6.5 km in the child domain.

parent domainchild domain

feedback

boundary forcing

The multi-grid approach in ICON closely resembles the classical two-way nesting approach
known from many mesoscale models, e.g. MM5 (Grell et al., 1994) or WRF (Skamarock
et al., 2019) but differs in the fact that the feedback is based on a Newtonian relaxation
approach rather than directly replacing the prognostic fields in the parent domain by up-
scaled values from the child domain. It also has to be distinguished from recent uni-grid
approaches, where more cells are added to an existing grid in special areas of interest
(h-refinement), and where the solver computes a single solution for the whole grid. Atmo-
spheric models capable of static h-refinement are e.g. CAM-SE (Zarzycki et al., 2014) and
MPAS-A (Skamarock et al., 2012).

The multi-grid approach easily allows for switching domains on or off at runtime, as well
as intertwining one-way and two-way nested domains. Two-way as opposed to one-way
nesting means that the solution on the child domain is transferred back to the coarser
parent domain every time step by means of a feedback mechanism which is described
below.

The basic multi-grid example shown in Figure 3.14 consists of one global domain and one
regional domain over Europe. The refinement ratio between the parent domain and the
child domain is fixed to a value of 2, i.e. each parent triangle is split into 4 child triangles
as shown in Figure 3.15. Consistent with the refinement ratio of 2, the time steps for
dynamics and physics are automatically halved for each nesting level. Hence, ∆t must be
specified for the base (i.e. coarsest) domain only.

117

3.M
odelD

escription

ICON Model Tutorial

length
l

≈ l/2

Figure 3.15.: Nested grids are constructed by splitting each parent cell into 4 child cells.

The coupling time step ∆t between successive nesting levels is the large (fast physics) time
step described in Zängl et al. (2015), which is usually five times the so-called dynamics
time step limited by the Courant-Friedrichs-Lewy (CFL) stability criterion for horizontal
sound-wave propagation, see Section 3.7.1.

The grids corresponding to the different refinement levels are stored in separate files. The
usual way to establish a parent-child relationship between these grids is to read the header
information from the list of provided grid files:

dynamics_grid_filename (namelist grid_nml, list of string parameters)
This parameter specifies the name(s) of the horizontal grid file(s) and thus implicitly
activates the nesting function. For a global simulation with multiple nests a filename
must be specified for each domain, see Section 4.1.2 for a practical example. Then, the
parent-child relationships can be inferred from the NetCDF attributes uuidOfHGrid
and uuidOfParHGrid, that have been described in Section 2.1.2.

3.9.1. Parent-Child Coupling

This section describes the exchange of information between a single parent and child
domain. As shown in Figure 3.16, a nested domain can conceptually be split into three
areas: A boundary interpolation zone (red), a nudging zone (light gray) and a feedback
zone (blue). Prognostic computations are restricted to the latter two. The nudging zone
only exists for one-way nesting or in limited area mode (LAM), whereas for two-way
nesting the feedback zone directly borders on the boundary zone.

In the following let n and n + 1 denote the begin and end of the current large time step.
Once the model state on the parent domain Mp has been advanced from n to n+ 1, the
states Mn

p and Mn+1
p are used to update the boundary interpolation zone on the child

domain. Hence, the boundary interpolation zone provides the necessary lateral boundary
(forcing) data in order to advance the model state on the child domain from Mn

c to Mn+1
c .

It has a fixed width of 4 cell rows (see Figure 3.16), which is motivated by the technical
constraint that the boundary zone needs to match with parent cell rows (i.e. an odd
number of cell rows is not allowed), combined with the fact that 2 cell rows would not
be sufficient to cover all stencil operations performed in the dynamical core. For example,
the ∇4-diffusion operator (Zängl et al., 2015) requires information from three adjacent cell
rows.

In the feedback zone, the updated model state on the child domain Mn+1
c is transferred (in-

terpolated) back to the parent domain. By this, the parent and child domain remain closely

118

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

Figure 3.16.: General structure of a nested domain. Red: boundary interpolation zone
consisting of 4 cell rows (see enlarged view). Light-gray: nudging zone with
adjustable width, which is only active for one-way nesting and in limited
area mode. Blue: feedback zone. Prognostic computations are performed
in the feedback and nudging zone.

coupled, and the simulation on the parent domain benefits from the higher-resolution re-
sults of the child domain.

In the nudging zone, the model state on the child domain Mn+1
c is nudged towards the

corresponding parent domain state Mn+1
p , in order to accommodate possible inconsisten-

cies between the two domains. The nudging is essentially a relaxation of the prognostic
variables towards the lateral boundary data following Davies (1976). The same method is
applied in limited area mode (see Section 6.2).

Further details on the different zones and the boundary update and feedback mechanism
are given in the following.

Lateral Boundary Update: Parent → Child

The boundary update mechanism provides the child domain with up-to-date lateral bound-
ary conditions for the prognostic variables vn, w, ρ, θv, qk. In order to avoid that parent-to-
child interpolated values of ρ enter the solution of the mass continuity equation, the above
set of variables is extended by the horizontal mass flux ρvn. This will allow for parent-child
mass flux consistency, as described below.

In general, the boundary update works as follows: Let ψnp , ψn+1
p denote any of the above

variables on the parent domain at time steps n and n + 1, respectively. Once the model
state on the parent domain Mp has been updated from n to n+ 1, the time tendency

∂ψp
∂t

=
ψn+1
p − ψnp

∆tp

119

3.M
odelD

escription

ICON Model Tutorial

is diagnosed. Both, the field ψnp at time level n and the tendency ∂ψp

∂t are then interpolated
(downscaled) from the parent grid cells/edges to the corresponding cells/edges of the child’s
boundary zone. With Ip→c denoting the interpolation operator, we get

ψnc = Ip→c

(
ψnp
)

∂ψc
∂t

= Ip→c

(
∂ψp
∂t

)
The interpolated tendencies are generally needed in order to provide the lateral boundary
conditions at the right time levels, since two integration steps are necessary on the child do-
main in order to reach the model state Mn+1

c , with each step consisting of ndyn_substeps
(nonhydrostatic_nml) dynamics sub-steps. E.g. for the first and second (large) integra-
tion step on the child domain the boundary conditions read ψnc and ψnc + 0.5 ∆tp∂ψ/∂t|c,
respectively.

Regarding the interpolation operator Ip→c we distinguish between cell based variables (i.e.
scalars) and edge-based variables (vn and ρvn). For cell based variables a 2D horizontal
gradient is reconstructed at the parent cell center by first computing edge-normal gradients
at edge midpoints, followed by a 9-point reconstruction of the 2D gradient at the cell center
based on radial basis functions (RBF, Narcowich and Ward (1994)). The interpolated value
at the jth child cell center is then calculated as

ψcj = ψp + ∇ψp · d(p, cj) , j ∈ {1 . . . 4} , (3.43)

with ∇ψp denoting the horizontal gradient at the parent cell center, and d(p, cj) the
distance vector between the parent and jth child cell center. The same operator is applied
to cell based tendencies.

To prevent excessive over- and undershoots of ψcj in the vicinity of strong gradients, a
limiter for ∇ψp is implemented. It ensures that

1
β
ψp,min < ψcj < βψp,max ∀ j ∈ {1 . . . 4}

on all four child points, where ψp,min and ψp,max denote the minimum and maximum of ψp,
respectively, on the above-mentioned reconstruction stencil plus the local cell center, and
β = 1.05 is a tuning parameter.

Regarding the interpolation of edge-based variables (i.e. the edge-normal vector compo-
nents vn and ρvn), we distinguish between outer child edges that coincide with the edges
of the parent cell, and inner child edges (see Figure 3.17a).

Edge-normal vector components at the inner child edges are reconstructed by means of
a direct RBF reconstruction using the five-point stencil indicated in Figure 3.17a. For a
given inner child edge the stencil comprises the edges of the corresponding parent cell, and
the two edges of the neighboring parent cells that (approximately) share the orientation
of the inner child edge.

For the outer child edges a more elaborate reconstruction is applied, in order to assure
that the mass flux across a parent edge equals the sum of the mass fluxes across the
corresponding child edges. We start with an RBF reconstruction of the 2D vector of the

120

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

(a) (b)

Figure 3.17.: Horizontal reconstruction stencil for edge-normal vector components at (a)
inner child edges and (b) outer child edges. The child edge under consider-
ation is highlighted in red. Black open dots indicate child edge midpoints,
while black solid dots indicate cell circumcenters. Solid red dots represent
the reconstruction stencil, i.e. the location of the parent edge-normal vec-
tor components entering the reconstruction, and light-blue triangles in (b)
indicate the location of the reconstructed 2D vectors. See the text for de-
tails.

respective variable at the triangle vertices, using the six (five at pentagon points) edge
points adjacent to a vertex (see Figure 3.17b).

The edge-normal vector component ϕ at the child edge is then computed as

ϕce = ϕp + ∇tϕp · d(p, ce) , e ∈ {1, 2} ,

with d(p, ce) denoting the distance vector between the parent and child edge midpoints for
a given parent edge, and ∇tϕp denoting the gradient of the edge-normal vector component
ϕp tangent to the parent edge. The latter is computed by projecting the 2D vectors at the
two vertices of an edge onto the edge-normal direction and taking the centered difference.
Since by construction d(p, c1) = −d(p, c2) holds on the ICON grid, the above mentioned
mass flux consistency is ensured.

It is noted that attempts to use higher-order polynomial interpolation methods, which
are the standard in mesoscale models with regular quadrilateral grids, were unsuccessful
on the triangular ICON grid, because the ensuing equation system led to the inversion of
nearly singular matrices.

In order to minimize interpolation errors, the following modifications from the above inter-
polation procedure are applied: For the thermodynamic variables ρ and θv perturbations
from the reference state rather than the full values are interpolated, in order to reduce
interpolation errors above steep orography.

Rather than interpolating vn and its time tendencies, only the time tendencies are in-
terpolated, and then used to update vn at child level at every dynamics time step. This
methodology has been chosen because the comparatively inaccurate interpolation to the
interior child edges tends to induce small-scale noise in vn. To suppress the remaining

121

3.M
odelD

escription

ICON Model Tutorial

noise arising from the interpolation of the time tendency, a second-order diffusion opera-
tor is applied in the inner half of the boundary interpolation zone on vn, and the default
fourth-order diffusion applied in the prognostic part of the model domain (see Zängl et al.
(2015)) is enhanced in the five grid rows adjacent to the interpolation zone. For the other
prognostic variables, no special filtering is applied near nest boundaries. In the case of
one-way nesting, the second-order velocity diffusion is extended into the nudging zone
of the nested domain, replacing the enhanced fourth-order diffusion. More details on the
nudging zone are given in Section 3.9.1.

For the horizontal mass flux ρvn, the time average over the dynamic sub-steps, which is
passed to the tracer transport scheme in order to achieve mass consistency, is interpolated
instead of time level n. Using the mass flux time tendency that is interpolated as well,
the related time shift is corrected for when applying the boundary mass fluxes at child
level. In the nested domain, the interpolated mass fluxes valid for the current time step
are then prescribed at the interface edges separating the boundary interpolation zone from
the prognostic part of the nested domain. Due to the flux-form scheme used for solving the
continuity equation (see Zängl et al. (2015)), this implies that the interpolated values of
ρ do not enter into any prognostic computations in the dynamical core. They are needed,
however, for some computations in the transport scheme. Moreover, no mass fluxes at
interior child edges are used, so that the non-conservative interpolation method used for
those edges does not affect the model’s conservation properties. For θv and the tracer
variables qk, the values at the edges are reconstructed in the usual manner (see Zängl et al.
(2015)) and then multiplied with the interpolated mass fluxes before computing the flux
divergences.

Feedback: Child → Parent

If two-way nesting is activated (lfeedback=.TRUE., namelist grid_nml), the model state
Mn+1

p on the parent domain is relaxed towards the updated model state Mn+1
c on the child

domain at every fast physics time step. In the following we will refer to this as relaxation-
type feedback. It is restricted to the prognostic variables vn, w, θv, ρ plus specific humidity qv
and the specific contents of cloud water qc and cloud ice qi5. Precipitating hydrometeors
are excluded because recommended relaxation times (see below) are longer than their
typical falling times. Surface variables are excluded as well because they can easily adjust
during runtime and a proper treatment of feedback along land-cover inhomogeneities (e.g.
coastlines) would be complicated and probably computationally expensive.

Let ψ denote any of the above mentioned variables. Conceptually, the feedback mechanism
is based on the following three basic steps:

1. Upscaling: The updated field ψn+1
c is interpolated (upscaled) from the child domain

to the parent domain. The upscaling operators for cell based and edge based variables
will be denoted by Ic→p and Ice→p, respectively.

2. Increment computation: The difference between the solution on the parent do-
main ψn+1

p and the upscaled solution Ic→p(ψn+1
c) is computed.

5Note that when programming ICON the feedback mechanism can easily be switched on for additional
tracers by adding the meta-information lfeedback=.TRUE. to the corresponding add_ref-call, see also
Section 9.3.

122

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

3. Relaxation: The solution on the parent domain is relaxed towards the solution
on the child domain. The relaxation is proportional to the increment computed in
Step 2.

For cell based variables the upscaling consists of a modified barycentric interpolation from
the four child cells to the corresponding parent cell:

Ic→p(ψc) =
∑4

j=1
αjψcj .

The weights αj are derived from the following constraints (3.44)–(3.46). First of all, a
desirable property for the value interpolation is that it reproduces constant fields, i.e. the
weights are normalized: ∑4

j=1
αj = 1 . (3.44)

Moreover, the interpolation is linear: With the four child cell circumcenters xj (j =
1, . . . , 4), and xp denoting the parent cell center, i.e. the interpolation target, we set∑4

j=1
αj(xj − xp) = 0 . (3.45)

To motivate this constraint, consider the special case of equilateral triangles in which
the center point of the inner child cell x1 coincides with the parent center such that the
term (x1 − xp) vanishes. Equation (3.45) now defines a barycentric interpolation within
the triangle spanned by the mass points of the three outer child cells {c2, c3, c4} (see
Figure 3.17a), where the weights {α2, α3, α4} represent the barycentric coordinates.

Of course, the contribution of the point x1 closest to the interpolation target is of particular
importance. Therefore, the underdetermined system of equations (3.44), (3.45) is closed
with a final constraint which reads as

α1 = ac1

ap
, (3.46)

where ac1 and ap denote the inner child and parent cell areas, respectively. In other words,
the inner child cell c1 containing the parent cell circumcenter is given a pre-defined weight
corresponding to its fractional area coverage. This can be interpreted as a conservation
constraint for the special case of a very localized signal at the mass point of the inner child
cell.

In summary, this method can be regarded as a modified barycentric interpolation for the
mass points {x2,x3,x4}, and which accounts for x1 as an additional fourth source point.
A more stringent barycentric interpolation would require an additional triangulation based
on the child mass points. This is done for ICON’s model output on regular lat-lon grids,
see Section 7.1.2.

For velocity points, a simple arithmetic average of the two child edges lying on the parent
edge is taken.

Ice→p(vn,e) = 1
2 [vn,echild 1 + vn,echild 2]

123

3.M
odelD

escription

ICON Model Tutorial

We note that the operator Ic→p is not strictly mass conserving and that strict mass
conservation would require some means of area-weighted aggregation from the child cells
to the parent cells, which is available as an option. The problem with such methods on
the ICON grid is related to the fact that the mass points lie in the circumcenter rather
than the barycenter of the triangular cells. Using an area-weighted aggregation from the
child cells to the parent cells, would map linear horizontal gradients on the child grid into
a checkerboard noise pattern between upward and downward oriented triangles on the
parent grid.

Another difficulty that was encountered in the context of mass conservation is related
to the fact that the density decreases roughly exponentially with height. In the presence
of orography, the atmospheric mass resolved on the model grid therefore increases with
decreasing mesh size, assuming the usual area-weighted aggregation of the orographic raw
data to the model grid. Feeding back ρ is thus intrinsically non-conservative. To keep the
related errors small and non-systematic, and to generally reduce the numerical errors over
steep mountains, perturbations from the reference state are used for upscaling ρ and θv
to the parent grid. A closer investigation of the related conservation errors revealed that
the differences between modified barycentric and area-weighted averaging are (with real
orography) unimportant compared compared to the resolution-dependent conservation
error.

When combining the above mentioned steps, the feedback mechanism for ρ can be cast
into the following form:

ρ∗
p = ρn+1

p + ∆tp
τfb

(
Ic→p(ρn+1

c − ∆ρcorr) − ρn+1
p

)
(3.47)

Here ρn+1
p denotes the density in the parent cell, which has already been updated by

dynamics and physics. The superscript “∗“ indicates the final solution, which includes the
increment due to feedback. ∆tp is the fast physics time step on the parent domain, and
τfb is a user-defined relaxation time scale which has a default value of τfb = 10800 s. This
value is motivated by the wish to exclude small scale transient features from the feedback,
but to fully capture synoptic-scale features. The relaxation time scale is independent of the
relaxed field and can be adjusted by means of the namelist variable fbk_relax_timescale
(gridref_nml). Finally note that the upscaled quantity includes the correction term ∆ρcorr
which has been introduced in order to account for differences in the vertical position
of the child and parent cell circumcenters. At locations with noticeable orography, cell
circumcenter heights at parent cells can differ significantly from those at child cells. If this
is not taken into account, the feedback process will introduce a non-negligible bias in the
parent domain’s mass field. The correction term is given by

∆ρcorr =
(
1.05 − 0.005 Ic→p(θ′n+1

v,c)
)

∆ρref,p ,

with the parent-child difference in the reference density field

∆ρref,p = Ic→p(ρref,c) − ρref,p ,

and the potential temperature perturbation θ′n+1
v,c = θn+1

v,c − θv ref,c. The term ∆ρref,p is
purely a function of the parent-child height difference and can be regarded as a first order
correction term. In order to minimize the remaining mass drift, the empirically determined

124

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

factor (1.05 − 0.005 Ic→p(θ′n+1
v)) was added, which introduces an additional temperature

dependency. Note that the factor 0.005 is close to near surface values of ∂ρ
∂θ which can be

derived from the equation of state. We further note that a possibly more accurate and less
ad hoc approach would require a conservative remapping step in the vertical, prior to the
horizontal upscaling.

Care must be taken to ensure that the feedback process retains tracer and air mass con-
sistency. To this end, feedback is not implemented for tracer mass fractions directly, but
for partial densities. In accordance with the implementation for ρ, we get

(ρqk)∗
p = (ρqk)n+1

p + ∆tp
τfb

[
Ic→p((ρn+1

c − ∆ρcorr)qn+1
k,c) − (ρqk)n+1

p

]
(3.48)

Mass fractions are re-diagnosed thereafter:

qk,p =
(ρqk)∗

p

ρ∗
p

When summing Eq. (3.48) over all partial densities, Eq. (3.47) for the total density is
recovered.

A very similar approach is used for θv. As for ρ, only the increment of θv is upscaled from
the child- to the parent domain and added to the parent reference profile θv ref,p.

θ∗
v,p = θn+1

v,p + ∆tp
τfb

(
Ic→p(θ′n+1

v,c) + θv ref,p − θn+1
v,p

)
The same approach is taken for w, however the full field is upscaled.

w∗ = wn+1 + ∆tp
τfb

(
Ic→p(wn+1

c) − wn+1
p

)
In the case of vn some numerical diffusion is added to the resulting feedback increment in
order to damp small-scale noise.

v∗
n,p = vn+1

n,p + ∆tp
τfb

(
∆vn,p +K ∇2 (∆vn,p)

)
,

with the feedback increment

∆vn,p = Ice→p(vn+1
n,c) − vn+1

n,p ,

and the diffusion coefficient K = 1
12
ap,e

∆tp , where ap,e is the area of the quadrilateral spanned
by the vertices and centers adjacent to the parent’s edge.

Lateral Nudging

If the feedback is turned off, i.e. if one-way nesting is chosen, a nudging of the prognostic
child grid variables towards the corresponding parent grid values is needed near the lateral
nest boundaries in order to accommodate possible inconsistencies between the two grids,

125

3.M
odelD

escription

ICON Model Tutorial

particularly near the outflow boundary. Because lateral boundaries are in general not
straight lines on the unstructured ICON grid, attempts to make an explicit distinction
between inflow and outflow boundaries (e.g. by prescribing vn at inflow boundaries only)
were not successful.

To compute the nudging tendencies, the child grid variables are first upscaled to the par-
ent grid in the same way as for the feedback, followed by taking the differences between
the parent-grid variables and the upscaled child-grid variables. The differences are then
interpolated to the child grid using the same methods as for the lateral boundary con-
ditions (see above). The relaxation uses weighting factors decreasing exponentially from
the inner margin of the boundary interpolation zone towards the interior of the model
domain. Its width and the relaxation time scale have default values of 8 cell rows and
0.02 ∆τ (dynamics time step), respectively, and the nudging coefficients decay with an
e-folding width of 2 cell rows. These values can be adjusted by means of the namelist pa-
rameters nudge_zone_width, nudge_max_coeff, and nudge_efold_width in the namelist
interpol_nml. See Section 6.2 for additional details on lateral boundary nudging. As al-
ready mentioned, a second-order diffusion on vn is used near the lateral nest boundaries
in order to suppress small-scale noise.

Vertical Nesting

The vertical nesting option allows to set model top heights individually for each domain,
with the constraints that the child domain height is lower or at most equal to the parent
domain height, and that the child domain extends into heights where the coordinate sur-
faces are flat (see namelist parameter flat_height (sleve_nml) for the SLEVE vertical
coordinate). This allows, for instance, a global domain extending into the mesosphere to
be combined with a child domain that extends only up to the lower stratosphere (see
Figure 3.18). However, a vertical refinement in the sense that the vertical resolution in
the child domain may differ from that in the parent domain is not available. One possi-
ble workaround might be to repeat the model run with the desired vertical resolution in
limited area mode (see Chapter 6).

In order to reduce the top height for child domains, the namelist parameter num_lev
(run_nml), which specifies the number of vertical levels in each domain, must be adapted. In
addition, vertical nesting must be enabled by setting lvert_nest=.TRUE.. See Section 3.4
for details.

Vertical nesting requires appropriate boundary conditions for all prognostic variables to
be specified at the vertical nest interface level, i.e. the uppermost half level of the nested
domain. This is crucial in order to prevent vertically propagating sound and gravity waves
from being spuriously reflected at the nest interface. For details regarding the derivation
of these boundary conditions, the reader is referred to Zängl et al. (2022).

3.9.2. Processing Sequence

So far, we have focused on the coupling of an individual parent and child domain. The
coupling of multiple and possibly repeatedly nested domains requires a well conceived
processing sequence, whose basics will be described in the following.

126

3.
M

od
el

D
es

cr
ip

tio
n

3.9 Variable Resolution Modeling

Nested Domain

Figure 3.18.: Illustration of ICON’s vertical nesting. Note that the nested domain may
have a lower top level height, while the remaining vertical layers must
match between the nested and the parent domain. Further note that the
parent-nest levels do not coincide in a strict geometrical sense. Differences
exist, caused by the resolution-dependent topography, which are omitted
in this figure for clarity.

Figure 3.19 provides a common example where a global domain is combined with two
repeatedly nested domains (two-way). The global domain is schematically depicted at the
bottom, whereas the nested domains are vertically staggered on top of it. The red and
blue regions show the boundary interpolation zones and feedback zones of the individual
domains, respectively. The integration time step on the global domain is denoted by ∆t.
It is automatically reduced by a factor of 2 when moving to the next child grid level.

The processing sequence for the integration of all domains from time step n to n + 1 is
shown in the flowchart at the lower left of Figure 3.19. The domains are ordered top down.
Open and filled black dots show model states without and with feedback increments, black
arrows indicate time integration, and red and blue arrows indicate lateral boundary data
interpolation and feedback, respectively.

From an abstract point of view, the flow control of ICON’s hierarchical nesting scheme
is handled by a recursive subroutine that cascades from the global domain down to the
deepest nesting level and for each domain calls the time stepping and the physics pa-
rameterizations in basically the same way as for the global domain. The basic processing
sequence is as follows:

1. A single integration step with ∆t is performed on the global domain which, results
in an updated model state Mn+1

p , indicated by an open black circle.

2. Boundary data are interpolated from the global domain to the first nested domain
(red arrow), followed by an integration step on nested domain 1 over the time interval
∆t/2.

3. As there exists another nested domain within nest 1, boundary fields based on the
model state Mn+1/2

c1 are interpolated to the second nested domain. Afterwards, the

127

3.M
odelD

escription

ICON Model Tutorial

Figure 3.19.: Schematic of a global domain with two repeatedly nested domains (two-
way). The processing sequence for the time integration of all domains from
time step n to n + 1 is shown in the flowchart at the lower left. See the
text for details.

model is integrated on nested domain 2 over two times the time interval ∆t/4, re-
sulting in the model state Mn+1/2

c2 .

4. Feedback is performed from nest 2 back to nest 1 (blue arrow), which results in an
updated model state Mn+1/2∗

c1 on nested domain 1 (black filled dot). Then, on nested
domain 1 the model is again integrated in time to reach model state Mn+1

c1 .

5. This is followed by a second lateral boundary data interpolation from nest 1 to nest 2
based on Mn+1

c1 . Nest 2 is integrated in time again, to reach its state Mn+1
c2 .

6. As a final step, feedback is performed from nest 2 to nest 1, followed by feedback
from nest 1 to the global domain.

3.9.3. Technical and Performance Aspects

Several measures are taken in order to optimize the computational efficiency of the nesting
implementation.

In the model grids, grid points lying at or near the lateral boundary of a nested domain
are shifted to the beginning of the index vector, ordered by their distance from the lateral
boundary. This allows excluding boundary points from prognostic computations accessing
non-existing neighbor points without masking operations. In the present implementation,
the four outer cell rows constituting the boundary interpolation zone (see Figure 3.16),
and the adjacent fifth one participate in the reordering. For additional information on the
grid point reordering see Section 9.1 and in particular Figure 9.2.

The reordering makes use of the grid meta-data field refin_c_ctrl which counts the dis-
tance in units of cell rows (see Figure 2.12). Correspondingly, there are integer flag arrays
for edges and vertices replicating the distance information from the lateral boundary. This
distance information is extended to a larger number of grid rows in order to provide the

128

3.
M

od
el

D
es

cr
ip

tio
n

3.10 Reduced Radiation Grid

geometric information needed for lateral boundary nudging. Moreover, the flag arrays sig-
nify grid points overlapping with a child domain, including a distinction between boundary
interpolation points and interior overlap points.

Regarding distributed-memory (MPI) parallelization, the general strategy adopted in
ICON is to distribute all model domains among all compute processors. As this implies
that child grid points are in general owned by a different processor than the correspond-
ing parent grid point, an intermediate layer having the resolution of the parent grid but
the domain decomposition of the child grid is inserted in order to accommodate the data
exchange required for boundary interpolation and feedback.

To reduce the amount of MPI communication for complex nested configurations, mul-
tiple nested domains at the same nesting level can be merged into one logical domain
which is then not geometrically contiguous. This needs to be done during the grid gener-
ation process by indicating a list of domains via the grid generator’s namelist parameter
merge_domain (see Prill, 2020). The lateral boundary points belonging to all components
of the merged domain are then collected at the beginning of the index vector. For all
prognostic calculations, the multiple domains are treated as a single logical entity, and
just the output files may be split according to the geometrically contiguous basic domains.
As one-way and two-way nesting cannot be mixed within one logical domain, there may
still be two logical domains on a given nest level.

To further optimize the amount of MPI communication, a so-called processor splitting
is available that allows for executing several nested domains concurrently on processor
subsets whose size can be determined by the user in order to minimize the ensuing load
imbalance. This option is currently restricted to the step from the global domain to the
first nesting level in order to keep the technical complexity at a manageable level.

3.10. Reduced Radiation Grid

In real case simulations, radiation is one of the most time consuming physical processes.
It is therefore desirable to reduce the computational burden without degrading the results
significantly. One possibility is to use a coarser horizontal grid for radiation than for
dynamics.

The implementation is schematically depicted in Figure 3.20:

Step 1. Radiative transfer computations are usually performed every 30 minutes. Before
doing so, all input fields required by the radiation scheme are upscaled to the next
coarser grid level.

Step 2. Then the radiative transfer computations are performed and the resulting short
wave transmissivities τSW and longwave fluxes FLW are scaled down to the full grid.

Step 3. In a last step we apply empirical corrections to τSW and FLW in order to incor-
porate the high resolution information about albedo α and surface temperature Tsfc
again. This is especially important at land-water boundaries and the snow line, since
here the gradients in albedo and surface temperature are potentially large.

The reduced radiation grid is controlled with the following namelist switches:

129

3.M
odelD

escription

ICON Model Tutorial

Figure 3.20.: Schematic showing how radiation is computed on a reduced (coarser) grid.

lredgrid_phys = .FALSE./.TRUE. (namelist grid_nml, logical value)
If set to .TRUE. radiation is calculated on a coarser grid (i.e. one grid level coarser)

radiation_grid_filename (namelist grid_nml, string parameter)
Filename of the grid to be used for the radiation model. Must only be specified for
the base domain, since for child domains the grid of the respective parent domain
serves as radiation grid. An empty string is required, if radiation is computed on the
full (non-reduced) grid.

Note that running radiation on a reduced grid is the standard setting for operational
runs at DWD. Using the reduced radiation grid is also possible for the limited area mode
ICON-LAM. In this case, both the computational grid and the reduced radiation grid are
regional grids. Make sure to create the latter during the grid generation process by setting
dom(:)%lwrite_parent = .TRUE., see Section 2.1.5. Internally, the coarse radiation grid
is denoted by the domain index 0.

130

4.
Id

ea
liz

ed
Te

st
s

4. Running Idealized Test Cases

The majority of idealized test cases does not require external parameter or analysis fields
for initialization. Initial conditions are usually computed within the ICON model itself,
based on analytical functions. These are either evaluated point-wise at cell centers, edges,
or vertices, or are integrated over the triangular control volume to provide cell averages.

The ability to run idealized model setups serves as a simple means to test the correctness
of particular aspects of the model, either by comparison with analytic reference solutions
(if they exist), or by comparison with results from other models. Beyond that, idealized
test cases may help the scientist to focus on specific atmospheric processes.

ICON provides a set of pre-defined test cases of varying complexity and focus, ranging from
pure dynamical core and transport test cases to “moist” cases, including microphysics and
potentially other parameterizations. A complete list of available test cases can be found
in the namelist documentation, mentioned in Section 1.1.3.

Individual test cases can be selected and configured by namelist parameters of the namelist
nh_testcase_nml. To run one of the implemented test cases, only a horizontal grid file has
to be provided as input. A vertical grid file containing the height distribution of vertical
model levels is usually not required, since the vertical grid is constructed within the ICON
model itself, based on the set of namelist parameters described in Section 3.4.

From the set of available test cases we choose the Jablonowski-Williamson baroclinic wave
test and Straka density current test and walk through the procedure of configuring and
running these tests in ICON.

4.1. Main Switches for Idealized Test Cases

This section explains several namelist groups and main switches that are necessary for
setting up an idealized model run.

4.1.1. Activating/De-activating Main Model Components

Namelist run_nml:

ltestcase = .TRUE./.FALSE. (namelist run_nml, logical value)
This parameter must be set to .TRUE. for running idealized test cases.

ldynamics = .TRUE./.FALSE. (namelist run_nml, logical value)
Main switch for the dynamical core. If set to .TRUE., the dynamical core is

131

4.Idealized
Tests

ICON Model Tutorial

switched on and details of the dynamical core can be controlled via dynamics_nml,
nonhydrostatic_nml and diffusion_nml. If set to .FALSE., the dynamical core is
switched off completely. This is rarely needed, but can be useful for idealized tests
of physical parameterizations with prescribed dynamical forcing.

ltransport = .TRUE./.FALSE. (namelist run_nml, logical value)
Main switch for the transport of passive tracers. If set to .TRUE., transport
is switched on and details of the transport schemes can be controlled via
transport_nml (see Section 3.6.5 for additional help). If set to .FALSE., transport
of passive tracers is switched off completely.

iforcing = 0/2/3 (namelist run_nml, integer value)
Forcing of dynamics and transport by parameterized processes. If set to 0, forcing is
switched off completely (pure dynamical core test case). This implies that all physical
parameterizations are switched off automatically. If set to 3, dynamics are forced by
NWP-specific parameterizations. Individual physical processes can be controlled via
nwp_phy_nml, see also Table 3.4. If set to 2, the AES parameterization suite is used.
In general, the setting of iforcing depends on the selected test case.

msg_level (namelist run_nml, integer value)
You may increase the model output verbosity by setting this namelist parameter to
a higher value (≤ 20). This option can be particularly useful if the ICON model run
fails and the cause of the error still does not become clear from the error message.

Namelist dynamics_nml:

lcoriolis = .TRUE./.FALSE. (namelist dynamics_nml, logical value)
Main switch for activation/deactivation of the Coriolis force. In general, the setting
depends on the selected test case.

Namelist extpar_nml:

itopo = 0/1 (namelist extpar_nml, integer value)
If set to 1, the model tries to read topography data and external parameters from
file. If set to 0, no input file is required for model initialization. Instead, all initial
conditions are computed within the ICON model itself. Usually, itopo is set to 0 for
running idealized test cases.

4.1.2. Specifying the Computational Domain(s)

ICON’s computational domain(s) is/are specified via the following namelist:

132

4.
Id

ea
liz

ed
Te

st
s

4.1 Main Switches for Idealized Test Cases

Namelist grid_nml:

dynamics_grid_filename (namelist grid_nml, list of string parameters)
Here, the name(s) of the horizontal grid file(s) must be specified. For a global sim-
ulation without nests, of course, only a single filename is required. For a global
simulation with multiple nests a filename must be specified for each domain. Note
that each name must be enclosed by single quotation marks and that multiple names
must be separated by a comma (see the examples below).

Namelist run_nml:

num_lev (namelist run_nml, list of integer value)
Comma-separated list of integer values specifying the number of vertical full levels
for each domain.

Example: Assuming that a global horizontal grid file is provided (named
icon_grid_0014_R02B05_G.nc) the settings for a global run with 40 vertical levels are
as simple as follows:

dynamics_grid_filename = ’icon_grid_0014_R02B05_G.nc’
num_lev = 40

4.1.3. Integration Time Step and Simulation Length

The integration time step and simulation length are defined via the following namelist:

Namelist run_nml:

dtime (namelist run_nml, real value)
Time step in seconds (for the top-most domain). Note that it is not necessary to
specify a time step for each domain. For each nesting level, the time step is auto-
matically divided by a factor of two. More details on ICON’s time step are given in
Section 3.7.1.

nsteps (namelist run_nml, integer value)
Number of time steps. An alternative way for setting the simulation length is to
specify the simulation start and end date, see Section 5.1.1.

Output is controlled by the namelist group output_nml. It is possible to define more than
one output namelist and each output namelist has its own output file attached to it. The
details of the model output specification are discussed in Section 7.

133

4.Idealized
Tests

ICON Model Tutorial

4.2. Jablonowski-Williamson Baroclinic Wave Test

In order to activate the Jablonowski-Williamson baroclinic wave test, select:

nh_test_name =’jabw’ (namelist nh_testcase_nml, string parameter)

The Jablonowski-Williamson baroclinic wave test (Jablonowski and Williamson, 2006) has
become one of the standard test cases for assessing the quality of dynamical cores. The
model is initialized with a balanced initial flow field. It comprises a zonally symmetric base
state with a jet in the mid-latitudes of each hemisphere and a quasi realistic temperature
distribution. Overall, the conditions resemble the climatic state of a winter hemisphere.
This initial state is in hydrostatic and geostrophic balance, but is highly unstable with
respect to baroclinic instability mechanisms. Thus, it should remain stationary if no per-
turbation is imposed.

To trigger the evolution of a baroclinic wave in the northern hemisphere, the initial condi-
tions are overlaid with a weak (and unbalanced) zonal wind perturbation. The perturbation
is centered at 20◦E, 40◦N. In general, the baroclinic wave starts growing observably around
day 4 and evolves rapidly thereafter with explosive cyclogenesis around model day 8. After
day 9, the wave train breaks (see Figure 4.1). If the integration is continued, additional
instabilities become more and more apparent especially near the pentagon points (see Sec-
tion 2.1), which are an indication of spurious baroclinic instabilities triggered by numerical
discretization errors. In general, this test has the capability to assess

• the diffusivity of a dynamical core,

• the presence of phase speed errors in the advection of poorly resolved waves,

• the strength of grid imprinting.

4.2.1. Recommended Namelist Settings

A complete list of the recommended namelist settings is given in Table 4.1. The three pa-
rameters listed below are specific to the Jablonowski-Williamson test case and are therefore
explained in more detail. Default values are given in red.

jw_up = 1.0 (namelist nh_testcase_nml, real value)
Amplitude of the u-perturbation in m s−1. If this parameter is set to 0, the model’s
ability to maintain the initial steady state can be tested.

jw_u0 = 35.0 (namelist nh_testcase_nml, real value)
Maximum zonal wind in m s−1

jw_temp0 = 288.0 (namelist nh_testcase_nml, real value)
horizontal-mean temperature at surface in K

134

4.
Id

ea
liz

ed
Te

st
s

4.2 Jablonowski-Williamson Baroclinic Wave Test

Figure 4.1.: Surface Pressure and 850 hPa Temperature at day 9 for the Jablonowski-
Williamson test case on a global R2B5 grid.

4.2.2. Enabling Passive Tracers

Jablonowski et al. (2008) suggest to add a variety of passive tracers to the baroclinic wave
test case, in order to investigate the general behavior of the advection algorithm. Questions
that can be addressed are

• whether the advection scheme is monotone or positive-definite,

• how accurate or diffusive the advection scheme is,

• whether a constant tracer distribution is preserved (which checks for tracer-air mass
consistency).

In the ICON mode, four different tracer distributions are implemented, whose initial dis-
tributions are depicted in Figure 4.2. See Jablonowski et al. (2008) for further information
on the initial distributions.

Please follow the steps below, in order to enable the transport of one or more predefined
tracers:

• Enable the transport module by activating the main switch ltransport=.TRUE.
(namelist run_nml).

135

4.Idealized
Tests

ICON Model Tutorial

Namelist Parameter Unit Value

nh_testcase_nml nh_test_name ’jabw’

jw_up m/s 1.0

jw_u0 m/s 35.0

jw_temp0 K 288.0

run_nml ltestcase .TRUE.

ldynamics .TRUE.

ltransport .FALSE.

iforcing 0

num_lev 40

dtime s 576

nsteps 1500

dynamics_nml lcoriolis .TRUE.

extpar_nml itopo 0

grid_nml dynamics_grid_filename ’icon_grid014_R02B05_G.nc’

sleve_nml top_height m 35000

nonhydrostatic_nml vwind_offctr 0.2

exner_expol 0.5

damp_height m 25000

rayleigh_coeff 0.1

diffusion_nml hdiff_order 5

itype_vn_diffu 2

itype_t_diffu 2

hdiff_efdt_ratio 20

Table 4.1.: Recommended namelist settings for the global Jablonowski-Williamson baro-
clinic wave test case at a horizontal resolution of ≈ 80 km (R2B05).

