
Consortium

for

Small-Scale Modelling

Technical Report No. 50

The COSMO Priority Project AWARE:

Appraisal of "Challenging WeAther" FoREcasts

Final Report

November 2023

DOI: 10.5676/DWD_pub/nwv/cosmo-tr_50

www.cosmo-model.org

Editor: Massimo Milelli, CIMA Foundation



The COSMO Priority Project AWARE:

Appraisal of "Challenging WeAther" FoREcasts

Final Report

Flora Gofa1∗, Anastasia Bundel2∗, Maria Stefania Tesini3,

Chiara Marsigli4, Michael Ho�4, Dimitra Boucouvala1

Andrzej Mazur5, Joanna Linkowska5, Grzegorz Duniec5

Daniel Cattani6, Benoit Pasquier6, Anatoly Muraviev2

Ekaterina Tatarinovich2, Yulia Khlestova2, Denis Zakharchenko2

∗Project Coordinators

1HNMS

2RHM‡

3ARPAE-SIMC

4DWD

5IMGW-PIB

6MeteoSwiss

‡Contribution received before February 24, 2022



Contents 2

1 Introduction 3

2 The Main Outcomes of AWARE Project 5

3 Future Work 7

4 Challenges in Observing High Impact Weather (HIW) 8

4.1 Overview of Challenging/High Impact Weather observational data sources
characteristics - Review of non conventional observations and their use in
verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Approaches to introduce observation uncertainty . . . . . . . . . . . . . . . . 20

5 Overview of Appropriate Verification Measures for HIW 27

5.1 Survey for assessment of proper verification of phenomena – continuous vs.
discrete verification (occurrence vs. specific values) . . . . . . . . . . . . . . . 27

5.2 Role of SEEPS and EDI-SEDI for the evaluation of extreme precipitation fore-
casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Extreme Value Theory (EVT) approach- Fitting precipitation object charac-
teristics to different distributions . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Verification Applications to HIW with a Focus on Spatial Methods 53

6.1 Verification of forecasts of intense convective phenomena . . . . . . . . . . . 53

6.2 Calibration of the Lightning Potential Index (LPI) in COSMO-1E and COSMO-
2E for the production of meteogram in Data4web . . . . . . . . . . . . . . . . 71

6.3 MODE verification of ensemble precipitation forecasts at RHM . . . . . . . . 85

6.4 DIST methodology tuned on high-threshold events for flash floods forecast
evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 LPI verification and correlation of convective events with microphysical and
thermodynamical indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Comparative verification of NWC and NWP results using spatial verification
methods as part of the SINFONY project at DWD . . . . . . . . . . . . . . . . 121

7 Overview of forecast methods, representation and user-oriented products linked
to HIW 138

7.1 Postprocessing vs. direct model output (DMO) for HIW . . . . . . . . . . . . 138

7.2 Improving existing post-processing methods . . . . . . . . . . . . . . . . . . . 155

7.3 QPF evaluation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 General References 173

2



1 Introduction

The increased demand to provide accurate forecasts of extreme weather leads to the ques-
tion to how objectively evaluate such forecasts. The main weather parameters of interest
are: thunderstorms (heavy precipitation, lightning), severe wind (and wind gusts), min-
max temperature (persistence), visibility (fog), extreme convective phenomena like torna-
does, dust-devils, clear-air turbulence (CAT) etc. In COSMO consortium, there have been
several studies partially related to challenging weather (CW) aspects. However, up to now
there haven’t been a project explicitly focusing on evaluation and development of HIW
forecasts.

As the resolution of state-of-the-art NWP models is growing, there is more detailed and
precise information on the variables necessary for calculating, for example, the electrical
properties of the atmosphere (temperature, humidity, wind, ice, water content of particles,
etc.). The physical and microphysical processes leading to local CW of convective nature are
better reproduced in modern NWP models. This should improve the direct forecasting of
CW of convective nature, such as thunderstorms, hail, squalls, and showers. However, the
models cannot satisfy yet all the needs for CW predictions. Thus, different postprocessing
methods are required. However, it is important to compare the forecasts based on direct
model output (DMO) and postprocessing, where it is feasible.

Despite significant progress in short-range forecasting, HIW continues to cause most part
of damage to the economy and society, up to losses of human lives. WMO initiated a
project dedicated to HIW research (WMO HIW implementation plan). The overall objective
of the High Impact Weather (HIWeather) project is to: “Promote cooperative international
research to achieve a dramatic increase in resilience to high impact weather, worldwide,
through improving forecasts for timescales of minutes to two weeks and enhancing their
communication and utility in social, economic and environmental applications”. One com-
ponent of the project is the verification and the research is focused on approaches with
relevance to hazard predictions. PP AWARE was part of the WMO HIW project, and a
short report of its main advances was included in HIWeather quarterly newsletter.

