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1 Theoretical considerations

In the Seifert-Beheng 2-moment scheme, the sedimentation process is considered in a pro-
cess splitting approach separately after all other microphysical processes (including saturation
adjustment) at the very end of the physics time step. Numerically it is treated by a (very
diffusive) first-order explicit scheme. The numerical diffusion of the scheme helps to alleviate
some problems in a bulk description of sedimentation compared to the analytic solution of the
original spectral equation.

Consider the pure bulk sedimentation problem

∂ρq

∂t
= − ∂

∂z

[
v(ρq) ρq

]
. (1)

Although we have written it in the form of a 1-moment scheme, it can be readily generalized
to a two-moment scheme by adding an equation for a second moment and by letting v depend
also on this second moment. For the sake of clarity, we will stick to the 1-moment description
below, but the resulting formulae are applied to both moments of the scheme simultaneously.
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After time integration from ti to ti+1 and with ρq = ϕ, one obtains the integro-differential
equation

ϕ(ti+1) = ϕ(ti) −
∂

∂z

 ti+1∫
ti

v(ϕ(t)) ϕ(t) dt

 = ϕ(ti) −
∂

∂z

[
P∆t

]
(2)

with P = vφ defining the time-averaged vertical sedimenation flux during a model time step
∆t = ti+1 − ti. v is always negative in our sedimentation problem.

Now let i be the time step index and k be the vertical grid level index of the COSMO-model
(increasing from model top to bottom). If the fluxes P are taken to reside on the verti-
cal cell faces (model “half levels” in COSMO terminology), a direct simple mass-conserving
discretization is

ϕ
(i+1)
k = ϕ

(i)
k −

(
P k−1/2 − P k+1/2

)
∆t

∆zk
(3)

with ∆zk = zk−1/2 − zk+1/2, and the time integral for P in Eq. (2) has to be evaluated
numerically.

To prepare the numerical evaluation, we first transform this integral into a more useful for-
mulation. Consider the flux P through a height layer zf . We exploit the fact that the explicit
scheme uses “time-frozen” ϕ and v from time ti and expand the integrand itself in an integral
over a δ-function, which connects the time t−ti with the fall distance v(ϕ(z,ti))

(t−ti) from which

ϕ-contributions start to fall at ti and height z to reach zf at time t, i.e., z = zf+|v(ϕ(z,ti)
)|(t−ti),

P (zf )∆t =

ti+1∫
ti

v(ϕ(zf ,t)) ϕ(z,t) dt ≈

ti+1∫
ti

v(ϕ(zf+|v(ϕ(z,ti)
)|(t−ti),ti)

) ϕ(zf+|v(ϕ(z,ti)
)|(t−ti),ti) dt =

ti+1∫
ti

∞∫
zf

v(ϕ(z,ti)
) ϕ(z,ti) δ[z−zf−|v(ϕ(z,ti)

)|(t−ti)] dz dt . (4)

Note that the well-known rare-faction wave at the tail of a “falling δ-peak” does not appear in
our problem because we have chosen the fall velocity to be fixed during ∆t. The lower limit
zf of the δ-integral is valid because flux contributions only stem from larger heights z in our
sedimentation problem. The δ-function will help to avoid the problem, that the heights from
which v and ϕ contribute to the integral depend on v itself.

If we use the following property of the δ-function,

b∫
a

δ(x−x0) dx =

{
1 for x0 ∈ [a, b]

0 else ,
(5)

change the order of integration in Eq. (4), apply the transformation ζ = zf + |v(ϕ(z,ti)
)|(t− ti),

dζ = |v| dt (|v| = −v; v does not explicitly depend on t in our scheme), t = ti → ζ = zf ,
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t = ti+1 → ζ = zf + |v|∆t, and integrate over the δ-function in ζ, we obtain

P (zf )∆t ≈

−
∞∫
zf

zf+v∆t∫
zf

ϕ(z,ti) δ(z−ζ) dζ dz = −
∞∫
zf

ϕ(z,ti)

zf+v∆t∫
zf

δ(z−ζ) dζ dz =

−
∞∫
zf

ϕ(z,ti) F(z,v(z,ti))
dz (6)

with a masking function F defined as

F =

{
1 for 0 < z − zf < |v(z,ti)|∆t
0 else .