• Select one or more tracers from the set of pre-defined tracer distributions depicted in
Figure 4.2. A specific tracer can be selected by adding the respective tracer number
(1,2,3, or 4) to the following namelist variable:

tracer_inidist_list(namelist nh_testcase_nml, list of integer values)
Comma-separated list of integer values. A value of 1 selects tracer q1, 2 selects
q2, and so on. If the list is empty, no passive tracer will be transported.

• Set the total number of tracers ntracer (namelist run_nml) accordingly.

136

4.
Id

ea
liz

ed
Te

st
s

4.2 Jablonowski-Williamson Baroclinic Wave Test

Figure 4.2.: Initial tracer distributions which are available for the Jablonowski-
Williamson test case. Tracer q3 only depends on the latitudinal position,
and tracer q4 is constant.

• Add the selected tracers to the list of output fields in the namelist output_nml
(namelist parameters ml_varlist and/or pl_varlist).

By default, tracers in idealized tests are named qx, where x is a number indicating
the position of the tracer within the ICON-internal 4D tracer container. For this
testcase, tracer 1 is named q1, and so on.

Alternatively, the default names can be overwritten via the namelist variable
tracer_names (namelist transport_nml, comma-separated list of string pa-
rameters). The nth entry in tracer_names corresponds to the nth entry in
tracer_inidist_list.

4.2.3. Activation of Nested Domains

The Jablonowski-Williamson test is well suited to acquaint oneself with ICON’s nesting
capability, which is described in Section 3.9. The test is used e.g. by Zängl et al. (2022)
in order to demonstrate the functionality of the grid nesting and to investigate related
numerical errors.

Activating nested domains requires only a small number of additional namelist settings.
In the following, we assume that three horizontal grid files are given:

137

4.Idealized
Tests

ICON Model Tutorial

Figure 4.3.: Suggested location of nests for the baroclinic wave test case. The perturba-
tion triggering the baroclinic wave is centered at (20◦E, 40◦N) (red circle).

icon_grid_0014_R02B05_G.nc
icon_grid_0014_R02B05_N06_1.nc
icon_grid_0014_R02B05_N06_2.nc,

which contain a global grid and two nested grids at the same nesting level, respectively
(see Figure 4.3 for the suggested location and extent of the nested domains). Additional
information on the grid file naming convention can be found in Section 2.1. One or both
nested domains may be activated by namelist settings:

Example 1: Settings for a global run with nest number 2 and 40 vertical levels each:

dynamics_grid_filename =
’icon_grid_0014_R02B05_G.nc’,’icon_grid_0014_R02B05_N06_2.nc’
num_lev = 40,40

Example 2: Settings for a global run with both nests and 40 vertical levels each:

dynamics_grid_filename =
’icon_grid_0014_R02B05_G.nc’,’icon_grid_0014_R02B05_N06_1.nc’,
’icon_grid_0014_R02B05_N06_2.nc’
num_lev = 40,40,40

The parent-child relationships of the individual domains/nests are inferred automatically
from the NetCDF attributes uuidOfHGrid and uuidOfParHGrid in the grid files, see Sec-
tion 3.9.

4.3. Straka Density Current Test

Another well-known test case for the evaluation and intercomparison of dynamical cores
is the nonlinear 2D density current test case described by Straka et al. (1993). See e.g.
Gallus and Ranĉić (1996), Satoh (2002), Skamarock and Klemp (2008), Guerra and Ullrich
(2016) for example applications.

In this test case a circular shaped bubble of cold air is initialized a few kilometers above
ground in a neutrally stratified (θ = 300 K) and hydrostatically balanced atmosphere at
rest. The Coriolis force is set to zero. When integrated forward in time, the cold air bubble

138

4.
Id

ea
liz

ed
Te

st
s

4.3 Straka Density Current Test

Figure 4.4.: Straka density current test case reference results for ICON with ∆x = ∆z ≈
25 m. Contours show the potential temperature for t = 0 min, 8 min, 15 min,
respectively. The contour interval is 1 K. Due to the symmetry of the setup
only the right moving density current is shown.

accelerates towards the ground and forms two symmetric density currents which spread
laterally along the bottom boundary and form shear-driven Kelvin-Helmholtz (K-H) in-
stabilities along their top (see Figure 4.4). The simulation is scale limited due to the
application of a second order diffusion operator for potential temperature and momentum
with constant diffusion coefficients Kh = Km = 75 m2s−1. The resolvable scales are, hence,
limited by the viscosity of the simulated medium rather than the spatio-temporal reso-
lution. This enables the computation of a grid-converged reference solution. Straka et al.
(1993) showed that for ∆x = ∆z ≈ 25 m the result can be regarded as grid-converged,
since any additional resolution increase does not have a noticeable effect. For visual inter-
comparison Straka et al. (1993) provided reference solutions of various dynamical cores.
The ∆x = ∆z ≈ 25 m reference solution of ICON is shown in Figure 4.4.

139

4.Idealized
Tests

ICON Model Tutorial

The computational domain consists of a quasi 2D torus grid (see Section 2.1.9) with
doubly-periodic boundary conditions and a width of (at least) 40 km in zonal direction1.
In meridional direction, the domain consist of 4 cell rows (see Figure 4.5). Due to technical
reasons it is not possible to further reduce the number of rows, however, the dynamical
core gives identical results for each of these rows. The domain height is set to H = 6400 m,
and the upper and lower boundary are treated as rigid lid (no flux).

Figure 4.5.: Schematic of the quasi-2D Straka test torus grid, which consists of 4 cell
rows in meridional direction. Due to technical reasons it is currently not
possible to further reduce the number of rows.

The initial temperature disturbance is applied to the θ field and is given by

∆T =
{

15.0 cos2 (π
2L
)

, if L ≤ 1
0.0 , if L > 1 ,

with

L =
[(

x− xc
xr

)2
+
(
z − zc
zr

)2
] 1

2

.

The cold bubble is initially located at (xc, zc) = (0 km, 3 km) and has a radius of (xr, zr) =
(4 km, 2 km).

In general, this test can be used to assess (among other things):

• the order of convergence of the dynamical core

• the quality at resolutions much coarser than ∆x = ∆z ≈ 25 m. I.e. which resolution
is necessary in order to resolve all three K-H rotors?

• the magnitude of phase speed errors, by adding a nonzero background wind and com-
paring the right- and left moving currents (see also Skamarock and Klemp (2008)).

A complete list of the recommended namelist settings is given in Table 4.2.

4.3.1. Relevant Namelist Switches in nh_testcase_nml:

We conclude this section by a list of parameters that can be used to modify the Straka
setup. Again, default values are given in red. They do not necessarily coincide with the
recommended Straka settings (see Table 4.2).

1Results are usually compared after t = 15 min simulation time, when the wave front has traveled ap-
proximately 15 km in both directions. Hence, a domain width of 40 km should be sufficient to avoid
significant disturbances along the lateral boundaries.

140

4.
Id

ea
liz

ed
Te

st
s

4.3 Straka Density Current Test

bub_hor_width = 1000.0 (namelist nh_testcase_nml, real value)
Horizontal radius of the thermal perturbation in m

bub_ver_width = 1400.0 (namelist nh_testcase_nml, real value)
Vertical radius of the thermal perturbation in m

bubctr_z = 1400.0 (namelist nh_testcase_nml, real value)
Height of the center of the thermal perturbation in m

bub_amp = 2.0 (namelist nh_testcase_nml, real value)
Maximum amplitude of the center of the thermal perturbation in K

nh_brunt_vais = 0.01 (namelist nh_testcase_nml, real value)
Initial Brunt-Väisälä frequency (constant with height) in s−1

nh_u0 = 0.0 (namelist nh_testcase_nml, real value)
Initial constant zonal wind speed. Can be used to break the symmetry of the Straka
test case (see Section 4.3).

141

4.Idealized
Tests

ICON Model Tutorial

Namelist Parameter Unit Value

nh_testcase_nml nh_test_name ’straka93’

nh_brunt_vais s−1 0.0

bubctr_z m 3000

bub_hor_width m 4000

bub_ver_width m 2000

bub_amp K -15

run_nml ltestcase .TRUE.

ldynamics .TRUE.

ltransport .FALSE.

iforcing 3

num_lev 256

dtime s 0.18

nsteps 6800

dynamics_nml lcoriolis .FALSE.

extpar_nml itopo 0

grid_nml dynamics_grid_filename ’plane-grid_1600_dx25.0.nc’

is_plane_torus .TRUE.

sleve_nml top_height m 6400

min_lay_thckn 0.0

diffusion_nml hdiff_order 3

hdiff_efdt_ratio 10

hdiff_smag_fac 0.12

turbdiff_nml lconst_z0 .TRUE.

const_z0 m 0.0003

nwp_phy_nml inwp_turb 5

les_nml is_dry_cbl .TRUE.

isrfc_type 0

ufric 0.0

smag_coeff_type 2

Km_ext m2s−1 75.0

Kh_ext m2s−1 75.0

Table 4.2.: Recommended namelist settings for the Straka density current test case at
a horizontal resolution of 25 m on a plane torus grid. Please note that all
NWP physics parameterizations except for turbulence (inwp_turb) must be
switched off.

142

5.
R

ea
l-D

at
a

Te
st

s

5. Running Real Data Test Cases

In this chapter you will learn about how to initialize and run the ICON model in a realistic
NWP setup. The namelist settings to start from a DWD Analysis and from an IFS Analysis
are discussed.

5.1. Model Initialization

The necessary input data to perform a real data run have already been described in
Chapter 2. These include

• grid files, containing the horizontal grid information,

• external parameter files, providing information about the Earth’s soil and land prop-
erties, as well as climatologies of atmospheric aerosols, and

• initial data (analysis) for atmosphere, land and sea.

ICON is capable of reading analysis data from various sources (see Section 2.2), includ-
ing data sets generated by DWD’s Data Assimilation Coding Environment (DACE) and
interpolated IFS data. In the following we provide some guidance on how to set up real
data runs, depending on the specific data set at hand.

Note that ICON aborts during the setup phase, if any of the required input files has not
been found. Therefore, as a first step, check the filenames (and soft links) for the model
input files, (see Section 2).

Also make sure that the input data and grid files match. For example, take a look at the
global attributes number_of_grid_used and uuidOfHGrid of the grid file(s). These values
have to match the corresponding attributes of the external parameters and initial data
file(s), see Section 2.1.8.

5.1.1. Basic Settings for Running Real Data Runs

Most of the main switches, that were used for setting up idealized test cases, are also
important for setting up real data runs. As many of them have already been discussed in
Chapter 4, we will concentrate on their settings for real data runs. Settings appropriate
for the exercises on this subject are highlighted in red.

143

5.R
eal-D

ata
Tests

ICON Model Tutorial

DOMAIN 1

NEST DOMAIN

EXPERIMENT

dtime
(fast physics timestep)

grid_nml::
start_time

grid_nml::
end_time

MIN(run_nml::nsteps,
master_time_control_nml::
 experimentStopDate)

master_time_control_nml::
experimentStartDate

Figure 5.1.: Graphical illustration of the parameters for model start and end. The start-
ing and termination of nested domains is explained in Section 5.2. Please
also note Fig. 7.3, in which the program sequence is extended by restart.

Specifying Model Start and End Dates (Namelist time_nml)

For real case runs it is important that the user specifies the correct start date and time of
the simulation, see Fig. 5.1.

In ICON there coexist two equally usable ways to control the experiment start and end date
– without a compelling reason, though. These two alternatives are listed in the following.

Namelist run_nml:
time step dtime modelTimeStep

Namelists time_nml (left) and master_time_control_nml (right):
experiment start ini_datetime_string experimentStartDate
experiment stop end_datetime_string experimentStopDate

Please note that the data types of the above-mentioned namelist parameters differ. The
parameters that are listed on the right are consistently based upon the ISO 8601 represen-
tations of dates and time spans. However, dtime must be specified in seconds.

In the examples of this tutorial, start and end dates are given with ini_datetime_string
using the ISO8601 format:

ini_datetime_string = YYYY-MM-DDThh:mm:ssZ (namelist time_nml)
— This must exactly match the validity time of the analysis data set!

Wrong settings lead to incorrect solar zenith angles and wrong external parameter fields.
Setting the end date and time of the simulation via end_datetime_string is optional. If
end_datetime_string is not set, the user has to set the number of time steps explicitly
in nsteps (run_nml), which is otherwise computed automatically.

General Settings (Namelist run_nml)

ltestcase= .FALSE. (namelist run_nml, logical value)
This parameter must be set to .FALSE. for real case runs.

144

5.
R

ea
l-D

at
a

Te
st

s

5.1 Model Initialization

iforcing= 3 (namelist run_nml, integer value)
A value of 3 means that dynamics are forced by NWP-specific parameterizations.

ldynamics= .TRUE. (namelist run_nml, logical value)
The dynamical core must, of course, be switched on.

ltransport= .TRUE. (namelist run_nml, logical value)
Tracer transport must be switched on. This is necessary for the transport of cloud
and precipitation variables. Details of the transport schemes can be controlled via
the namelist transport_nml (see Section 3.6.5).

Specifying the Horizontal Grid (Namelist grid_nml)

dynamics_grid_filename (namelist grid_nml, list of string parameters)
Here, the name(s) of the horizontal grid file(s) must be specified. For a global sim-
ulation without nests, of course, only a single filename is required. For a global
simulation with multiple nests, a filename must be specified for each domain. Note
that each name must be enclosed by single quotation marks and that multiple names
must be separated by a comma (see Section 4.1.2 and the examples therein).

radiation_grid_filename (namelist grid_nml, string parameter)
If the radiative transfer computation should be conducted on a coarser grid than the
dynamics (one level coarser, effective mesh size 2∆x), the name of the base grid for
radiation must be specified here. See Section 3.10 for further details.

Specifying External Parameters (Namelist extpar_nml)

itopo= 1 (namelist extpar_nml, integer value)
For real data runs this parameter must be set to 1. The model now expects one file
per domain from which it tries to read topography data and external parameters.

extpar_filename (namelist extpar_nml, string parameter)
Filename(s) of input file(s) for external parameters. If the user does not provide
namelist settings for extpar_filename, ICON expects one file per domain to be
present in the experiment directory, following the naming convention

extpar_filename = "extpar_<gridfile>.nc"

The keyword <gridfile> is automatically replaced by ICON with the grid filename
specified for the given domain (dynamics_grid_filename). As opposed to the grid-
file specification namelist variables (see above), it is not allowed to provide a comma-
separated list. Instead, the usage of keywords provides full flexibility for defining the
filename structure.

145

5.R
eal-D

ata
Tests

ICON Model Tutorial

By changing the above setting, the user has full flexibility with respect to
the filename structure. The following keywords are allowed for the namelist
parameter extpar_filename. The keywords are automatically replaced by
ICON with the content described in the right column below.

<path> model base directory
(namelist parameter model_base_dir, namelist master_nml)

<gridfile> grid filename for the given domain (dynamics_grid_filename)
<nroot> grid root division Rx (single digit)
<nroot0> grid root division Rxx (two digits)
<jlev> grid bisection level Byy (two digits)
<idom> domain number (two digits).

Specifying the Initialization Mode (Namelist initicon_nml)

ICON provides different real data initialization modes which differ in terms of the expected
input fields and number of input files. Thereby ICON is able to handle analysis products
from different models. The mode in use is controlled via the namelist switch init_mode.

init_mode (namelist initicon_nml, integer value)
It is possible to

• start from (interpolated) uninitialized DWD analysis without the IAU proce-
dure: init_mode = 1

• start from interpolated IFS analysis: init_mode = 2

• start atmosphere from interpolated IFS analysis and soil/surface from interpo-
lated ICON/GME fields: init_mode = 3

• start from non-interpolated, uninitialized DWD analysis, and make use of the
IAU procedure to filter initial noise: init_mode = 5

• start from interpolated initialized ICON analysis with subsequent vertical
remapping: init_mode=7

The most relevant modes are mode 1, 2, 5 and 7. They will be explained in more detail
below.

ICON supports NetCDF and GRIB2 as input format for input fields. In this context it is
important to note that the field names that are used in the input files do not necessarily
coincide with the field names that are internally used by the ICON model. To address
this problem, an additional input text file is provided, a so-called dictionary file. This
file translates between the ICON variable names and the corresponding GRIB2/NetCDF
short names.

Generally the dictionary is provided via the following namelist parameter:

146

5.
R

ea
l-D

at
a

Te
st

s

5.1 Model Initialization

ana_varnames_map_file (namelist initicon_nml, string parameter)
Filename of the dictionary for mapping between internal names and GRIB2/NetCDF
short names. An example can be found in icon/run/ana_varnames_map_file.txt.

The ICON model contains different map files, sometimes also called dictio-
naries. These plain text files translate between ICON internal variable names
and GRIB2/NetCDF short names. There are several dictionaries that can be
specified in the namelists of ICON.

ana_varnames_map_file (namelist initicon_nml, string parameter)
Used by the input module for first guess and analysis files.
Left column: ICON internal name; Right column: input name, e.g. GRIB2
short name

latbc_varnames_map_file (namelist limarea_nml, string parameter)

Used by the module for lateral boundary conditions.
Left column: ICON internal name; Right column: input name, e.g.
GRIB2 short name

extpar_varnames_map_file (namelist extpar_nml, string parameter)

Used when reading the external parameter file extpar_filename.
This dictionary is practically not used as external parameters are read
directly using the NetCDF library.

output_nml_dict (namelist io_nml, string parameter)
Used by the namelist output module. This dictionary allows to use
GRIB2 short names instead of ICON internal names in the output
namelists of ICON.
Left column: namelist variable name; Right column: ICON internal name
A reasonable choice is to use the same table as for reading the initial data
with inverted columns. This can be achieved with the namelist parameter
linvert_dict (io_nml).

netcdf_dict (namelist io_nml, string parameter)
The NetCDF dictionary can be used when writing to NetCDF files where
variable short names can be chosen freely (in contrast to GRIB2). This
allows to adopt ICON output variable names to already available post-
processing scripts.

5.1.2. Starting from Uninitialized DWD Analysis

This analysis product is rarely the optimal choice for model initialization, as it generates
a significant amount of spurious noise during the first few hours of a model run (see

147

5.R
eal-D

ata
Tests

ICON Model Tutorial

Figure 2.8). Nevertheless, this mode is described for completeness. The process of obtaining
the uninitialized DWD analysis for non-incremental update is described in Section 2.2.1.

Model initialization is basically controlled by the following four namelist parameters:

init_mode = 1 (namelist initicon_nml, integer value)
To start from uninitialized DWD analysis data (without incremental analysis up-
date), the initialization mode must be set to 1.

lread_ana (namelist initicon_nml, logical value)
By default, this namelist parameter is set to .TRUE..

For lread_ana=.TRUE. the ICON model expects two input files per domain. One contain-
ing the ICON first guess (3 h forecast) fields, which served as background fields for the
assimilation process. The other contains the analysis fields produced by the assimilation
process. ICON reads the fields from the first guess file and replaces these subsequently
with fields from the analysis file, where available. See Table 11.2 for a list of variables.

dwdfg_filename (namelist initicon_nml, string parameter)
Filename of the DWD first guess input file.

dwdana_filename (namelist initicon_nml, string parameter)
Filename of the DWD analysis input file.

Remember to make sure that the validity date for the first guess and analysis input file is
the same and matches the model start date given by ini_datetime_string.

Input filenames need to be specified unambiguously, of course. By default, if the user does
not provide namelist settings for dwdfg_filename and dwdana_filename, the filenames
have the form

dwdfg_filename = "dwdFG_R<nroot>B<jlev>_DOM<idom>.nc"
dwdana_filename = "dwdANA_R<nroot>B<jlev>_DOM<idom>.nc"

This means, e. g., that the first guess filename begins with “dwdFG_”, supplemented by the
grid spacing Rx Byy and the domain number DOMii . Filenames are treated case sensitively.1

By changing the above setting, the user has full flexibility with respect to the
filename structure. The following keywords are allowed for the namelist pa-
rameters dwdfg_filename, dwdana_filename and ifs2icon_filename (for
the latter see Section 5.1.5):

<path> model base directory
(namelist parameter model_base_dir, namelist master_nml)

<nroot> grid root division Rx (single digit)
<nroot0> grid root division Rxx (two digits)
<jlev> grid bisection level Byy (two digits)
<idom> domain number (two digits).

1More precisely this behavior depends on the file system: UNIX-like file systems are case sensitive, but
the HFS+ Mac file system (usually) is not.

148

5.
R

ea
l-D

at
a

Te
st

s

5.1 Model Initialization

For lread_ana=.FALSE., only dwdfg_filename has to be specified. This can be used to run
ICON from a first guess file. The combination of init_mode=1 and kwlread_ana=.FALSE.,
however, is rarely used. There is an overlap in possible applications with init_mode=7,
which is usually the better choice due to the flexibility given by the vertical remapping.

5.1.3. Starting from Uninitialized DWD Analysis for IAU

As will be described in Section 11.3.1, IAU is a means to reduce the initial noise which
typically results from small scale non-balanced modes in the analysis data set. Combining
this analysis product with IAU is the preferred method in cases where the horizontal and
vertical grid of the intended forecast run exactly match with that of the analysis. Since
no horizontal interpolation is required, the forecast run can make use of the surface tile
information which is specific to this analysis product. Moreover, this product exhibits the
smallest noise level during model start.

The process of obtaining the uninitialized analysis for IAU is described in Section 2.2.1.

Model initialization is basically controlled by the following namelist parameters:

init_mode = 5 (namelist initicon_nml, integer value)
To start from DWD analysis data with IAU, the initialization mode must be set to 5.

ICON again expects two input files. One containing the ICON first guess, which typically
consists of a 1.5 h forecast taken from the assimilation cycle (as opposed to a 3 h forecast
used for the non-IAU case). The other file contains the analysis fields (mostly increments)
produced by the assimilation process. See Table 11.1 for a full list of variables.

dwdfg_filename (namelist initicon_nml, string parameter)
Filename(s) of the DWD first guess input file(s) for each domain. See Section 5.1.2
for an explanation of the filename structure.

dwdana_filename (namelist initicon_nml, string parameter)
Filename(s) of the DWD analysis input file(s) for each domain. See Section 5.1.2 for
an explanation of the filename structure.

The behavior of the IAU procedure is controlled via the namelist switches dt_iau and
dt_shift:

dt_iau = 10800 (namelist initicon_nml, real value)
Time interval (in s) during which the IAU procedure (i.e. dribbling of analysis incre-
ments) is performed.

dt_shift = -5400 (namelist initicon_nml, real value)
Time (in s) by which the model start is shifted ahead of the nominal model start date
given by ini_datetime_string. Typically dt_shift is set to −0.5 ∗ dt_iau such
that dribbling of the analysis increments is centered around ini_datetime_string.

As explained in Section 11.3.1 and depicted in Figure 5.2, you have to make sure that the
first guess is shifted ahead in time by −0.5 ∗ dt_iau w.r.t. the analysis. The model start
time ini_datetime_string must match the validity time of the analysis.

149

5.R
eal-D

ata
Tests

ICON Model Tutorial

Figure 5.2.: Schematic illustrating typical settings for a global ICON forecast run start-
ing from a DWD analysis with IAU at 00 UTC. IAU (i.e. analysis filtering
by dribbling of analysis increments) is performed over a 3 h time interval
(dt_iau), with the model start being shifted ahead of the nominal start
date by 1.5 h (dt_shift). The validity date of the first guess and analysis
is 22:30 UTC and 00 UTC, respectively.

The secret of iterative IAU: Some of you might have heard about an ICON
feature named iterative IAU, though still wondering what’s behind it. The
iterative IAU combines two model runs which serve two different purposes
into a single model run. This is achieved by means of an ICON-internal loop
structure. It has been implemented for sake of pure convenience.

The first model run is meant to generate a filtered (or initialized) analysis
out of the uninitialized analysis for IAU product. To this end an IAU run is
launched which, in contrast to the standard IAU run described above, uses
a halved asymmetric IAU window of dt_iau=5400 (asymmetric w.r.t. to the
validity time of the analysis increments). The shift of the model start remains
unchanged (i.e. dt_shift=-5400). The model integration stops after 5400 s
(at the nominal start date) and the model state is written to disk. For the
example in Figure 5.2 the stop date would be 00 UTC.

During the asymmetric IAU window, the analysis increments have been fully
incorporated. The resulting model state is termed filtered or initialized analy-
sis. It is equivalent to the initialized analysis product described in Section 2.2.1.

150

5.
R

ea
l-D

at
a

Te
st

s

5.1 Model Initialization

The second model run is a standard forecast run with a centered IAU window,
starting from the uninitialized analysis for IAU product as described earlier
in this Section.

The key point is that both runs are performed within a single model run by
means of an internal loop structure. After ICON’s read-in and initialization
procedure, the first loop iteration stores the model’s initial state, performs
the asymmetric IAU run and saves the resulting initialized analysis to disk.
During the second loop iteration, the model resets to the previously stored
initial state and performs a standard forecast run with a centered IAU window.

The main benefit of merging these runs into a single model run is that the
initial conditions (i.e. first guess and analysis file) have to be read only once,
which saves a decent amount of time in the operational forecast cycle.

The iterative IAU is activated by setting iterative_iau=.TRUE. in the
namelist initicon_nml. Given the namelist parameters dt_shift and
dt_iau, they are applied in the following way during iteration 1 and 2:

iteration I: 0.5 dt_iau dt_shift
iteration II: dt_iau dt_shift

5.1.4. Starting from Initialized DWD Analysis

The initialized analysis is the product of choice in cases where the horizontal and/or verti-
cal grid of the intended model run differs from that of the analysis. Using the uninitialized
analysis for IAU is prohibited in such cases, as the horizontal interpolation of tiled sur-
face fields makes no sense. Moreover, the initialized analysis product is less cumbersome
to use, as it consists of a single file per domain, only. When compared to the standard
uninitialized analysis product, spurious noise is significantly reduced (see Figure 2.8).

The process of obtaining the initialized analysis is described in Section 2.2.1.

Model initialization is basically controlled by the following namelist parameters:

init_mode = 7 (namelist initicon_nml, integer value)
To start from initialized DWD analysis data, the initialization mode must be set to 7.
If the number and or heights of the vertical levels differs between the model and the
analysis, the input fields are automatically remapped in the vertical during read-in.

ICON expects a single input file. See Table 11.3 for a full list of variables.

dwdfg_filename (namelist initicon_nml, string parameter)
Filename(s) of the initialized DWD analysis input file(s) for each domain. Admittedly,
the nomenclature “dwdfg” is a bit counter intuitive, as the file contains the full
analysis rather than the first guess. See Section 5.1.2 for an explanation of the
filename structure.

Remember to make sure that the model start time given by ini_datetime_string
matches the validity date of the input file.

151

5.R
eal-D

ata
Tests

ICON Model Tutorial

5.1.5. Starting from IFS Analysis

No filtering procedure is currently available when starting off from interpolated IFS analy-
sis data. The model just reads in the initial data from a single file and starts the forecast.

The process of obtaining the IFS analysis and its content is described in Section 2.2.2.

init_mode= 2 (namelist initicon_nml, integer value)
To start from interpolated IFS analysis data, the initialization mode must be set to 2.
Note that for this initialization mode only input data in NetCDF format
are supported and the specification of a dictionary file is not possible.

ifs2icon_filename (namelist initicon_nml, string parameter)
ICON expects a single file per domain from which interpolated IFS analysis can be
read. With this parameter, the filename can be specified. Similar to the namelist pa-
rameters dwdfg_filename and dwdana_filename, which have been explained above
in Section 5.1.2, the filenames have the form

ifs2icon_filename = "ifs2icon_R<nroot>B<jlev>_DOM<idom>.nc"

Remember to make sure that the model start time given by ini_datetime_string
matches the validity date of the analysis input file.

5.2. Starting or Terminating Nested Domains at Runtime

Starting or terminating nested domains at runtime is possible by means of the namelist
parameters start_time and end_time in the namelist grid_nml. Model calculations for
the nested domain are performed if the simulation time of the parent domain is greater or
equal to start_time and less than end_time. The settings are graphically illustrated in
Fig. 5.1.

start_time (namelist grid_nml, list of real values)
Comma-separated list of integer values. For each domain, the start time relative
to the experiment start date can be specified in seconds. A value of 0 for the ith
domain means that it is started at experiment start date which is either defined by
ini_datetime_string or experimentStartDate. If Incremental Analysis Update
(IAU) is used, start_time must be set equal to dt_shift (initicon_nml) (i.e.
negative), in order for the nested domain to be active from the very beginning.

end_time (namelist grid_nml, list of real values)
Comma-separated list of integer values. For each domain, the end time relative to
the experiment start date can be specified in seconds. I.e. a value of 3600 specified
for the ith domain means that it is terminated one hour after experiment start.

As discussed in Section 2.2, initial data files are usually required for each nested domain.
With only little loss of forecast skill, this rather tedious procedure can be overcome by
starting the nested domain(s) shortly after the global domain. In that case, nested domains
are initialized by parent-to-child interpolation of the prognostic fields. Note, however, that
surface tile information will be lost. Surface fields on the child domain are initialized with
aggregated values interpolated from the parent domain.

152

6.
Li

m
ite

d
A

re
a

M
od

e

6. Running ICON-LAM

The most important first: Running the limited area (regional) mode of ICON does not
require a separate, fundamentally different executable. Instead, ICON-LAM is quite similar
to the other model components discussed so far: It is easily enabled by a top-level namelist
switch

Namelist grid_nml: l_limited_area = .TRUE.

Other namelist settings must be added, of course, to make a proper ICON-LAM setup.
This chapter explains some of the details.

Chapter Layout. Some of the pre-processing aspects regarding the regional mode have
already been discussed in Section 2.3. Based on these prerequisites this chapter explains
how to actually set up and run limited area simulations.

In the following, technical details on the limited area mode are provided, in particular on
how to control the read-in of initial data and boundary data.

6.1. Limited Area Mode vs. Nested Setups

In Section 3.9.1 the nesting capability of ICON has been explained. Technically, the same
computational grids may be used either for the limited area mode or the nested mode of
ICON1. Furthermore, both ICON modes aim at simulations with finer grid spacing and
smaller scales. They therefore choose a comparable set of options out of the portfolio of
available physical parameterizations.

However, there exist some differences between the regional and the one-way nested mode:

• ICON-LAM is driven by externally supplied boundary data which may come from
a global model or a coarser resolution LAM that has been run in advance – that’s
an obvious difference! During the simulation, boundary conditions are updated at
regular time intervals by reading input files. Between two lateral boundary data
samples the boundary data is linearly interpolated.

• Lateral boundary updates happen (significantly) less frequently compared to one-
way nesting.

• The driving model may be different from the limited area model and may run on
different computer sites. Both models may even differ in terms of the governing
equations as well as numerical methods used.

1Here, we do not take the reduced radiation grid into account, see Section 3.10. This serves to simplify
the discussion at this point.

153

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

• ICON-LAM allows for a more flexible choice of vertical levels: Nested domains may
differ from the global, “driving” grid only in terms of the top level height, but vertical
layers must match between the nested and the parent domain (see Section 3.9.1).
In contrast to that, the limited area mode performs a vertical interpolation of its
boundary data. This is the default namelist parameter setting itype_latbc=1 in
the namelist limarea_nml. The level number and the level heights may therefore be
chosen independently.

• ICON-LAM allows for a more flexible choice of the horizontal resolution. While for
nested setups the increase in horizontal resolution per nesting level is constrained
to a factor of 2, the resolution of the limited-area domain can be freely selected.
However, resolution jumps much larger than a factor of ∼ 5 between the forcing
data resolution and the target resolution should be avoided, since it will negatively
impact the forecast quality.

6.2. Nudging in the Boundary Region

In order to prevent outward-propagating waves from reflecting back into the domain, a
sponge layer is implemented along the lateral boundaries. Within this sponge layer the
interior flow is relaxed towards externally specified boundary data. In addition to this
lateral boundary nudging, upper boundary nudging along the model top can be switched
on by choosing nudge_type =1 (namelist nudging_nml). The default value is 0, i.e. it is
switched off. Figure 6.1 schematically depicts the partitioning of the limited area domain
into the lateral boundary zone, labeled 0, the adjacent lateral nudging zone 1, the upper
nudging zone 2, the nudging overlap zone 3 and the “free” model atmosphere zone 4. In
the lateral boundary zone 0, which has a fixed width of 4 cell rows, externally supplied
boundary data are prescribed.

The mathematical implementation of the sponge layer in the nudging zones follows the
work by Davies (1976, 1983). An additional “forcing” term is added to the right hand side
of the prognostic equations for vn, θv, ρ, and qv and is applied at each fast physics time
step ∆t:

ψ(t) = ψ∗(t) + αnudge [ψbc(t) − ψ∗(t)]︸ ︷︷ ︸
=δψ

, (6.1)

where ψbc is the externally specified value of the prognostic variable ψ at time t, and αnudge
is a dimensionless coefficient that controls the strength of the nudging. This coefficient
gradually decreases with increasing distance from the boundary and is of the form

αnudge =

A0 exp
(

− |r−r0|
µ

)
, if r − r0 ≤ L (in region 1)

B0

(
z−zstart
ztop−zstart

)2
, in region 2

max
{
A0 exp (· · ·) , B0 (· · ·)2

}
, in region 3

0, in region 4

, (6.2)

with A0 the maximum relaxation coefficient in the lateral nudging zone, L the width
of the lateral nudging zone given in units of cell rows, µ the e-folding width given in

154

6.
Li

m
ite

d
A

re
a

M
od

e

6.2 Nudging in the Boundary Region

1

2 3

height z

horizontal r

L i m i t e d a r e a d o m a i n

lateral
boundary
nudging

zone

upper boundary nudging zone

4

zstart = nudge_start_height

ztop = top_height

r0 + L

1

3
damp_height

0

lateral
boundary

interpolation
zone

0

sponge layer with Rayleigh damping
of vertical velocity component

r0

grf_bdywidth_c = 4 cell rows L = nudge_zone_width = 8 cell rows

Figure 6.1.: Schematic illustration of the lateral boundary zone (blue) and the lateral
and upper boundary nudging zones (gray) in the limited-area mode.

units of cell rows, r the actual cell row index beginning with 1 in the outermost cell
row of the boundary zone, and r0 the cell row index at which the nudging zone starts
(typically grf_bdywidth_c+1, see Figure 6.1). The parameters L, µ, and A0 can be speci-
fied via nudge_zone_width, nudge_efold_width, and nudge_max_coeff in the namelist
interpol_nml. The nudge zone width should at least comprise 8 (better 10) cell rows in
order to minimize boundary artifacts. For the variables vn and qv the parameter A0 is
multiplied by the factor 0.5.

B0 is the maximum nudging coefficient in the upper boundary nudging zone be-
tween the model top at height ztop (sleve_nml: top_height) and the nudging
start height zstart (nudging_nml: nudge_start_height). The value of B0 is con-
trolled by max_nudge_coeff_vn (nudging_nml) for the horizontal wind vn, and
max_nudge_coeff_thermdyn for θv and ρ.

Note that positive water vapor increments δψ = δqv > 0 are cut to zero in supersaturated
regions (qc > 0) in the lateral boundary nudging zone, in order to avoid an undesirable
positive feedback on the growth of the amount of cloud water. In addition, water vapor is
not subject to nudging in the upper boundary nudging zone. If the nudging data from the
driving model contain hydrostatic variables (i.e. hydrostatic pressure), it might be more
consistent to formulate the nudging in terms of the basic hydrostatic variables: pressure
and temperature. This option is controlled by the namelist switch nudge_hydro_pres
(limarea_nml), which applies to both lateral and upper boundary nudging. If set to .TRUE.
(default), nudging increments of the hydrostatic pressure and the temperature, δp and δT ,

155

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

are computed and transformed into virtual potential temperature and density increments
following the linear mapping

δρ = Xρδp+ YρδT + Zρδqv

δθv = Xθvδp+ YθvδT + Zθvδqv ,

which is motivated by the total differential of the thermodynamic state equations. The
factors X, Y and Z are determined by the state before the nudging (ψ∗). Note again that
water vapor increments are nonzero only in the lateral boundary nudging zone.

The nudging in ICON should not be confused with a Newtonian relaxation approach in
the proper sense

ψ(t) = ψ∗(t) + δψ

τrelax
∆t . (6.3)

If we identify Eq. (6.1) with Eq. (6.3), we find for the relaxation time

τrelax = ∆t
αnudge

. (6.4)

It is proportional to the time step ∆t (→ dtime) and, hence, inversely proportional to
the horizontal mesh size, i.e. τrelax decreases with increasing horizontal resolution. The
nudging coefficient αnudge is a non-dimensional parameter and should not be considered
as an inverse relaxation time. Given a proper relaxation time τrelax = const., Eq. (6.3)
converges to a differential equation in the limit ∆t → 0. Equation (6.1) would, however,
diverge in this limit, so no corresponding differential equation exists. This fact should not
be considered a problem, as the nudging describes no physical process anyway. If desired,
you may of course emulate a relaxation approach. Choose the desired relaxation time and
compute the corresponding nudging coefficients A0 or B0 according to Eqs. (6.4) and (6.2).
You may want to implement this as a function in your runscript, in order to avoid (easily
forgotten) recomputations by hand whenever you change the time step dtime.

For the sake of completeness, we mention the global nudging option nudge_type=2. In fact,
it is intended for global simulations (l_limited_area=.FALSE.), but it may be used in the
limited area mode as well. For the most part, it makes use of the same infrastructure as the
upper boundary nudging. Taking a look at Figure 6.1, global nudging under the limited
area mode means, in practical terms, the absence of the lateral and overlap nudging zones 1
and 3, and of the free model atmosphere zone 4. Instead, region 2, now termed global nudg-
ing zone, covers the entire domain interior. In addition to the vertical nudging shape factor
[(z−zstart)/(ztop −zstart)]2 (see Eq. (6.2), region 2), global nudging offers a small selection
of shape factors that enable a more uniform nudging throughout the vertical air column
of the model2. Please note that this nudging option is not in operational use, still mostly
experimental and comes with no warranty. As its control parameters in nudging_nml are
described in detail in the namelist documentation icon/doc/Namelist_overview.pdf,
they will not be discussed further here. Just a few remarks: Upper boundary and global
nudging share most namelist parameters. Where global nudging assumes different default
values, this is marked by ()glbndg. Where parameters apply to global nudging only, this is

2You can find schematic representations of the available vertical nudging shape factors at the end of the
source code file icon/src/configure_model/mo_nudging_config.f90.

156

6.
Li

m
ite

d
A

re
a

M
od

e

6.3 Model Initialization

indicated in the Description and Scope columns. In contrast to upper boundary nudging,
global nudging applies to the primary domain only. Within nested domains, if present,
there is no direct forcing by global nudging.

Important note: The treatment of the vertical velocity component w along
the model top is independent of the upper boundary nudging: w and corre-
sponding vertical mass fluxes are set to zero at the uppermost half level of
the computational domain. Starting from the height specified by damp_height
(nonhydrostatic_nml), the vertical velocity is damped towards zero following
the method proposed by Klemp et al. (2008).

If upper boundary nudging is switched on (nudging_nml: nudge_type=1),
“lateral boundary” data (the driving data for the nudging) have to be pro-
vided for the entire limited area domain rather than the lateral boundary re-
gion, only. This mode requires the namelist parameter latbc_boundary_grid
(limarea_nml) defining the grid file on which the lateral boundary data are de-
fined to be empty, i.e. latbc_boundary_grid=" ". The same applies to global
nudging (nudging_nml: nudge_type=2). Driving data have to be present for
the entire primary domain (either a limited area or a global domain).