Forecast methods and verification are important aspects of any CW consideration. While
traditional verification methods have limited usefulness in this context, many of the newer
diagnostic approaches may provide useful information to aid understanding of errors in
model processes for such weather regimes. Verification of multi-scale prediction of CW
has much in common with routine verification performed at most national meteorological
centres. It mainly concerns surface variables such as precipitation, wind, temperature, etc.,
using both point-wise and spatial approaches to meet the needs of a variety of users. On
the other hand, CW phenomena as fog or lightning are usually not directly forecasted by
NWP models, and thus appropriate empirical methods are applied for their prediction.

Known deficiencies to be addressed are:

1. Models may not capture the intensity of high impact events (sub-grid scale processes,
coarse resolution, difficulty representing processes)

2. Often a mismatch between what models can provide and what warnings need to be
made for: Lightning, hail, wind gusts, fog, etc.

3. Large uncertainty with extreme events (Ensemble/probabilistic forecasts to measure
"extremeness“).
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Several new verification methods have been proposed for evaluating the spatial structures
simulated by high resolution models and this remains an active area of research. While
most of these spatial methods measure forecast quality, some of them (e.g., variograms)
address the realism of the forecast, which may be of particular interest to modellers. Spa-
tial verification approaches are now starting to be applied to high resolution ensemble
forecasts, but much remains to be done to understand what can be learned from these
approaches, both in terms of quantifying ensemble performance, and in calibrating and
postprocessing ensembles to improve forecast quality and utility. The utility of spatial ver-
ification for evaluating hazard impact forecasts (e.g., flood inundation, fire spread, blizzard
extent and intensity, pollution cloud) needs to be explored, especially since graphical ad-
vice and warnings are becoming more common.

The goal of the PP-AWARE was to provide COSMO Community with an overview of forecast
methods and forecast evaluation approaches that are linked to high impact weather (not
necessarily considered extreme to all users). As an outcome of this project, the whole chain
of observing and predicting CW/HIW, as well as evaluating, and distributing CW/HIW
forecasts was studied; a number of most successful and promising methods was identified
and developed based on the experience of the COSMO countries and the study of the state
of the art in the world.

The importance of accurate forecasting of challenging weather occurrences is obvious. With
the term challenging weather (CW) or high impact weather (HIW), we consider the events
the local society is not routinely accustomed to experiencing. Such events could be extreme
in amplitude (intense winds, or heavy convective precipitation), rare (lie in a tail of clima-
tological distribution for a particular location) or high impact by being prolonged ‘regimes’
(droughts, heatwaves or cold spells), while others even if not very rare can be considered
challenging if society is particularly vulnerable to them (e.g. impact of fog on transporta-
tion). In theory, a weather event could be high-impact when it is inherently less predictable
and society does not have sufficient forewarning to take mitigating action.

Key forecast quality and verification aspects that were considered in this project include:

1. How well high-impact weather is represented in the observations, including biases
and random errors, and their sensitivity to observation density.

2. How well high-impact weather is represented in models, including systematic and
stochastic errors, and their sensitivity to model resolution.

3. How well high-impact weather is represented in postprocessing.

4. The predictability, current predictive skill, and the user’s interpretation of forecast
value in high-impact weather situations.
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2 The Main Outcomes of AWARE Project

The project was focused on several HIW parameters, basically, events of convective origin
(intense precipitation and flooding related to it, lightning, tornadoes), and to some extent
on the visibility prediction. It was planned initially to broaden the scope of the project to
include wind gusts, clear-air turbulence, possibly dust forecast, etc. The lack of resources
and unpredictable events, such as COVID-19 pandemic, somewhat reduced the project
field. Nevertheless, the outcomes of the project provided a substantial basis for further
research. In the following chapters, the reports that were prepared from the various partic-
ipants as deliverables to the Task work, are listed. The summary of the work concluded in
PP-AWARE can be given in the following remarks:

Task 1 (Chapter 4) is basic for the understanding of the nature of phenomena studied
within the project. The task considers which observations are necessary to verify HIW fore-
casts, as well as issues related to observation sparseness, quality, and thresholds. Further-
more, through the Task, some work effort was given to identify observation requirements
for monitoring of selected hazards and for assessing forecast accuracy and quantifying the
role of observation uncertainty. The study on observation uncertainty was initiated within
the INSPECT project (COSMO technical Report 37, Chapter 4.1.3 and Chapter 5). The out-
come of this task is the description of available HIW observations (including non-standard
ones) and their characteristics.