(7)

Note that there might be heights z above zf from which ϕ-contributions reach zf during ∆t,
and regions where this is not the case, depending on v(z,ti). These regions can be alternating.

Eqs. (6) and (7) are our basis for evaluating the fluxes in Eq. (3) numerically.

The current scheme for this evaluation has problems when the local vertical Courant number
is larger than 1, which usually happens close to the ground for relatively long model time steps
and “fast sedimenting” species like rain drops, because the grid layers may get very thin close
to the ground. Therefore, a new formulation has been developed and implemented into the
COSMO-code of the 2-moment scheme.

The current and new method are described in the following. Here, zf will be identified as
zk+1/2 and the explicit time index i will be dropped. Generally, the fluxes are computed
according to a simple explicit first order upward scheme, i.e.,

v
(i)
k+1/2 = v

(i)
k = fct(ϕ

(i)
k ) (8)

and ϕ
(i)
k represents a constant value of ϕ within the vertical grid box ∆zk.

Note also, that a simple flux limiter is applied to avoid negative values after one sedimentation
timestep, which destroys strict mass conservation of both the current and the new numeric
scheme. Also, the mean fallspeeds for the 2 moments are bounded within a hydrometeor-
type-dependent range. For example, number-density- and mass-density-fallspeeds for rain are
clipped to a range of [0.1, 20] m s−1.

1.1 Current explicit scheme

This scheme is in effect if the code was compiled with no extra preprocessor
flag or with the flag -DSEDI VECTORIZED (vector-version for the NEC-SX9 vector-
supercomputer).

In the current scheme, the fall velocity v(z) is approximated as vk+1/2 for all heights above
zk+1/2. Therefore, the masking function F simplifies to a boxcar-function in the interval
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[zk+1/2, zk+1/2 + vk+1/2∆t] and Eq. (6) becomes

P k+1/2∆t ≈ −

zk+1/2+vk+1/2∆t∫
zk+1/2

ϕ(z) dz ≈

−

[
N−1∑
l=0

ϕk−l∆zk−l + ϕk−N (zo − zk+1/2−N )

]
. (9)

N is the number of height levels whose cell faces are entirely within the maximum transport
range of zo = zk+1/2 + |vk+1/2|∆t, and the last summand on the r.h.s. is the uppermost level
contributing to the flux, whose upper face might be above the maximum transport range.

To determine N , the code implementation makes use of a recurrence relation a local Courant
number,

ck−l = (ck−l+1 − 1)
∆zk−l+1

∆zk−l
with ck =

|vk+1/2|∆t
∆zk

=
zo − zk+1/2

∆zk
. (10)

It is ck−l > 1 for i < N and ck−N =
zo − zk+1/2−N

∆zk−N
, therefore we can rewrite Eq. (9)

P k+1/2∆t ≈ −
N∑
l=0

ϕk−l min [ck−l, 1] ∆zk−l (11)

and stop the summation at the index i where ck−i becomes < 1 for the first time.

1.2 New improved explicit scheme

This scheme is in effect if the code was compiled with the flag
-DSEDI NONVECTORIZED BOXTRACKING. There is no vectorized version yet.

The new explicit scheme directly discretizes Eqs. (6) and (7), without any approximation of
v(z) by vk+1/2:

P k+1/2∆t ≈ −
k−1∑
l=0

ϕk−l (zup − zlow) (12)

zup = min
[
zk+1/2−l−1 , zk+1/2 + |vk−l|∆t

]
zlow = min

[
zk+1/2−l , zup

]
.

Note that in this form, the summation of each flux in level k + 1/2 runs from level k to the
top of the model domain, but there are only non-zero contributions from those boxes k − l
whose lower cell face fullfills zk+1/2−l < zk+1/2 + |vk−l|∆t. This makes it more costly than
the current scheme from Sec. 1.1. However, if the summation of each flux for each non-zero
contribution is organized differently, the same efficiency as for the current scheme is achieved.
For this, the algorithm checks for each box k to which fluxes through below layers zk−1/2+l

it contributes. This search is continous and enables a proper stopping criterion for the inner
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loop over l. Basically, layer k contributes if its lower cell face falls below layer zk−1/2+l during
∆t.