As with upper boundary nudging, details on the driving data for global nudg-
ing must be specified in namelist limarea_nml.

Upper boundary nudging is not restricted to the primary limited area domain.
In multi-domain simulations, it is possible to switch on upper boundary nudg-
ing for nested domains, by setting the corresponding entries in nudge_type
(comma separated list) to 1. All domains are nudged towards the same driving
data, i.e. nested domains are equally nudged towards the “lateral boundary”
data of the primary limited area domain.

Running the model in regional mode is quite often accompanied by choosing a lower model
top height compared to global simulations. In these cases, the neglected air mass above
model top can have a noticeable impact regarding the attenuation of the incoming solar
irradiance and can be the source of a small but noticeable amount of downward long-wave
irradiance. To account for that in a rather ad hoc manner, an additional model layer above
model top can be added by setting latm_above_top =.TRUE. (namelist nwp_phy_nml). It
is used by the radiation scheme, only. The additional layer has a (hard-coded) thickness of
1.5 times the thickness of the uppermost model layer. Currently, temperature is linearly
extrapolated, assuming a vertical gradient of −5 K km−1. For ozone, aerosols and cloud
fields, a simple no-gradient condition is assumed. Despite this rather ad hoc solution, it
is suggested to activate the additional layer. Please note that this option works only in
combination with a reduced radiation grid.

6.3. Model Initialization

The necessary input data to perform a limited area run are basically identical to those
required for a global run (i.e. horizontal grid(s), initial conditions, external parameter; see

157

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

Section 5.1), with the exception that lateral boundary data are required in addition in
order to drive the model.

Technically it is possible to combine initial- and boundary data from different sources (e.g.
one might take boundary data from IFS and initial data from ICON). In general, however,
it is better to use boundary and initial data from the same source.

Dependent on the available initial data, the following initialization modes can be used in
limited area mode:

init_mode (namelist initicon_nml, integer value)

init_mode = 2 initialize from IFS data.
This mode has already been described in Section 5.1.5 in the con-
text of reading IFS analysis data.

init_mode = 3 initialize from IFS atmospheric and ICON surface data.
This mode is of special interest for operational weather services
who want to perform cold starts with IFS atmospheric data.

init_mode = 7 initialize from ICON data.
This mode has already been described in Section 5.1.4 in the con-
text of reading in DWD’s initialized analysis product.

These modes have in common that the read-in process is followed by a vertical interpo-
lation of the input fields to the target vertical grid. Thus the target vertical grid can be
chosen independent of the vertical grid on which the input is defined. Note that in case
of init_mode = 7 the vertical interpolation requires that the field HHL (vertical half level
heights) is contained in the initial data.

Specifics of init_mode=2

• Only input data in NetCDF format are supported.

• A single input file per domain is expected, containing the analysis (or, more generally,
the initial state). The filename must be provided for ifs2icon_filename (see also
Section 5.1.5).

• The required input fields are depicted in Figure 6.2.

Specifics of init_mode=7

• A single input file per domain is expected, containing the analysis (or, more
generally, the initial state). The filename must be specified with the parameter
dwdfg_filename(initicon_nml).

• As we do not make use of a second input file containing explicit analysis information,
it is good practice to indicate this via the following namelist parameter.

158

6.
Li

m
ite

d
A

re
a

M
od

e

6.4 Reading Lateral Boundary Data

Atmosphere
U, V
or
VN

, W, T, LNPS, GEOP_ML, QV, QC, QI, QR, QS

Soil/Surface
SMIL1, SMIL2, SMIL3, SMIL4, STL1, STL2, STL3, STL4, LSM, CI,
GEOP_SFC, ALB_SNOW, SST, SKT, T_SNOW, W_SNOW, RHO_SNOW, W_I

Figure 6.2.: Required variable set when initializing ICON-LAM from IFS data, i.e.
init_mode=2. Optional fields are marked in gray. Please note that although
the field is called W (vertical velocity) ICON expects the content of this field
to be OMEGA (vertical wind in a pressure based coordinate system) in case
of init_mode=2!

lread_ana (namelist initicon_nml, logical value)
By default, this namelist parameter is set to .TRUE.. If .FALSE., a separate
analysis file is not required. The filename of the first guess file is specified via
the dwdfg_filename namelist option, see Section 5.1.2.

Note that in the recent ICON version lread_ana=.FALSE. is set automatically for
init_mode= 7, if it has been forgotten by the user.

• The required input fields are listed in Table 11.3. A valid option is to use DWD’s
initialized analysis product for initialization. See Section 2.2.1 for ways to obtain it.

Specifics of init_mode=3

• Two files are needed, dwdfg_filename containing the surface fields and
ifs2icon_filename including the atmospheric fields (both in initicon_nml).

• For the atmospheric data the same procedures are used internally as for init_mode=2.
As a consequence, the same set of atmospheric variables is required (see Figure 6.2)
and the data needs to be in NetCDF format.

• Internally, the same procedures are used for the surface data as for init_mode=7.
Hence, the same surface fields are required (see Table 11.3).

• Initially, this init_mode was designed to combine IFS atmospheric data with GME
surface data. As there is no fundamental difference between the ICON and GME
surface parameterizations, this init_mode can be used for both.

6.4. Reading Lateral Boundary Data

The read-in of lateral boundary data is fortunately less cumbersome than the read-in of
initial data, as it is based on a decision tree. The user is no longer required to select a

159

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

HHL available?

RHO & THETA_V available?

read:
HHL, RHO, THETA_V, W

yes

P, T
available?

• read HHL, P, T, W

yes

Error!

no

no

yes

PS, GEOP & T available?

read:
PS, GEOP, OMEGA, T

yes

Error!

no

no

diagnose: P, T diagnose: P, HHL, W

Figure 6.3.: Read-in of lateral boundary data. Based on this decision tree, ICON inves-
tigates the data file contents and diagnoses additional fields.
The following fields are read additionally from file: velocity fields VN (or U, V)
and mixing ratios QV, QC, QI (optional: QR, QS). The fields W and OMEGA are
optional; if they are unavailable, the vertical wind is initialized with zero.
For the input from a pressure based coordinate system (right branch), note
that ICON expects the field OMEGA under the name W.

specific mode which (hopefully) fits the data at hand. Instead, ICON scans the boundary
data file and, dependent on its content, ICON diagnoses additional fields so as to obtain
the internally required set of variables. The decision tree is depicted in Figure 6.3. If the
provided data set does not match any of the trees, an error is thrown. As a result, ICON
can handle variable sets from hydrostatic models (e.g. IFS) as well as non-hydrostatic
models (e.g. COSMO, ICON) without the assistance of the user.

As apparent from the decision tree, three different variable sets can be handled. See Fig-
ure 2.11 for its specific content.

Important note: Boundary data sets originating from a non-hydrostatic model
with height based vertical coordinates (e.g. COSMO or ICON) must contain
the field HHL (vertical half level heights). It is required by the vertical inter-
polation procedure. Note, however, that the field only needs to be present in
the boundary data set whose validity date equals the model start date.

160

6.
Li

m
ite

d
A

re
a

M
od

e

6.4 Reading Lateral Boundary Data

Troubleshooting: The usage of a decision tree as depicted in Figure 6.3 has
consequences when searching for the cause of an error. For example, a wrong
specification of HHL in latbc_varnames_map_file leads to the following er-
ror behavior: ICON does not find HHL, so it erroneously takes the right
branch of the decision tree. ICON then looks for the geopotential GEOSP (or
alternatively GEOP_ML). This is also not found which results in the error that
the geopotential was not found.

Read-in of boundary data is controlled by the following namelist parameters:

The type of lateral boundary conditions is specified by

itype_latbc (namelist limarea_nml, Integer value)
If set to 1 time-dependent boundary conditions are used. ICON then tries to read
external data files at regular time intervals from a particular location specified by
latbc_filename and latbc_path (see below).
If set to 0, time-constant lateral boundary conditions are used which are derived
from the initial conditions.

Boundary data is read at regular time intervals. This is specified by the following namelist
parameter:

dtime_latbc (namelist limarea_nml, floating-point value)
Time difference in seconds between two consecutive boundary data sets. At interme-
diate times, boundary conditions are computed by linear interpolation in time.

6.4.1. Naming Scheme for Lateral Boundary Data

Naturally, the sequence of lateral boundary data files must satisfy a consistent naming
scheme. It is a good idea to consider this convention already during the pre-processing
steps (see Section 2.3).

Filenames: latbc_filename, latbc_path (string parameters, limarea_nml)
By default, the filenames are expected to have the following form:

"prepiconR<nroot>B<jlev>_<y><m><d><h>.nc"

Here, several keywords are used which are further explained below. This naming
scheme can be flexibly altered via the namelist parameter latbc_filename (namelist
limarea_nml) using the available keywords. The absolute path to the boundary data
can be specified with latbc_path (string parameter, limarea_nml).

By changing the above setting, the user has full flexibility with respect to
the filename structure. The following keywords are allowed for the namelist
parameter latbc_filename:

<nroot> grid root division Rx (single digit)

161

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

<nroot0> grid root division Rxx (two digits)
<jlev> grid bisection level Byy (two digits)
<dom> domain number (two digits)
<y> year (four digits)
<m> month (two digits)
<d> day in month (two digits)
<h> hour (UTC) (two digits)
<min> minutes (UTC) (two digits)
<sec> seconds (UTC) (two digits)
<ddhhmmss> elapsed days, hours, minutes and seconds since

ini_datetime_string or experimentStartDate (each two digits)
<dddhh> elapsed days and hours since ini_datetime_string

or experimentStartDate (three digits day, two digits hours).

Field names: latbc_varnames_map_file (namelist limarea_nml, string)
ICON supports NetCDF and GRIB2 as input format for boundary fields. Field names
in input files do not necessarily coincide with internal ICON field names. Hence, an
additional input text file (dictionary file) can be provided. This two-column file
translates between the ICON variable names and the corresponding DWD GRIB2
short names or NetCDF variable names.

Specifying a valid dictionary file is currently mandatory, if pre-fetching of boundary
data is selected num_prefetch_proc=1 (see below).

Boundary grid: latbc_boundary_grid (namelist limarea_nml, string)
As it has been explained in Section 2.3, the lateral boundary data can be defined on
an auxiliary grid, which contains only the cells of the boundary zone for optimization
purposes.
If this is the case for the applied boundary data, the filename of this grid file must
be specified with this namelist parameter.

6.4.2. Pre-Fetching of Boundary Data (Mandatory)

Pre-fetching strives to avoid blocking of the computation due to reading of boundary
data. The term denotes the reading of files ahead of time, i.e. the next input file will be
processed simultaneously with the preceding compute steps. This avoids waiting for the
I/O processes during the time consuming procedure of opening, reading and closing of the
input files.

num_prefetch_proc = 1 (namelist parallel_nml, integer value)
If this namelist option is set to 1, one MPI process will run exclusively for asyn-
chronously reading boundary data during the limited area run. This setting, i.e. the
number of pre-fetching processors, can be zero or one.

Enabling the pre-fetching mode is mandatory for the described LAM setup.

162

6.
Li

m
ite

d
A

re
a

M
od

e

6.5 Tropical Setup

6.5. Tropical Setup

The tropical setup namelist configuration of the COSMO model was and still is applied
by many users of the COSMO model. As ICON is a global model, it is routinely applied
to a wider range of conditions than a limited-area only model like the COSMO model.
Nevertheless, when choosing an area close to the equator some namelist parameters have
to be adapted compared to mid-latitude high-resolution limited-area setups. For some of
these parameters, the necessary adaptions are quite straight forward. Other parameters
require rigorous testing and tuning of the configuration in order to find a good combination
for these parameters.

Parameter Mid-Latitudes Tropical Setup Description

tune_zvz0i
(nwp_tuning_nml)

0.85 test & tune Terminal fall velocity of ice,
meaningful range for tuning
between 1. and 3.5

rat_sea
(turbdiff_nml)

0.8 test & tune Ratio of laminar scaling
factors over sea and land,
meaningful range for tuning
between 1. and 20.

inwp_convection
lshallowconv_only
(nwp_phy_nml)

1
.false.

test & tune Convection parameterization,
inwp_convection=1 and
lshallowconv_only=.true.
for shallow convection only,
inwp_convection=0 for no
convection parameterization

top_height
(sleve_nml)

22000. 30000. Model top height (only for
ivctype=2, see Section 3.4)

damp_height
(nonhydrostatic_nml)

12250. 18000. Height at which Rayleigh
damping of vertical wind starts

Table 6.1.: List of namelist parameters that are sensitive to the choice of the limited-area
domain location. Values that are listed in the table are suitable for setups
around 2.5 km effective grid spacing.

Table 6.1 provides an overview on namelist parameters that are sensitive to the choice of
the domain location. For the terminal fall velocity of ice (tune_zvz0i) literature suggests
higher values than used in current ICON setups (e.g., Heymsfield and Donner (1990)
suggest a value which is higher by a factor of 3). Such literature values are derived under
certain conditions (e.g., particle shape, temperature range). Hence, the value which is
required by a model in order to get good results can differ. This value has a strong impact
on the radiative properties of ice clouds and can be used to compensate biases. In summary,
tune_zvz0i is a tuning parameter worth investigating if there are biases in radiation under
cloudy conditions.

The namelist parameter rat_sea increases the thickness of the laminar sublayer over sea.
Larger values mean larger laminar sublayers, i.e. less heat and moisture fluxes over sea.

163

6.Lim
ited

A
rea

M
ode

ICON Model Tutorial

Height

Latitude

Polar
Cell

Ferrel
Cell

Hadley
Cell

90° 60° 30°

≈9 km

≈17 km

Tropical Setup

0°

sponge layer with Rayleigh damping
of vertical velocity component

top_height

damp_height

sponge layer with Rayleigh damping
of vertical velocity component

Height

Latitude

top_height

damp_height

Polar
Cell

Ferrel
Cell

Hadley
Cell

90° 60° 30° 0°

≈9 km

≈17 km

Mid-Latitude Setup

Figure 6.4.: Schematic illustration of the choice of the namelist parameters damp_height
and top_height for tropical and mid-latitude setups.

For example, tuning this parameter to lower values might be beneficial if there is too little
ocean-atmosphere exchange in case of tropical cyclones. This parameter can only have an
impact if a significant part of the model is covered by ocean.

At effective grid spacings of 5 km or less, deep convection is resolved explicitly. The namelist
switch lshallowconv_only allows to turn off the deep convection parameterization but
keeping the shallow convection parameterization active. However, especially for arid re-
gions at effective grid spacings of <3 km it can be beneficial to turn off convection com-
pletely by setting inwp_convection=0. Otherwise the already sparsely available water
vapor is lifted by the shallow convection parameterization from the boundary layer into
the free atmosphere. This can lead to a too strong cloud formation inhibition in arid
regions.

The probably most important change for tropical setups is depicted schematically in Fig-
ure 6.4. The model top height (top_height) and the height above which the Rayleigh
damping of the vertical velocity becomes active (damp_height) have to be chosen such

164

6.
Li

m
ite

d
A

re
a

M
od

e

6.5 Tropical Setup

that convection is not inhibited by the Rayleigh damping. The tropical tropopause reaches
to higher altitudes than the mid-latitude and polar tropopause. While it is sufficient for
mid-latitude setups to choose the model top at 22 km and start the damping layer at
about 12 km, the tropical tropopause is typically located at an altitude of 17 km. Hence,
the relaxation of the vertical velocity would in this case inhibit deep convection. It can
be easily avoided by extending the vertical extent of the model simulation to, for exam-
ple, top_height=30000.0 and damp_height=18000.0. This requires a sufficient number
of vertical levels (e.g., num_lev=65).

Tuning documentation: Recent ICON model versions contain a document
named ICON model parameters suitable for model tuning which is located in
doc/tuning/icon_tuning_vars.pdf.

165

6.Lim
ited

A
rea

M
ode

7.
M

od
el

O
ut

pu
t

7. Model Output

In this chapter we describe advanced settings for the namelist controlled model output. In
particular, the ICON model offers several options for internal post-processing, such as the
horizontal remapping of the prognostic output onto regularly spaced (“longitude-latitude”)
grids and vertical interpolation, for example on pressure levels. Another type of output
products is ICON’s checkpointing feature which allows to restart the execution from a
pre-defined point using the data stored in a file.

7.1. Settings for the Model Output

Model output is enabled via the namelist run_nml with the main switch output. By
setting this string parameter to the value "nml", the output files and the fields requested
for output can be specified by special namelists1. In the following, this procedure will be
described in more detail.

In general the user has to specify five individual quantities to generate output of the model.
These are:

a) The time interval between two model outputs.

b) The name of the output file.

c) The name(s) of the variable(s) to output.

d) The type of the vertical output grid, e. g., pressure levels or model levels.

e) The type of the horizontal output grid, i. e. ICON grid or geographical coordinates.

All of these parameters are set in the namelist output_nml. Multiple instances of this
namelist may be specified for a single model run, where each output_nml creates a separate
output file. The options d) and e) require an interpolation step. They will be discussed in
more detail in Section 7.1.1.

In the following, we give a short explanation for the most important namelist parameters:

output_filename (namelist output_nml, string parameter)
This namelist parameter defines a prefix for the output filename (which may include
the directory path). The domain number, level type, file number and file format
extension will be appended to this prefix.

1Another possibility is to set output="none". This can be used to make scalability tests without being
influenced by writing time.

167

7.M
odelO

utput

ICON Model Tutorial

output_bounds (namelist output_nml, three floating-point values)
This namelist parameter defines the start time and the end time for the model output
and the interval between two consecutive write events. The three values for this
parameter are separated by commas and, by default, they are specified in seconds.

ml_varlist (namelist output_nml, character string list)
This parameter is a comma-separated list of variables or variable groups (the latter
are denoted by the prefix “group:”). The ml_varlist corresponds to model levels,
but all 2D variables (for example surface variables) are specified in the ml_varlist
as well. It is important to note that the variable names follow an ICON-internal
nomenclature. The temperature field, for example, is denoted by the character string
“temp”. A list of available output fields is provided in Appendix B.

Users can also specify the variable names in a different naming scheme, for exam-
ple “T” instead of “temp”. To this end, a translation table (a two-column ASCII
file) can be provided via the parameter output_nml_dict in the namelist io_nml.
An example for such a dictionary file can be found in the source code directory:
run/dict.output.dwd.

m_levels (namelist output_nml, character string)
This character string specifies a list of model levels for which the variables and groups
should be written to output. Level ordering does not matter.
Allowed is a comma- (or semicolon-) separated list of integers, and of integer ranges
like “10...20”. One may also use the keyword “nlev” to denote the maximum integer
(or, equivalently, “n” or “N”). Furthermore, arithmetic expressions like “(nlev-2)”
are possible.
Basic example: m_levels = "1,3,5...10,20...(nlev-2)"

dom (namelist output_nml, integer values, comma-sep.)
Related to setups with nests, i.e. multiple domains: This namelist parameter sets
the domains for which this namelist is used. If not specified (or specified as -1), this
namelist will be used for all domains.

remap (namelist output_nml, integer value: 0/1)
This namelist parameter is related to the horizontal interpolation of the output to
regular grids, see Sections 7.1.1 and 7.1.2.

filetype (namelist output_nml, integer value: 2/4)
ICON offers the possibility to produce output either in NetCDF or GRIB2 format.
This can be chosen by the namelist parameter filetype of the namelist output_nml.
Here, the value filetype=2 denotes the GRIB2 output, while the value filetype=4
denotes the NetCDF file format.

The namelist parameter output_filename provides only partial control over
the resulting filename, namely its prefix. Complete control over the result-
ing filename can be achieved with the namelist parameter filename_format
(namelist output_nml, character string). By default, filename_format is set
to:

168

7.
M

od
el

O
ut

pu
t

7.1 Settings for the Model Output

"<output_filename>_DOM<physdom>_<levtype>_<jfile>"

The following keywords are allowed for filename_format (the list is incom-
plete and shows only the most important options):

<path> model base directory
(namelist parameter model_base_dir, namelist master_nml)

<physdom> domain number (two digits)
<levtype> Level type (ML, PL, HL, IL)
<datetime> ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ
<ddhhmmss> elapsed days, hours, minutes and seconds since

ini_datetime_string or experimentStartDate (each two digits)
<datetime2> ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ
<jfile> Consecutive file id.

As it has been stated before, each output_nml creates a separate output file. To be more
precise, there are a couple of exceptions to this rule. First, multiple time steps can be
stored in a single output file, but they may also be split up over a sequence of files (with a
corresponding index in the filename), see the namelist parameter steps_per_file. Second,
an instance of output_nml may also create more than one output file if grid nests have been
enabled in the model run together with the global model grid, see the namelist parameter
dom. In this case, each of the specified model domains is written to a separate output file.
Finally, model output is often written on different vertical axes, e. g., on model levels and
on pressure levels. The specification of this output then differs only in the settings for the
vertical interpolation. Therefore it is often convenient to specify the vertical interpolation
in the same output_nml as the model level output, which again leads to multiple output
files.

7.1.1. Output on Regular Grids and Vertical Interpolation

Many diagnostic tools, e. g., to create contour maps and surface plots, require a regularly
spaced distribution of the data points. Therefore, the ICON model has a built-in out-
put module for the interpolation of model data from the triangular mesh onto a regular
longitude-latitude grid. Further information on the interpolation methods can be found in
the database documentation Reinert et al. (2020), see Section 0.3.

The relevant namelist parameters for the horizontal interpolation of the output fields
are set in the namelist output_nml. As it was already mentioned in Section 7, multiple
instances of this namelist may be specified for a single model run, where each output_nml
creates a separate output file.

remap (namelist output_nml, integer value 0=triangular / 1=lon-lat)
Set this namelist parameter to the value 1 to enable horizontal interpolation onto
a regular grid. This option needs to be defined combination with reg_lat_def /
reg_lon_def.

reg_lat_def / reg_lon_def (namelist output_nml)
Latitudes and longitudes for the regular grid points are each specified by three values:

169

7.M
odelO

utput

ICON Model Tutorial

start, increment, end value; given in degrees. Alternatively, the user may set the
number of grid points instead of an increment.

Furthermore, the model output can be written on a different vertical axis, e. g., on pressure
levels, height levels or isentropes. In the following we will describe how to specify these
options in the namelist output_nml. The relevant namelist parameters for the vertical
interpolation of the output fields are:

hl_varlist / pl_varlist / il_varlist (character string lists)
Similar to the namelist parameter ml_varlist mentioned above, these parameters
are comma-separated lists of variables or variable groups. While the hl_varlist
sets the output for height levels, pl_varlist defines variables on pressure levels and
il_varlist specifies output on isentropic levels.

h_levels / p_levels / i_levels (floating point values, comma-sep.)
Comma separated list of height, pressure, and isentropic levels for which the variables
and groups specified in the above mentioned variable lists should be output. Height
levels must be given in m, pressure levels in Pa and isentropes in K. Level ordering
does not matter.

ICON’s interpolation on pressure levels is extrapolating into the topography.
This has the simple reason that contour plots, e.g. for 850hPa, usually do
not show missing values over regions like Antarctica. There is no option to
change this behavior in ICON. If needed, this has to be accounted for in the
post-processing.

7.1.2. Remarks on the Horizontal Interpolation

First of all, it should be noted that all explanations in this section also apply to the
iconremap tool, which interpolates ICON data as a pre-processing step.

ICON supports several numerical methods for interpolating data horizontally from the
native triangular grid onto a regular lat-lon grid (or, in the iconremap case, to the inter-
polation between different triangular grids):

• Radial basis functions (RBF)

• Barycentric interpolation

• Nearest-neighbor interpolation

The concrete interpolation procedure depends on the variable and its physical character-
istics. It is prescribed for the output module as indicated in the output product tables
of ICON’s database description, see Reinert et al. (2020). For the iconremap tool the
interpolation method is set explicitly by the user for each field.

First, a small number of output fields is treated with a nearest-neighbor interpolation. The
nearest neighbor algorithm selects the value of the nearest point and does not consider
the values of neighboring points at all, yielding a piecewise-constant interpolant.

170

7.
M

od
el

O
ut

pu
t

7.1 Settings for the Model Output

Figure 7.1.: Left: Examples for over- and undershoots for an RBF-based interpolation.
Right: RBF interpolant with cut-off applied.

Barycentric interpolation is a two-dimensional generalization of linear interpolation. This
method uses just three near-neighbors to interpolate and avoids over- and undershoots,
since extremal values are taken only in the data points. For a detailed treatment we refer
to the literature, for example to Press et al. (2007), Section 21.7.1: ”Two-Dimensional
Interpolation on an Irregular Grid”. This interpolation makes sense for fields where the
values change in a roughly piecewise linear way.

Barycentric interpolation needs to be enabled with the following namelist setting (other-
wise it is replaced by a fallback interpolation):

support_baryctr_intp = .FALSE. (namelist interpol_nml, logical value)

The icondelaunay tool: The DWD ICON Tools contain the icondelaunay
binary, which processes existing ICON grid files. It appends a Delaunay trian-
gulation of the cell circumcenters to the grid file. This auxiliary triangulation
can be used then to speed up the interpolation process.

Note that this way of pre-processing the ICON grid files is mandatory for
DWD’s NEC SX-Aurora platform where the spherical Delaunay algorithm
has not been vectorized.

Most of the output data on regular grids is processed using an RBF-based interpolation
method. The algorithm approximates the input field with a linear combination of radial
basis functions (RBF) located at the data sites, see, for example, Ruppert (2007). RBF
interpolation typically produces over- and undershoots at position where the input field
exhibits steep gradients. This behavior is illustrated in Fig. 7.1. Therefore, the internal
interpolation algorithm performs a cut-off by default. Note that RBF-based interpolation
is not conservative.

The shape parameter (or scale parameter) is an important parameter which affects the
quality of the RBF interpolation. The core of the interpolation method are the radial
basis functions which are for the ICON tools chosen to be of Gaussian type, i. e.

f(x) := e−
(

x
a

)2

, a > 0 ,

with shape parameter a.

171

7.M
odelO

utput

ICON Model Tutorial

When we choose a smaller value for a then the RBF basis functions approach the Dirac
delta function, which yields an almost-nearest-neighbor interpolation. Larger values for a
generally reduce the interpolation error, but there exists a (grid specific) bound where the
Cholesky decomposition of certain dense matrices fails, that are necessary for the RBF
weight computation (see the info box below). The ICON model (as well as the ICON
tools) provide a heuristic which estimates a proper RBF shape parameter for which the
Cholesky decomposition succeeds in floating-point arithmetic. This estimation method is
applied when the user does not provide a specific value via the namelist. For the latter case,
see ICON’s namelist documentation for the namelist parameter rbf_scale (output_nml).
The estimated value is reported in the log output of the ICON model:

mo_intp_lonlat::rbf_setup_interpol_lonlat_grid:
auto-estimated shape_param = 1.1730307423896675E-002

A similar output for iconremap is available when applying the command-line option -vv.

Cholesky Decomposition Fails: The Cholesky decomposition of the RBF inter-
polation weight computation may fail with an error message of the following
kind:

mo_math_utilities:choldec: error in matrix inversion, nearly singular matrix
mo_remap_rbf_errana::rbf_error: Cholesky decomposition failed!

This may happen for example when a bad value for the shape parameter has
been chosen manually. However, the automatic shape parameter estimation
may fail as well: This algorithm estimates largest-as-possible shape parameter
by extrapolation from a number of sample (test) decompositions. When it fails
to compute these samples, even the automatic estimator may abort with the
above error message,

In these cases, please adjust the shape parameter manually (which may require
several trial-and-error steps).

7.1.3. Interpolation onto Rotated Lat-Lon Grids

Users of the COSMO model are familiar with rotated lat-lon grids: Here, the computational
spherical coordinate system is rotated in such a way that a pole problem is avoided and
minimal convergence of the meridians is achieved. To some extent, this output can be
reproduced by the ICON model:

north_pole (namelist output_nml)
Definition of the north pole for rotated lat-lon grids ([longitude, latitude]). The
default is north_pole = 0,90.

Note, however, that the “COSMO output” is in detail not quite what the COSMO user
expects, especially with regard to wind speeds U, V: First, the basis vectors, i.e. the merid-
ional and longitudinal directions, are not rotated. Second, in COSMO these speeds are
defined on horizontally and vertically shifted grids (“staggered grids”). This is not the case
with ICON and especially difficult to detect in data sets.

172

7.
M

od
el

O
ut

pu
t

7.1 Settings for the Model Output

1 2 3 4 5

format + write

format + write

format + write

format + write

format + write

simulation time

...output
files

output
process 1

output
process 2

output
process 3

Figure 7.2.: Schematic illustrating the distribution of output load onto three output
processes, using num_io_procs=3 and stream_partitions_ml=3.

Regular grids over the poles. If one wishes to obtain “circular” lat-lon grids near the
poles, that is, e. g., grids that cover everything north of a chosen latitude circle, then the
unrotated definition of the area in the output_nml can be used, provided it includes the
pole.

Namelist example:

reg_lat_def = 40,0.5,90
reg_lon_def = 0,0.5,360

For rotated lat-lon grids – which then turn out rectangular in the satellite projection –
one additionally uses the namelist parameter north_pole (output_nml), which defines the
coordinate north pole of a rotated (λ, φ) system (longitude, latitude). The rotation opera-
tion is quite well described in the documentation of the COSMO model from which it was
adopted for ICON (Section 2.3 in Doms and Baldauf (2018); Section 4.1 and Appendix A
in Doms et al. (2003)).

Namelist example for ICON’s output_nml:

reg_lon_def = -10.,0.5,10.0
reg_lat_def = -15.,0.5,15.0
north_pole = 0.,0.

7.1.4. Output Rank Assignment

When a large number of different output files is written during the simulation, the task
of formatting and writing may put an excessive load on the output processes. The num-
ber of output processes which share this output load can be increased by setting the

173

7.M
odelO

utput

ICON Model Tutorial

JOB 1 JOB 2

DOMAIN 1

NEST DOMAIN

DOMAIN 1

NEST DOMAIN

EXPERIMENT

checkpoint file checkpoint filecheckpoint file checkpoint file checkpoint file

checkpointTimeIntValdtime
(fast physics

timestep)

grid_nml::
start_time

grid_nml::
end_time

MIN(run_nml::nsteps,
master_time_control_nml::
 experimentStopDate)

startdate/JOB2

read restart
file

write restart
file

master_time_control_nml::
experimentStartDate

master_time_control_nml::
restartTimeIntVal

master_nml::
lrestart = .TRUE.

enddate/JOB1 ==

Figure 7.3.: Specifying experiment restart; compare this illustration to Fig. 5.1. The
namelist parameters are explained in Section 7.2. Here we prefer the ISO8601
date-time specification (e. g. checkpointTimeIntVal) over the over the older
settings (e. g. dt_checkpoint).

num_io_procs (parallel_nml) namelist parameter, see Section 8.2. If there exist multi-
ple groups (e.g. output files, different variable sets, output intervals, interpolation grids)
then these so-called streams will be distributed automatically over the available output
processes.

stream_partitions_ml (namelist output_nml, integer)
It may be even useful to spread the files of a single stream over multiple output
processes. For example, when each output file is relatively large, then the subsequent
file of this stream can be written by a different output process in order to diminish
the risk of congestion. Please use the namelist parameter stream_partitions_ml to
set the number of output processes among which the output files should be divided.

The distribution of output load using stream_partitions_ml is illustrated in
Fig. 7.2.

pe_placement_ml (namelist output_nml, integer array)
This array is related to the namelist parameters num_io_procs and
stream_partitions_ml and allows for an even more fine-tuned distribution of
the output workload. At most stream_partitions_ml different ranks can be spec-
ified, ranging between 0 . . . (num_io_procs - 1). This explicitly assigns the output
streams to specific PEs and facilitates a load balancing with respect to small and
large output files.

7.2. Checkpointing and Restart

There are many reasons why a simulation execution may be interrupted prematurely or
unexpectedly. The checkpoint/restart option can save you from having to start the ICON

174

7.
M

od
el

O
ut

pu
t

7.2 Checkpointing and Restart

model over from the beginning if it does not finish as expected. It allows you to restart
the execution from a pre-defined point using the data stored in a checkpoint file.

Activating the restart. The checkpoint/restart functionality is controlled by the follow-
ing namelist parameters, which are also illustrated in Fig. 7.3.

dt_checkpoint (namelist io_nml, floating-point value)
This parameter specifies the time interval for writing restart files. The restart files are
written in NetCDF format, and their names are specified by the namelist parameter
restart_filename, see below.

Note that if the value of dt_checkpoint resulting from the model default or user’s
specification is larger than dt_restart (see below), then it will be automatically
reset to dt_restart, s. t. at least one restart file is generated during the restart
cycle.

Similar to the namelist parameters described in 5.1.1, which specify the model start
and end dates, there exist character string replacements for dt_checkpoint and
dt_restart:

• restartTimeIntVal (namelist master_time_control_nml, ISO8601, character
string)

• checkpointTimeIntVal (namelist master_time_control_nml, ISO8601, char-
acter string)

lrestart (namelist master_nml, logical value)
If this namelist parameter is set to .TRUE. then the current experiment is resumed
from a restart file.

Instead of searching for a specific data filename, the model reads its restart data al-
ways from a file with name restart_atm_DOM01.nc (analogously for nested domains).
It is implicitly assumed that this file contains the newest restart data, because during
the writing of the checkpoints this file is automatically created as a symbolic link to
the latest checkpoint file.

restart_filename (namelist run_nml, string parameter)
This namelist parameter defines the name(s) of the checkpointing file(s). By default,
the checkpoint files (not the symbolic link) have the form

gridfile_restart_atm_restarttime.nc

dt_restart (namelist time_nml, floating-point value)
This parameter is in some ways related to the dt_checkpoint parameter: It specifies
the length of a restart cycle in seconds, i. e. it specifies how long the model runs
until it saves its state to a file and stops. Later, the model run can be resumed, s. t.
a simulation over a long period of time can be split into a chain of restarted model
runs.

Similar to the asynchronous output module, the ICON model (see Section 8) also offers
the option to reserve a dedicated MPI task for writing checkpoint files. This feature can
be enabled by setting the parameter num_restart_procs in the namelist parallel_nml
to an integer value larger than 0.

175

7.M
odelO

utput

ICON Model Tutorial

Restart modes. Different restart write modes are available, which allow for a distributed
writing and read-in of restart files, depending on the parallel setup. These different restart
modes are controlled via the namelist parameter restart_write_mode (io_nml).

Allowed settings for restart_write_mode (character strings!) are:

"joint procs multifile"
All worker processes write restart files to a dedicated directory. Therefore, the direc-
tory itself represents the restart data set. The information is stored in a way that
it can be read back into the model independent from the processor count and the
domain decomposition.

Read-in: All worker processes read the data in parallel.

"dedicated procs multifile"
In this case, all the restart data is first transferred to memory buffers in dedicated
restart writer processes. After that, the work processes carry on with their work im-
mediately, while the restart writers perform the actual restart writing asynchronously.
Restart processes can parallelize over patches and horizontal indices.

Read-in: All worker processes are available to read the data in parallel (though this
is usually limited by the number of restart files).

"sync"
’Old’ synchronous mode. Process # 0 reads and writes restart files. All other processes
have to wait.

"async"
’Old’ mode for asynchronous restart writing: Dedicated processes
(num_restart_proc > 0) write restart files while the simulation continues. Restart
processes can only parallelize over different patches.

Read-in: Processes # 0 reads while other processes have to wait.

" "
Fallback mode.
If num_restart_proc (parallel_nml) is set to 0, then this behaves like "sync",
otherwise like "async".

7.3. Meteogram Output

The ICON model also features a special output product called meteograms, containing the
model variables with respect to time for a particular location, i. e. at single grid points.

ICON’s built-in meteograms are intended for non-operational use. They should be seen as
a by-product of the usual data output, rather for the purpose of error detection during
development. Meteogram data files are written in the NetCDF data format, where an
example of the (non-standard) file structure is given below. The output is enabled via
the namelist setting output = ’nml’ (namelist io_nml) in combination with a special
namelist, meteogram_output_nml:

176

7.
M

od
el

O
ut

pu
t

7.3 Meteogram Output

&meteogram_output_nml
lmeteogram_enabled = .TRUE.
n0_mtgrm = initial time step for meteogram output
ninc_mtgrm = output interval (in time steps)
stationlist_tot = 50.050, 8.600, ’Frankfurt-Flughafen’,

40.74153, -73.98537, ’New York City’,
...

In addition to the namelist parameters in the example above, the following settings are
worth mentioning:

max_time_stamps (namelist meteogram_output_nml, integer value)
number of output time steps to record in memory before flushing to disk

zprefix (namelist meteogram_output_nml, character string)
string with file name prefix for output file

var_list (namelist meteogram_output_nml, list of character strings)
Optional positive-list of variables. Only variables contained in this list are in-
cluded in the meteogram. If the default list is not changed by this user setting,
then all available variables are added to the meteogram.

During the model simulation, one of the asynchronously running output processes (see
Section 8) collects the meteogram buffers from the compute processes and writes the
data to a file. Meteograms do not use ICON’s variable list infrastructure (see Section 9.3).
However, the output can be easily extended to sample of additional model variables. To this
end, see the extensive comments in the source code, src/io/atmo/mo_mtgrm_output.f90.

For basic textual output, there exists an auxiliary NCL script

scripts/postprocessing/tools/mtgrm_cosmo.ncl

For an introduction to the NCAR Command Language NCL see Section 10.3.3. This script
can be applied to a data file with the following command:

ncl -n mtgrm_cosmo.ncl DataFileName=’"METEOGRAM.nc"’ itime=0;

The same directory also contains scripts for plotting meteogram data with NCL.

File format description. As mentioned before, the NetCDF meteogram output has a
non-standard file structure. We list the most important file entries in the following:

meteogram station info:
station_name, station_lon, station_lat, station_hsurf,
and station_idx, station_blk: global triangle adjacent to meteogram station

sample date info:
date (sample dates) and time_step (plain time step indices).

info and value buffer for surface (2D) variables, 1,...,nsfcvars:
sfcvar_name, sfcvar_long_name, sfcvar_unit,

177

7.M
odelO

utput

ICON Model Tutorial

sfcvalues(time, nsfcvars, nstations): value buffer

info and value buffer for 3D variables 1,...,nvars:
var_name, var_long_name, var_unit,
heights(max_nlevs, nvars, nstations): level heights,
var_levels: plain level indices,
values: value buffer

178

8.
Pa

ra
lle

liz
at

io
n

&
I/

O

8. Parallelization and Performance Aspects

This chapter gives an overview of the different mechanisms for parallel execution of the
ICON model. These settings become important for performance scalability when increasing
the model resolution and core counts.

8.1. Modes of Parallel Execution

The ICON model supports different modes of parallel execution:

• In the first place, ICON has been implemented for distributed memory parallel com-
puters using the Message Passing Interface (MPI). MPI is a library specification,
proposed as a standard by a broadly based committee of vendors, implementors,
and users, see http://www.mcs.anl.gov/research/projects/mpi. Multiple ICON
processes (processing elements, PEs) are started simultaneously and communicate
by passing messages over the network. Each process is assigned a part of the grid to
process.

• Moreover, on multi-core platforms, the ICON model can run in parallel using shared-
memory parallelism with OpenMP. The OpenMP API is a portable, scalable tech-
nique that gives shared-memory parallel programmers a simple and flexible inter-
face for developing parallel applications on platforms ranging from embedded sys-
tems and accelerator devices to multi-core systems and shared-memory systems,
see http://openmp.org. An implementation of OpenMP ships with your Fortran
compiler. OpenMP-parallel execution therefore does not require the installation of
additional libraries.

To be precise, “OpenMP” refers to shared-memory parallelization within the host
processor. The OpenMP target offloading for accelerators is not supported in ICON.
Instead, ICON uses OpenACC for accelerator support, see below.

• As a third option, ICON can make use of graphics processing units (GPUs) to
accelerate calculations. Compared to standard x86 CPUs, GPUs typically have
many times the number of cores but require a sophisticated host-device mem-
ory management when computational problems are offloaded. ICON-Atmosphere
(ICON-A) has been gradually ported to GPUs using OpenACC directives, see
https://www.openacc.org (see Section 8.5).

These mechanisms are not mutually exclusive. A hybrid approach is also possible: Mul-
tiple ICON processes are started, each of which starts multiple threads. The processes
communicate using MPI. The threads communicate using either OpenMP or OpenACC.

179

http://www.mcs.anl.gov/research/projects/mpi
http://openmp.org
https://www.openacc.org

8.Parallelization
&

I/O

ICON Model Tutorial

Finally, note that although ICON has been implemented for distributed memory parallel
computers using the Message Passing Interface (MPI), the model can also be installed
on sequential computers, where MPI and/or OpenMP are not available. Of course, this
execution mode limits the model to rather small problem sizes.

8.2. Settings for Parallel Execution

Several settings must be adjusted to control the parallel execution:

Namelist parallel_nml
First, we focus on some namelist settings for the distributed-memory MPI run.
Processors are divided into

Worker PEs this is the majority of MPI tasks, doing the actual work
I/O PEs dedicated output server tasks1

Restart PEs for asynchronous restart writing (see Section 7.2)
Prefetch PE for asynchronous read-in of boundary data in limited area mode

(see Section 6.4.2)
Test PE MPI task for verification of MPI parallelization (debug option)

The configuration settings are defined in the namelist parallel_nml. To specify the
number of output processes, set the namelist parameter num_io_procs to a value
larger than 0, which reserves a number of processors for output. While writing, the
remaining processors continuously carry out calculations. Conversely, setting this
option to 0 forces the worker PEs to wait until output is finished. For the writing
of the restart checkpoints (see Section 7.2), there exists a corresponding namelist
parameter num_restart_procs.

During start-up, the model prints out a summary of the processor partitioning. This
is often helpful to identify performance bottlenecks. First of all, the model log output
contains a one-line status message:

Number of procs for
test: xxx, work: xxx, I/O: xxx, Restart: xxx, Prefetching: xxx

Afterwards, the sizes of grid partitions for each MPI process are summarized as
follows:

Number of compute PEs used for this grid: 118
prognostic cells: max/min/avg xxx xxx xxx

Given the case that the partitioning process would fail, these (and the subsequently
printed) values would be grossly out of balance.

Batch queuing system
Apart from the namelist settings, the user has to specify the computational resources
that are requested from the compute cluster. In addition to the number of MPI tasks
and OpenMP threads, here the user has to set the number of cluster-connected nodes.

1The notation “I/O” is justified by historical arguments. In the current version of ICON, these MPI
processes exclusively operate as output servers.

180

8.
Pa

ra
lle

liz
at

io
n

&
I/

O

8.3 Best Practice for Parallel Setups

Increasing the number of nodes allows to use more computational resources, since a
single compute node comprises only a limited number of PEs and OpenMP threads.
On the other hand, off-node communication is usually more expensive in terms of
runtime performance.

The computer platform at DWD, the NEC SX-Aurora, uses the batch system PBS to
control the requested resources. When using the qsub command to submit a script
file, the batch system PBS allows for specification of options at the beginning of the
file prefaced by the #PBS delimiter followed by PBS commands.

Finally the user has to set the correct options for the application launcher, which is
the mpirun command on the NEC SX-Aurora platform. The Appendix A contains
a description of the most important settings.

8.3. Best Practice for Parallel Setups

8.3.1. MPI Tasks and OpenMP Threads

ICON employs both distributed memory parallelization and shared memory parallelization,
i.e. a “hybrid parallelization”. Only the former type actually performs a decomposition of
the domain data, using the de-facto standard MPI. The shared memory parallelization, on
the other hand, uses OpenMP directives in the source code. In fact, nearly all DO loops that
iterate over grid cells are preceded by OpenMP directives. For reasons of cache efficiency
the DO loops over grid cells, edges, and vertices are organized in two nested loops: “jb
loops” and “jc loops”1 Here the outer loop (“jb”) is parallelized with OpenMP.

There is no straight-forward way to determine the optimal hybrid setup, except for the
extreme cases: If only a single node is used, then the global memory facilitates a pure
OpenMP parallelization. Usually, this setup is only feasible for very small simulations. If,
on the other hand, each node constitutes a single-core system, a multi-threaded (OpenMP)
run would not make much sense, since multiple threads would interfere on this single core.
A pure MPI setup would be the best choice then.

In all of the other cases, the parallelization setup depends on the hardware platform and
on the simulation size. In practice, 4 threads/MPI task have proven to be a good choice
on x86-based systems. This should be combined with the hyper-threading feature, i.e. a
feature of the x86 architecture where one physical core behaves like two virtual cores.

Starting from this number of threads per task the total number of MPI tasks is then
chosen such that each node is used to an equal extent and the desired time-to-solution is
attained – in operational runs at DWD this is ∼ 1 h. In general one should take care of
the fact that the number of OpenMP threads evenly divides the number of cores per CPU
socket, otherwise inter-socket communication might impede the performance.

Finally, there is one special case: If an ICON run turns out to consume an extraordinarily
large amount of memory (which should not be the case for a model with a decent memory
scaling), then the user can resort to “investing” more OpenMP threads than it is necessary
for the runtime performance. Doing so, each MPI process would have more memory at its
disposal.

1This implementation method is known as loop tiling, see also Section 9.3.

181

8.Parallelization
&

I/O

ICON Model Tutorial

8.3.2. Blocking (nproma)

ICON runs on x86 computer architectures, as well as on classical vector processors, and
graphics accelerators. Depending on the given architecture, the namelist parameter nproma
must be adapted accordingly. The abbreviation nproma (probably) stands for nombre de
profondeurs maximal (maximum of maximal depths).

For x86 architectures we suggest nproma=16, such that the line index fits into the cache. In
contrast to this, on GPUs the nproma parameter should equal the number of grid points
handled by each MPI process, see Section 8.5.2. Finally, for NEC’s SX vector architecture,
a much larger value nproma=752, say, is suitable to match the very wide vector length.

There is another important namelist option which is enabled for the NEC vector machine.
On the NEC system the parameter proc0_shift (namelist parallel_nml, INTEGER
value) is set to ”1” which means that the first MPI rank (worker) does not take part
in the actual computation – it gets 0 cells in the domain decomposition process. The
reason behind this setting is the so-called ”hybrid execution” on the NEC: The first MPI
rank runs on an x86 CPU (vector host) and executes the read-in procedures only while
the remaining processes run on a vector machine, doing the computational work. On x86
architectures or GPU accelerators the proc0_shift setting is unnecessary.

8.3.3. Mixed Single/ Double Precision in ICON

To speed up code parts strongly limited by memory bandwidth, an option exists to use
single precision for variables that are presumed to be insensitive to computational accuracy
– primarily the dynamical core and the tracer advection.

This affects most local arrays in the dynamical core routines, some local arrays in the
tracer transport routines, the metrics coefficients, arrays used for storing tendencies or
differenced fields (gradients, divergence etc.), reference atmosphere fields, and interpolation
coefficients. Prognostic variables and intermediate variables affecting the accuracy of mass
conservation are still treated in double precision. To activate the mixed-precision option,
run the configure script with the –enable-mixed-precision flag.

8.3.4. Bit-Reproducibility

Bit-reproducibility refers to the feature that running the same binary multiple times should
ideally result in bit-wise identical results. Depending on the compiler and the compiler
flags used this is not always true if the number of MPI tasks and/or OpenMP threads is
changed in between. Usually compilers provide options for creating a binary that offers bit-
reproducibility, however this is often payed dearly by strong performance losses. With the
NEC SX-Aurora compiler, it is however possible to generate an ICON binary offering bit-
reproducibility with only little performance loss. The ICON binary used in this workshop
gives bit-reproducible results.

Bit-reproducibility is generally an indispensable feature for debugging. It is helpful

182

8.
Pa

ra
lle

liz
at

io
n

&
I/

O

8.4 Basic Performance Measurement

• for checking the MPI/OpenMP parallelization of the code. If the ICON code does
not give bit-identical results when running the same configuration multiple times,
this is a strong hint for an OpenMP race condition. If the results change only when
changing the processor configuration, this is a hint for an MPI parallelization bug.

• for checking the correctness of new code that is supposed not to change the results.

8.4. Basic Performance Measurement

The ICON code contains internal routines for performance logging for different parts
(setup, physics, dynamics, I/O) of the code. These may help to identify performance bottle-
necks. ICON performance logging provides timers via the two namelist parameters ltimer
and timers_level (namelist run_nml).

Note for advanced users: The built-in timer output is rather non-intrusive.
It is therefore advisable to have it enabled also in operational runs.

With the following settings in the namelist run_nml,

ltimer = .TRUE.
timers_level = 10

the user gets a sufficiently detailed output of wall clock measurements for different parts
of the code:

--------------------------- ------- ------------- -------------
name # calls total min (s) total max (s)
--------------------------- ------- ------------- -------------
total 237 ... 903.085 903.089
L integrate_nh 170640 ... 884.128 892.143

L nh_solve 5972400 ... 401.055 428.694
L nh_solve.veltend 7166880 ... 36.469 51.376

...
physics 49678 ... 103.107 104.759
L nwp_radiation 10030 ... 40.402 42.985

L radiation 220674 ... 31.845 34.963
...
model_init 711 ... 59.875 59.876
...

Note that some of the internal performance timers are nested, e.g. the timer log for
radiation is contained in physics, indicated by the “L” symbol. For correct interpreta-
tion of the timing output and computation of partial sums one has to take this hierarchy
into account.

• The column "total max (s)" contains the maximum timing in seconds
(maximum over all MPI tasks, OpenMP master thread).

183

8.Parallelization
&

I/O

ICON Model Tutorial

• The row "model_init" contains the measurements for the model setup (allocation,
read-in, etc.).

• The row "total" contains the model run-time, excluding the initialization and final-
ization phase.

8.5. ICON on Accelerator Devices (GPUs)
Section author

M. Jacob,
DWD Numerical Models Division

ICON supports massively parallel accelerator devices such as GPUs (Graphics Processing
Units). These devices use a different parallelization model than OpenMP and MPI, as
described in Section 8.1. The following section outlines the deployed technique and how
to configure ICON for compilation and runtime.

ICON-Atmosphere (ICON-A) has been gradually ported to GPUs using OpenACC, with
almost all components used for limited area and global weather prediction now supported
(as of January 2023). In particular, the dynamical core and NWP physics package have
been ported in a joint effort by MeteoSwiss, CSCS and DWD, with technical support by
NVIDIA. In addition to the NWP application, ICON-A is also ready for climate-oriented
studies on GPUs such as conducted by Giorgetta et al. (2022). Details about the porting
strategy can be found in that publication as well.

Some components of ICON-A may have limited GPU support for certain vari-
ants and options. Unsupported model configurations will result in error warnings
when executed with OpenACC. Supported and tested configurations can be found
in the example namelists in the run directory, under experiments exp.mch_* and
exp.dwd_run_ICON_09_R2B4N5_EPS*. It should be noted that the OpenACC version of
ICON is not yet operational, and that these experiments only run for short periods, so
software bugs may still be discovered after extended use. Therefore, it is advisable to con-
sider the OpenACC version of ICON experimental, but worth trying, if a GPU machine
is available.

OpenACC is an API for offloading programs written in C, C++,
and Fortran from a host CPU to an attached accelerator device (see
https://www.openacc.org). It uses compiler directives (pragmas) and is sim-
ilar to classical OpenMP, which handles shared-memory parallelization within
the host processor (OpenMP target offloading for accelerators is not supported
in ICON).

OpenACC is used to parallelize the innermost loops with unit stride memory
rather than the blocks, which are parallelized with OpenMP. Current GPUs
used for HPC have dedicated device memory. For example, a NVIDIA A100
GPU has up to 80 GB memory. This means that OpenACC must manage this
dedicated accelerator memory as well.

184

https://www.openacc.org

8.
Pa

ra
lle

liz
at

io
n

&
I/

O

8.5 ICON on Accelerator Devices (GPUs)

OpenACC code has been added to ICON to specify both parallel execution on
accelerators and memory management. The host CPU is always responsible
for managing the accelerator. Each CPU process of ICON can only utilize one
accelerator, but OpenACC acceleration and MPI process parallelism can be
combined to use multiple accelerators. Direct MPI communication between
GPU memory is possible when ICON is compiled with the __USE_G2G macro.
OpenMP and OpenACC cannot be combined in ICON, although technically
a program could use OpenMP for CPU thread parallelism and OpenACC for
acceleration. OpenACC is not to be confused with CUDA, the latter being
a proprietary API developed by NVIDIA for direct programming of NVIDIA
GPUs.

8.5.1. Configuring and Compiling ICON-OpenACC

To compile ICON for use with an accelerator, a compiler with OpenACC support is nec-
essary.

Currently, the only known compiler that supports ICON-OpenACC is nvfort, for-
merly known as the PGI compiler, which is part of the NVIDIA HPC SDK
(https://developer.nvidia.com/hpc-sdk). This means that a NVIDIA GPU is required to
use ICON-OpenACC. Efforts are underway to expand the number of supported hardware
platforms and compilers. The minimum tested version of the NVIDIA HPC SDK is 21.2,
but it is recommended to use a more recent version such as 22.5.

The ICON repository contains configuration wrappers for different machines, including:

• config/cscs/balfrin.gpu.nvidia for Balfrin at CSCS

• config/cscs/daint.gpu.nvidia for Piz Daint at CSCS

• config/dwd/linuxWS.gpu.pgi for Linux workstations

• config/jsc/juwels.gpu.ompi_nvhpc-22.7 and
config/jsc/juwels.gpu.psmpi_nvhpc-22.7 for JUWELS at JCE.

• A wrapper for Levante’s GPU partition (at DKRZ) will be added soon.

To compile ICON on a Linux workstation, create a build directory and configure and
compile ICON as described in Section 1.2 using the following commands. The paths in the
wrapper are prepared for DWD systems and the network mount /uwork1 is required to
access the NVIDIA SDK.

mkdir build_linuxWS.gpu.pgi
cd build_linuxWS.gpu.pgi
../config/dwd/linuxWS.gpu.pgi --disable-rte-rrtmgp
make -j 6

185

https://developer.nvidia.com/hpc-sdk

8.Parallelization
&

I/O

ICON Model Tutorial

The configuration on emphPiz Daint uses the package management tool Spack (see
https://spack.readthedocs.io). Use the following commands to build ICON on Piz Daint.
Set config_dir to the path of your copy of ICON. Alternatively, one can follow the com-
mands in the script config/buildbot/daint_gpu_nvidia to use ones own instance of
Spack.

module load cray-python # load this before spack!
source /project/g110/spack/user/daint/spack/share/spack/setup-env.sh
CURRENT_VERSION=21.3
mkdir $SCRATCH/build_daint.gpu.nvidia-$CURRENT_VERSION
cd $SCRATCH/build_daint.gpu.nvidia-$CURRENT_VERSION
spack -v dev-build -u build icon@dev-build%nvhpc@$CURRENT_VERSION \

config_dir=$HOME/icon-nwp/ \
icon_target=cpu +eccode

8.5.2. Special Namelist Options for ICON-OpenACC

Some namelist settings in ICON-OpenACC must be adjusted for optimal performance.

The most critical setting is nproma (namelist parallel_nml), which governs the length
of the “jc loops”. These loops are parallelized with OpenACC, so they should be longer
than the number of parallel computing units on the accelerator, e.g. 3456 double precision
cores for a NVIDIA A100 GPU. The larger the nproma, the faster the computation, but if
it is too large, memory will be wasted and performance will be reduced. Having less grid
cells than computing units is inefficient and will increase MPI communication.

For a nested single-domain experiment, nproma should equal the number of grid points
handled by each MPI process. The goal is one execution of a very long jc loop, i.e. having
only one jb block loop over all cells (see also Section 9.3).

However, instead of setting nproma manually, the number of cell blocks can be set di-
rectly using nblocks_c = 1 (namelist parallel_nml, INTEGER value). Note that set-
ting nblocks_c > 1 overwrites nproma.

For a nested multi-domain experiment, predetermining an optimal nproma is not possible
due to different numbers of grid points per domain handled by each process. In this case,
nproma must be set manually, and nblocks_c cannot be used. nproma should be set to a
value greater than the number of grid points per process in the smallest domain. As an
optimization starting point, set nproma =20000 (with default nblocks_c =0), then conduct
a series of short benchmark experiments to find the optimal nproma value.

Another setting, nproma_sub (namelist parallel_nml, INTEGER value), governs the
chunk size for sub-blocks used in the ecRad and RRTMGP radiation codes. The sub-
blocks help to reduce the memory footprint of the radiation. For single-domain experi-
ments, nblocks_sub (namelist parallel_nml, INTEGER value) can be used instead of
nproma_sub. A recommended starting value for nblocks_sub is 6, however, it is advis-
able to experiment with smaller or larger values to determine the optimal setting based on
memory availability. In contrast, for nested multi-domain experiments, the optimal setting

186

https://spack.readthedocs.io

8.
Pa

ra
lle

liz
at

io
n

&
I/

O

8.5 ICON on Accelerator Devices (GPUs)

CPU

GPU
(Accelerator)

Initial
physics Dynamics Physics Infrastructure

(e.g. nesting)
Output

diagnostics

Time loop

ManagementInitialization

Data copy
of full state

Read
input

E.g. Data
assimilation

Write
output

Selective data
transfer

Infrequently
called code

Figure 8.1.: Program flow of ICON-OpenACC.

for nproma_sub cannot be predetermined and must be set manually. It is recommended to
start with a value of 5000 and adjust based on performance results obtained from a series
of short benchmark experiments.

The ecRad radiation scheme (inwp_radiation =4) offers a McICA radiation solver op-
timized for OpenACC, which can be enabled by setting ecrad_isolver =2 (namelist
radiation_nml, INTEGER value). It is important to note that for an experiment run on
an accelerator, ecrad_isolver =2 must be set instead of the default ecrad_isolver =0
that would be used on a classical CPU system.

The namelist setting proc0_shift is not required for ICON-OpenACC and must not be
set or set to its default value 0. proc0_shift is only required for the experiments on the
NEC SX Aurora system.

8.5.3. Implementation Details

Current GPU supercomputers have separate GPU and CPU memories. The data transfer
between the two is relatively slow compared to the direct access of local memory. Hence,
recurrent data transfers in the time loop between CPU and GPU must be avoided, as
the compute intensity (ratio of computations to memory load) in ICON is relatively low.
On the other hand code that runs only once per simulation is less performance critical
such that its porting expenses can be saved. These principles result in an ICON-OpenACC
program flow (Figure 8.1) that runs the model initialization on CPU only, and activates the
GPU when the first physics components are called. At the moment it seems not worth the
effort to port a few rarely called code packages such as the output for data assimilation.
However, these rare packages require the proper data transfer from GPU to CPU and
possibly vice versa in the code.

The typical structure of an OpenACC-accelerated loop is presented in the following listing.
The OpenACC code starts with the !$ACC pragma. Note the different levels that are
parallelized using OpenMP or using OpenACC.

In principle, ACC kernels (i.e. the code between ACC PARALLEL and ACC END PARALLEL)
should run asynchronously so that the CPU can prepare the next kernel while the accel-
erator runs the current kernel.

187

8.Parallelization
&

I/O

ICON Model Tutorial

!$OMP PARALLEL
!$OMP DO PRIVATE(jb, jc, i_startidx, i_endidx)

DO jb = i_startblk, i_endblk

CALL get_indices_c(ptr_patch, jb, i_startblk, i_endblk, &
i_startidx, i_endidx, i_rlstart_c, i_rlend_c)

!$ACC PARALLEL DEFAULT(PRESENT) ASYNC(1) IF(lzacc)
!$ACC LOOP GANG VECTOR
DO jc = i_startidx, i_endidx

var(jc, jb) = ... !

ENDDO
!$ACC END PARALLEL

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

Certain code such as utility functions or communication is used during the initialization as
well as the time loop. This means that such code must be able to run on CPU and the accel-
erator using the respective memory. The OpenACC standard provides the IF(condition)
clause to execute a code on the accelerator if condition evaluates to .TRUE. and on the
CPU otherwise. All (modern) ICON subroutines that support OpenACC have an optional
lacc argument that is used for this decision. As lacc can only be used in the subroutine
if it is passed as an argument (present() in the Fortran sense), the non-optional variable
lzacc is used in the subroutine code. The value of lzacc can be derived from lacc by
calling set_acc_host_or_device(lzacc, lacc). The routine set_acc_host_or_device
defaults to .FALSE. if lacc is not present. This means that code, which has no OpenACC
support, does not have to be changed when a routine is ported and the routine’s argument
list is thus extended by lacc.

The dynamical core and legacy code use the global variable i_am_accel_node as a
condition for the IF() clause. Originally, this variable have been introduced for a val-
idation mode where a non-accelerator-processes computes the whole domain on CPU
and compares it to the domain decomposed results from GPU nodes. Routines that
use lacc and call other routines that depend on i_am_accel_node should have a
CALL assert_lacc_equals_i_am_accel_node(routine_name, lacc) at their top.

The OpenACC directive code in ICON follows the “ICON OpenACC style and implemen-
tation guide” which can be found in the ICON developer wiki on Gitlab. The ICON ACC
beautifier (https://gitlab.dkrz.de/dwd-sw/icon-openacc-beautifier) can be used to apply
the spacing, comma, colon, capitalization and line continuation rules automatically as
outlined in the style guide.

188

https://gitlab.dkrz.de/icon/wiki/-/wikis/GPU-development/ICON-OpenAcc-style-and-implementation-guide
https://gitlab.dkrz.de/dwd-sw/icon-openacc-beautifier

9.
P

ro
gr

am
m

in
g

IC
O

N

9. Programming ICON

Just because something doesn’t do
what you planned it to do doesn’t
mean it’s useless.

Thomas Edison

The previous chapters’ topics have been guided by questions of how to run ICON simula-
tions in various settings and how to control and understand the model’s characteristics. In
this short chapter, instead, we will introduce ICON’s inner workings, i.e. the code layout
and the most important data structures.

The description is detailed enough to make it relatively easy for the reader to modify the
code. We exemplify this in Section 9.3 by implementing an own simple diagnostic.

9.1. Representation of 2D and 3D Fields

We begin with a suitable representation of two- and three-dimensional fields. Here, we
refer to a discrete variable as a 2D field if it depends on the geographical position only. A
3D field, in addition, contains a vertical dimension, associated with the grid column.

Indexing. Recalling the unstructured nature of ICON’s computational grids (see Sec-
tion 2.1) there is no obvious order of the cells in a 2D array like indexing them according
to longitudes and latitudes. Instead, we just order the cells in a deliberate way and index
them in this order with ascending integer numbers. This means that our 2D field becomes
a 1D array, referenced by the cell indices as subscript values.

Most arrays are associated with the centers of the triangular grid cells, but we do that in
a similar way for the edges and vertices of the triangles. An extension to 3D fields, i. e.
including a vertical dimension, results in 2D arrays, the first index being the cell (or edge
or vertex) index, the second index being the height level.

Blocking. For reasons of cache efficiency nearly all DO loops over grid cells, edges, and
vertices are organized in two nested loops: “jb loops” and “jc loops”. Often, the outer
loop (“jb”) is parallelized with OpenMP.

With respect to the data layout, this means that the long vector is split into several chunks
of a much smaller length nproma (this is a run-time parameter, defined in the namelist
parallel_nml, see also Section 8.3.2). We store the long vector in a 2D array, the first

189

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

Figure 9.1.: Illustration of the 2D field representation. The original spherical domain is
decomposed (light-gray: halo region). Afterwards, the long vector of grid
cells is split into several chunks of a much smaller length nproma.

index counting the elements in a block (line index), the second index counting the blocks.
The last block may be shorter since nproma is not necessarily a divisor of the number
of cells. The blocking procedure is illustrated in the lower half of Figure 9.1. There exist
auxiliary functions idx_no, blk_no and idx_1d, which help to calculate the blocked indices
from the 1D array index and vice versa (declared in the module mo_parallel_config).

Finally, let us consider the 3D fields that were stored in 2D arrays, with the cell index
as the first dimension and the second being the vertical coordinate. With index blocking,
these fields will be stored in 3D arrays with the first index counting the elements in a block,
the second index counting the levels and the third index counting the blocks. The reason
is that the blocks are often passed one by one to some subprograms which are called in
a loop over the blocks. Since Fortran stores arrays in column-major order, the data for a
single jb is stored contiguously in memory. Thus we can pass this chunk of data to the
subprograms without any reshaping of the arrays.

Domain decomposition. Domain decomposition is, naturally, a prerequisite for scalabil-
ity on modern parallel computers. For large scale realistic ICON setups and with opera-
tional core counts in the range of tens of thousands, the use of persistent global-sized arrays
is unacceptable. Each model domain is therefore distributed onto several processors1. This
means that we have only certain regions of a domain on each processor.

1In the following, we will use the generic term “Processing Element” (PE).

190

9.
P

ro
gr

am
m

in
g

IC
O

N

9.1 Representation of 2D and 3D Fields

Generally, several subdivision steps are performed recursively. The division criterion (mod-
ule mo_setup_subdivision.f90) subdivides a partition wrt. the cell latitudes if the range
of covered latitudes is larger than the range of longitudes, otherwise the subdivision oper-
ates on the longitudes. This procedure vaguely reminds of the creation of a kd-tree2, but
the method also accounts (empirically) for the convergence of meridians and it does some
boundary smoothing to reduce inter-process communication.

Each processor’s region consists of an inner portion and a lateral boundary portion. The
latter may be either a lateral boundary for the entire domain or a halo region, i. e. a lateral
boundary of the partial domain which is overlaid with neighboring partial domains. The
halo region (which is also known as a ghost-cell region) is illustrated in the upper half of
Figure 9.1.

The programmer is responsible for the distribution of the data among the processors and
the correct communication through MPI calls. This means that all halo regions have to be
updated by the neighboring partial domains. We will sketch this synchronization process
in Section 9.2.4 below.

Keep in mind that it is the width of the halo region which defines a size limit
for your stencil calculations: It is not possible to include cells in a stencil
which extend beyond the halo region!

Index ordering. After the domain decomposition, which takes place in the model ini-
tialization phase, each PE performs a sorting of its locally allocated cells (and edges and
vertices). This local index ordering is determined by the refin_xxx_ctrl index which
counts the distance from the lateral boundary in units of cell/edge/vertex rows. In par-
ticular, note the refin_c_ctrl array which already played a role for the preparation of
lateral boundary input data, see Section 2.3. Portions of the triangular cells correspond to
different values of refin_c_ctrl, which allows a sorting into the following categories: the
cell rows at the lateral boundary, the nudging zone, the inner cells, and the halo region.
Of course, for a global domain only the two latter categories exist.

The upper part of Figure 9.2 schematically shows the different parts of a computational
domain, subdivided between two PEs: Each PE “owns” a subset of interior cells and part
of the lateral boundary. The halo region is shared between the PEs.

The lower part of Figure 9.2 visualizes the ordering of the grid portions in the index vector.
It can be seen that the leftmost indices (i. e. the smallest subscripts) correspond to the
lateral boundary region, followed by the prognostic cells. The sorting of these prognostic
cells with respect to their cell row stops after the first cell row (denoted by “sorted” vs.
“unsorted” in Fig. 9.2).

Thus the indices are ordered in such a way that typical iterations over grid portions like
prognostic cells, lateral boundary points etc. can be realized without conditional state-
ments. Each portion is annotated by its start index, where the subscript corresponds to the
refin_c_ctrl value. For convenience, there exists the auxiliary function get_indices_c

2https://en.wikipedia.org/wiki/K-d_tree

191

https://en.wikipedia.org/wiki/K-d_tree

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

lateral boundary halo cells

1,2,3,... ...n_patch_cells

start_idx(1) start_idx(0)
= end_idx(max_rlcell)+1

start of nudging zone
start_idx(grf_bdywidth_c+1)

start_idx(min_rlcell_int-1)
= end_idx(min_rlcell_int)+1

end_idx(min_rlcell)

(when not overlapping
with lateral boundary)

prognostic cells
nudging zone

- cell rows sorted - - cell rows unsorted - - cell rows sorted

Domain Part PE #1

Nudging

Lateral Boundary

Domain Part PE #0

Ha
lo

Re
gio

n

Lateral Boundary

Nudging

Figure 9.2.: Schematic illustration of ICON’s index ordering (grid cells).
The upper part schematically shows the different portions of a computational
domain, subdivided between two PEs. The lower part of the illustration
depicts the index vector for PE #0, see the explanation in the text.
Both PEs “own” a subset of interior cells and part of the lateral boundary.
The halo region that surrounds each partition is used to exchange data
between the PEs (dashed): The halo-exchange operation copies the contents
of the cells on the partition border (violet, pink) to the halo cells of the
adjacent process (light violet, light pink).
(Note: The sizes of the regions shown differ from the real situation.)

(declared in the module mo_loopindices) which helps to adjust the loop iteration accord-
ingly: For a given value of refin_c_ctrl and a specific block index we get the start and
end indices to loop over.

Only the halo cells deserve some further remark (note the comment “when not overlapping
with lateral boundary“ in Fig. 9.2): In the special case, when no lateral boundary is present
(for a global grid, say, or when a PE operates only on an inner portion of the domain),
the halo cells are stored in a contiguous fashion at the end of the index vector. When
a lateral boundary is present, however, there exist some halo cells which also belong to
the lateral boundary. These cells are then sorted into the leading part of the index array,
since the ability to address boundary cells in a contiguous fashion is much more important
in practice. Note that this exceptional sorting of halo cells does not affect all halo cells
of the lateral boundary region, though, but only their outermost rows. A possibility to

192

9.
P

ro
gr

am
m

in
g

IC
O

N

9.2 Data Structures

distinguish between prognostic cells and halo points is provided by the decomp_domain
data structure and the “owner info” field, see the following section.

9.2. Data Structures

This section describes ICON’s most important data structures. The majority of the data
structures mentioned here exists several times, and a separate structure is created for each
computation domain.

The number of computational domains can be taken from the variable
n_dom which corresponds to the number of entries in the namelist parame-
ter dynamics_grid_filename, see Page 118. Here, the reduced radiation grid
(Section 3.10) is not taken into account.

9.2.1. Description of the Model Domain: t_patch

The t_patch data structure contains all information about the grid coordinates and topol-
ogy, as well as parallel communication patterns and decomposition information. It is de-
clared in src/shr_horizontal/mo_model_domain.f90 as an array of length (# domains),
where the coarsest base grid is denoted by the index 1, while the refined domains are de-
noted by numbers 2, 3 and so on.

All contained data arrays and indices relate to the index/block ordering described in
Section 9.1 and non-existent indices are denoted by -1. The most important contents of
the t_patch data structure are

t_patch

grid_filename character string, containing grid file name
ldom_active indicator if current model domain is active,

see Section 5.2

parent_id domain ID of parent domain
child_id(1:n_childdom) list of child domain ID’s

n_patch_cells/edges/verts number of locally allocated cells, edges . . .
n_patch_XXXX_g global number of cells, edges and vertices

nblks_c/e/v number of blocks
npromz_c/e/v chunk length in last block

cells / edges / verts grid information, see below
comm_pat_c/e/v halo communication patterns, see Section 9.2.4

...

When it comes to dimensioning fields, the application programmer normally uses the
size n_patch_cells (or n_patch_cells_g for global arrays which should generally be

193

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

avoided) for cells, and n_patch_edges, n_patch_verts for edges and vertices, respectively.
The product nproma*nblks_c only provides an upper bound: The last block of nproma
indices does not necessarily have to be filled completely, which is indicated by the variable
npromz_c.

The data members cells, edges, and verts, which are of the types t_grid_cells,
t_grid_edges, and t_grid_vertices, respectively, give us information about the grid
cells themselves, in particular about their geographical coordinates. For example,

t_grid_cells

center(:,:) longitude and latitude of cell circumcenters,
dimensions: [1:nproma, 1:nblks_c]

neighbor_idx(:,:,:) line indices of triangles next to each cell,
dimensions: [1:nproma, 1:nblks_c, 1:3]

decomp_info information on domain decomposition
...

Essentially, all data arrays which are contained in the grid files and which are described
in Section 2.1.1 have a counterpart in this derived data type.

Besides, the data member decomp_info which separately exists for cells, edges and vertices,
deserves additional comments. Its data type t_grid_domain_decomp_info is declared in
/src/parallel_infrastructure/mo_decomposition_tools.f90:

t_grid_domain_decomp_info

glb_index(:) global index of local cell,
dimension: 1:n_patch_cells

decomp_domain(:,:) domain decomposition flag, 0: owned (for cells),
dimensions: [1:nproma, 1:nblks_c]

...

The global index (glb_index) is particularly useful to perform operations (or write out
data) which must not depend on the parallel domain decomposition of the model run. The
“owner info” (decomp_domain) can be used to distinguish between prognostic cells and
halo points whose values are just copied from adjacent PEs.

9.2.2. Date and Time Variables

When installing own processes within ICON’s time loop, the question for the current
(simulation) time naturally arises. All global date and time variables are contained in
the data structure time_config, which is of the derived data type t_time_config and
declared in src/configure_model/mo_time_config.f90. The dates are initialized with
the corresponding namelist parameters given in Section 5.1.1.

194

9.
P

ro
gr

am
m

in
g

IC
O

N

9.2 Data Structures

t_time_config

tc_exp_startdate experiment start (tc means “time control”)
tc_exp_stopdate experiment stop

tc_startdate start of current simulation. In case of restart
this is the date at which the simulation has
been continued.

tc_stopdate end of single run

tc_current_date current model date
...

The dates and time spans make use of the mtime calendar library3 which is precise
up to milliseconds without round-off errors. The mtime library resides in the directory
externals/mtime. It is written in C and has a Fortran interface (module mtime).

We motivate the use of the mtime module by two examples. First, we perform a date
calculation, adding a time span of 1 day to a given date. We make use of two variables:
mtime_date (TYPE(datetime), POINTER) and mtime_td (TYPE(timedelta), POINTER).

mtime_td => newTimedelta("P01D")
mtime_date => newDatetime("2014-06-01T00:00:00")

mtime_date = mtime_date + mtime_td
CALL datetimetostring(mtime_date, dstring)
WRITE (*,*) "2014-06-01T00:00:00 + 1 day = ", TRIM(dstring)

CALL deallocateDatetime(mtime_date)
CALL deallocateTimedelta(mtime_td)

As a second example, we demonstrate the mtime event mechanism which may be used to
start certain processes in the program. An event (TYPE(event), POINTER) is defined by
a start date, a regular trigger interval and an end date. Besides, let RefDate denote the
event reference date (anchor date) in our example. Then the event triggers every RefDate
+ k ∗ interval, but only within the bounds given by startDate and endDate.

advectionEvent => newEvent(’advection’, RefDate, startDate, &
& endDate, interval)

IF (isCurrentEventActive(advectionEvent, current_date)) THEN
WRITE (*,*) ’Calculate advection!’

ENDIF
CALL deallocateEvent(advectionEvent)

9.2.3. Data Structures for Physics and Dynamics Variables

On each model domain we need the same collection of 2D and 3D fields in or-
der to describe the state of the atmosphere. These fields are collected in the data

3The NWP mode uses the proleptic Gregorian calendar that is a backward extension of the Gregorian
calendar to dates before its introduction October 15, 1582.

195

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

structure t_nh_state. This derived type and the following types are declared in
src/atm_dyn_iconam/mo_nonhydro_types.f90.

First, the prognostic fields, which are integrated over time, are collected in the data struc-
ture t_nh_prog. Elements of t_nh_prog are allocated for each time slice that is needed for
the time integration. For the nonhydrostatic time integration, the number of time slices is
two, time t for the current time and t+ ∆t for the prediction.

t_nh_prog

w orthogonal vertical wind [m s−1]
vn orthogonal normal wind [m s−1]
rho density [kg m−3]
exner Exner pressure
tke turbulent kinetic energy [m2 s−2]
tracer tracer concentration [kg kg−1]

...

A global variable p_nh_state of type t_nh_state is instantiated in the module
/src/atm_dyn_iconam/mo_nonhydro_state.f90. This is an array whose index corre-
sponds to the model domain. The density of the atmosphere as state variable of the
nonhydrostatic dynamical core is therefore given as

p_nh_state(domain)%prog(time slice)%rho(index,level,block)

Regarding the time slice argument, we briefly comment on ICON’s handling of the two-
time-level scheme and the mechanism to avoid reallocation or unnecessary data copies:

For each prognostic variable in the two-time-level scheme, two arrays are pre-allocated:

p_nh_state%prog(1)%field(:,:)
p_nh_state%prog(2)%field(:,:)

Additionally, we introduce two global INTEGER index variables nnow and nnew which we
initialize at model start with

nnow = 1
nnew = 2

The result values of the integration scheme (time slice t+ ∆t) are stored on the nnew time
level. We therefore access the data on this time level by

p_nh_state%prog(nnew)%field(:,:)

While the calculations in the dynamical core fill this array with values, the prognostic
state of the "old" time step can be accessed by

p_nh_state%prog(nnow)%field(:,:)

Then, at the end of each dynamic (sub-)step, the time step n+1 becomes the "old" one,
while the time step n is freed and can be used as the new working array for the time
stepping. This operation does not require any copying but merely exchanges the roles of
nnow and nnew:

196

9.
P

ro
gr

am
m

in
g

IC
O

N

9.2 Data Structures

CALL swap(nnow, nnew)

Alas, the whole process is complicated by the following two facts: First, nnow, nnew are
defined for each domain separately. The above examples therefore require the domain index
jg, i. e. nnow(jg), nnew(jg). Second, as it has been explained in Section 3.7.1, different
integration time steps are applied for efficiency reasons. A separate nnow_rcf/nnew_rcf
accounting is required for the basic time step which is used for tracer transport, numerical
diffusion and the fast-physics parameterizations, to distinguish it from the short time step
used within the dynamical core4.

The data type t_nh_diag (defined in src/atm_dyn_iconam/mo_nonhydro_types.f90)
contains a collection of diagnostic fields, determined by all prognostic variables, boundary
conditions and the compositions of the atmosphere.

t_nh_diag

u zonal wind [m s−1]
v meridional wind [m s−1]
temp temperature [K]
pres pressure [Pa]

...

Similar to the prognostic fields, the domain-wise data of type t_nh_diag can be accessed
via p_nh_state(domain)%diag.