In algorithmic notation:

P 1/2 : kend+1/2 = 0 ;

do k = 1, kend
l = 0 ;
while zk+1/2 − |vk|∆t < zk+1/2+l and k + l ≤ kend do

zlow = zk+1/2 − |vk|∆t ;

zup = min
[
zk+1/2−1 − |vk|∆t , zk+1/2+l

]
;

P k+1/2+l ∆t = P k+1/2+l ∆t − ϕk (zup − zlow) ;

l = l + 1 ;

end while

end for

A more suitable formulation for the code can be derived by introducing the pure translatoric
transformation z′ = z + |vk|∆t− zk+1/2 and the fact that zk+1/2+l = zk+1/2 −

∑l
m=1 ∆zk+m,

so that the final algorithm is

P 1/2 : kend+1/2 = 0 ;

do k = 1, kend
l = 0 ;
∆sum = 0 ;
while ∆sum < |vk|∆t and k + l ≤ kend do

zlow = 0 ;
zup = min [∆zk , −∆sum + |vk|∆t] ;

P k+1/2+l ∆t = P k+1/2+l ∆t − ϕk (zup − zlow) ;

l = l + 1 ;
∆sum = ∆sum + ∆zk+l ;

end while

end for

where ∆sum represents the term
∑l

m=1 ∆zk+m.

2 Idealized case studies

2.1 Simple 1D advection test with initial boxcar profile

To compare the current and the new sedimenation algorithm, a simple 1D test problem has
been set up within the idealized framework of COSMO. 64 vertical levels up to 5000 m have
been chosen with the distribution of vertical level thicknesses as function of level index shown
in blue in Fig. 1 (red: COSMO-DE standard levels). At initial time, rain water mixing ratio
qr has been set to 0.001 in a boxcar-like fashion from level 20 to 40. The mass specific number
concentration nr has been chosen in a way that a mean mass diameter of 1 mm results. Note
that the profile is not exactly boxcar-like in terms of rain density rhoqr because of the density
decrease with height, but this level of detail is unimportant for the test case. Such a test
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Figure 1: Blue: vertical layer thicknesses in m (X-axis) as function of COSMO model vertical
layer index (Y -axis) for the idealized experiments in Sec. 2.1.

case is considered to be very extreme for any numerical scheme because of the sharp gradients
across the two shocks.

The initial profiles of T(z), qv(z) and p(z) were chosen similar to Weisman and Klempp (1982),
except that the relative humidity is constant at a value of 95 % everywhere. This high value
was chosen in order to minimize raindrop evaporation. An alternative would have been to
switch off this process in the microphysics code, but this has not been done here.

Simulations are performed with time steps of 1, 10 and 30 s to investigate the influence of the
vertical Courant number on the results, especially close to the ground, where the model layers
usually become rather thin. The resulting mean fallspeeds from qr and nr are within a range
of 5 - 10 m s−1. This means that, considering the layer thicknesses from Fig. 1, at 1 s timestep
the Courant numbers are well below 1, at 10 s they are in a range of about 1 - 3 and at 30 s
they can reach about 10 close to the ground. This covers weak, moderate and high Courant
number regimes.

Fig. 2 shows the development of the vertical qr profile with time for the most extreme case
with ∆t = 30 s. The current scheme in the upper panel develops very high and very unrealistic
peaks at the forefront of the falling rain, which are due to the fact that the flux at the lower cell
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face of the layer right below the “first drops” is 0 because the fallspeed in the flux calculation
is very low (lower threshold of 0.1 m s−1) due to qr = 0. A similar behaviour is expected
also for nr, but with a lower fallspeed. Therefore, the rain signal can propagate downwards
no more than one height level per timestep, and there is an artificial, grid-structure-induced
“rain congestion”. Due to the nonlinear dependence of the fluxes on qr and nr, such peaks are
self-amplifying with time and fall distance, which is clearly visible in the upper panel.