9.2.4. Parallel Communication

To simplify the data exchange between neighboring domain portions, ICON contains syn-
chronization routines exchange_data, defined in the module

src/parallel_infrastructure/mo_communication.f90.

These take the specific halo region as an argument (data type t_comm_pattern) and several
exchange patterns are pre-defined for each domain (see the derived data type t_patch).
For example, comm_pat_c, defines the halo communication for cells which are owned by
neighboring processes. The subroutine call

CALL exchange_data(patch%comm_pat_c, array)

would perform a typical synchronization of the halo regions.

Additionally, there exist variants of the exchange_data routine for gather operations.
Calling exchange_data with an argument of type t_comm_gather_pattern, typically the
pre-defined data structure patch%comm_pat_gather_c, takes elements from many pro-
cesses and gathers them to one single process. There are corresponding data structures for
communicating edges and vertices.

As it has been noted in Section 8.2, there exist different process groups in ICON: I/O,
restarting and computation. These groups are related to MPI communicators which are

4Here, the suffix rcf stands for “reduced calling frequency”.

197

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

defined in the module src/parallel_infrastructure/mo_mpi.f90. Probably the most
important MPI communicator in the ICON code is p_comm_work (which is identical to the
result of a call to get_my_mpi_work_communicator()). This is the MPI communicator for
the work group.

The work group has a total size of num_work_procs, where each process may inquire about
its rank by calling get_my_mpi_work_id(). On a non-I/O rank, its work group comprises
all processes which take part in the prognostic calculations. It is therefore used by the
exchange_data synchronization routine.

A final remark is related to the everlasting chit-chat of the status log (screen) out-
put: The process_mpi_stdio_id is always the 0th process of the MPI communicator
process_mpi_all_comm, which is the MPI communicator containing all PEs that are run-
ning this model component. A typical code line for printing out a message to screen would
be

IF (my_process_is_stdio()) write (0,*) "Hello world!"

With this, the message print-out would be suppressed on all PEs 1, 2, . . .

Of course, there already exists an auxiliary subroutine message() in ICON, whose exact
purpose is what we achieved manually above:

CALL message(’caller’, ’message text’)

The message() subroutine is located in the module mo_exception and restricts the print-
out to PE #0. It takes the caller’s subroutine name as an additional argument.

9.3. Implementing Own Diagnostics

A thorough description of how to modify the ICON model and implement one’s own
diagnostics would certainly be a chapter in its own right. Here, we try to keep things as
simple and short as possible.

Adding new modules: The dependency generator of ICON automatically de-
tects Fortran (.f90) and C (.c) files in the src/ directory. These files are
automatically included in the compilation process. Thus, when creating a
backup copy of a file, it must not end with .f90 or .c to avoid ambigious
module and subroutine names.

Adding new fields. ICON keeps so-called variable lists of its prognostic and diagnostic
fields. This global registry eases the task of memory (de-)allocation and organizes the
field’s meta-data, e.g., its dimensions, description and unit. The basic call for registering
a new variable is the add_var command (module mo_var_list). Its list of arguments is
rather lengthy and we will discuss them step by step.

First, we need an appropriate variable list to which we can append our new variable. For
the sake of simplicity, we choose an existing diagnostic variable list, defined in the module
mo_nonhydro\state :

198

9.
P

ro
gr

am
m

in
g

IC
O

N

9.3 Implementing Own Diagnostics

p_diag_list => p_nh_state_lists(domain)%diag_list

The corresponding type definition can be found in the module mo_nonhydro_types. There,
in the derived data type TYPE(t_nh_diag), we place a 2D variable pointer

REAL(wp), POINTER :: newfield(:,:)

which we can afterwards access as p_nh_state(domain)%diag%newfield.

Note that we did not allocate the variable so far.

Each ICON variable must be accompanied by appropriate meta-data. In this example
we need to initialize GRIB and NetCDF variable descriptors for a variable located in the
cell circumcenters (mass points). To keep this presentation as short as possible we have
omitted the necessary USE statements:

cf_desc = t_cf_var("newfield", "unit", "long name", DATATYPE_FLT32)
grib2_desc = grib2_var(discipline, parameterCategory, parameterNumber, &

DATATYPE_PACK16, GRID_UNSTRUCTURED, GRID_CELL)

The derived types t_cf_var and t_grib2_var are defined in the modules
mo_cf_convention and mo_grib2, respectively. The expression grib2_var is actu-
ally a call to a constructor function, also defined in mo_grib2, which takes a triple of
integers (discipline, parameterCategory, parameterNumber) as the field specifier.

Let us create an INTEGER array of length 2 with the name shape2d_c, denoting the di-
mensions of the new variable. The dimensions of a 2D field will be explained below. Here
we take them as given:

shape2d_c = (/ nproma, nblks_c /)

Now, with the essential ingredients at hand, we define our new field by the following call.
We will place it at the very end of the subroutine new_nh_state_diag_list in the module
mo_nonhydro_state.

CALL add_var(p_diag_list, ’newfield’, &
p_nh_state(domain)%diag%newfield, &
GRID_UNSTRUCTURED_CELL, ZA_SURFACE, &
cf_desc, grib2_desc, &
ldims=shape2d_c, lrestart=.FALSE.)

The INTEGER parameters GRID_UNSTRUCTURED_CELL and ZA_SURFACE define the type of the
horizontal grid and the (trivial) vertical axis. From now on the new field can be specified
in the output namelists that were described in Section 7:

&output_nml
...
ml_varlist = ’newfield’

/

199

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

The extra_2d and extra_3d fields: When debugging the model code, it
is often advantageous to be able to output intermediate results and ad hoc
calculated diagnostic fields. However, it would be an unnecessary effort to
define and allocate new variables especially for these test situations. ICON
has a special mechanism for this purpose:

By setting the namelist parameter inextra_2d (namelist io_nml, INTE-
GER value) or inextra_3d (namelist io_nml, INTEGER value), respec-
tively, a number of 2D or 3D cell-based floating-point arrays with the names
extra_2d1, extra_2d2, . . ., and extra_3d1, extra_3d2, . . . is automatically
created. Inside the model code, these can be accessed as

p_nh_state(domain)%diag%extra_2d_ptr(1)%p_2d(:,:)

and similar. Note that all extra variables are actually stored in common buffers

p_nh_state(domain)%diag%extra_2d(:,:,1:inextra_2d)
p_nh_state(domain)%diag%extra_3d(:,:,:,1:inextra_3d)

The fields can be used as output buffers for the temporary output data then.

Looping over the grid points. Of course, the newly created field ’newfield’ still needs
to be filled with values. As explained in Section 9.1 above, nearly all DO loops that iterate
over grid cells are organized in two nested loops: “jb loops” and “jc loops”. Here the outer
loop (“jb”) is parallelized with OpenMP and limited by the cell block number nblks_c.
The innermost loop iterates between 1 and the block length nproma.

Since the ICON model is usually executed in parallel, we have to keep in mind that each
process can perform calculations only on a portion of the decomposed domain. Moreover,
some of the cells between interfacing processes are duplicates of cells from neighboring
sub-domains (so-called halo cells). Often it is not necessary to loop over these halo points,
since they will be updated by the next parallel synchronization call.

The auxiliary function get_indices_c (declared in the module mo_loopindices) helps
to adjust the loop iteration accordingly:

i_startblk = p_patch(domain)%cells%start_block(grf_bdywidth_c+1)
i_endblk = p_patch(domain)%cells%end_block(min_rlcell_int)

DO jb = i_startblk, i_endblk

CALL get_indices_c(
IN
p_patch(domain),

IN
jb,

IN
i_startblk,

IN
i_endblk,

OUT
is,

OUT
ie, &

IN
grf_bdywidth_c+1,

IN
min_rlcell_int)

DO jc = is, ie
p_nh_state(domain)%diag%newfield(jc,jb) = ...

END DO
END DO

200

9.
P

ro
gr

am
m

in
g

IC
O

N

9.3 Implementing Own Diagnostics

The constants grf_bdywidth_c and min_rlcell_int can be found in the modules
mo_impl_constants_grf and mo_impl_constants, respectively. Note that these con-
stants have to be inserted in start_block, end_block and also in the argument list of
get_indices_c. A graphical interpretation of these constants is provided by Figure 9.2.
The loop example therefore iterates over all prognostic cells (denoted by the blue area).

Loop exchange: The special pre-processor flag __LOOP_EXCHANGE can be found
in numerous places of the ICON model code. It causes a loop interchange in
many performance critical loops: If applied, the variable used in the inner
loop switches to the outer loop.

Usually, this means that the loop over the vertical levels becomes the fastest
running loop, compared to the iteration indices for the horizontal location.
When arrays do not contain vertical levels, access to array elements may take
advantage of the CPU cache.

Placing the subroutine call. Having encapsulated the computation together with the DO
loops in a custom subroutine, we are ready to place this subroutine call in between ICON’s
physics-dynamics cycle.

Let us take a look at Figure 3.8: The outer loop “Dynamics → Physics → Output” is con-
tained in the core module mo_nh_stepping inside the TIME_LOOP iteration. For diagnostic
calculations it is important to have all necessary quantities available for input. On the
other hand the result must be ready before the call to the output module,

CALL write_name_list_output(jstep)

The fail-safe solution here is to place the call immediately above this call.

Having inserted the call to the diagnostic field computation, we are done with the final
step. Recompile the model code and you are finished!

Style recommendations: When writing your own extensions to ICON it is
always a good idea to keep an eye on the quality of your code.

Make sure that there is no duplicate functionality and try to improve the
readability of your subroutines through indentation, comments etc. This
will make it easier for other developers to understand and assimilate. Better
introduce own modules with complete interfaces and avoid USEs and PUBLIC
fields.

A good starting point for your own project are the template files, given
in the subdirectory src/templates of the ICON source code. These provide
examples for modules, functions and subroutines.

Additional remarks: 3D fields, accumulated quantities. For the sake of brevity, only
the simple case of two-dimensional fields has been discussed so far.

201

9.P
rogram

m
ing

IC
O

N

ICON Model Tutorial

Three-dimensional fields would have an additional dimension for the column levels:

shape3d_c = (/ nproma, nlev, nblks_c /)

This information needs to be provided to the constructor add_var(...), together with an
INTEGER parameter which indicates the type of the vertical axis:

Usually, the ICON generates its vertical axis on-the-fly, i. e. during the model setup. The
user may choose between the hybrid Gal-Chen coordinate and the (more common) SLEVE
coordinate via namelist parameters, see Section 3.4. However, it is practically impossible
to encode the exact vertical coordinate parameters themselves in the data sets which are
produced by the ICON model. Apart from very basic information like the number of
vertical levels, only a number identifying the special vertical grid used is provided. This
indirect approach is indicated by the parameter ZA_REFERENCE.

Finally, it is often necessary to reset accumulated quantities in regular intervals. This
can be achieved by

action_list = actions(new_action(ACTION_RESET,interval))

For example, by setting interval = "PT06H", the respective field would be reset to zero
every 6 hours.

CALL add_var(p_diag_list, ’newfield’, &
p_nh_state(domain)%diag%newfield, &
GRID_UNSTRUCTURED_CELL, ZA_REFERENCE, &
cf_desc, grib2_desc, &
action_list=actions(new_action(ACTION_RESET,interval)), &
ldims=shape3d_c, lrestart=.FALSE.)

9.4. NWP Call Tree

All of ICON’s NWP and infrastructure modules, however numerous they may be, can
roughly be classified into an initialization phase, the time integration loop and the clean-
up phase. In Figure 9.3 we restrict ourselves to the most important subprograms.

These are listed together with a short description of their location and purpose, which,
of course, change gradually between released versions. We recommend to compare this to
the flow chart of processes in the physics-dynamics coupling, see Fig. 3.8.

202

9.
P

ro
gr

am
m

in
g

IC
O

N

9.4 NWP Call Tree

ICON NWP

init master control

initialization of general model variables.

read master namelist

read start/end date, set model component
and, if necessary, restart mode.

atmo model

main program for the ICON atmospheric model.

construct atmo model

define the horizontal and vertical grids,
detach dedicated processes for I/O.

read atmo namelists

read-in of namelists for atmospheric model.

construct atmo nonhydrostatic

NWP mode: allocate memory for the state variables,
prepare initial conditions or read restart files,
initialize I/O.

atmo nonhydrostatic

perform nh stepping

initialize physics schemes, initial output.

perform nh timeloop

outer time loop for nonhydrostatic model:
perform IAU, read LAM boundary conditions,
update time step, call integration for coarsest domain,
compute diagnostics, write output

integrate nh

performs single time step.
recursively called for nests.

perform dyn substepping

integrate dynamical core
(perform dynamical core substepping).

step advection

time stepping for tracer transport.

nwp nh interface

physics packages control.

destruct atmo nonhydrostatic

destruct atmo model

drivers/mo master init.f90

namelists/mo master nml.f90

drivers/mo atmo model.f90

drivers/mo atmo model.f90

namelists/mo read namelists.f90

drivers/mo atmo nonhydrostatic.f90

drivers/mo atmo nonhydrostatic.f90

atm dyn iconam/mo nh stepping.f90

atm dyn iconam/mo nh stepping.f90

atm dyn iconam/mo nh stepping.f90

atm dyn iconam/mo nh stepping.f90

advection/mo advection stepping.f90

drivers/mo atmo nonhydrostatic.f90

drivers/mo atmo model.f90

atm phy nwp/mo nh interface nwp.f90

Figure 9.3.: Call tree of ICON’s NWP component (note that this list has been restricted
to the most important subroutines).

203

9.P
rogram

m
ing

IC
O

N

10
.V

isu
al

iz
at

io
n

10. Post-Processing and Visualization

Oh my God! Look at that picture over
there! There’s the Earth coming up.
Wow, is that pretty.

W. Anders, Apollo 8

ICON offers the possibility to produce output either in NetCDF or GRIB2 format. Many
visualization environments such as GrADS, Matlab or R now include packages with which
NetCDF data files can be handled. The GRIB format, which is also commonly used in
meteorology, can be processed with these tools as well. However, since the standardization
of unstructured GRIB records is relatively new, many post-processing packages offer only
limited support for GRIB data that has been stored on the triangular ICON grid.

Since the visualization of regular (lat-lon) grid data is relatively straightforward, we limit
ourselves in our description to a very simple program, ncview, which does not have a large
functionality but is an easy-to-use program for a quick view of NetCDF output files. It is
therefore very useful for a first impression.

Model data that has been stored on the triangular ICON grid can be visualized with the
Python programming language, the NCL scripting language, R or the Generic Mapping
Tools (GMT). Section 10.3 contains some examples how to visualize NetCDF data sets
without the need of an additional regridding.

10.1. Retrieving Data Set Information

We begin with command-line utilities which provide a textual description of the data sets.
For a quick overview of dimensions and variables, the command-line utility ncdump can
be used. This program will shortly be described first. More sophisticated tools exist, for
cutting out subsets of data, e. g., and producing averages or time series. One of these tools
are the cdo utilities.

10.1.1. The ncdump Tool

The tool ncdump comes with the NetCDF library as provided by Unidata and generates
a text representation of a NetCDF file on standard output. The text representation is in
a form called CDL (network Common Data form Language). ncdump may be used as a
simple browser for NetCDF data files, to display the dimension names and sizes, variable
names, types and shapes, attribute names and values, and optionally, the data values

205

10.V
isualization

ICON Model Tutorial

themselves for all or selected variables in ASCII format. For example, to investigate the
structure of a NetCDF file, use

ncdump -h data-file.nc

With this command, dimension names and sizes, variable names, dependencies and values
of dimensions will be displayed. To show the type version of a NetCDF file, type

ncdump -k data-file.nc

This gives information about the NetCDF base format of a specific file, for example
NetCDF Classic Format, NetCDF 64-bit Offset Format or NetCDF-4 Format.

NetCDF data can also be redirected to a text file with

ncdump -b c data-file.nc > data-file.cdl

This produces an annotated CDL version of the structure and the data in the NetCDF
file data-file.nc. You can also save data for specified variables to text files just using:

ncdump -v variable data-file.nc > data-file.txt

For further information on working with ncdump see

https://docs.unidata.ucar.edu/nug/current/netcdf_utilities_guide.html

10.1.2. CDO – Climate Data Operators

The CDO (Climate Data Operators) are a collection of command-line operators to manipu-
late and analyze NetCDF and GRIB data. The CDO package is developed and maintained
at the MPI for Meteorology in Hamburg. Source code and documentation are available
from

https://code.mpimet.mpg.de/projects/cdo

There is a possibility to get support via the forums1 or issue tracking system of CDO.
Further details are provided in the FAQ2.

The tool includes more than 400 operators to print information about data sets, copy,
split and merge data sets, select parts of a data set, compare data sets, modify data
sets, arithmetically process data sets, to produce different kind of statistics, to detrend
time series, for interpolation and spectral transformations. The CDOs can also be used to
convert from GRIB to NetCDF or vice versa, although some care has to be taken there.

In particular, the ”operator” cdo infov writes information about the structure and con-
tents of all input files to standard output. By typing

cdo infov data-file.nc

in the command-line for each field the following elements are printed: date and time,
parameter identifier and level, size of the grid and number of missing values, minimum,
mean and maximum. A variant of this CDO operator is

1https://code.mpimet.mpg.de/projects/cdo/boards
2https://code.mpimet.mpg.de/projects/cdo/wiki/FAQ

206

https://docs.unidata.ucar.edu/nug/current/netcdf_utilities_guide.html
https://code.mpimet.mpg.de/projects/cdo
https://code.mpimet.mpg.de/projects/cdo/boards
https://code.mpimet.mpg.de/projects/cdo/wiki/FAQ

10
.V

isu
al

iz
at

io
n

10.2 Plotting Data Sets on Regular Grids: ncview

Figure 10.1.: Screenshot of the ncview NetCDF plotting tool.

cdo sinfov data-file.nc

which prints out short information of each field.

10.2. Plotting Data Sets on Regular Grids: ncview

ncview is a visual browser for NetCDF format files developed by David W. Pierce. Using
ncview you can get a quick and easy look at regular grid data in your NetCDF files.

To install ncview on your local platform, see the ncview website:
http://meteora.ucsd.edu/~pierce/ncview_home_page.html

You can run the program by typing:

ncview data-file.nc

which will open a new window with the display options. It is possible to view simple movies
of data, view along different dimensions, to have a look at actual data values at specific
coordinates, change color maps, invert data, etc., see the screenshot in Fig. 10.1.

If data-file.nc contains wildcards such as ’*’ or ’?’ then all files matching the description
are scanned, if all of the files contain the same variables on the same grid. Choose the
variable you want to view. Variables which are functions of longitude and latitude will be
displayed in two-dimensional images. If there is more than one time step available you can
easily view a simple movie by just pushing the forward button. The appearance of the
image can be changed by varying the colors of the displayed range of the data set values
or by adding/removing coastlines. Each one- or two-dimensional subset of the data can
be selected for visualization. ncview allows the selection of the dimensions of the fields
available, e.g. longitude and height instead of longitude and latitude of 3D fields.

The pictures can be sent to Postscript (*.ps) output by using the function print. Be
careful that whenever you want to close only a single plot window to use the close
button, because clicking on the ⊠-icon on the top right of the window will close all ncview
windows and terminate the entire program!

207

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

10.V
isualization

ICON Model Tutorial

10.3. Plotting Data Sets on the Triangular Grid

Let us now focus on ICON’s original computational mesh, the triangular grid. In this
section we will sketch several approaches for the visualization of data sets based on the
triangular cells.

In recent years, numerous open source packages have appeared: We will present quick
start examples for the Python programming language, NCL, R, and GMT. The different
tools vary significantly in terms of their functionality, but also regarding their state of
development – some software packages (PyNGL, NCL) have been discontinued, so no
further development is taking place. All approaches have in common that the NetCDF
grid file must be read in together with the data file.

10.3.1. Visualization with Python

By now there is quite a number of visualization packages available that rely on the Python
ecosystem.

Here, as a introductory example, we will be using Matplotlib, a plotting library for the
Python programming language and its numerical mathematics extension NumPy. The
Cartopy package extends the Matplotlib functionality and offers map projection definitions,
and arbitrary point, line, and polygon transformations (see the Cartopy list of projections
for more information).

The following minimal example displays ICON surface data. First, we load the necessary
Python modules for data read-in and plotting:

import pathlib, numpy, netCDF4, cartopy
from matplotlib import pyplot as plt

Second, set the file locations. For convenience, we use a path specification relative to the
user’s $HOME directory:

home = str(pathlib.Path.home())
grid_filename = home + "icon_DOM01.nc"
data_filename = home + "external_parameter_icon_DOM01_tiles.nc"

Open the NetCDF grid file and load the data sites. The data sites for the surface height
field topography_c are the triangle circumcenters, located at clon, clat.

ds = netCDF4.Dataset(grid_filename)
cx = numpy.degrees(numpy.asarray(ds["clon"]))
cy = numpy.degrees(numpy.asarray(ds["clat"]))

Load external parameters data set topography_c from a second file:

208

https://matplotlib.org/
https://github.com/SciTools/cartopy
https://scitools.org.uk/cartopy/docs/latest/crs/projections.html

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

Figure 10.2.: The plot generated by the Python example script using Matplotlib and
Cartopy, see Section 10.3.1.

ds = netCDF4.Dataset(data_filename)
src_data = numpy.degrees(numpy.asarray(ds["topography_c"]))

Finally, we plot with the function tricontourf, resulting in the plot shown in Fig. 10.2:

fig = plt.figure(figsize=(9, 9))
ax = plt.axes(projection=cartopy.crs.PlateCarree())
ax.add_feature(cartopy.feature.BORDERS,edgecolor=’gray’)

ax.tricontourf(cx, cy, src_data, transform=cartopy.crs.PlateCarree())

plt.show()
fig.savefig("HSURF.png", dpi=200)

Psyplot: For more advanced visualizations we recommend at this point the
package psyplot, again based on the Matplotlib package. See the website
https://psyplot.github.io for further information including a rich collection of
documented examples. Psyplot even features a viewer application for netCDF
files, see https://psyplot.github.io/psy-view/index.html, that is highly moti-
vated by the ncview software but works also for unstructured grids.

10.3.2. Visualization with PyNGL

The Python module PyNGL (pronounced “pingle”) is a Python language module for gen-
erating high-quality, 2D visualizations of scientific data. PyNIO is a Python module used
for reading and writing NetCDF, GRIB, and HDF.

209

https://psyplot.github.io

10.V
isualization

ICON Model Tutorial

Development status. PyNGL has been developed by the Computational and Informa-
tion Systems Lab at the National Center for Atmospheric Research (NCAR). Unfortu-
nately, in 2020 the further development of PyNGL has been abandoned, in favor of Mat-
PlotLib, Cartopy, and other alternative Python ecosystem packages.

PyNGL Installation

For completeness, we will explain the basic usage of PyNGL in a step-by-step tutorial
in the following. PyNGL and PyNIO can be installed on Linux and MacOS systems via
conda3, or its slimmed-down version miniconda:

First, download the miniconda installer script to your machine. In our example we will
install the stable release version for Linux x86 architectures. Visit the conda web page to
find out which version is the right one for your platform.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
source $HOME/miniconda3/etc/profile.d/conda.sh

Once miniconda is installed, we use the conda command to install the PyNGL and PyNIO
Python packages:

conda create --name pyn_env --channel conda-forge numpy pyngl pynio

Now, you can activate Python environment via

conda activate pyn_env

and the newly installed packages PyNGL and PyNIO are ready to use.

NumPy and threading issues: On some platforms (like DWD’s rcl.dwd.de)
you may encounter a SegFault when using the NumPy package in
Python+conda. A similar problem occurs when using the packages PyNGL
and PyNIO. This problem, which is related to the multi-threaded BLAS li-
brary, can be avoided by setting in your shell environment

export OMP_NUM_THREADS=1

PyNGL Step-by-step Tutorial

In the following we provide a detailed step-by-step tutorial for producing graphics from
an ICON data set. To this end, we create a file visualization_tutorial.py where a
sequence of commands can be stored and executed with

python visualization_tutorial.py

3Conda is an open source package management system see https://conda.io.

210

https://www.pyngl.ucar.edu
https://conda.io

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

We begin by loading some Python modules which provide high-level functions for plotting
and numerical computations

load Python modules for plotting
import Ngl, Nio, numpy

These lines also contain a comment. Comment lines in Python are preceded by the hash
sign ’#’.

Step 1: Reading grid coordinates from file. Since the ICON model uses an unstructured
grid topology, we open and read such a topology file, stored in NetCDF format, by the
following commands:

gridfile = Nio.open_file("gridfile.nc")
print(gridfile)

The print command lists all variables that have been found in the NetCDF file as textual
output. For the ICON grid, the vertex positions of the grid triangles are of special interest.
They are stored as longitude/latitude positions in the vlon, vlat fields (this is explained in
more detail in Section 2.1.1, page 21). For PyNGL we convert from steradians to degrees:

vlon = numpy.rad2deg(gridfile.variables["vlon"][:])
vlat = numpy.rad2deg(gridfile.variables["vlat"][:])

Additionally, we load the vertex indices for each triangle edge of the icosahedral mesh.

edge_vertices = gridfile.variables["edge_vertices"][:]

The indices are stored in the grid file data set edge_vertices and reference the corre-
sponding vertices from vlon, vlat,

edge #i : (vlon[q1], vlat[q1]) — (vlon[q2], vlat[q2])

where

q1/2 := edge_vertices[1/2, i] − 1

Note that by subtracting 1 we take the 0-based array indexing of Python into account.

Step 2: Creating a plot of the triangular grid. Producing graphics with PyNGL requires
the creation of a so-called workstation, i.e. a description of the output device. In this
example, this “device” will be an image file plot.png, but we could also define a different
output format, e.g. PostScript "ps" instead.

211

10.V
isualization

ICON Model Tutorial

wks = Ngl.open_wks("png","plot")

Then the map settings have to be defined and we collect these specifications in a “resource
data structure” named config1. First of all, we disable the immediate drawing of the map
image, since the ICON icosahedral grid plot will consist of two parts: the underlying map
and the grid lines. We do so by setting the resource attributes bglFrame and nglDraw to
False.

We then define an orthographic projection centered over Europe. It is important that grid
lines are true geodesic lines, otherwise the illustration of the ICON grid would contain
graphical artifacts, therefore we set the parameter mpGreatCircleLinesOn.

config1 = Ngl.Resources()
config1.nglFrame = False
config1.nglDraw = False

config1.mpProjection = "Orthographic"
config1.mpGreatCircleLinesOn = True
config1.mpCenterLonF = 10
config1.mpCenterLatF = 50

Having completed the setup of the config1 data structure, we can create an empty map
by the following command:

map = Ngl.map(wks,config1)

Now, the edges of the ICON grid must be added to the plot. As described before, we convert
the indirectly addressed edge_vertices into an explicit list of geometric segments with
dimension 2 ∗ nedges:

ecx = numpy.ravel(vlon[edge_vertices-1], order=’F’)
ecy = numpy.ravel(vlat[edge_vertices-1], order=’F’)

This operation deserves additional comments: First of all, since the PyNGL plotting func-
tion below will expect one-dimensional lists for its interface, we use the auxiliary function
numpy.ravel for reshaping the array of lines. Second, with order=’F’ we define the array
ordering of vlon, vlat to be “Fortran-style”. Compared to Python (numpy) this is the
transpose memory layout.

Now, there exists an PyNGL high-level command for plotting lines, Ngl.add_polyline.

lines_cfg = Ngl.Resources()
lines_cfg.gsSegments = numpy.arange(0, edge_vertices.size, 2)
poly = Ngl.add_polyline(wks, map, ecx, ecy, lines_cfg)

212

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

Figure 10.3.: The two plots generated by the PyNGL example script in Section 10.3.2.

The whole plotting process is then triggered by the command

Ngl.draw(map)
Ngl.frame(wks)
Ngl.end()

Here, the call to Ngl.end() terminates the PyNGL script. The first of the resulting image
files plot.000001.png will contain an illustration similar to Fig. 10.3 (left part).

Step 3: Loading a data set from a second file. We now assume that the data sets
produced by the ICON model have been stored in NetCDF format. This allows to visualize
the unstructured data without additional Python packages. As a second file we open
such a NetCDF data set datafile.nc in read-only mode and investigate its data set
topography_c:

datafile = Nio.open_file("datafile.nc")
topo = datafile.variables["topography_c"]
print(topo)

The final step of this exercise is the creation of a contour plot from the data contained in
datafile. As it has been stated by the previous call to print, the data sites for the field
topography_c are the triangle circumcenters, located at clon, clat.

clon = numpy.rad2deg(gridfile.variables["clon"][:])
clat = numpy.rad2deg(gridfile.variables["clat"][:])

For a basic contour plot, a cylindrical equidistant projection with automatic adjustment
of contour levels will do. It is important to specify the two additional arguments sfXArray
and sfYArray.

213

10.V
isualization

ICON Model Tutorial

config2 = Ngl.Resources()
config2.mpProjection = "CylindricalEquidistant"
config2.cnFillOn = True
config2.cnLinesOn = False
config2.cnLineLabelsOn = False
config2.sfXArray = clon
config2.sfYArray = clat

Afterwards, we generate the plot (image file plot.000002.png) with a call to
Ngl.contour_map.

map = Ngl.contour_map(wks,topo,config2)

Note that this time it is not necessary to launch additional calls to draw and frame, since
the default options in config2 are set to immediate drawing mode.

You may wonder why the plot has a rather smooth appearance without any indication
of the icosahedral triangular mesh. What happened is that PyNGL generated its own
Delaunay triangulation building upon the cell center coordinates provided via clon, clat.
Thus, we are unable to locate and investigate individual ICON grid cells. In order to
visualize individual cells, we need to additionally load the vertex coordinates of each
triangle into PyNGL. This information is also available from the grid file and is stored in
the fields clon_vertices, clat_vertices.

clonv = numpy.rad2deg(gridfile.variables["clon_vertices"][:])
clatv = numpy.rad2deg(gridfile.variables["clat_vertices"][:])
config2.sfXCellBounds = clonv
config2.sfYCellBounds = clatv
config2.cnFillMode = "CellFill"

By choosing the CellFill mode, it is ensured that every grid cell is filled with a single
color.

Afterwards we generate the plot once more with a call to Ngl.contour_map.

map = Ngl.contour_map(wks,topo,config2)

Do you see the difference?

10.3.3. NCL – NCAR Command Language

The NCAR Command Language (NCL) is an interpreted language designed specifically
for scientific data analysis and visualization. It is built on top of the same "resource model"
used in the PyNGL Python package.

214

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

NCL allows convenient access to data in a variety of formats such as NetCDF and GRIB1/2,
among others. It has many features common to modern programming languages, such as
types, variables, operators, expressions, conditional statements, loops, and functions and
procedures, see https://www.ncl.ucar.edu for details.

Besides an interactive mode, NCL allows for script processing (recommended). NCL scripts
are processed on the command-line by typing

ncl filename.ncl

For visualizing ICON data on the native triangular grid, we recommend using NCL 6.2.0
or higher.

Development status. Note that NCAR has made the decision to adopt Python as the
scripting language platform of choice for future development of analysis and visualization
tools. NCAR will not add new features to the NCL language or function library although
the NCL software package continues to build on currently supported platforms.

NCL Quick-Start Example

The following example script creates a temperature contour plot with NCL (see Fig-
ure 10.4):

begin

; Open model level output file
File = addfile("JABW_DOM01_ML_0001.nc", "r")

; read grid information (i.e. coordinates of cell centers and vertices)
rad2deg = 45./atan(1.) ; radians to degrees
clon = File->clon * rad2deg ; cell center, lon (ncells)
clat = File->clat * rad2deg ; cell center, lat (ncells)

vlon = File->clon_bnds * rad2deg ; cell vertices, lon (ncells,3)
vlat = File->clat_bnds * rad2deg ; cell vertices, lat (ncells,3)

; read data
;
temp_ml = File->temp(:,:,:) ; dims: (time,lev,cell)
print("max T " + max(temp_ml))
print("min T " + min(temp_ml))

; create plot
;
wks = gsn_open_wks("ps","outfile")
gsn_define_colormap(wks,"testcmap") ; choose colormap

ResC = True
ResC@sfXArray = clon ; cell center (lon)
ResC@sfYArray = clat ; cell center (lat)

215

https://www.ncl.ucar.edu

10.V
isualization

ICON Model Tutorial

ResC@sfXCellBounds = vlon ; define triangulation
ResC@sfYCellBounds = vlat ; define triangulation
ResC@cnFillOn = True ; do color fill
ResC@cnFillMode = "cellfill"
ResC@cnLinesOn = False ; no contour lines

; plot temperature level
plot = gsn_csm_contour_map(wks,temp_ml(0,80,:),ResC)

end

To open a data file for reading, the function addfile returns a file variable reference
to the specified file. Second, for drawing graphics, the function gsn_open_wks creates an
output resource, where the “ps”, “pdf” or “png” format are available. Third, the command
gsn_csm_contour_map creates and draws a contour plot over a map.

Loading the coordinates of the triangle cell centers into NCL (resources sfXArray and
sfYArray) is essential for visualizing ICON data on the native grid. Loading the vertex
coordinates of each triangle (resources sfXCellBounds and sfYCellBounds), however, is
optional. If not given, a Delaunay triangulation in the 2D plane will be performed by NCL,
based on the cell center information. If given, the triangles defining the mesh will be de-
duced by sorting and matching vertices from adjacent cell boundaries. If you are interested
in the correct representation of individual cells, the resource sf[X/Y]CellBounds should
be set.

Creating a plot can get very complex depending on how you want to look at your data.
Therefore we refer to the NCL documentation that is available online under

http://www.ncl.ucar.edu

Figure 10.4.: ICON temperature field on a specific model level produced with the above
NCL script.

216

http://www.ncl.ucar.edu

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

Note that there is another NCL example contained in the course material, which very
closely resembles the steps explained in the PyNGL tutorial in Section 10.3.2. For the
exercises in this tutorial we refer to the prepared NCL scripts. These files are stored in
the subdirectory test_cases/casexx together with the model run scripts.

10.3.4. Visualization with R
Section authors

J. Förstner and M. Köhler,
DWD Physical Processes Division

R is a free software environment for statistical computing and graphics. R is available
as free software under the terms of the Free Software Foundation’s GNU General Public
License. More Information can be found here:

https://www.r-project.org

To start R in an interactive mode simply type

R

on the command line. Afterwards R commands can be entered, which are then interpreted
line by line. R can be extended (easily) via packages. Additional packages have to be
installed via the R command

install.packages("package_name")

For the compilation of some packages it might be necessary to provide specific (develop-
ment) libraries on the system and to give information about the include and library paths
as additional arguments to that command.
Most packages are available through the CRAN family of internet sites. An exception to
this is the gribr package, which is used in the example script below to read in GRIB2
data:

https://github.com/nawendt/gribr

This package uses and therefore needs a recent installation of ecCodes (it is not working
with the GRIB API). Additional information about (other) prerequisites and the installa-
tion of the package can be found on the given website.

Installation of R on the DWD computer system: The R software has been
preinstalled on DWD’s rcl.dwd.de as a software module, where R/3.6.2 is
the current default (for which the below example has been tested). Further
modules have to be loaded as well, see the comment in the following example.

Besides an interactive mode, R allows for script processing (recommended). R scripts are
processed on the command-line by typing

Rscript filename.R

As default a PDF named Rplots.pdf will be created.

217

https://www.r-project.org
https://github.com/nawendt/gribr

10.V
isualization

ICON Model Tutorial

R Quick-Start Example

The following example script icon_native_4_tutorial.R can be found in the tarball
directory scripts. It creates a global temperature contour plot with R (see Figure 10.5):

Figure 10.5.: ICON 2 m temperature field produced with the given example script for R.

... on DWD’s RCL, as a prerequisite issue the following commands:
module load netcdf4 oracle
module load R
module load gribr

--

load necessary libraries
library(gribr)
library(RNetCDF)
library(data.table)
library(ggplot2)
library(dplyr)
library(colorRamps)

--- setup --

shortName <- "T_2M"
title <- paste(shortName," ICON (R2B6)\n")

218

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

data file names
grid <- "./icon_grid_0024_R02B06_G.nc"
data <- "./T_2M.R2B06_ICON_global.grb"

--- icon grid --

ncHandle <- open.nc(grid)

function to convert coordinates in degress
rad2deg <- function(rad) {(rad * 180) / (pi)}

get longitudes and latitudes of triangle vertices of a cell
vlon <- rad2deg(var.get.nc(ncHandle,"clon_vertices"))
vlat <- rad2deg(var.get.nc(ncHandle,"clat_vertices"))

close.nc(ncHandle)

--- icon data --

gribHandle <- grib_open(data)

select the grib record based on a given list of keys
gribRecord <- grib_select(gribHandle, list(shortName = shortName))

grib_close(gribHandle)

create a data table with data to plot - ids and values are tripled
DT <- data.table(lon = as.vector(vlon),

lat = as.vector(vlat),
id = rep(1:(dim(vlon)[2]) , each=3),
var = rep(gribRecord$values, each=3))

--- domain and edges ---

Global
xrange <- c(-180., 180.)
yrange <- c(-90., 90.)

select the subset of ids in the domain
usedIDs <- unique(DT[lon%between%xrange & lat%between%yrange]$id)

use only the respective subset of the data
DT <- DT[id %in% usedIDs]

special treatment for the cells near the date line
... when the 3 corners on opposite sides of the date line move one corner
IDsR = DT[,list((max(lon)-min(lon))>200 & mean(lon)>0.0), by=id][V1==T]$id
IDsL = DT[,list((max(lon)-min(lon))>200 & mean(lon)<0.0), by=id][V1==T]$id
DT[id %in% IDsR & lon < 0.0, lon := lon + 360.0]
DT[id %in% IDsL & lon > 0.0, lon := lon - 360.0]

... copy triangles by 360deg to fill holes near date line
DTT <- DT[id%in%IDsR]
DTT[lon > 0.0, lon := lon - 360.0]

219

10.V
isualization

ICON Model Tutorial

DTT$id <- DTT$id + max(DT$id)
DT <- rbind(DT, DTT)
DTT <- DT[id%in%IDsL]
DTT[lon < 0.0, lon := lon + 360.0]
DTT$id <- DTT$id + max(DT$id)
DT <- rbind(DT, DTT)

--- plot data using ggplot2 with geom_polygon ----------------

landscape mode
pdf(paper="a4r", width=11.692, height=8.267)

create the plot object
pp <- ggplot() +

geom_polygon(data = DT, aes(x = lon, y = lat, group = id, fill = var)) +
borders(colour = "black", xlim = xrange, ylim = yrange) +
scale_fill_gradientn(colours = matlab.like(100)) +
coord_cartesian(xlim = xrange,ylim = yrange, expand = FALSE) +
scale_x_continuous(breaks = seq(xrange[1], xrange[2],20)) +
scale_y_continuous(breaks = seq(yrange[1], yrange[2],15)) +
theme_bw() +
labs(x="longitude", y="latitiude", fill="[K]") +
theme(axis.text = element_text(size=14),

axis.title = element_text(size=16),
plot.title = element_text(size=16, hjust=0),
legend.title = element_text(size=16),
legend.text = element_text(size=14)) +

ggtitle(paste0(title,
" min: ", round(min (DT$var, na.rm=TRUE),3), ", ",
" max: " , round(max (DT$var, na.rm=TRUE),3), ", ",
"mean: " , round(mean(DT$var, na.rm=TRUE),3), ", ",
" std: " , round(sd (DT$var, na.rm=TRUE),3)))

issue the plot object
pp

10.3.5. GMT – Generic Mapping Tools

GMT is an open source collection of command-line tools for manipulating geographic and
Cartesian data sets and producing PostScript illustrations ranging from simple x-y plots
via contour maps to 3D perspective views. GMT supports various map projections and
transformations and facilitates the inclusion of coastlines, rivers, and political boundaries.
GMT is developed and maintained at the University of Hawaii, and it is supported by the
National Science Foundation.

To install GMT on your local platform, see the GMT website:

https://www.generic-mapping-tools.org

Since GMT is comparatively fast, it is especially suited for visualizing high resolution
ICON data on the native (triangular) grid. It is capable of visualizing individual grid cells

220

https://www.generic-mapping-tools.org

10
.V

isu
al

iz
at

io
n

10.3 Plotting Data Sets on the Triangular Grid

and may thus serve as a helpful debugging tool. So far, GMT is not capable of reading
ICON NetCDF or GRIB2-output offhand. However, CDO can be used to convert your
data to a format readable by GMT.

From your NetCDF output, you should first select your field of interest and pick a single
level at a particular point in time:

cdo -f nc selname,VNAME -seltimestep,ITIME -sellevidx,ILEV \
ICON_OUTPUT.nc ICON_SELECTED.nc

Now this file must be processed further using the outputbounds command from CDO,
which finally leads to an ASCII file readable by GMT.

cdo -outputbounds ICON_SELECTED.nc > ICON_SELECTED.gmt

The output looks as follows:

Generated by CDO version 1.6.3
#
Operator = outputbounds
Mode = horizonal
#
File = NWP_DOM01_ML_0006_temp.nc
Date = 2012-01-04
Time = 00:00:00
Name = temp
Code = 0
Level = 80
#
> -Z254.71

-155.179 90
36 89.5695
108 89.5695
-155.179 90

> -Z255.276
36 89.5695
36 89.1351
72 89.2658
36 89.5695

...

For each triangle, it contains the corresponding data value (indicated by -Z) and vertex
coordinates.

As a starting point, a very basic GMT script is added below. It visualizes the content of
test.gmt on a cylindrical equidistant projection including coastlines and a colorbar. An
example plot based on this script is given in Figure 10.6.

#!/bin/bash

Input filename

221

10.V
isualization

ICON Model Tutorial

INAME="test.gmt"

Output filename
ONAME="test.ps"

generate color palette table (min/max/int)
makecpt -Cpolar -T"235"/"305"/"5" > colors.cpt

draw triangle and take fill color from colors.cpt
psxy ${INAME} \
-Rd -Jq0/1:190000000 -Ccolors.cpt -X3.2 -Y4. -K > ${ONAME}

visualize coastlines
pscoast -Rd -Jq0/1:190000000 -Dc -W0.25p,black -K -O >> $ONAME

plot colorbar
psscale -D11c/14c/18c/1.0ch -Ccolors.cpt -E -B:"T":/:K: -U -O>> $ONAME

Note: In order to get filled polygons, the -L option must be added to psxy. The purpose
of -L is to force closed polygons, which is a prerequisite for polygon filling. However, in
some recent releases of GMT (5.1.2) adding this option results in very large output files
whose rendering is extremely slow. Thus, the -L option was omitted here so that only
triangle edges are drawn and colored.

Figure 10.6.: ICON temperature field on a specific model level produced with the above
GMT script.

222

10
.V

isu
al

iz
at

io
n

10.4 Post-Processing of Data Sets

10.4. Post-Processing of Data Sets

10.4.1. Post-Processing using the CDO

The CDO (Climate Data Operators) have already been introduced in the previous Sec-
tion 10.1.2 for retrieving information on data files. Additionally, the CDO are also capable
of remapping data to regular grids. Basically, two steps are necessary to process the ICON
output files:

• In the first call of the CDO ("gencon"), 1st order conservative remap weights are
generated and stored to a separate file:

cdo gencon,lat-lon_grid_description icon_grid coefficient_file

The generation of the interpolation weights may take some time.

• Afterwards, the interpolation is done with

cdo remap,grid_description,coefficient_file in_file out_file

Here, the file icon_grid is a NetCDF file which contains the topological and geometric
information about the triangular ICON grid. This grid information must correspond to the
data set in_file and it is not part of the data set itself. Instead, it must be downloaded
separately from the web. See http://icon-downloads.mpimet.mpg.de/dwd_grids.xml
for the list of "official" DWD ICON grids4.

With respect to data sets with “missing values” the above CDO workflow with pre-
calculated weights fails. The following remark applies, for example, to the ICON-D2 data
sets:

Since the “missing values” are not part of the source grid definition, the CDOs detect the
masking only when reading the data file. Then, to avoid the risk of using undefined values
for the interpolation stencils, the whole process is aborted in this case. A workaround
when interpolating a single file is to do the weight calculation simultaneously with the
interpolation:

cdo remapcon,grid_description -setgrid,icon_grid:2 in_file out_file

In this example we have also set the source grid index explicitly to 2 to distinguish between
the cell grid, edge grid, and the vertex grid in the icon_grid file. The concrete index can
be obtained from the output of cdo sinfov data-file.nc.

DWD OpenData Documentation: A valuable web resource in this context is
DWD’s OpenData website. Here, ICON data sets are made freely available to
the public and the whole procedure of remapping ICON data with the CDO
tool is also described.
OpenData information on ICON forecast data:

4Currently in operational use is the global grid #26 with 13 km horizontal grid spacing (http://
icon-downloads.mpimet.mpg.de/grids/public/edzw/icon_grid_0026_R03B07_G.nc).

223

http://icon-downloads.mpimet.mpg.de/dwd_grids.xml
http://icon-downloads.mpimet.mpg.de/grids/public/edzw/icon_grid_0026_R03B07_G.nc
http://icon-downloads.mpimet.mpg.de/grids/public/edzw/icon_grid_0026_R03B07_G.nc

10.V
isualization

ICON Model Tutorial

https://www.dwd.de/DE/leistungen/opendata/hilfe.html

Furthermore, there even exists a Docker software container in which all nec-
essary packages for the CDO and the ecCodes are combined:

https://github.com/deutscherwetterdienst/regrid

The structure of the lon-lat grid description file is explained in the CDO documentation5.
A global regular grid, for example, would be defined as

gridtype = lonlat
xsize = 1440
ysize = 721
xfirst = 0.00
xinc = 0.25
yfirst = -90.00
yinc = 0.25

Caveat: Alas, the CDO do not handle the entire set of GRIB2 meta-data correctly. Some
meta-data items, for example those which regard ensemble runs, still remain unsupported.
However, this limitation does not matter if the desired output format is NetCDF and not
GRIB2, or if the processed data fields are rather standard. Alternatives for remapping
ICON data sets to lon-lat grids are the fieldextra software (which is a COSMO software)
or the DWD ICON Tools, which are internally used at DWD but lack official support.

10.4.2. Post-Processing using Fieldextra
Section authors

P. Baumann and J.-M. Bettems,
MeteoSwiss

Fieldextra is an official post-processing software of the COSMO Consortium. It is main-
tained and developed at MeteoSwiss.

Fieldextra is a generic tool to manipulate NWP model data and gridded observations. It
offers best compatibility with ICON(-ART), COSMO(-ART), and IFS models. Besides
support of regular grids, the program supports both GRIB2 and NetCDF data that has
been stored on the triangular ICON grid, and provides transparent access to the DWD
ICON tools interpolation methods (see Section 1.3.1).

The software is implemented in Fortran 2008 as a single but modular code. A control
file composed of Fortran namelists defines the set of operations to apply on the input
data. Simple data processing and more complex data operations are supported. Fieldextra
is designed as a toolbox; a set of primitive operations is provided, which can be freely
combined and iterated.

As examples of post-processing tasks, we mention
5Appendix D, https://code.mpimet.mpg.de/projects/cdo/embedded/index.html.

224

https://www.dwd.de/DE/leistungen/opendata/hilfe.html
https://github.com/deutscherwetterdienst/regrid
https://code.mpimet.mpg.de/projects/cdo/embedded/index.html

10
.V

isu
al

iz
at

io
n

10.4 Post-Processing of Data Sets

• complex transformations from one grid to another, including the vertical dimension,
for example the interpolation of pollen boundaries from ICON-ART to a grid at
higher horizontal and vertical resolution,

• computation of the height of the tropopause, based on complex conditions on mete-
orological fields, including gradients,

• computation of ensemble-based products, like probabilities, quantiles, standard de-
viation,

• format transformations between GRIB1, GRIB2, and NetCDF (including EXTPAR
output).

But fieldextra is also useful to solve pre-processing tasks like

• remapping gridded Radar observations from a regular grid to the ICON triangular
grid to feed the latent-heat-nudging process,

• merging the sea surface temperature from the IFS into the ICON analysis at sea
points,

• generating initial conditions on the ICON unstructured grid from initial conditions
calculated on a regular grid, like COSMO type data,

• interpolating IFS boundary conditions from the regular grid to the ICON unstruc-
tured grid.

Since the primary focus of the program is the production environment, a lot of effort has
been put into

• robustness of the code,

• extensive reporting of exceptions,

• careful processing of field meta-information, with systematic checks to avoid mean-
ingless products,

• IO, memory, and CPU optimization (OpenMP parallelism), and

• comprehensive diagnostic and profiling.

The program is used, in particular, for production at MeteoSwiss, at DWD and other
centers, and for COSMO-LEPS at ECMWF.

An overview document, a primer, release notes, and other information are publicly available
at the dedicated fieldextra GitHub wiki at
https://github.com/COSMO-ORG/fieldextra-wiki/wiki.

Full installations of the latest releases of fieldextra are accessible for the UNIX group cfxtra
on the Atos HPCF at ECMWF in /ec/res4/hpcperm/chcosmo/projects/fieldextra.

If you want to install fieldextra on your own platform, you can either retrieve the code
from the private fieldextra repository on GitHub6, or download a self-contained package

6https://github.com/COSMO-ORG/fieldextra, restricted access

225

https://github.com/COSMO-ORG/fieldextra-wiki/wiki
https://github.com/COSMO-ORG/fieldextra

10.V
isualization

ICON Model Tutorial

of the latest major production release from the COSMO web page at
http://www.cosmo-model.org/content/support/software/default.htm#fieldextra.

In order to access the GitHub repository, you need to have access to the GitHub plat-
form. For that, you first have to create a GitHub account, which is free of charges,
and then ask for access to the fieldextra repository on GitHub via the mailing list
fieldextra@cosmo-model.org.

The code is portable. It uses only standard Fortran features and should work on any
UNIX / Linux platform. Once the code is installed, all resources files used at run time
are also provided. Furthermore, comprehensive documentation, including an introductory
tutorial, and many commented examples are available. A set of command line tools, based
on fieldextra, is also part of the installation.

Fieldextra is subject to licensing. Its usage is free to all COSMO members. Community
support is available via the mailing list fieldextra@cosmo-model.org. Licences are free
for the R&D community, but without support.

For a first introduction to fieldextra, take a look at the overview and the first contact
documents, which are available at the fieldextra GitHub wiki 7. The first contact document
in particular provides some insight into the internal processing of the software, which
helps to better understand the namelists. As a next step, the commented examples in the
cookbook folder of the code repository provide an overview of the large spectrum of possible
applications (see cookbook/README.cookbook), and are a good start to develop your own
namelists. A comprehensive description of the program functionalities is given in the file
documentation/README.user. Also available is a FAQ document in documentation/FAQ;
consult it before looking for support!

7https://github.com/COSMO-ORG/fieldextra-wiki/wiki

226

http://www.cosmo-model.org/content/support/software/default.htm#fieldextra
mailto:fieldextra@cosmo-model.org
mailto:fieldextra@cosmo-model.org
https://github.com/COSMO-ORG/fieldextra-wiki/wiki

11
.D

at
a

A
ss

im
ila

tio
n

11. ICON’s Data Assimilation System and
Analysis Products

In this chapter you will get to know basic components of the ICON data assimilation
system. It consists of a whole collection of programs and modules both for the atmospheric
variables of the model as well as for soil, snow, ice and sea surface, all collected into the
Data Assimilation Coding Environment (DACE). The analysis products of this software
package are discussed in Section 11.3.

11.1. Data Assimilation

Numerical weather prediction (NWP) is an initial value problem. The ability to make a
skillful forecast heavily depends on an accurate estimate of the present atmospheric state,
known as analysis. In general, an analysis is generated by combining, in an optimal way,
all available observations with a short term forecast of a general circulation model (e.g.
ICON).

Stated in a more abstract way, the basic idea of data assimilation is to fit model states x to
observations y. Usually, we do not observe model quantities directly or not at the model
grid points. Here, we work with observation operators H which take a model state and
calculate a simulated observation y = H(x). In terms of software, these model opera-
tors can be seen as particular modules, which operate on the ICON model states. Their
output is usually written into so-called feedback files, which contain both the real obser-
vation ymeas with all its meta data (descriptions, positioning, further information) as well
as the simulated observation y = H(x).

However, data assimilation cannot be treated at one point in time only. The information
passed on from the past is a crucial ingredient for any data assimilation scheme. Thus,
cycling is an important part of data assimilation. It means that we

1. Carry out the core data assimilation component 3D-VAR to calculate the so-called
analysis x(a), i.e. a state which best fits previous information and the observations
y,

2. Propagate the analysis x(a)
k to the next analysis time tk+1. Here, it is called first

guess or background x(b)
k+1.

3. Carry out the next analysis by running the core data assimilation component, gen-
erating x(a)

k+1, then cycling the steps.

See Figure 11.1 for a schematic of the basic assimilation process.

227

11.D
ata

A
ssim

ilation

ICON Model Tutorial

Figure 11.1.: Basic ICON cycling environment using 3D-VAR. Observations are merged
with a background field taken from a 3 h forecast (first guess) of the ICON
model. Courtesy of R. Potthast, DWD.

11.1.1. Variational Data Assimilation

The basic 3D-VAR step minimizes the functional

µ(x) := ∥x− x(b)∥2
B−1 + ∥y −H(x)∥2

R−1 , (11.1)

where B is the background state distribution covariance matrix which is making sure
that the information which is available at some place is distributed into its neighborhood
properly, and R is the error covariance matrix describing the error distribution for the
observations. The minimizer of (11.1) is given by

x(a) = x(b) +BHT (R+HBHT)−1(y −H(x(b)). (11.2)

The background or first guess x(b) is calculated from earlier analysis by propagating the
model from a state xk−1 at a previous analysis time tk−1 to the current analysis time
tk. In the data assimilation code, the minimization of (11.1) is not carried out explicitly
by (11.2), but by a conjugate gradient minimization scheme, i.e. in an iterative manner,
first solving the equation

(R+HBHT)zk = y −H(x(b)
k)

in observation space calculating zk at time tk, then projecting the solution back into model
space by

δxk = x
(a)
k − x

(b)
k = BHT zk.

228

11
.D

at
a

A
ss

im
ila

tio
n

11.1 Data Assimilation

We call δxk the analysis increment.

The background covariance matrix B is calculated from previous model runs by statistical
methods. We employ the so-called NMC method initially developed by the US weather
bureau. The matrix B thus contains statistical information about the relationship between
different variables of the model, which is used in each of the assimilation steps.

11.1.2. Ensemble Kalman Filter

To obtain a better distribution of the information given by observations, modern data as-
similation algorithms employ a dynamical estimator for the covariance matrix (B-matrix).
Given an ensemble of states x(1), ..., x(L), the standard stochastic covariance estimator
calculates an estimate for the B-matrix by

B = 1
L− 1

∑L

ℓ=1
(x(ℓ)
k − xk)(x

(ℓ)
k − xk)T , (11.3)

where x denotes the mean defined by

xk = 1
L

∑L

ℓ=1
x

(ℓ)
k , k ∈ N.

This is leading us to the Ensemble Kalman Filter (EnKF), where an ensemble is employed
for data assimilation and the covariance is estimated by (11.3). Here, we use the name
EnKF (ensemble Kalman filter) as a generic name for all methods based on the above
idea.

In principle, the EnKF carries out cycling as introduced above, just that the propagation
step carries out propagation of a whole ensemble of L atmospheric states x(a,ℓ)

k from time tk
to time tk+1, and the analysis step has to generate L new analysis members, called the
analysis ensemble based on the first guess or background ensemble x(b,ℓ), ℓ = 1, ..., L.

Usually, the analysis is carried out in observation space, where a transformation is carried
out. Also, working with a low number of ensemble members as it is necessary for large-scale
data assimilation problems, we need to suppress spurious correlations which arise from a
naive application of Eq. (11.3). This technique is known as localization, and the combined
transform and localization method is called localized ensemble transform Kalman filter
(LETKF), first suggested by Hunt et al. (2007).

The DWD data assimilation coding environment (DACE) provides a state-of-the-art im-
plementation of the LETKF which is equipped with several important ingredients such
as different types of covariance inflation. These are needed to properly take care of the
modeling error. The original Kalman filter itself does not know what error the model has
and thus by default under-estimates this error, which is counter-acted by a collection of
tools.

11.1.3. Hybrid Data Assimilation

The combination of variational and ensemble methods provides many possibilities to fur-
ther improve the state estimation of data assimilation. Based on the ensemble Kalman

229

11.D
ata

A
ssim

ilation

ICON Model Tutorial

filter LETKF the data assimilation coding environment provides a hybrid system EnVar,
the ensemble variational data assimilation.

The basic idea of EnVar is to use the dynamical flow dependent ensemble covariance matrix
B as a part of the three-dimensional variational assimilation. Here, localization is a crucial
issue, since in the LETKF we localize in observation space, but 3D-VAR employs B in
state space. Localization is carried out by a diffusion-type approximation in DACE.

The cycling for the EnVar needs to cycle both the ensemble x(ℓ), ℓ = 1, ..., L and one
deterministic state xdet. The resolution of the ensemble can be lower than the full deter-
ministic resolution. By default we currently employ a 40 km grid spacing for the ensemble
and a 13 km global grid spacing for the deterministic state. The ensemble B matrix is
then carried over to the finer deterministic resolution by interpolation. See Section 11.2
for more details on the operational assimilation system at DWD.

11.1.4. Surface Analysis

DACE provides additional modules for Sea Surface Temperature (SST) analysis, Soil Mois-
ture Analysis (SMA) and snow analysis. Characteristic time scales of surface and soil
processes are typically larger than those of atmospheric processes. Therefore, it is often
sufficient to carry out surface analysis only every 6 to 24 hours.

11.2. Assimilation Cycle at DWD

The assimilation cycle iterates the steps described in Section 11.1: updating a short-range
ICON forecast (first guess) using the observations available for that time window to gen-
erate an analysis, from which then a new updated first guess is started.

The core assimilation for atmospheric fields is based on a hybrid system (EnVar) as de-
scribed in Section 11.1.3. At every assimilation step (every 3 h) an LETKF is ran using
an ensemble of ICON first guesses. Currently, the ensemble consists of 40 members with a
horizontal grid spacing of 40 km and a 20 km nest over Europe. A convex linear combina-
tion of the 3D-VAR climatological and the LETKF’s (flow dependent) covariance matrix
is then used to run a deterministic 3D-VAR analysis at 13 km horizontal grid spacing.

In addition, the above mentioned surface modules are run: Sea Surface Temperature (SST)
analysis, Soil Moisture Analysis (SMA) and snow analysis.

Note that for the ICON-EU nest no assimilation of atmospheric fields is conducted. Instead
the necessary atmospheric analysis increments are interpolated from the underlying global
grid. Together with the available first guess fields on the nest they form the nest analysis.
A separate surface analysis, however, is conducted.

The deterministic as well as the ensemble analysis is generated 8 times a day. Based on
the former, deterministic forecasts are launched at approx. 13 km horizontal grid spacing
globally with a 6.5 km nest over Europe. The maximum forecast time of the whole system
is limited to +30 h lead time at 03/09/15/21 UTC. Otherwise, the system is integrated up

230

11
.D

at
a

A
ss

im
ila

tio
n

11.2 Assimilation Cycle at DWD

to +120 h while at 00/12 UTC the integration on the global domain (only) is prolonged
to +180 h lead time.

Since the beginning of 2018 ICON ensemble forecasts are conducted as well. On the basis
of the analysis ensemble 40 short to medium forecasts at 40 km globally and 20 km nested
over Europe are run 8 times a day. The maximum forecast times are equivalent to those of
the deterministic system (see above). The primary purpose of the ensemble forecasts is to
estimate the forecast uncertainty, which arises due to uncertainties in the initial conditions
and the model error.

The input, output and processes involved in the assimilation cycle are briefly described
below:

Atmospheric Analysis

Fields modified by the atmospheric analysis: (see Appendix B for a description of
each variable) t, p, u, v, qv.

Grid(s) on which it is performed: global

Carried out at every assimilation time step (3 h) using the data assimilation algorithms
described in the previous sections.

Main input: First guess, observations, previous analysis error, online bias correction files.

Main output: Analysis of the atmospheric fields, analysis error, bias correction files,
feedback files with information on the observation, its departures to first guess and analysis.

The system can make use of the following observations: radiosondes, weather stations,
buoys, aircraft, ships, radio occultations, AMV winds and radiances. Available general fea-
tures of the module are variational quality control and (variational) online bias correction.
Regarding EnKF specifics, different types of inflation techniques, relaxation to prior per-
turbations and spread, adaptive localization, SST perturbations and SMA perturbations
are available.

Snow Analysis

Fields modified by the snow analysis: (see Appendix B for a description of each
variable) freshsnow, h_snow, rho_snow, t_snow, w_i, w_snow.

Grid(s) on which it is performed: global, EU-nest

Carried out at each assimilation time step (3 h).

Main input: SYNOP snow depth observations if the coverage is sufficient. If this is not
the case, more sources of information are looked for until the number of observations is high
enough, namely (and in this order), precipitation and 2 m temperature, direct observations
(wwreports) and the NCEP external snow analysis.

Main output: Analysis of the snow fields.

231

11.D
ata

A
ssim

ilation

ICON Model Tutorial

Sea Surface Temperature Analysis

Fields modified by the SST analysis: (see Appendix B for a description of each
variable) fr_seaice, h_ice, t_ice, t_so.

Grid(s) on which it is performed: global, EU-nest

Carried out only once a day, at 0 UTC.

Main input: NCEP analysis from the previous day (which uses satellite, buoy and ship
observations, to be used as a first guess), ship and buoy observations available since the
time of the NCEP analysis.

Main output: Sea surface temperature analysis and estimated error.

Soil Moisture Analysis

Fields modified by the SMA analysis: (see Appendix B for a description of each
variable) w_so.

Grid(s) on which it is performed: global, EU-nest

Carried out only once a day, at 0 UTC.

Main input: Background fields for relevant fields at every hour since last assimilation,
2 m-temperature analysis (see below) to be used as observations.

Main output: Soil moisture analysis and estimated error.

2m Temperature Analysis

Although carried out only at 0 UTC, it is run for several time steps in between to provide
the output (2 m temperature) needed by the SMA analysis. Uses observations from SYNOP
stations on land and METAR information from airports.

11.3. Analysis Products

This section provides an overview of DWD’s analysis products.

11.3.1. Uninitialized Analysis for IAU

In the incremental analysis update (IAU) method (Bloom et al., 1996, Polavarapu et al.,
2004) the analysis increment is not added completely at a particular time step, but it is
embedded into the model integration and added to the model states x(b)

k during an interval
∆t, which by default is ∆t = 3 h for global forecasts. This method of tentatively pulling
the model from its current state (first guess) towards the analyzed state acts as a low pass

232

11
.D

at
a

A
ss

im
ila

tio
n

11.3 Analysis Products

filter in the frequency domain on the analysis increments, such that small scale unbalanced
modes are effectively filtered.

In the following, let us assume that we want to start a model forecast at 00 UTC. Techni-
cally, the application of the IAU method has some potential pitfalls, which the user should
be aware of:

• The analysis file has to contain analysis increments (i.e. deviations from the first
guess) instead of full fields, with validity time 00 UTC. The only exceptions are
FR_ICE and T_SEA (or alternatively T_SO(0)), which must be full fields (see Ta-
ble 11.1).

• The model must be started from a first guess which is shifted back in time
by 1.5 h w.r.t. the analysis. Thus, in the given example, the validity time of
the first guess must be 22:30 UTC of the previous day. This is because “drib-
bling” of the analysis increments is performed over the symmetric 3 h time window
[00 UTC − 1.5h, 00 UTC + 1.5h]. See Section 5.1.3 for an illustration of this process.

Table 11.1 provides an overview of the fields contained in the uninitialized analysis product
for IAU for 00 UTC. Columns 1 to 3 show DWD’s GRIB2 shortName, the unit and a short
description of the fields, respectively. Columns 4 and 5 indicate, whether the field is part
of the first guess file and/or analysis file. The marker ⊗ highlights analysis increments
as opposed to full fields. First guess fields which are optional for starting the model with
IAU are highlighted in blue, with their scope being indicated in the description. If one or
more of these fields are unavailable, a cold-start of these fields is performed given that the
parameterizations for which they are needed are activated.

As explained in Section 11.2, the atmospheric analysis is performed more frequently than
the surface analysis. Therefore, the analysis product at times different from 00 UTC usually
contains only a subset of the fields provided at 00 UTC. Consequently, Table 11.1 will look
different for non-00 UTC runs in such a way that the fields

FR_ICE T_SEA W_SO T_2M

will not be provided in the analysis file. The first three fields of this list will be contained
in the first guess file instead.

233

11.D
ata

A
ssim

ilation

ICON Model Tutorial

Table 11.1.: Content of the uninitialized analysis product for IAU, separated into
first guess (FG) and analysis (ANA). Optional fields for model initialization
are marked in blue. The marker ⊗ indicates analysis increments as opposed
to full fields. Analysis fields highlighted in red are only available for 00 UTC.
The validity date of the first guess is shifted back by 1.5 h w.r.t. the start
date.

shortName Unit Description Source
FG ANA

DEN kg m−3 air density ×
P Pa pressure ⊗
QC kg kg−1 cloud liquid water mass fraction ×
QI kg kg−1 cloud ice mass fraction ×
QR kg kg−1 rain water mass fraction ×
QS kg kg−1 snow mass fraction ×
QV kg kg−1 water vapor mass fraction × ⊗
T K air temperature ⊗
THETA_V K virtual potential temperature ×
TKE m2 s−2 turbulent kinetic energy ×
U, V m s−1 horizontal velocity components ⊗
VN m s−1 edge normal velocity component ×
W m s−1 vertical velocity ×

ALB_SEAICE % sea ice albedo
scope: lprog_albsi=.TRUE. (namelist
lnd_nml)

×

C_T_LK 1 shape factor w.r.t. temp. profile in the
thermocline)

×

EVAP_PL kg m−2 evaporation of plants (integrated since
"nightly reset")
scope: itype_trvg=3 (namelist
lnd_nml)

×

FRESHSNW 1 age of snow indicator × ⊗
FR_ICE 1 sea/lake ice fraction ×
H_ICE m sea ice depth ×
H_ML_LK m mixed-layer thickness ×
H_SNOW m snow depth × ⊗
HSNOW_MAX m maximum snow depth reached within

current snow-cover period
scope: itype_snowevap=3 (namelist
lnd_nml)

×

QV_S kg kg−1 surface specific humidity ×
RHO_SNOW kg m−3 snow density ×

Continued on next page

234

11
.D

at
a

A
ss

im
ila

tio
n

11.3 Analysis Products

Table 11.1.: Continued from previous page

SKT K skin temperature
scope: itype_canopy=2 (namelist
lnd_nml)

×

SNOAG d duration of current snow-cover period
scope: itype_snowevap=3 (namelist
lnd_nml)

×

SNOWC % snow cover ×
T_BOT_LK K temperature at water-bottom sediment

interface
×

T_G K surface temperature ×
T_ICE K sea ice temperature ×
T_MNW_LK K mean temperature of the water column ×
T_SEA K sea surface temperature ×
T_SNOW K snow temperature ×
T_WML_LK K mixed-layer temperature ×
W_I kg m−2 water content of interception layer ×
Z0 m surface roughness length ×

T_SO K soil temperature ×
T_2M K 2 m temperature bias

scope: itype_vegetation_cycle=3
(namelist extpar_nml)

⊗

T_2M_FILTBIAS K Time-filtered T_2M bias
scope: itype_vegetation_cycle=3
(namelist extpar_nml)

×

W_SO kg m−2 soil water content (liq. + ice) × ⊗
W_SO_ICE kg m−2 soil ice content ×

Please note that all GRIB2-keys of the fields T_2M and T_2M_FILTBIAS are identical, except
for the key typeOfGeneratingProcess. In order to decode T_2M_FILTBIAS correctly and to
distinguish it from T_2M, it is recommended to make use of the most recent DWD-specific
GRIB definition files (see Section 1.1.2).

11.3.2. Uninitialized Analysis

The uninitialized analysis without IAU can be used if, for some reason, the model should
be started without any noise filtering procedure. The first guess and analysis file are read
in and merged by the model, i.e. the model state is abruptly pulled towards the analyzed
state right before the first time integration step. This conceptually easy approach comes
at the price of a massively increased noise level at the beginning of the simulation.

235

11.D
ata

A
ssim

ilation

ICON Model Tutorial

The validity time of the first guess and analysis must match the model’s start date. Ta-
ble 11.2 provides an overview of the fields contained in the uninitialized analysis product
for 00 UTC. Columns 4 and 5 again indicate, whether a specific field is contained in the
first guess file and/or analysis file. Fields which are optional for starting the model are
highlighted in blue, with their scope being indicated in the description. If one or more
of these fields are unavailable, a cold-start of these fields is performed given that the
parameterizations for which they are needed are activated.

As already explained in the previous section, the analysis at times different from 00 UTC
will only contain a subset of the fields provided at 00 UTC. Table 11.2 will differ for
non-00 UTC runs in the way that the fields

FR_ICE H_ICE T_ICE T_SEA W_SO

will not be available from the analysis file but from the first guess file.

Table 11.2.: Content of the uninitialized analysis product, separated into first guess
(FG) and analysis (ANA). Optional fields for model initialization are marked
in blue. Analysis fields highlighted in red are only available for 00 UTC.

shortName Unit Description Source
FG ANA

DEN kg m−3 air density ×
P Pa pressure ×
QC kg kg−1 cloud liquid water mass fraction ×
QI kg kg−1 cloud ice mass fraction ×
QR kg kg−1 rain water mass fraction ×
QS kg kg−1 snow mass fraction ×
QV kg kg−1 water vapor mass fraction ×
T K air temperature ×
THETA_V K virtual potential temperature ×
TKE m2 s−2 turbulent kinetic energy ×
U, V m s−1 horizontal velocity components ×
VN m s−1 edge normal velocity component ×
W m s−1 vertical velocity ×

ALB_SEAICE % sea ice albedo
scope: lprog_albsi=.TRUE.
(namelist lnd_nml)

×

C_T_LK 1 shape factor w.r.t. temp. profile in
the thermocline)

×

Continued on next page

236

11
.D

at
a

A
ss

im
ila

tio
n

11.3 Analysis Products

Table 11.2.: Continued from previous page

EVAP_PL kg m−2 evaporation of plants (integrated
since "nightly reset")
scope: itype_trvg=3 (namelist
lnd_nml)

×

FRESHSNW 1 age of snow indicator ×
FR_ICE 1 sea/lake ice fraction ×
H_ICE m sea ice depth ×
H_ML_LK m mixed-layer thickness ×
H_SNOW m snow depth ×
HSNOW_MAX m maximum snow depth reached

within current snow-cover period
scope: itype_snowevap=3 (namelist
lnd_nml)

×

QV_S kg kg−1 surface specific humidity ×
RHO_SNOW kg m−3 snow density ×
SNOAG d duration of current snow-cover

period
scope: itype_snowevap=3 (namelist
lnd_nml)

×

T_BOT_LK K temperature at water-bottom
sediment interface

×

T_G K surface temperature ×
T_ICE K sea ice temperature ×
T_MNW_LK K mean temperature of the water

column
×

T_SEA K sea surface temperature ×
T_SNOW K snow temperature ×
T_WML_LK K mixed-layer temperature ×
W_I kg m−2 water content of interception layer ×
W_SNOW kg m−2 snow water equivalent ×
Z0 m surface roughness length ×

T_SO K soil temperature ×
W_SO kg m−2 soil water content (liq. + ice) ×
W_SO_ICE kg m−2 soil ice content ×

11.3.3. Initialized Analysis

The initialized analysis is strongly related to the uninitialized analysis for IAU. It is a
by-product of starting the model from the latter. E.g. the initialized analysis at 00 UTC is

237

11.D
ata

A
ssim

ilation

ICON Model Tutorial

generated by starting the model from the 22:30 UTC first guess, and adding the analysis
increments over an asymmetric time window of 1.5 h width until 00 UTC. Therefore the
noise level of the initialized analysis product is comparable to that of the uninitialized
analysis product for IAU.

For model initialization the validity time of the initialized analysis product must match
the model’s start date. Table 11.3 provides an overview of the fields contained in the
initialized analysis product for 00 UTC. Fields which are optional for starting the model
are highlighted in blue. If one or more of these fields are unavailable, a cold-start of these
fields is performed given that the parameterizations for which they are needed are switched
on.

Note that this product is also suitable for initializing COSMO limited area simulations. To
this end it contains the atmospheric fields T, P, U, V rather than ICON’s set of prognostic
atmospheric variables, i.e. THETA_V, RHO, VN. For ICON, the necessary transformation is
performed automatically during startup.

For recent analysis dates (say August 2018 and later) this analysis product
contains both SMI and W_SO. For previous analysis dates only W_SO is available.
ICON can read any of them, however SMI is preferred and W_SO is the fallback.
Whenever this analysis product needs to be remapped and SMI is not available,
it is strongly recommended to manually convert W_SO to SMI beforehand, since
interpolating W_SO can lead to strong numerical artifacts. See Section 2.2.3
for more details.

Table 11.3.: Content of the initialized analysis product. Fields which are optional for
model initialization are marked in blue.

shortName Unit Description

P Pa pressure
QC kg kg−1 cloud liquid water mass fraction
QI kg kg−1 cloud ice mass fraction
QR kg kg−1 rain water mass fraction
QS kg kg−1 snow mass fraction
QV kg kg−1 water vapor mass fraction
T K air temperature
TKE m2 s−2 turbulent kinetic energy
U, V m s−1 horizontal velocity components
W m s−1 vertical velocity

ALB_SEAICE % sea ice albedo
scope: lprog_albsi=.TRUE. (namelist
lnd_nml)

Continued on next page

238

11
.D

at
a

A
ss

im
ila

tio
n

11.3 Analysis Products

Table 11.3.: Continued from previous page

C_T_LK 1 shape factor w.r.t. temp. profile in the
thermocline)

EVAP_PL kg m−2 evaporation of plants (integrated since ”nightly
reset”)
scope: itype_trvg=3 (namelist lnd_nml)

FRESHSNW 1 age of snow indicator
FR_ICE 1 sea/lake ice fraction
H_ICE m sea ice depth
H_ML_LK m mixed-layer thickness
H_SNOW m snow depth
HSNOW_MAX m maximum snow depth reached within current

snow-cover period
scope: itype_snowevap=3 (namelist lnd_nml)

QV_S kg kg−1 surface specific humidity
RHO_SNOW kg m−3 snow density
SNOAG d duration of current snow-cover period

scope: itype_snowevap=3 (namelist lnd_nml)
T_BOT_LK K temperature at water-bottom sediment

interface
T_G K surface temperature
T_ICE K sea ice temperature
T_MNW_LK K mean temperature of the water column
T_SNOW K snow temperature
T_WML_LK K mixed-layer temperature
W_I kg m−2 water content of interception layer
W_SNOW kg m−2 snow water equivalent
Z0 m surface roughness length

SMI 1 soil moisture index
T_SO K soil temperature
W_SO kg m−2 soil water content (liq. + ice)
W_SO_ICE kg m−2 soil ice content

HHL m vertical coordinate half level heights

Please note that in contrast to the Uninitialized Analysis for IAU product (Table 11.1) the
Initialized Analysis product does not contain the skin temperature T_SKT and the time-
filtered 2 m temperature bias T_2M_FILTBIAS. If the skin temperature parameterization is
activated (itype_canopy=2) but an initial T_SKT is missing, T_SKT is initialized with the
surface temperature T_S. It is nevertheless recommended to switch on the skin temperature

239

11.D
ata

A
ssim

ilation

ICON Model Tutorial

parameterization. The lack of initial conditions for T_SKT does only have a marginal effect
on the forecast quality.

Similarly, if the enhanced vegetation cycle parameterization is activated
(itype_vegetation_cycle=3) but T_2M_FILTBIAS is missing, T_2M_FILTBIAS is ini-
tialized with zero (which effectively resembles itype_vegetation_cycle=2).

240

A
.D

W
D

H
P

C
Sy

st
em

A. The Computer System at DWD

Available Platforms at DWD

The NEC SX-Aurora supercomputer system at DWD is one of our main platforms for
the execution of the ICON-NWP model. This system consists of numerous compute nodes
with corresponding cross-compilation nodes.

• rcl.dwd.de → rcnl100, rcnl101:
These are the cross-compilation nodes (x86 AMD “Rome”, 32 cores, 2.5 GHz), which
run a Red Hat Enterprise Linux.

They are used for compiling and linking, preparation of data and basic editing
work. Tools for the visualization of meteorological fields (CDO, NCL, ncview)
are also available here.

The rcl.dwd.de nodes are not used for running parallel NWP simulations, but
ICON jobs can be submitted to the NEC SX-Aurora compute nodes vhXXX (vector
computer) or the rcnXXX (Linux cluster). Note that there are also big memory nodes
rcbXXX available with a memory limit of 192G for each process.

To compile and link applications on the routine cluster use either the intel or the
gnu compiler. To compile and link targeting the NEC SX-Aurora platform the nfort
NEC compiler must be used.

• NEC SX-Aurora:
The NEC SX-Aurora research cluster has 440 x86 vector hosts, where each node
is equipped with 8 NEC SX-Autora 1 TSUBASA Type 10AE vector en-
gine CPUs. The vector hosts are AMD EPYC “Rome” processors with 24 cores,
2.8GHz, and 256 GiB memory. 1 Each vector engine achieves ca. 2.15 TFLOPS dou-
ble precision peak performance and 8 computational cores. The vector nodes cannot
be accessed interactively, but only by PBS batch jobs together with the queuing
system NQSV from NEC.

Such jobs can use up to 24 GB of main memory per vector engine.

There is a common file system across all nodes and every user has three different main
directories:

• /hpc/uhome/username ($HOME)
Directory for storing source code and scripts to run the model. This is a GPFS file
system suitable for many small files.

1Note that 8 of these 24 x86 cores are reserved for the vector engine OS.

241

A
.D

W
D

H
P

C
System

ICON Model Tutorial

• /hpc/uwork/username ($WORK)
Directory for storing larger amounts of data. For the $WORK (Lustre) file system there
is a common quota for every user of 7.9 TBytes.

• /hpc/gtmp/username (Lustre file system, contains $TMPDIR)
Temporary directory for storing larger amounts of data.