The new scheme (lower panel) does not show such drastic peaks, because the correct fallspeed
for each layer enters the flux calculation. The signal of the “first drops” can pass more than
one height layer per timestep. However, some noise is still visible, presumably because the
sedimentation of the 2 moments is coupled through the dependence of both moment fallspeeds
on both moments, and errors (peaks) might be self-amplifying. The situation is however much
improved compared to the current scheme.

Fig. 3 compares timeseries (sec) of surface rain rate (mm h−1) for different timesteps (panels)
and the two schemes (red: current scheme, green: new scheme). The upper panel is for
∆t = 1 s, the middle panel for 10 s and the lower panel for 30 s. At 1 s (Courant number
always < 1), both schemes show exactly the same curve with a smooth peak at around 400 s
of 9 mm h−1. At 10 s the current scheme develops very strong and interrupted rainrate pulses,
which are a consequence of the self-amplifying peaks in the qr profile. The current scheme
also develops some pulses and also deviates from the reference solution with ∆t = 1 s, but by
far not so strong as the current scheme. Qualitatively it is the same also for ∆t = 30 s in the
lower panel. But here the current scheme not only develops strong isolated pulses but also the
first drops reach the ground more than 200 s later, a consequence of the no-more-than-one-
height-level-per-timestep rain front propagation.

The same curves are again shown in Fig. 4 but re-grouped according to the numerical scheme.
The left panel is for the current scheme and the right panel for the new scheme. Whereas
the current scheme clearly has severe problems with rain timing and isolated pulses as soon
as local Courant numbers are considerably larger than 1, the new scheme does a better job,
although some problems with signal deformation and (weaker) pulses are visible. A distinct
feature of the new scheme is the first “flank” of the rain peak. Although the first rain signal
at the ground appears about at the same time, the rainrate increase up to the first peak is
sharper for longer timesteps. This is perhaps a consequence of the timestep dependence of
numerical diffusion, which increases with the number of scheme calls and is therefore more
active for shorter timesteps.

For reference and to compare our explicit sedimentation schemes qualitatively with the nu-
merically more stable semi-implicit scheme of the COSMO 1-moment schemes, the simulations
were repeated but with using the COSMO “graupel” scheme. Note that we have to expect a
different behaviour of the profiles and the rainrate time series because we are dealing with a
1-moment sedimentation problem and not with a coupled 2-moment system. Peaks and pulses
might not be as self-amplifying as in a two-moment scheme. However, Fig. 5 (comparable to
Fig. 2) demonstrates that the semi-implicit scheme is much more stable with respect to large
Courant Numbers and does not produce unrealistic peaks and pulses. Also, the time series
of the rainrate at the ground is nearly independent of the timestep, even for very large local
Courant numbers (Fig. 6).

Therefore, although the new explicit scheme seems to behave reasonable and much better
compared to the current scheme, the re-implementation of the two-moment framework into a
semi-implicit solver similar to the COSMO 1-moment schemes seems desireable.
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Figure 2: Vertical profile of qr as function of model layer index k at initial time, 2 min, 4 min,
and 6 min, for the simulation with the “very long” timestep of 30 s. With time, the
profile shifts from left to right, more and more departing from the initial boxcar-
profile. Upper panel: current sedimentation scheme. Lower panel: new scheme.
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Figure 3: Timeseries (sec) of surface rain rate (mm h−1) for different timesteps (panels) and
the two schemes. Red: current scheme, green: new scheme. The upper panel is for
∆t = 1 s, the middle panel for 10 s and the lower panel for 30 s.
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Figure 4: Same time series as in Fig. 3 but re-grouped according to the numerical scheme.
Left: old scheme, right: new scheme.
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Figure 5: Similar to the panels in Fig. 2, but for the COSMO standard microphysic’s
semi-implicit time integration scheme, as described in the COSMO-Documentation
Part II.
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Figure 6: Similar to the panels in Fig. 4, but for the COSMO standard microphysic’s
semi-implicit time integration scheme, as described in the COSMO-Documentation
Part II.
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Figure 7: Figures for the Weisman-Klemp supercell simulation. See text for description.