The Batch System for the NEC SX-Aurora

Jobs for the NEC SX-Aurora system have to be submitted from the login nodes
rcl.dwd.de, rcnl100, rcnl101 with the batch system PBS. Together with the source
code of the programs we provide some run scripts in which all necessary batch commands
are set.

Here are the most important commands for working with the PBS:

qsub job_name submit a batch job to PBS.

qstat query the status of all batch jobs on the NEC SX-Aurora.
You can see whether jobs are Q (queued) or R (running).
You have to submit jobs to the queue sx_norm.

qstat -u user query the status of all your batch jobs on the machine.

qdel job_nr@machine cancel your job(s) from the batch queue of a machine.
The job_nr is given by qstat -w.

qcat -o -f job_nr@machine follow stdout and stderr interactively.

For the vector engines you have to use the queue sx_norm. Here are some important PBS
options.

#PBS -q sx_norm define the queue
#PBS -T necmpi_hydra batch job topology
#PBS -l cpunum_job=5 no. of Xeon cores used on VH
#PBS -l elapstim_req=00:40:00 time limit
#PBS --venode=2 total number of VEs required
#PBS --venum-lhost=2 no. of VE per logical host; max is 8
#PBS -l coresz_prc=0 limit on max. core file size
#PBS --use-hca=2 necessary (no. host channel adapters per logical host)
#PBS -j o set "oe" to join STDOUT and STDERR streams
#PBS -o filename Redirect STDOUT
#PBS -v N1=var1,N2=var2 define environment variables

In your run scripts, execution begins in your home directory, regardless of what directory
your script resides in or where you submitted the job from. You can use the cd command
to change to a different directory. The environment variable $PBS_O_WORKDIR makes it
easy to return to the directory from which you submitted the job:

cd $PBS_O_WORKDIR

242

A
.D

W
D

H
P

C
Sy

st
em

To start a parallel executable, the mpirun command has to be used:

mpirun -x -venode -node 0-$N1 -np $PPN \
-env OMP_NUM_THREADS $OMP_NUM_THREADS /path/to/application

Here the options have the following meaning (non-hybrid execution):

OMP_NUM_THREADS number of OpenMP threads per task
-np total number of MPI procs per job.
N1 one less than number of vector engines per node (here: 2)

More detailed information and documentation to the NEC SX-Aurora and related software
can be found on the NEC web pages: https://www.hpc.nec/documentation

243

https://www.hpc.nec/documentation

A
.D

W
D

H
P

C
System

B
.O

ut
pu

t
V

ar
ia

bl
es

B. Table of ICON Output Variables

The following table contains the NWP variables available for output1. Please note that the
field names are following an ICON-internal nomenclature, see Section 7 for details. The
list also contains tile-based fields (suffix _t_1, _t_2, . . .) which are summarized as _t_*.

The left column lists the so called ”ICON-internal” variable names, which denotes those
field names that are provided as the string argument name to the subroutine calls
CALL add_var(...) and CALL add_ref(...) inside the ICON source code. These sub-
routine calls have the purpose to register new variables, to allocate the necessary memory,
and to set the meta-data for these variables.

Variable Name GRIB2 Name Description

acdnc ndcloud Cloud droplet number concentration
adrag_u_grid Zonal resolved surface stress mean since model start
adrag_v_grid Meridional resolved surface stress mean since model start
aer_bc aer_bc Black carbon aerosol
aer_du aer_dust Total soil dust aerosol
aer_or aer_org Organic aerosol
aer_ss aer_ss Sea salt aerosol
aer_su aer_so4 Total sulfate aerosol
aercl_bc Black carbon aerosol climatology
aercl_du Total soil dust aerosol climatology
aercl_or Organic aerosol climatology
aercl_ss Sea salt aerosol climatology
aercl_su Total sulfate aerosol climatology
alb_dif alb_dif Shortwave albedo for diffuse radiation
alb_si alb_seaice Sea ice albedo (diffuse)
albdif_t_* alb_rad Tile-based shortwave albedo for diffusive radiation
albdif alb_rad Shortwave albedo for diffuse radiation
albni_dif alb_ni Near IR albedo for diffuse radiation
albnirdif_t_* alb_ni Tile-based near IR albedo for diffuse radiation
albnirdif alb_ni Near IR albedo for diffuse radiation
albnirdir alnip Near IR albedo for direct radiation
albuv_dif alb_uv UV visible albedo for diffuse radiation
albvisdif_t_* alb_uv Tile-based UV visible albedo for diffusive radiation
albvisdif alb_uv UV visible albedo for diffuse radiation
albvisdir aluvp UV visible albedo for direct radiation
alhfl_bs alhfl_bs Latent heat flux from bare mean since model start
alhfl_pl alhfl_pl Latent heat flux from plantmean since model start
alhfl_s alhfl_s surface latent heat flux mean since model start

Continued on next page

1The Table B.1 in this Appendix is based on the revision state 3c3fdf4a (2022-08-08).

245

B
.O

utput
V

ariables

ICON Model Tutorial

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

aqhfl_s evapt surface moisture flux mean since model start
ashfl_s ashfl_s Surface sensible heat flux mean since model start
asob_s asob_s Surface net solar radiation mean since model start
asob_t asob_t TOA net solar radiation mean since model start
asobclr_s asob_s_cs Clear-sky surface net solar radiation mean since model

start
asod_s asod_s Surface down solar rad. mean since model start
asod_t asod_t Top down solar radiation mean since model start
asodifd_s aswdifd_s Surface down solar diff. rad. mean since model start
asodifu_s aswdifu_s Surface up solar diff. rad. mean since model start
asodird_s aswdir_s Surface down solar direct rad.mean since model start
asou_t uswrf Top up solar radiation mean since model start
astr_u_sso lgws Zonal sso surface stress mean since model start
astr_v_sso mgws Meridional sso surface stress mean since model start
aswflx_par_sfc apab_s Downward PAR flux mean since model start
athb_s athb_s Surface net thermal radiation mean since model start
athb_t athb_t TOA net thermal radiation mean since model start
athbclr_s athb_s_cs Clear-sky surface net thermal radiation mean since

model start
athd_s athd_s Surface down thermal radiationmean since model start
athu_s athu_s Surface up thermal radiation mean since model start
aumfl_s aumfl_s U-momentum flux flux at sumean since model start
avmfl_s avmfl_s V-momentum flux flux at sumean since model start

bdy_halo_c_blk Block lists for halo points belonging to the nest
boundary region

bdy_halo_c_idx Index lists for halo points belonging to the nest
boundary region

c_t_lk c_t_lk Shape factor (temp. profile in lake thermocline)
cape_ml cape_ml Cape of mean surface layer parcel
cape cape_con Conv avail pot energy
cin_ml cin_ml Convective inhibition of mean surface layer parcel
clch clch High level clouds
clcl clcl Low level clouds
clcm clcm Mid level clouds
clct_mod clct_mod Modified total cloud cover for media
clct clct Total cloud cover
clc clc Cloud cover
cldepth cldepth Modified cloud depth for media
cli_m qi Specific cloud ice content (time mean)
cloud_num Cloud droplet number concentration
clw_m qc Specific cloud water content (time mean)
con_gust Convective contribution to wind gust
condhf_ice Conductive heat flux at sea-ice bottom
cosmu0 uvcossza Cosine of solar zenith angle

ddqz_z_full_e pp Metrics functional determinant (edge)
ddqz_z_full Metrics functional determinant
ddqz_z_half Metrics functional determinant
ddt_adv_q* Advective tracer tendency

Continued on next page

246

B
.O

ut
pu

t
V

ar
ia

bl
es

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

ddt_exner_phy Exner pressure physical tendency
ddt_grf_q* Tracer tendency for grid refinement
ddt_pres_sfc dpsdt Surface pressure tendency
ddt_qc_conv Convective tendency of cloud water mass density
ddt_qc_gscp Microphysics tendency of specific cloud water
ddt_qc_turb Turbulence tendency of specific cloud water
ddt_qg_gscp Microphysics tendency of graupel
ddt_qi_conv Convective tendency of cloud ice mass density
ddt_qi_gscp Microphysics tendency of specific cloud ice
ddt_qi_turb Turbulence tendency of specific cloud ice
ddt_qr_conv Convective tendency of rain mass density
ddt_qr_gscp Microphysics tendency of rain
ddt_qs_conv Convective tendency of snow mass density
ddt_qs_gscp Microphysics tendency of snow
ddt_qv_conv Convective tendency of absolute humidity
ddt_qv_gscp Microphysics tendency of specific humidity
ddt_qv_turb qtendt Turbulence tendency of specific humidity
ddt_temp_clcov Sgs condensation temperature tendency
ddt_temp_drag ttends Sso + gwdrag temperature tendency
ddt_temp_dyn Dynamical temperature tendency
ddt_temp_gscp Microphysical temperature tendency
ddt_temp_pconv dt_con Convective temperature tendency
ddt_temp_radlw thhr_rad Long wave radiative temperature tendency
ddt_temp_radsw sohr_rad Short wave radiative temperature tendency
ddt_temp_turb ttendts Turbulence temperature tendency
ddt_tke_hsh dtke_hsh TKE tendency horizonzal shear production
ddt_tke_pconv dtke_con TKE tendency due to sub-grid scale convection
ddt_tke tketens Tendency of turbulent velocity scale
ddt_u_gwd ewgd GWD tendency of zonal wind
ddt_u_pconv du_con Convective tendency of zonal wind
ddt_u_sso du_sso Sso tendency of zonal wind
ddt_u_turb utendts Turbulence tendency of zonal wind
ddt_v_gwd nsgd GWD tendency of meridional wind
ddt_v_pconv dv_con Convective tendency of meridional wind
ddt_v_sso dv_sso Sso tendency of meridional wind
ddt_v_turb vtendts Turbulence tendency of meridional wind
ddt_vn_apc_pc Advective+coriolis normal wind tendency,

predictor/corrector
ddt_vn_phy Normal wind physical tendency
ddt_w_adv_pc Advective vertical wind tendency, predictor/corrector
ddxn_z_full Terrain slope in normal direction
ddxt_z_full Terrain slope in tangential direction
deepatmo_t1ifc Missing description
deepatmo_t1mc Metrical modification factors for the deep-atmosphere

equations
deepatmo_t2mc Missing description
depth_lk depth_lk Lake depth
dgeopot_mc fi Geopotential difference between half levels

Continued on next page

247

B
.O

utput
V

ariables

ICON Model Tutorial

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

div_ic Divergence at half levels
div rdiv Divergence
dp_bs_lk Depth of thermally active layer of bot. sediments.
dpres_mc Pressure thickness
drag_u_grid Zonal resolved surface stress
drag_v_grid Meridional resolved surface stress
dvn_ie_int Normal velocity at parent interface level
dvn_ie_ubc Normal velocity at child upper boundary
dwdx Zonal gradient of vertical wind
dwdy Meridional gradient of vertical wind
dyn_gust Dynamical gust

eai (evaporative) earth area index
emis_rad emis_rad Longwave surface emissivity
enhfac_diffu relhum Background nabla2 diffusion coefficient for upper sponge

layer
exner_dyn_incr Exner dynamics increment
exner_pr exner Exner perturbation pressure
exner_ref_mc Reference atmosphere field exner
exner exner Exner pressure

fac_ccqc Factor for cloud cover - cloud water relationship
fetch_lk fetch_lk Wind fetch over lake
fis fis Geopotential (s)
for_d for_d Fraction of deciduous forest
fr_glac Fraction glacier
fr_lake fr_lake Fraction lake
fr_land fr_land Fraction land
fr_nir_sfc_diff Diffuse fraction of downward near-infrared flux at surface
fr_par_sfc_diff Diffuse fraction of downward photosynthetically active

flux at surface
fr_seaice fr_ice Fraction of sea ice
fr_vis_sfc_diff Diffuse fraction of downward visible flux at surface
frac_t_* fr_luc Tile point area fraction list
freshsnow_t_* freshsnw Indicator for age of snow in top of snow layer
freshsnow freshsnw Weighted indicator for age of snow in top of snow layer

gamso_lk Attenuation coefficient of lake water with respect to sol.
rad.

geopot_agl_ifc fi Geopotential above groundlevel at cell center
geopot_agl fi Geopotential above groundlevel at cell center
geopot fi Geopotential at full level cell centre
graupel_gsp_rate prg_gsp Gridscale graupel rate
graupel_gsp grau_gsp Gridscale graupel
grf_tend_mflx Normal mass flux tendency (grid refinement)
grf_tend_rho s_oro_max Density tendency (grid refinement)
grf_tend_thv Virtual potential temperature tendency (grid refinement)
grf_tend_vn Normal wind tendency (grid refinement)
grf_tend_w Vertical wind tendency (grid refinement)

Continued on next page

248

B
.O

ut
pu

t
V

ar
ia

bl
es

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

gust10 vmax_10m Gust at 10 m since end of previous full 01H since model
start

gz0_t_* z0 Tile-based roughness length times gravity
gz0 z0 Roughness length

h_b1_lk h_b1_lk Thickness of the upper layer of the sediments
h_ice h_ice Sea/lake-ice depth
h_ml_lk h_ml_lk Mixed-layer thickness
h_snow_lk Depth of snow on lake ice
h_snow_si Depth of snow on sea ice
h_snow_t_* h_snow Snow height
h_snow h_snow Weighted snow depth
hbas_con hbas_con Height of convective cloud base
hdef_ic Deformation
hfl_q* Horizontal tracer flux
hmo3 Height of O3 maximum (Pa)
htop_con htop_con Height of convective cloud top
htop_dc htop_dc Height of top of dry convection
hus_m qv Specific humidity (time mean)
hzerocl hzerocl Height of 0 deg C level

ice_gsp_rate iprate Gridscale ice rate
ice_gsp iprate Gridscale ice

k400 Level index corresponding to the HAG of the 400hPa
level

k650 Level index corresponding to the HAG of the 650hPa
level

k700 Level index corresponding to the HAG of the 700hPa
level

k800 Level index corresponding to the HAG of the 800hPa
level

k850 Level index corresponding to the HAG of the 850hPa
level

k950 Level index corresponding to the HAG of the 950hPa
level

ktype Type of convection

l_pat Effective length scale of circulation patterns
lai lai Leaf Area Index
lc_class_t_* luc Tile point land cover class
lhfl_bs_t_* Tile-based latent heat flux from bare soil
lhfl_bs Latent heat flux from bare soil
lhfl_pl_t_* Tile-based latent heat flux from plants
lhfl_pl Latent heat flux from plants
lhfl_s_t_* lhfl_s Tile-based surface latent heat flux
lhfl_s lhfl_s Surface latent heat flux
liqfl_turb Vertical turbulent liquid water flux
lsm_ctr_c wmb Ocean model land-sea-mask
lsm_switch Land-sea-mask switched by ocean
lw_emiss emis_rad Longwave surface emissivity

Continued on next page

249

B
.O

utput
V

ariables

ICON Model Tutorial

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

lwflx_dn_clr Longwave downward clear-sky flux
lwflx_dn Longwave downward flux
lwflx_up_clr Longwave upward clear-sky flux
lwflx_up Longwave upward flux
lwflxall nlwrf Longwave net flux

mask_mtnpoints_g Mask field for mountain points
mask_mtnpoints Mask field for mountain points
mass_fl_e_sv Storage field for horizontal mass flux at edges
mass_fl_e Horizontal mass flux at edges
mflx_ic_ubc Mass flux and tendency at child upper boundary

ndvi_max NDVI yearly maximum
ndviratio ndviratio (monthly) proportion of actual value/maximum NDVI

(at init time)
o3 o3 Ozone mixing ratio
omega_z relv Vertical vorticity
omega omega Vertical velocity

pat_len Length scale of sub-grid scale roughness elements
pfull_m p Pressure at full level (time mean)
phalf_m p Pressure at half level (time mean)
plcov_t_* plcov Plant covering degree in the vegetation phase
plcov plcov Plant covering degree in the vegetation phase
prec_con_d Convective precip since end of previous full 01H since

model start
prec_con_rate_avg cprat Convective precip rate, time average
prec_con prec_con Convective precip
prec_gsp_d Gridscale precip since end of previous full 01H since

model start
prec_gsp_rate_avg pr_gsp Gridscale precip rate, time average
prec_gsp_rate pr_gsp Gridscale precipitation rate
prec_gsp prec_gsp Gridscale precip
pref_aerdis Reference pressure used for vertical distribution of

aerosol optical depths
pres_ifc p Pressure at half level
pres_msl pmsl Mean sea level pressure
pres_sfc ps Surface pressure
pres p Pressure
ps_m ps Surface pressure (time mean)
psl_m pmsl Mean sea level pressure (time mean)

q_int1 Q at parent interface level
q_int2 Q at parent interface level
q_int3 Q at parent interface level
q_int4 Q at parent interface level
q_int5 Q at parent interface level
q_int6 Q at parent interface level
q_ubc1 Q at child upper boundary
q_ubc2 Q at child upper boundary
q_ubc3 Q at child upper boundary

Continued on next page

250

B
.O

ut
pu

t
V

ar
ia

bl
es

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

q_ubc4 Q at child upper boundary
q_ubc5 Q at child upper boundary
q_ubc6 Q at child upper boundary
qc_sgs Subgrid-scale cloud water
qcfl_s Surface cloud water deposition flux due to diffusion
qc qc Specific cloud water content
qg qg Specific graupel content
qhfl_s_t_* evapt Tile based surface moisture flux
qhfl_s evapt Surface moisture flux
qifl_s Surface cloud ice deposition flux due to diffusion
qi qi Specific cloud ice content
qr qr Specific rain content
qs qs Specific snow content
qv_2m qv_2m Specific water vapor content in 2m
qv_s_t_* qv_s Specific humidity at the surface
qv_s qv_s Specific humidity at the surface
qv qv Specific humidity

r_bsmin Minimal bare soil evaporation resistance
rain_con_rate_3d prr_con 3d convective rain rate
rain_con_rate prr_con Convective rain rate
rain_con rain_con Convective rain
rain_gsp_rate prr_gsp Gridscale rain rate
rain_gsp rain_gsp Gridscale rain
rain_upd Rain in updroughts
rayleigh_vn Rayleigh damping coefficient for vn
rayleigh_w Rayleigh damping coefficient for w
rcld Standard deviation of the saturation deficit
rh_2m_land relhum_2m_l Relative humidity in 2m over land fraction
rh_2m relhum_2m Relative humidity in 2m
rho_ic_ubc Density and tendency at child upper boundary
rho_ic den Density at half level
rho_m den Density (time mean)
rho_ref_mc Reference atmosphere field density
rho_ref_me Reference atmosphere field density
rho_snow_t_* rho_snow Snow density
rho_snow rho_snow Weighted snow density
rho den Density
rlamh_fac_t_* Scaling factor for rlam_heat
rootdp rootdp Root depth of vegetation
rsmin rsmin Minimal stomata resistence
rstom rstom Stomatal resistance
runoff_g_t_* watr Soil water runoff
runoff_g runoff_g Weighted soil water runoff
runoff_s_t_* watr Surface water runoff
runoff_s runoff_s Weighted surface water runoff

sai Surface area index
scalfac_dd3d Scaling factor for 3D divergence damping terms

Continued on next page

251

B
.O

utput
V

ariables

ICON Model Tutorial

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

sfcfric_fac Tuning factor for surface friction
shfl_s_t_* shfl_s Tile-based surface sensible heat flux
shfl_s shfl_s Surface sensible heat flux
skinc skc Skin conductivity
slope_angle Slpe angle
slope_azimuth Slpe azimuth
snow_con_rate_3d prs_con 3d convective snow rate
snow_con_rate prs_con Convective snow rate
snow_con snow_con Convective snow
snow_gsp_rate prs_gsp Gridscale snow rate
snow_gsp snow_gsp Gridscale snow
snowfrac_lc_t_* snowc Tile-based snow-cover fraction
snowfrac_lcu_t_* Tile-based snow-cover fraction
snowfrac_lc snowc Snow-cover fraction
snowfrac_t_* Local tile-based snow-cover fraction
snowfrac Snow-cover fraction
snowlmt snowlmt Height of snow fall limit above MSL
sob_s_t_* sobs_rad Tile-based shortwave net flux at surface
sob_s sobs_rad Shortwave net flux at surface
sob_t sobt_rad Shortwave net flux at TOA
sobclr_s sobs_rad_cs Net shortwave clear-sky flux at surface
sod_t sodt_rad Downward shortwave flux at TOA
sodifd_s swdifds_rad Shortwave diffuse downward flux at surface
soiltyp soiltyp Soil type
sou_s swdifus_rad Shortwave upward flux at surface
sou_t uswrf Shortwave upward flux at TOA
sp_10m sp_10m Wind speed in 10m
sso_gamma sso_gamma Anisotropy of sub-gridscale orography
sso_sigma sso_sigma Slope of sub-gridscale orography
sso_stdh_raw Standard deviation of sub-grid scale orography
sso_stdh sso_stdh Standard deviation of sub-grid scale orography
sso_theta sso_theta Angle of sub-gridscale orography
str_u_sso lgws Zonal sso surface stress
str_v_sso mgws Meridional sso surface stress
swflx_dn_clr Shortave downward clear-sky flux
swflx_dn Shortwave downward flux
swflx_nir_sfc Downward near-infrared flux at surface
swflx_par_sfc pabs_rad Downward photosynthetically active flux at surface
swflx_up_clr Shortave upward clear-sky flux
swflx_up Shortwave upward flux
swflx_vis_sfc Downward visible flux at surface

t_2m_land t_2m_l Temperature in 2m over land fraction
t_2m t_2m Temperature in 2m
t_b1_lk t_b1_lk Temperature at the bottom of the upper layer of the

sediments
t_bot_lk t_bot_lk Temperature at the water-bottom sediment interface
t_bs_lk Clim. temp. at bottom of thermally active layer of

sediments

Continued on next page

252

B
.O

ut
pu

t
V

ar
ia

bl
es

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

t_cl t_2m_cl CRU near surface temperature climatology
t_g_t_* t_g Weighted surface temperature
t_g t_g Weighted surface temperature
t_ice t_ice Sea/lake-ice temperature
t_mnw_lk t_mnw_lk Mean temperature of the water column
t_s_t_* t_s Temperature of ground surface
t_seasfc t_sea Sea surface temperature
t_sk_t_* skt Skin temperature
t_sk skt Skin temperature
t_snow_lk Temperature of snow on lake ice
t_snow_si Temperature of snow on sea ice
t_snow_t_* t_snow Temperature of the snow-surface
t_snow t_snow Weighted temperature of the snow-surface
t_so_t_* t_so Soil temperature (main level)
t_so t_so Weighted soil temperature (main level)
t_s t_s Weighted temperature of ground surface
t_tilemax_inst_2m t_2m Instantaneous temperature in 2m, maximum over tiles
t_tilemin_inst_2m t_2m Instantaneous temperature in 2m, minimum over tiles
t_wml_lk t_wml_lk Mixed-layer temperature
ta_m t Temperature
tai Transpiration area index
tch_t_* tch Tile-based turbulent transfer coefficients for heat
tch tch Turbulent transfer coefficients for heat
tcm_t_* tcm Tile-based turbulent transfer coefficients for momentum
tcm tcm Turbulent transfer coefficients for momentum
td_2m_land td_2m_l Dew-point in 2m over land fraction
td_2m td_2m Dew-point in 2m
temp_ifc t Temperature at half level
tempv vtmp Virtual temperature
temp t Temperature
tetfl_turb Vertical turbulent theta flux
tfh Factor of laminar transfer of scalars
tfm Factor of laminar transfer of momentum
tfv_t_* nswrs Tile-based laminar reduction factor for evaporation
tfv Laminar reduction factor for evaporation
thb_s_t_* thbs_rad Tile-based longwave net flux at surface
thb_s thbs_rad Longwave net flux at surface
thb_t thbt_rad Thermal net flux at TOA
thbclr_s thbs_rad_cs Net longwave clear-sky flux at surface
theta_ref_ic Reference atmosphere field theta
theta_ref_mc Reference atmosphere field theta
theta_ref_me Reference atmosphere field theta
theta_v_ic_ubc Potential temperature and tendency at child upper

boundary
theta_v_ic theta_v Virtual potential temperature at half levels
theta_v theta_v Virtual potential temperature
thu_s thus_rad Longwave upward flux at surface
tke tke Turbulent kinetic energy

Continued on next page

253

B
.O

utput
V

ariables

ICON Model Tutorial

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

tkr_t_* Tile-based turbulent reference surface diffusion coefficient
tkred_sfc Reduction factor for minimum diffusion coefficients
tkr Turbulent reference surface diffusion coefficient
tkvh tkvh turbulent diffusion coefficients for heat
tkvm tkvm turbulent diffusion coefficients for momentum
tmax_2m tmax_2m Max 2m temperature
tmin_2m tmin_2m Min 2m temperature
topography_c hsurf Geometric height of the earths surface above sea level
tot_prec_d tot_prec_d Total precip since end of previous full 01H since model

start
tot_prec_rate_avg tot_pr Total precip rate, time average
tot_prec_rate tot_pr Total precipitation rate
tot_prec tot_prec Total precip
tot_qc_dia qc_dia Total specific cloud water content (diagnostic)
tot_qi_dia qi_dia Total specific cloud ice content (diagnostic)
tot_qv_dia qv_dia Total specific humidity (diagnostic)
tqc_dia tqc_dia Total column integrated cloud water (diagnostic)
tqc tqc Total column integrated cloud water
tqg tqg Total column integrated graupel
tqi_dia tqi_dia Total column integrated cloud ice (diagnostic)
tqi tqi Total column integrated cloud ice
tqr tqr Total column integrated rain
tqs tqs Total column integrated snow
tqv_dia tqv_dia Total column integrated water vapour (diagnostic)
tqv tqv Total column integrated water vapour
trsolall Shortwave net tranmissivity
tsfc_ref Reference surface temperature
tsfctrad Surface temperature at trad
tvh_t_* Tile-based turbulent transfer velocity for heat
tvh Turbulent transfer velocity for heat
tvm_t_* Tile-based turbulent transfer velocity for momentum
tvm Turbulent transfer velocity for momentum

u_10m_t_* u_10m Tile-based zonal wind in 2m
u_10m u_10m Zonal wind in 10m
ua_m u Zonal wind (time mean)
umfl_s_t_* umfl_s U-momentum flux at the surface
umfl_s umfl_s U-momentum flux at the surface
u u Zonal wind

v_10m_t_* v_10m Tile-based meridional wind in 2m
v_10m v_10m Meridional wind in 10m
va_m v Meridional wind (time mean)
vapfl_turb Vertical turbulent water vapour flux
vfl_q* Vertical tracer flux
vio3 tozne Vertically integrated ozone amount
vmfl_s_t_* vmfl_s V-momentum flux at the surface
vmfl_s vmfl_s V-momentum flux at the surface
vn_ie vn Normal wind at half level

Continued on next page

254

B
.O

ut
pu

t
V

ar
ia

bl
es

Table B.1 – Continued from previous page

Variable Name GRIB2 Name Description

vn vn Velocity normal to edge
vor relv Vorticity
vt vt Tangential-component of wind
vwind_expl_wgt Explicit weight in vertical wind solver
vwind_impl_wgt Implicit weight in vertical wind solver
v v Meridional wind

w_concorr_c Contravariant vertical correction
w_i_t_* w_i Weighted water content of interception water
w_i w_i Weighted water content of interception water
w_snow_t_* w_snow Water equivalent of snow
w_snow w_snow Weighted water equivalent of snow
w_so_ice_t_* w_so_ice Ice content
w_so_ice w_so_ice Ice content
w_so_t_* w_so Total water content (ice + liquid water)
w_so w_so Total water content (ice + liquid water)
w_ubc Vertical velocity and tendency at child upper boundary
wa_m w Vertical velocity (time mean)
wap_m omega Vertical velocity (time mean)
ww ww Significant weather
w w Vertical velocity

z_ifc hhl Geometric height at half level center
z_mc h Geometric height at full level center
zd_blklist Missing description
zd_diffcoef Missing description
zd_e2cell Missing description
zd_edgeblk Missing description
zd_edgeidx Missing description
zd_geofac Missing description
zd_indlist Missing description
zd_intcoef Missing description
zd_vertidx Missing description

List of ICON Variable Groups

The "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist
(namelist output_nml) can be used to activate a set of common variables for output at
once. The following lists contain the variables for each of these groups (empty groups and
groups with only a single entry are omitted).

Group ADDITIONAL_PRECIP_VARS
cape, clct, clct_mod, prec_con_rate_avg, prec_gsp_rate_avg, tqc_dia, tqi_dia,
tqv_dia

Group ATMO_DERIVED_VARS
div, omega, omega_z, vor

255

B
.O

utput
V

ariables

ICON Model Tutorial

Group ATMO_ML_VARS
cli_m, clw_m, hus_m, pres, qc, qg, qi, qr, qs, qv, temp, tke, u, v, w

Group ATMO_PL_VARS
cli_m, clw_m, hus_m, qc, qg, qi, qr, qs, qv, temp, tke, u, v, w

Group ATMO_TIMEMEAN
cli_m, clw_m, hus_m, pfull_m, phalf_m, ps_m, psl_m, rho_m, ta_m, ua_m, va_m, wa_m,
wap_m

Group ATMO_ZL_VARS
cli_m, clw_m, hus_m, pres, qc, qg, qi, qr, qs, qv, temp, tke, u, v, w

Group CLOUD_DIAG
clc, qc_sgs, tot_qc_dia, tot_qi_dia, tot_qv_dia

Group DWD_FG_ATM_VARS
pres, pres_sfc, qc, qg, qi, qr, qs, qv, rho, t_2m, td_2m, temp, theta_v, tke, u, u_10m, v,
v_10m, vn, w, z_ifc

Group DWD_FG_SFC_VARS
alb_si, c_t_lk, fr_land, fr_seaice, freshsnow, gz0, h_ice, h_ml_lk, h_snow, qv_s,
rho_snow, snowfrac_lc, t_bot_lk, t_g, t_ice, t_mnw_lk, t_seasfc, t_sk, t_snow, t_so,
t_wml_lk, w_i, w_snow, w_so, w_so_ice

Group DWD_FG_SFC_VARS_T
freshsnow_t_*, h_snow_t_*, qv_s_t_*, rho_snow_t_*, snowfrac_lc_t_*, t_g_t_*,
t_sk_t_*, t_snow_t_*, t_so_t_*, w_i_t_*, w_snow_t_*, w_so_ice_t_*, w_so_t_*

Group ICON_LBC_VARS
pres, qc, qg, qi, qr, qs, qv, temp, tke, u, v, w, z_ifc

Group LAND_TILE_VARS
h_snow_t_*, qv_s_t_*, rho_snow_t_*, snowfrac_lc_t_*, snowfrac_t_*, t_g_t_*,
t_s_t_*, t_sk_t_*, t_snow_t_*, t_so_t_*, w_i_t_*, w_snow_t_*, w_so_ice_t_*,
w_so_t_*

Group LAND_VARS
qv_s, rho_snow, snowfrac, snowfrac_lc, t_g, t_snow, t_so, w_i, w_snow, w_so, w_so_ice

Group LATBC_PREFETCH_VARS
pres, pres_sfc, qc, qg, qi, qr, qs, qv, rho, temp, theta_v, u, v, vn, w, z_ifc

Group MODE_COMBINED_IN
alb_si, fr_seaice, freshsnow, h_ice, h_snow, qv_s, rho_snow, t_g, t_ice, t_sk,
t_snow, t_so, w_i, w_snow, w_so

Group MODE_COSMO_IN
alb_si, freshsnow, h_ice, qv_s, rho_snow, t_g, t_ice, t_snow, t_so, w_i, w_snow, w_so

Group MODE_DWD_ANA_IN
fr_seaice, freshsnow, h_ice, h_snow, pres, qv, t_ice, t_seasfc, t_snow, t_so, temp, u,
v, w_so

256

B
.O

ut
pu

t
V

ar
ia

bl
es

Group MODE_DWD_FG_IN
alb_si, c_t_lk, gz0, h_ml_lk, qc, qg, qi, qr, qs, qv_s, rho, rho_snow, t_bot_lk, t_g,
t_mnw_lk, t_sk, t_so, t_wml_lk, theta_v, tke, vn, w, w_i, w_snow, w_so_ice, z_ifc

Group MODE_IAU_ANAATM_IN
pres, qc, qg, qi, qr, qs, qv, temp, u, v

Group MODE_IAU_ANA_IN
fr_seaice, freshsnow, h_snow, pres, qc, qg, qi, qr, qs, qv, t_seasfc, t_so, temp, u, v,
w_so

Group MODE_IAU_FG_IN
alb_si, c_t_lk, freshsnow, gz0, h_ice, h_ml_lk, h_snow, qc, qg, qi, qr, qs, qv, qv_s,
rho, rho_snow, snowfrac_lc, t_bot_lk, t_g, t_ice, t_mnw_lk, t_sk, t_snow, t_so,
t_wml_lk, theta_v, tke, vn, w, w_i, w_so, w_so_ice

Group MODE_IAU_OLD_ANA_IN
fr_seaice, freshsnow, h_snow, pres, qv, rho_snow, t_seasfc, t_so, temp, u, v, w_snow,
w_so

Group MODE_IAU_OLD_FG_IN
alb_si, c_t_lk, gz0, h_ice, h_ml_lk, qc, qg, qi, qr, qs, qv, qv_s, rho, t_bot_lk, t_g,
t_ice, t_mnw_lk, t_snow, t_so, t_wml_lk, theta_v, tke, vn, w, w_i, w_so, w_so_ice

Group MODE_INIANA
alb_si, c_t_lk, fr_land, fr_seaice, freshsnow, gz0, h_ice, h_ml_lk, h_snow, pres, qc,
qg, qi, qr, qs, qv, qv_s, rho_snow, t_bot_lk, t_g, t_ice, t_mnw_lk, t_snow, t_so,
t_wml_lk, temp, tke, u, v, w, w_i, w_snow, w_so_ice, z_ifc

Group NH_PROG_VARS
exner, rho, theta_v, vn

Group PBL_VARS
alhfl_s, aqhfl_s, ashfl_s, gust10, lhfl_bs, lhfl_s, qhfl_s, qv_2m, shfl_s, t_2m,
t_2m_land, tch, tcm, td_2m, td_2m_land, tkr, tkvh, tkvm, tvh, tvm, u_10m, v_10m

Group PHYS_TENDENCIES
ddt_qc_conv, ddt_qc_gscp, ddt_qc_turb, ddt_qg_gscp, ddt_qi_conv, ddt_qi_gscp,
ddt_qi_turb, ddt_qr_conv, ddt_qr_gscp, ddt_qs_conv, ddt_qs_gscp, ddt_qv_conv,
ddt_qv_gscp, ddt_qv_turb, ddt_temp_clcov, ddt_temp_drag, ddt_temp_gscp,
ddt_temp_pconv, ddt_temp_radlw, ddt_temp_radsw, ddt_temp_turb, ddt_tke,
ddt_tke_hsh, ddt_tke_pconv, ddt_u_gwd, ddt_u_pconv, ddt_u_sso, ddt_u_turb,
ddt_v_gwd, ddt_v_pconv, ddt_v_sso, ddt_v_turb

Group PRECIP_VARS
graupel_gsp, prec_con, prec_gsp, rain_con, rain_gsp, snow_con, snow_gsp, tot_prec

Group PROG_TIMEMEAN
pfull_m, phalf_m, ps_m, psl_m, rho_m, ta_m, ua_m, va_m, wa_m, wap_m

Group RAD_VARS
albdif, albnirdif, albvisdif, asob_s, asob_t, asod_t, asodifd_s, asodifu_s,
asodird_s, asou_t, aswflx_par_sfc, athb_s, athb_t, athd_s, athu_s, cosmu0,
fr_nir_sfc_diff, fr_par_sfc_diff, fr_vis_sfc_diff, sob_s, sob_s_t_*, sob_t, sod_t,
sodifd_s, sou_s, sou_t, swflx_nir_sfc, swflx_par_sfc, swflx_vis_sfc, thb_s,
thb_s_t_*, thb_t, thu_s

257

B
.O

utput
V

ariables

ICON Model Tutorial

Group SNOW_VARS
rho_snow, t_snow

Group TRACER_TIMEMEAN
cli_m, clw_m, hus_m

258

Bibliography

Asensio, H., and M. Messmer, 2014: External Parameters for Numerical Weather Predic-
tion and Climate Application: EXTPAR v2.0.2 User and Implementation Guide. Consor-
tium for Small-scale Modeling (COSMO), URL http://www.cosmo-model.org/content/
model/modules/Extpar_201408_user_and_implementation_manual.pdf.

Avissar, R., and R. Pielke, 1989: A parameterization of heterogeneous land surfaces for
atmospheric numerical models and its impact on regional meteorology. Mon. Weather
Rev., 117, 2113–2136.

Baines, P., and T. Palmer, 1990: Rationale for a new physically based parameterization of
sub-grid scale orographic effects. Tech. Rep. 169, European Centre for Medium-Range
Weather Forecasts, 11 pp. URL http://www.ecmwf.int.

Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt,
2011: Operational Convective-Scale Numerical Weather Prediction with the COSMO
Model: Description and Sensitivities. Mon. Weather Rev., 139 (12), 3887–3905, doi:
10.1175/MWR-D-10-05013.1.

Barker, H. W., G. L. Stephens, P. T. Partain, and Coauthors, 2003: Assessing 1D atmo-
spheric solar radiative transfer models: Interpretation and handling of unresolved clouds.
J. Clim., 16 (16), 2676–2699, doi:10.1175/1520-0442(2003)016<2676:ADASRT>2.0.
CO;2.

Bechtold, P., 2017: Atmospheric moist convection. Meteorological Training Course Lecture
Series, ECMWF, 1–78, URL https://www.ecmwf.int/sites/default/files/elibrary/2017/
16953-atmospheric-moist-convection.pdf.

Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell,
F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with
the ECMWF model: From synoptic to decadal time-scales. Q. J. R. Meteorol. Soc.,
134 (634), 1337–1351, doi:10.1002/qj.289.

Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014:
Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos.
Sci., 71 (2), 734–753, doi:10.1175/JAS-D-13-0163.1.

Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a
neutral atmosphere. J. Geophys. Res., 67, 3095–3102.

Bloom, S. C., L. L. Takacs, A. M. D. Silva, and D. Ledvina, 1996: Data assimilation using
incremental analysis updates. Mon. Weather Rev., 124, 1256–1270.

259

http://www.cosmo-model.org/content/model/modules/Extpar_201408_user_and_implementation_manual.pdf
http://www.cosmo-model.org/content/model/modules/Extpar_201408_user_and_implementation_manual.pdf
http://www.ecmwf.int
https://www.ecmwf.int/sites/default/files/elibrary/2017/16953-atmospheric-moist-convection.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2017/16953-atmospheric-moist-convection.pdf

ICON Model Tutorial

Choulga, M., E. Kourzeneva, E. Zakharova, and A. Doganovsky, 2014: Estimation of the
mean depth of boreal lakes for use in numerical weather prediction and climate modelling.
Tellus A, 66, 21 295, doi:10.3402/tellusa.v66.21295.

Colella, P., and P. R. Woodward, 1984: The piecewise parabolic method (ppm) for gas-
dynamical simulations. J. Comput. Phys., 54, 174–201.

Crueger, T., and Coauthors, 2018: ICON-A, the atmosphere component of the ICON
earth system model: II. model evaluation. J. Adv. Model Earth Sy., 10 (7), 1638–1662,
doi:10.1029/2017MS001233.

Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Q. J.
R. Meteorol. Soc., 102, 405–418, doi:10.1002/qj.49710243210.

Davies, H., 1983: Limitations of some common lateral boundary schemes used in re-
gional NWP models. Mon. Weather Rev., 111, 1002–1012, doi:10.1175/1520-0493(1983)
111<1002:LOSCLB>2.0.CO;2.

Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar,
2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model
Earth Sy., 7 (3), 963–986, doi:10.1002/2015MS000431.

Doms, G., and M. Baldauf, 2018: A Description of the Nonhydrostatic Regional COSMO-
Model. Part I: Dynamics and Numerics. Consortium for Small-Scale Modelling, URL
http://www.cosmo-model.org/public/documentation.htm.

Doms, G., U. Schättler, and J.-P. Schulz, 2003: Kurze Beschreibung des Lokal-Modells
LM und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetter-
dienst (DWD), URL https://www.dwd.de/EN/ourservices/reports_on_icon/reports_
on_icon.html.

Doms, G., and Coauthors, 2011: A Description of the Nonhydrostatic Regional COSMO
Model. Part II: Physical Parameterization. Consortium for Small-Scale Modelling, URL
http://www.cosmo-model.org.

Easter, R. C., 1993: Two modified versions of Bott’s positive-definite numerical advection
scheme. Mon. Weather Rev., 121, 297–304.

ECMWF, 2017: PART IV: PHYSICAL PROCESSES, chap. Convection, 75–95. IFS Doc-
umentation, ECMWF.

ECMWF, 2018a: PART IV: PHYSICAL PROCESSES, chap. Subgrid-scale orographic
drag, 59–67. IFS Documentation, ECMWF.

ECMWF, 2018b: PART IV: PHYSICAL PROCESSES, chap. Non-ogographic gravity
wave drag, 69–74. IFS Documentation, ECMWF.

Ern, M., P. Preusse, and C. D. Warner, 2006: Some experimental constraints for spectral
parameters used in the warner and mcintyre gravity wave parameterization scheme.
Atmos. Chem. Phys., 6 (12), 4361–4381, doi:10.5194/acp-6-4361-2006.

Gal-Chen, T., and R. Somerville, 1975: On the use of a coordinate transformation for the
solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209–228.

260

http://www.cosmo-model.org/public/documentation.htm
https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html
https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html
http://www.cosmo-model.org

Bibliography

Gallus, W. A., and M. Ranĉić, 1996: A non-hydrostatic version of the NMC’s regional Eta
model. Q. J. R. Meteorol. Soc., 122, 495–513.

Gassmann, A., 2013: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-
IAP) designed for energetic consistency. Q. J. R. Meteorol. Soc., 139 (670), 152–175,
doi:10.1002/qj.1960.

Gassmann, A., and H.-J. Herzog, 2008: Towards a consistent numerical compressible
non-hydrostatic model using generalized Hamiltonian tools. Q. J. R. Meteorol. Soc.,
134 (635), 1597–1613.

Giorgetta, M., and Coauthors, 2018: ICON-A, the Atmosphere Component of the ICON
Earth System Model: I. Model Description. J. Adv. Model Earth Sy., 10 (7), 1613–1637,
doi:10.1029/2017MS001242.

Giorgetta, M. A., and Coauthors, 2022: The icon-a model for direct qbo simulations on
gpus (version icon-cscs:baf28a514). Geosci. Model Dev., 15 (18), 6985–7016, doi:10.
5194/gmd-15-6985-2022.

GLOBE-Task-Team, 1999: The Global Land One-kilometer Base Elevation (GLOBE) Dig-
ital Elevation Model, version 1.0. Tech. rep., National Oceanic and Atmospheric Admin-
istration. URL http://www.ngdc.noaa.gov/mgg/topo/globe.html.

Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn
State/NCAR Mesoscale Model (MM5). Tech. Rep. NCAR/TN-398+STR, University
Corporation for Atmospheric Research. doi:10.5065/D60Z716B.

Guerra, J. E., and P. A. Ullrich, 2016: A high-order staggered finite-element vertical dis-
cretization for non-hydrostatic atmospheric models. Geosci. Model Dev., 9 (5), 2007–
2029, doi:10.5194/gmd-9-2007-2016, URL https://gmd.copernicus.org/articles/9/2007/
2016/.

Harris, L. M., and P. H. Lauritzen, 2010: A flux-form version of the conservative semi-
lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. J. Com-
put. Phys., 230, 1215–1237.

Heinze, R., and Coauthors, 2017: Large-eddy simulations over Germany using ICON: a
comprehensive evaluation. Q. J. R. Meteorol. Soc., 143 (702), 69–100.

Heise, E., B. Ritter, and R. Schrodin, 2006: Operational implementation of the multilayer
soil model. COSMO Technical Reports No. 9, Consortium for Small-Scale Modelling,
19pp, URL http://www.cosmo-model.org.

Hesselberg, A., 1925: Die Gesetze der ausgeglichenen atmosphärischen Bewegungen. Beitr.
Phys. Atmos., 12, 141–160.

Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water
content in general circulation models. J. Atmos. Sci., 47 (15), 1865–1877.

Hogan, R. J., and A. Bozzo, 2018: A flexible and efficient radiation scheme for the ecmwf
model. J. Adv. Model Earth Sy., 10 (8), 1990–2008.

261

http://www.ngdc.noaa.gov/mgg/topo/globe.html
https://gmd.copernicus.org/articles/9/2007/2016/
https://gmd.copernicus.org/articles/9/2007/2016/
http://www.cosmo-model.org

ICON Model Tutorial

Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Q.
J. R. Meteorol. Soc., 126 (569), 2903–2909.

Hohenegger, C., and Coauthors, 2023: ICON-Sapphire: simulating the components of the
Earth system and their interactions at kilometer and subkilometer scales. Geosci. Model
Dev., 16 (2), 779–811, doi:10.5194/gmd-16-779-2023.

Hunt, B. R., E. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotem-
poral chaos: A Local Ensemble Transform Kalman Filter. Physica D, 230, 112–126.

Jablonowski, C., P. Lauritzen, R. Nair, and M. Taylor, 2008: Idealized test cases for the
dynamical cores of Atmospheric General Circulation Models: A proposal for the NCAR
ASP 2008 summer colloquium. National Center for Atmospheric Research (NCAR).

Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmo-
spheric model dynamical cores. Q. J. R. Meteorol. Soc., 132, 2943–2975.

Klemp, J., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon.
Weather Rev., 139, 2163–2169.

Klemp, J., J. Dudhia, and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for
NWP applications. Mon. Weather Rev., 136 (10), 3987–4004.

Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time
integration methods for the compressible nonhydrostatic equations. Mon. Weather Rev.,
135 (8), 2897 – 2913.

Köhler, M., M. Ahlgrimm, and A. Beljaars, 2011: Unified treatment of dry convective and
stratocumulus-topped boundary layers in the ECMWF model. Q. J. R. Meteorol. Soc.,
137 (654), 43–57.

Kolmogorov, A. N., 1968: Local structure of turbulence in an incompressible viscous fluid
at very high reynolds numbers. Sov. Phys. Usp., 10 (6), 734.

Korn, P., 2017: Formulation of an unstructured grid model for global ocean dynamics. J.
Comput. Phys., 339 (C), 525–552, doi:10.1016/j.jcp.2017.03.009.

Korn, P., and S. Danilov, 2017: Elementary dispersion analysis of some mimetic discretiza-
tions on triangular C-grids. J. Comput. Phys., 330, 156 – 172, doi:https://doi.org/10.
1016/j.jcp.2016.10.059.

Korn, P., and Coauthors, 2022: ICON-O: The Ocean Component of the ICON Earth
System Model–Global Simulation Characteristics and Local Telescoping Capability. J.
Adv. Model Earth Sy., 14 (10), e2021MS002 952, doi:10.1029/2021MS002952.

Kourzeneva, E., 2010: External data for lake parameterization in Numerical Weather Pre-
diction and climate modeling. Boreal Env. Res., 15, 165–177.

Kourzeneva, E., H. Asensio, E. Martin, and S. Faroux, 2012: Global gridded dataset of lake
coverage and lake depth for use in numerical weather prediction and climate modelling.
Tellus A, 64, 15 640, doi:10.3402/tellusa.v64i0.15640.

Lauritzen, P. H., C. Erath, and R. Mittal, 2011a: On simplifying ’incremental remap’-based
transport schemes. J. Comput. Phys., 230, 7957–7963.

262

Bibliography

Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair, 2011b: Numerical Tech-
niques for Global Atmospheric Models. 1st ed., Springer, 556 pp.

Lauritzen, P. H., R. D. Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian
multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys.,
229, 1401–1424.

Leuenberger, D., M. Koller, and C. Schär, 2010: A generalization of the SLEVE vertical
coordinate. Mon. Weather Rev., 138, 3683–3689.

Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14 (2),
148–172, doi:10.1111/j.2153-3490.1962.tb00128.x.

Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-lagrangian trans-
port schemes. Mon. Weather Rev., 124 (9), 2046–2070, doi:10.1175/1520-0493(1996)
124<2046:MFFSLT>2.0.CO;2.

Lipscomb, W. H., and T. D. Ringler, 2005: An incremental remapping transport scheme
on a spherical geodesic grid. Mon. Weather Rev., 133, 2335–2350.

Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its
formulation and testing. Q. J. R. Meteorol. Soc., 123 (537), 101–127, doi:10.1002/qj.
49712353704.

Matsuno, T., 1966: Numerical integrations of the primitive equations by a simulated back-
ward difference method. J. Meteorolog. Soc. Jpn., 44 (1), 76–84, doi:10.2151/jmsj1965.
44.1_76.

McLandress, C., and J. F. Scinocca, 2005: The GCM response to current parameterizations
of nonorographic gravity wave drag. J. Atmos. Sci., 62 (7), 2394–2413, doi:10.1175/
JAS3483.1.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geo-
physical fluid problems. Rev. Geophys., 20 (4), 851–875, doi:10.1029/RG020i004p00851.

Mironov, D., E. Heise, E. Kourzeneva, B. Ritter, N. Schneider, and A. Terzhevik, 2010:
Implementation of the lake parameterisation scheme FLake into the numerical weather
prediction model COSMO. Boreal Env. Res., 15, 218–230.

Mironov, D., B. Ritter, J.-P. Schulz, M. Buchhold, M. Lange, and E. Machulskaya, 2012:
Parameterisation of sea and lake ice in numerical weather prediction models of the
German weather service. Tellus A, 64 (0), doi:10.3402/tellusa.v64i0.17330.

Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction. Descrip-
tion of a lake model. COSMO Technical Report, Consortium for Small-Scale Modelling,
41 pp. URL http://www.cosmo-model.org.

Miura, H., 2007: An upwind-biased conservative advection scheme for spherical hexagonal-
pentagonal grids. Mon. Weather Rev., 135, 4038–4044.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
longwave. J. Geophys. Res.: Atmos., 102 (D14), 16 663–16 682, doi:10.1029/97JD00237.

263

http://www.cosmo-model.org

ICON Model Tutorial

Narcowich, F. J., and J. D. Ward, 1994: Generalized Hermite interpolation via matrix-
valued conditionally positive definite functions. Math. Comp., 63, 661–687, doi:10.1090/
S0025-5718-1994-1254147-6.

Neggers, R. A. J., M. Köhler, and A. C. M. Beljaars, 2009: A dual mass flux framework
for boundary layer convection. Part I: Transport. J. Atmos. Sci., 66 (6), 1465–1487,
doi:10.1175/2008JAS2635.1.

Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle at-
mosphere climate and forecasts in the ECMWF model through a nonorographic gravity
wave drag parameterization. J. Clim., 23 (22), 5905–5926, doi:10.1175/2010JCLI3490.1.

Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique
for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res.: Atmos.,
108 (D13).

Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the rela-
tionship between incremental analysis updating and incremental digital filtering. Mon.
Weather Rev., 132, 2495–2502.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007: Numerical
Recipes. 3rd ed., Cambridge University Press, 1235 pp.

Prill, F., 2020: DWD ICON Tools Documentation. Deutscher Wetterdienst (DWD),
dwd_icon_tools/doc/icontools_doc.pdf.

Randall, D. A., 2017: A survey of time-differencing schemes for the oscillation and de-
cay equations. An Introduction to Numerical Modelling of the Atmosphere, Colorado
State University, 63–104, URL http://kiwi.atmos.colostate.edu/group/dave/at604pdf/
AT604_LaTeX_Book.pdf.

Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO News Let-
ter No. 1, Consortium for Small-Scale Modelling, 89–97, URL http://www.cosmo-model.
org.

Rast, S., 2017: Using and programming ICON – a first introduction. Max Planck Insti-
tute for Meteorology, URL https://code.mpimet.mpg.de/attachments/download/15898/
icon_lecture_2016.pdf, course at Hamburg University 2017.

Reinert, D., 2020: The Tracer Transport Module Part I: A Mass Consistent Finite Vol-
ume Approach with Fractional Steps. Reports on icon, Deutscher Wetterdienst, 19
pp. doi:10.5676/DWD_pub/nwv/icon_005, URL https://www.dwd.de/DE/leistungen/
reports_on_icon/reports_on_icon.html.

Reinert, D., 2021: The Tracer Transport Module Part II: Description and Validation
of the Vertical Transport Operator. Reports on icon, Deutscher Wetterdienst, 42
pp. doi:10.5676/DWD_pub/nwv/icon_007, URL https://www.dwd.de/DE/leistungen/
reports_on_icon/reports_on_icon.html.

Reinert, D., F. Prill, H. Frank, M. Denhardt, and G. Zängl, 2020: Database Reference
Manual for ICON and ICON-EPS. Deutscher Wetterdienst (DWD), URL https://www.
dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html.

264

http://kiwi.atmos.colostate.edu/group/dave/at604pdf/AT604_LaTeX_Book.pdf
http://kiwi.atmos.colostate.edu/group/dave/at604pdf/AT604_LaTeX_Book.pdf
http://www.cosmo-model.org
http://www.cosmo-model.org
https://code.mpimet.mpg.de/attachments/download/15898/icon_lecture_2016.pdf
https://code.mpimet.mpg.de/attachments/download/15898/icon_lecture_2016.pdf
https://www.dwd.de/DE/leistungen/reports_on_icon/reports_on_icon.html
https://www.dwd.de/DE/leistungen/reports_on_icon/reports_on_icon.html
https://www.dwd.de/DE/leistungen/reports_on_icon/reports_on_icon.html
https://www.dwd.de/DE/leistungen/reports_on_icon/reports_on_icon.html
https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html
https://www.dwd.de/EN/ourservices/reports_on_icon/reports_on_icon.html

Bibliography

Rieger, D., M. Köhler, R. J. Hogan, S. A. K. Schäfer, A. Seifert, A. de Lozar, and G. Zängl,
2019: ecRad in ICON - Details on the Implementation and First Results. (4), doi:
10.5676/DWD_pub/nwv/icon_004.

Rieger, D., and Coauthors, 2015: ICON–ART 1.0 – a new online-coupled model system
from the global to regional scale. Geosci. Model Dev., 8 (6), 1659–1676, doi:10.5194/
gmd-8-1659-2015.

Rotta, J., 1951a: Statistische Theorie nichthomogener Turbulenz. J. Z. Physik, 129 (6),
547–572, doi:10.1007/BF01330059.

Rotta, J., 1951b: Statistische Theorie nichthomogener Turbulenz. J. Z. Physik, 131 (1),
51–77, doi:10.1007/BF01329645.

Ruppert, T., 2007: Diplomarbeit: Vector field reconstruction by radial basis functions. M.S.
thesis, Department of Mathematics, Technical University Darmstadt.

Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic
vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Weather Rev.,
96 (6), 351–356, doi:10.1175/1520-0493(1968)096<0351:IOTNBV>2.0.CO;2.

Satoh, M., 2002: Conservative scheme for the compressible nonhydrostatic models with
the horizontally explicit and vertically implicit time integration scheme. Mon. Weather
Rev., 130, 1227–1245.

Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-
following vertical coordinate formulation for atmospheric prediction models. Mon.
Weather Rev., 130, 2459–2480.

Schrodin, R., and E. Heise, 2001: The Multi-Layer Version of the DWD Soil Model
TERRA_LM. Tech. Rep. 2, Consortium for Small-Scale Modelling, 1–16 pp. URL
http://www.cosmo-model.org.

Schröter, J., and Coauthors, 2018: ICON-ART 2.1: a flexible tracer framework and its
application for composition studies in numerical weather forecasting and climate simu-
lations. Geosci. Model Dev., 11 (10), 4043–4068, doi:10.5194/gmd-11-4043-2018.

Schulz, J.-P., 2006: The new Lokal-Model LME of the German Weather Service. COSMO
News Letter No. 6, Consortium for Small-Scale Modelling, 210–212, URL http://www.
cosmo-model.org.

Schulz, J.-P., 2008: Introducing sub-grid scale orographic effects in the cosmo model.
COSMO News Letter No. 9, Consortium for Small-Scale Modelling, 29–36, URL http:
//www.cosmo-model.org.

Schulz, J.-P., G. Vogel, C. Becker, S. Kothe, U. Rummel, and B. Ahrens, 2016: Evaluation
of the ground heat flux simulated by a multi-layer land surface scheme using high-
quality observations at grass land and bare soil. Meteorol. Z., 25 (5), 607–620, doi:
10.1127/metz/2016/0537.

Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameter-
ization for general circulation models. J. Atmos. Sci., 60 (4), 667–682, doi:10.1175/
1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

265

http://www.cosmo-model.org
http://www.cosmo-model.org
http://www.cosmo-model.org
http://www.cosmo-model.org
http://www.cosmo-model.org

ICON Model Tutorial

Seifert, A., 2008: A revised cloud microphysical parameterization for COSMO-LME.
COSMO News Letter No. 7, Proceedings from the 8th COSMO General Meeting in
Bucharest, 2006, Consortium for Small-Scale Modelling, 25–28, URL http://www.
cosmo-model.org.

Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization
for mixed-phase clouds. Part 1: Model description. Meteorol. Atmos. Phys., 92 (1),
45–66, doi:10.1007/s00703-005-0112-4.

Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for
shallow cumulus convection. J. Atmos. Sci., 52, 650–666.

Simmons, A., and D. Burridge, 1981: An energy and angular-momentum conserving finite-
difference scheme and hybrid vertical coordinates. Mon. Weather Rev., 109, 758–766.

Skamarock, W., J. B. Klemp, M. G. Duda, L. D. Fowler, S. Park, and T. D. Ringler,
2012: A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tes-
selations and C-Grid Staggering. Mon. Weather Rev., 140, 3090–3105, doi:10.1175/
MWR-D-11-00215.1.

Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model
for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.

Skamarock, W. C., and M. Menchaca, 2010: Conservative transport schemes for spherical
geodesic grids: High-order reconstructions for forward-in-time schemes. Mon. Weather
Rev., 138, 4497–4508.

Skamarock, W. C., and Coauthors, 2019: A description of the advanced research WRF
model version 4. No. ncar/tn-556+str, National Center For Atmospheric Research, Boul-
der, CO. doi:10.5065/1dfh-6p97.

Smagorinsky, J., 1963: General Circulation Experiments with the Primitive Equations.
Mon. Weather Rev., 91, 99, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;
2.

Smiatek, G., J. Helmert, and E.-M. Gerstner, 2016: Impact of land use and soil data
specifications on COSMO-CLM simulations in the CORDEX-MED area. Meteorol. Z.,
25 (2), 215–230, doi:10.1127/metz/2015/0594.

Smiatek, G., B. Rockel, and U. Schättler, 2008: Time invariant data preprocessor for the
climate version of the COSMO model (COSMO-CLM). Meteorol. Z., 17 (4), 395–405,
doi:10.1127/0941-2948/2008/0302.

Snyder, J., 1987: Map Projections – a Working Manual. No. 1395, U. S. Geological Survey
professional paper, U. S. Government Printing Office.

Sommeria, G., and J. W. Deardorff, 1977: Subgrid-Scale Condensation in Models of Non-
precipitating Clouds. J. Atmos. Sci., 34 (2), 344–355, doi:10.1175/1520-0469(1977)
034<0344:SSCIMO>2.0.CO;2.

Straka, J. M., R. B. Wilhelmson, and K. K. Droegemeier, 1993: Numerical solutions of
a non-linear density current: A benchmark solution and comparisons. Int. J. Numer.
Methods Fluids, 17, 1–22.

266

http://www.cosmo-model.org
http://www.cosmo-model.org

Bibliography

Strang, G., 1968: On the construction and comparison of difference schemes. SIAM J.
Numer. Anal., 5 (3), 506–517, doi:10.1137/0705041.

Tibaldi, S., 1986: Envelope orography and maintenance of quasi-stationary waves in the
ECMWF model. Adv. Geophys., 29, 339–374.

Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameteriza-
tion in large-scale models. Mon. Weather Rev., 117 (8), 1779–1800, doi:10.1175/
1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

Tomita, H., M. Satoh, and K. Goto, 2002: An optimization of the icosahedral grid modified
by spring dynamics. J. Comput. Phys., 183 (1), 307–331, doi:10.1006/jcph.2002.7193.

Wacker, U., and F. Herbert, 2003: Continuity equations as expressions for local balances
of masses in cloudy air. Tellus A, 55, 247–254.

Wallace, J., S. Tibaldi, and A. Simmons, 1983: Reduction of systematic forecast errors
in the ECMWF model through the introduction of an envelope orography. Q. J. R.
Meteorol. Soc., 109, 683–717.

Wan, H., and Coauthors, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on
triangular grids – Part 1: Formulation and performance of the baseline version. Geosci.
Model Dev., 6 (3), 735–763, doi:10.5194/gmd-6-735-2013.

Warner, C. D., and M. E. McIntyre, 1996: On the propagation and dissipation of gravity
wave spectra through a realistic middle atmosphere. J. Atmos. Sci., 53 (22), 3213–3235,
doi:10.1175/1520-0469(1996)053<3213:OTPADO>2.0.CO;2.

Yeh, K.-S., 2007: The streamline subgrid integration method: I. quasi-monotonic second
order transport schemes. J. Comput. Phys., 225, 1632–1652.

Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluid.
J. Comput. Phys., 31, 335–362.

Zängl, G., 2012: Extending the Numerical Stability Limit of Terrain-Following Coor-
dinate Models over Steep Slopes. Mon. Weather Rev., 140, 3722–3733, doi:10.1175/
MWR-D-12-00049.1.

Zängl, G., D. Reinert, and F. Prill, 2022: Grid refinement in icon v2.6.4. Geosci. Model
Dev. Disc., 2022, 1–32, doi:10.5194/gmd-2022-120.

Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2015: The ICON (ICOsahedral
Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-
hydrostatic dynamical core. Q. J. R. Meteorol. Soc., 141, 563–579.

Zarzycki, C., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. Ullrich,
2014: Aquaplanet experiments using CAM’s variable resolution dynamical core. J. Clim.,
27, 5481–5503, doi:10.1175/JCLI-D-14-00004.1.

Zdunkowski, W., and A. Bott, 2003: Dynamics of the atmosphere: A course in theoretical
meteorology. 1st ed., Cambridge University Press, 719 pp.

267

ICON Model Tutorial

Zerroukat, M., N. Wood, and A. Staniforth, 2002: SLICE: A Semi–Lagrangian Inherently
Conserving and Efficient scheme for transport problems. Q. J. R. Meteorol. Soc., 128,
2801–2820, doi:10.1256/qj.02.69.

Zerroukat, M., N. Wood, and A. Staniforth, 2005: A monotonic and positive-definite filter
for Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R.
Meteorol. Soc., 131, 2923–2936.

Zerroukat, M., N. Wood, and A. Staniforth, 2006: The Parabolic Spline (PSM) Method
for conservative transport problems. Int. J. Numer. Meth. Fluids, 51, 1297–1318.

268

Index of Namelist Parameters
The following index contains only namelist parameters covered by this tutorial. Please
take a look at the document

icon/doc/Namelist_overview.pdf

for a complete list of available namelist parameters for the ICON model.

initicon_nml (Namelist), 148

albedo_type, 54
ana_varnames_map_file, 147

bdy_indexing_depth, 27, 27
bub_amp, 141, 142
bub_hor_width, 140, 142
bub_ver_width, 141, 142
bubctr_z, 141, 142

checkpointTimeIntVal, 174, 174, 175
cldopt_filename, 57
const_z0, 142

damp_height, 136, 157, 163, 164, 165
diffusion_nml (Namelist), 132, 136, 142
dom, 168, 169
dt_checkpoint, 174, 175, 175
dt_conv, 90, 90
dt_gwd, 90
dt_iau, 149, 149–151
dt_rad, 90, 90, 96
dt_restart, 175, 175
dt_shift, 149, 149–151, 152
dt_sso, 90
dtime, 89, 133, 136, 142, 144, 156, 174
dtime_latbc, 161
dwdana_filename, 148, 148, 149, 152
dwdfg_filename, 148, 148, 149, 151, 152,

158, 159
dynamics_grid_filename, 24, 118, 133, 136,

142, 145, 146, 193
dynamics_nml (Namelist), 132, 136, 142

dynamics_parent_grid_id, 23, 24, 24

ecrad_data_path, 57, 93
ecrad_isolver, 187, 187
end_datetime_string, 144, 144
end_time, 144, 152, 152, 174
exner_expol, 75, 136
experimentStartDate, 144, 152, 162, 169,

174
experimentStopDate, 144, 174
extpar_filename, 145, 145–147
extpar_nml (Namelist), 54–56, 132, 136,

142, 145, 147, 235
extpar_varnames_map_file, 147

fbk_relax_timescale, 124
filename_format, 168, 168, 169
filetype, 168, 168
flat_height, 69, 126
frlake_thrhld, 110

grid_nml, 68
grid_nml (Namelist), 24, 70, 118, 122, 129,

133, 136, 142, 144, 145, 152, 153,
174

gridgen_nml (Namelist), 27, 28
gridref_nml (Namelist), 124

h_levels, 170
hbot_qvsubstep, 86, 115, 115, 116
hdiff_efdt_ratio, 136, 142
hdiff_order, 136, 142
hdiff_smag_fac, 142
hl_varlist, 170, 170

269

ICON Model Tutorial

htop_moist_proc, 88, 115, 115, 116

i_levels, 170
icapdcycle, 100, 100
icld_overlap, 95
iforcing, 132, 132, 136, 142, 145
ifs2icon_filename, 148, 152, 158, 159
igradp_method, 64
ihadv_tracer, 86, 86–88, 115
iice_scat, 95
il_varlist, 170, 170
iliquid_scat, 95
in_filename, 53
in_grid_filename, 53
in_mask_below, 47
in_mask_threshold, 47
in_type, 53
inextra_2d, 200
inextra_3d, 200
ini_datetime_string, 144, 144, 148, 149,

151, 152, 162, 169
init_mode, 43, 146, 146, 148, 149, 151, 152,

158, 158, 159
initicon_nml (Namelist), 110, 114, 146–149,

151, 152, 158, 159
input_field_nml (Namelist), 43–47, 53
interpol_nml (Namelist), 86, 126, 155, 171
inwp_cldcover, 94
inwp_convection, 94, 99, 163, 164
inwp_gscp, 85, 94, 94, 98, 98, 99
inwp_gwd, 94
inwp_radiation, 93, 94, 187
inwp_sso, 94
inwp_surface, 94
inwp_turb, 94, 103, 142
io_nml (Namelist), 147, 168, 175, 176, 200
irad_aero, 54
is_dry_cbl, 142
is_plane_torus, 142
isrfc_type, 142
iterative_iau, 151
itopo, 132, 132, 136, 142, 145
itype_canopy, 234, 239
itype_hlimit, 86, 88
itype_latbc, 154, 161
itype_lwemiss, 54
itype_sher, 103
itype_snowevap, 234, 236–239

itype_t_diffu, 136
itype_trvg, 234, 236, 238
itype_vegetation_cycle, 55, 235, 239, 239
itype_vlimit, 83, 86, 88
itype_vn_diffu, 136
itype_z0, 55
ivadv_tracer, 86, 87, 88
ivctype, 68, 69, 163
ivlimit_selective, 87, 88

jw_temp0, 134, 136
jw_u0, 134, 136
jw_up, 134, 136

Kh_ext, 142
Km_ext, 142

l_limited_area, 153, 156
latbc_boundary_grid, 157, 162
latbc_filename, 161, 161
latbc_path, 161, 161
latbc_varnames_map_file, 147, 161, 162
latm_above_top, 157
layer_thickness, 68
lconst_z0, 142
lcoriolis, 132, 136, 142
ldynamics, 131, 136, 142, 145
les_nml (Namelist), 104, 142
lfeedback, 122
limarea_nml (Namelist), 147, 154, 155, 157,

161, 162
linside_domain_test, 47
linvert_dict, 147
llake, 94, 109, 110
lmeteogram_enabled, 176
lnd_nml (Namelist), 54–56, 109, 110, 112,

113, 234, 236–239
lprog_albsi, 234, 236, 238
lread_ana, 148, 148, 149, 159, 159
lredgrid_phys, 129
lrestart, 174, 175
lrtm_filename, 57
lseaice, 94, 112
lshallowconv_only, 99, 163, 164
lsnowtile, 113
lsq_high_ord, 86
ltestcase, 68, 131, 136, 142, 144
ltile_coldstart, 114
ltile_init, 114

270

INDEX OF NAMELIST PARAMETERS

ltimer, 183
ltkeshs, 103, 103
ltransport, 85, 132, 136, 142, 145
ltransport=.TRUE., 135
lvert_nest, 67, 126
lwrite_parent, 28, 130

m_levels, 168
master_nml (Namelist), 146, 148, 169, 174,

175
master_time_control_nml (Namelist), 144,

174, 175
max_nudge_coeff_thermdyn, 155
max_nudge_coeff_vn, 155
max_refin_c_ctrl, 51, 51
max_time_stamps, 177
merge_domain, 129
meteogram_output_nml (Namelist), 176,

177
min_lay_thckn, 69, 69, 142
min_refin_c_ctrl, 51
ml_varlist, 168, 168, 170
model_base_dir, 146, 148, 169
modelTimeStep, 144
msg_level, 132

n0_mtgrm, 176
n_flat_lev, 68
n_iter_smooth_topo, 56
nadv_substeps, 86
nblocks_c, 186, 186
nblocks_sub, 186, 186
ncstorage_file, 53
ndyn_substeps, 89, 89, 90, 120
netcdf_dict, 147
nh_brunt_vais, 141, 142
nh_test_name, 134, 136, 142
nh_testcase_nml (Namelist), 131, 134, 136,

140–142
nh_testcases_nml, 68
nh_u0, 141
ninc_mtgrm, 176
nonhydrostatic_nml (Namelist), 64, 68, 69,

72, 73, 75, 86, 88, 89, 115, 120, 132,
136, 157, 163

north_pole, 172, 173
nproma, 182, 186, 186, 189, 190
nproma_sub, 186, 186, 187

nsteps, 133, 136, 142, 144, 174
ntiles, 54, 55, 56, 113, 113–115
ntracer, 85, 136
nudge_efold_width, 126, 155
nudge_hydro_pres, 155
nudge_max_coeff, 126, 155
nudge_start_height, 155
nudge_type, 51, 154, 156, 157
nudge_zone_width, 126, 155
nudging_nml (Namelist), 51, 154–157
num_io_procs, 173, 174, 180
num_lev, 67, 69, 126, 133, 136, 142, 165
num_prefetch_proc, 162, 162
num_restart_proc, 176
num_restart_procs, 175, 180
nwp_phy_nml (Namelist), 55, 57, 90, 93,

94, 98–100, 103, 132, 142, 157, 163
nwp_tuning_nml (Namelist), 106, 108, 163

out_grid_filename, 53
out_mask_below, 47
out_mask_filename, 47
out_mask_threshold, 47
out_type, 53
output, 167, 176
output_bounds, 168
output_filename, 167, 168
output_nml (Namelist), 133, 136, 167–170,

172–174, 255
output_nml_dict, 147, 168

p_levels, 170
parallel_nml (Namelist), 162, 174–176, 180,

182, 186, 189
pe_placement_ml, 174
pl_varlist, 170, 170
proc0_shift, 182, 182, 187

radiation_grid_filename, 129, 145
radiation_nml (Namelist), 54, 57, 93, 95,

187
rat_sea, 163, 163
rayleigh_coeff, 136
rbf_scale, 172
reg_lat_def, 169
reg_lon_def, 169
remap, 168, 169
remap_nml (Namelist), 47, 53
restart_filename, 175, 175

271

ICON Model Tutorial

restart_write_mode, 176, 176
restartTimeIntVal, 174, 175
rhotheta_offctr, 73
run_nml (Namelist), 67, 68, 85, 126, 131–

133, 135, 136, 142, 144, 145, 167,
174, 175, 183

sleve_nml, 70
sleve_nml (Namelist), 69, 126, 136, 142, 155,

163
smag_coeff_type, 142
smag_constant, 104
sstice_mode, 55
start_time, 144, 152, 152, 174
stationlist_tot, 176
steps_per_file, 169
stream_partitions_ml, 173, 174, 174
support_baryctr_intp, 171

time_nml (Namelist), 144, 175
timers_level, 183
top_height, 69, 136, 142, 155, 163, 164, 165
tracer_inidist_list, 136, 137
tracer_names, 137, 137
transport_nml (Namelist), 83, 86, 87, 115,

132, 137, 145
tune_gfluxlaun, 108
tune_gfrcrit, 106
tune_gkdrag, 106, 106
tune_gkwake, 106, 106
tune_grcrit, 106
tune_zvz0i, 163, 163
turb_prandtl, 104
turbdiff_nml (Namelist), 103, 142, 163

ufric, 142
use_lakeiceana, 110

var_in_mask, 46, 47, 47
var_list, 177
var_out_mask, 47
vct_filename, 68, 70
veladv_offctr, 73
vwind_offctr, 72, 72, 136

zprefix, 177

272

	Contents
	Preface
	How This Document Is Organized
	How to Obtain a Copy of the ICON Model Code
	Further Documentation

	Installation of the ICON Model Package
	The ICON Model Package
	Directory Layout
	Libraries Needed for Data Input and Output
	Namelist Input for the ICON Model

	Configuring and Compiling the Model Code
	Computer Platforms
	Configuring and Compiling

	The DWD ICON Tools
	General Overview
	Configuring and Compiling the DWD ICON Tools

	Necessary Input Data
	Horizontal Grids
	ICON Grid Files
	ICON ``Nests''
	Mapping of Geodesic Coordinates to the Sphere
	Download of Predefined Grids
	Grid Generator: Invocation from the Command Line
	Grid Generator: Invocation via the Web Interface
	Offline ExtPar Subgrid Extraction
	Which Grid File is Related to My Simulation Data?
	Planar Torus Grids

	Initial Conditions
	Obtaining DWD Initial Data
	Obtaining ECMWF IFS Initial Data
	Remapping Initial Data to Your Target Grid

	Boundary Data Preparation for ICON-LAM
	External Parameter Files
	ExtPar Software
	Topography Information
	Additional Information for Surface Tiles
	Parameter Files for Radiation

	Model Description
	Governing Equations
	The Model Reference State
	Simplifying Assumptions in the Recent Model Version
	Vertical Coordinates
	Terrain-following Hybrid Gal-Chen Coordinate
	SLEVE Coordinate

	Temporal Discretization
	Basic Idea
	Implementation Details

	Tracer Transport
	Directional Splitting
	Horizontal Transport
	Vertical Transport
	Reduced Calling Frequency
	Some Practical Advice

	Physics-Dynamics Coupling
	ICON Time-Stepping
	Fast and Slow Processes
	Isobaric vs. Isochoric Coupling Strategies

	ICON NWP-Physics in a Nutshell
	Radiation
	Saturation Adjustment
	Cloud Microphysics
	Cumulus Convection
	Cloud Cover
	Turbulent Diffusion
	Sub-grid scale orographic drag
	Non-orographic gravity wave drag
	Lake Parameterization Scheme FLake
	Sea-Ice Parameterization Scheme
	Land-Soil Model TERRA
	Reduced Model Top for Moist Physics

	Variable Resolution Modeling
	Parent-Child Coupling
	Processing Sequence
	Technical and Performance Aspects

	Reduced Radiation Grid

	Running Idealized Test Cases
	Main Switches for Idealized Test Cases
	Activating/De-activating Main Model Components
	Specifying the Computational Domain(s)
	Integration Time Step and Simulation Length

	Jablonowski-Williamson Baroclinic Wave Test
	Recommended Namelist Settings
	Enabling Passive Tracers
	Activation of Nested Domains

	Straka Density Current Test
	Relevant Namelist Switches in nh_testcase_nml:

	Running Real Data Test Cases
	Model Initialization
	Basic Settings for Running Real Data Runs
	Starting from Uninitialized DWD Analysis
	Starting from Uninitialized DWD Analysis with IAU
	Starting from Initialized DWD Analysis
	Starting from IFS Analysis

	Starting or Terminating Nested Domains at Runtime

	Running ICON-LAM
	Limited Area Mode vs. Nested Setups
	Nudging in the Boundary Region
	Model Initialization
	Reading Lateral Boundary Data
	Naming Scheme for Lateral Boundary Data
	Pre-Fetching of Boundary Data (Mandatory)

	Tropical Setup

	Model Output
	Settings for the Model Output
	Output on Regular Grids and Vertical Interpolation
	Remarks on the Horizontal Interpolation
	Interpolation onto Rotated Lat-Lon Grids
	Output Rank Assignment

	Checkpointing and Restart
	Meteogram Output

	Parallelization and Performance Aspects
	Modes of Parallel Execution
	Settings for Parallel Execution
	Best Practice for Parallel Setups
	MPI Tasks and OpenMP Threads
	Blocking (nproma)
	Mixed Single/ Double Precision in ICON
	Bit-Reproducibility

	Basic Performance Measurement
	ICON on Accelerator Devices (GPUs)
	Configuring and Compiling ICON-OpenACC
	Special Namelist Options for ICON-OpenACC
	Implementation Details

	Programming ICON
	Representation of 2D and 3D Fields
	Data Structures
	Description of the Model Domain
	Date and Time Variables
	Data Structures for Physics and Dynamics Variables
	Parallel Communication

	Implementing Own Diagnostics
	NWP Call Tree

	Post-Processing and Visualization
	Retrieving Data Set Information
	The ncdump Tool
	CDO – Climate Data Operators

	Plotting Data Sets on Regular Grids: ncview
	Plotting Data Sets on the Triangular Grid
	Visualization with Python
	Visualization with PyNGL
	NCL – NCAR Command Language
	Visualization with R
	GMT – Generic Mapping Tools

	Post-Processing of Data Sets
	Post-Processing using the CDO
	Post-Processing using Fieldextra

	ICON's Data Assimilation System and Analysis Products
	Data Assimilation
	Variational Data Assimilation
	Ensemble Kalman Filter
	Hybrid Data Assimilation
	Surface Analysis

	Assimilation Cycle at DWD
	Analysis Products
	Uninitialized Analysis for IAU
	Uninitialized Analysis
	Initialized Analysis

	Appendix The Computer System at DWD
	Appendix Table of ICON Output Variables
	Bibliography
	Index of Namelist Parameters