2.2 Weisman-Klempp-type supercell simulation

A more realistic type of 3D deep convective cloud simulations are idealized Weisman-Klempp-
type simulations. In fully periodic domain, potentially unstable initial conditions are specified
and a large “warm bubble” in the boundary layer (present in the initial condition) leads
to a strong convective updraft and a subsequent development of a deep convective system.
Depending on CAPE and wind shear, single-, multi- or supercell type storms develop.

To compare the current and new sedimentation scheme, simulations with a maximum specific
humidity of 14 g/kg and with a windspeed of 20 m s−1 in the upper troposphere have been
performed. Horizontal grid length and vertical layer specification is exactly equal to the
COSMO-DE setup (2.8 km, 50 layers), and the domain size is 200 by 200 grid points. The
timestep has been set to 30 s, which is slightly larger than in COSMO-DE, but the windspeeds
are comparatively low so that this timestep does not pose serious stability problems for the
dynamics. Vertical sedimentation Courant numbers are however � 1, especially close to the
ground.

In contrast to the more simple test in the last section, here all hydrometeor types are involved
and the vertical hydrometeor profiles are more realistic, presumably with smaller vertical
gradients.

To summarize the results, Fig. 7 compares time series of domain maximum precipitation rate
(upper left panel), domain mean precipitation rate (upper right panel), and total domain and
time accumulated precipitation (lower panel) for the current and new scheme. The current
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scheme (red lines) clearly shows signatures of a noisy and “nervous” maximum precipitation
rate, which can be attributed to the erroneously pulsed behaviour of the sedimenation scheme
associated with too high local Courant numbers. In the new scheme, these pulses do not occur
and the time series of maximum precipitation is much smoother.

Domain mean- and total accumulated precipitation are however not affected. Because both
schemes are (almost) mass conserving, the pulses caused by the current scheme average out
in time and/or space. However, the fine structure of the spatial precipitation distribution is
different among the simulations (not shown).

3 Summary and conditional compilation for the new scheme

There has been an update of the explicit sedimentation scheme in the Seifert-Beheng two-
moment microphysical scheme. The new method mitigates some problems with the old scheme,
if the timestep is larger than about 10 s and the vertical courant number close to the ground
becomes much larger than one. Users should now switch to the new scheme by changing a
preprocessor flag in their compiler options:

• Delete -DSEDI VECTORIZED

• Add -DSEDI NONVECTORIZED BOXTRACKING

The only exception is if users are running on a NEC-SX vector-supercomputer. Here, the new
scheme does not properly vectorize and one gets a serious penalty in runtime. Maybe the new
scheme will be vectorized in a future code version, but up to now one should continue to use
-DSEDI VECTORIZED in this case.

However, although the new explicit scheme seems to behave reasonable and much better
compared to the current scheme, the re-implementation of the two-moment framework into
a semi-implicit solver similar to the COSMO 1-moment schemes seems desireable. But this
would require a major code re-write. Also, some performance problems could occur because
in this solver, the terminal fall speeds of the hydrometeors have to be computed twice per
timestep, which can be somewhat expensive.

4 Note for ICON Users (24.02.2020)

The new explicit sedimentation scheme has been ported to the ICON-version of the two-
moment scheme in February 2020. The choice of the sedimentation scheme is internally
hardcoded in ICON to the new scheme by internal switches lboxtracking=.TRUE. in
mo 2mom mcrph processes.f90. Though the old scheme is not recommended any more, the
user might switch it on manually by setting all occurences of lboxtracking=.FALSE. in that
module.

In ICON there is also a vectorized version of the new scheme, in order to run efficiently on
the upcoming NEC Aurora system of DWD. The vectorized version is chosen automatically
on the NEC Aurora by one of the (hopefully automatically defined) preprocessor flags

• -D NECSX

• -D SX or

• -D NEC VH .
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In contrast to COSMO, in ICON the two-moment scheme has been integrated into the semi-
implicit solver framework (thanks to Axel Seifert!). The semi-implicit solver can be activated
by setting the internal switch explicit solver=.FALSE. in mo 2mom mcrph driver.f90 and
recompile. By default, this switch is set to .TRUE. and the explicit solver with explicit sedi-
mentation is used.
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