Task 2 (Chapter 5) discusses that the verification of many HIW events requires metrics
that remain useful for rare events. Their main characteristics are that the metrics must be
less dependent on the climatology of the event. The dependency on spatial and temporal
scales and sampling of observational data should be minimized, and the dependency on
the verification grid should be minimized as well. Hits and false alarms should be taken
into account. As no single score exists that addresses all these properties, the response
of commonly used scores on HIW for these properties was studied on selected test cases.
Scores behaviour for the evaluation of both the deterministic and ensemble forecasts of
HIW (SEDI, EDS, EDI, SEEPS, CRPS) provided a more fair approach for the evaluation of
high resolution precipitation events as it took into account the variable climatology of the
model domain. An important part of this Task was the application of Extreme Value Theory
resulted in a rather sophisticated approach to evaluate contiguous precipitation areas ob-
served and predicted by the radar-based precipitation nowcasting system. The Generalized
Pareto distribution (GPD) was chosen to fit precipitation object area maxima distribution.
We introduced a new measure of the forecast quality based on the intersection of GPD
parameters in the nowcasting results and in the observations. Based on this measure, we
made some conclusions about the nowcasting quality in Central Russia. As extracted from
the analysis, the EVT is applicable to such objects only with a clear understanding of the
theoretical prerequisites and using suitable statistical methods and reliable data processing
tools. Otherwise, the results obtained may be useless, accidental, or even harmful.

The Task 3 (Chapter 6) makes use of the analysis and outcomes of the previous Tasks
and is also connected with and continued from PP-INSPECT and MesoVICT project on
the spatial methods. Neighbourhood methods continue to be the basic spatial approach in
operational practice. Different comparisons of neighbourhood and object-based scores as
applied to HIW variables of convective origin (LPI, intense precipitation, reflectivity) are
examined. These two groups of spatial methods provide a comprehensive framework for
the operational verification in the forecast centres. MODE was found the most promising
object-based approach to the evaluation of ensemble forecast of convective events (Chapters
6.3 and 6.6). MODE is flexible and tunable, it can be run with matching forecast and

5



observations object, but it doesn’t require matching necessarily. It is applicable to both
deterministic and ensemble fields.

With respect to the Lightning Potential Index, it played a key role in the analysis of con-
vective events (Chapters 6.2 and 6.5). However, we noted the significance to derive up-
scaled LPI products in order to gain reliability in the forecasts. LPI raw values need to
be appropriately filtered and thresholded according to the area and period or season ex-
amined or even type of the weather event. The filters in LPI formulas are more efficient
in some models compared to others, but they show inefficient pruning of spurious signal
especially in orographic precipitation. The LPI produced reliable lightning information
during stronger storms, much like observed in observational data while it was shown that
compared to thermodynamical indices forecasts, LPI is somewhat better at distinguishing
lightning-producing storms and this may be of importance to some user groups.

With respect to ensemble forecasts of extreme precipitation, one of the proposed method-
ology was the DIST spatial method (Chapter 6.4). It permits the use of gridded high-
resolution rain-gauges network values, but gridded observations, such as radar precipi-
tation analysis, can be used as well. The main advantage of this approach is that no precip-
itation analysis is required and information about localized maxima of precipitation can be
considered, as well as the variability of the precipitation field inside the area of interest.

Finally, the results of SINFONY project are shared within PP-AWARE (Chapter 6.6), a
project that is dealing with the development, adaptation, and operationalization of inno-
vative, spatially based verification methods of the entire process chain of the integrated
forecasting system consisting of data assimilation, nowcasting and numerical short-term
prediction. In the running PP-AWARE period, we tested various verification metrics, ex-
isting as well as new ones, such as verification metrics based on MMI (pseudomember by
Johnson et al. (2020). When using a 40 member object ensemble from NWP, nowcasting
and combined products, the number of existing objects could become massively huge and
not manageable without applying filter methods like pseudomembers.

Task 4 (Chapter 7) is devoted to postprocessing for HIW, such as intense precipitation
for flooding prediction, fogs, flash rate, and tornadoes risk. Taking into account the
development of atmospheric modelling, the forecast of the horizontal visibility in the post-
processing of the model output (including machine learning methods) seems to be the most
appropriate option. It is also physically justified, since it is based on the prognostic cloud
characteristics and/or parameters of environment. We can apply a set of parametrizations
of horizontal visibility thus creating a kind of ensemble. The fog is a meteorological phe-
nomenon with a high degree of locality. We try to reduce the prognostic error by using a
set of postprocessing approaches.

One of the most dangerous HIW event is tornado. Chapter 7.1 describes the experience in
postprocessing COSMO results for predicting areas with tornado risk. This experience can
be ported to ICON model output.

Some tools have been developed to provide mean, maximum and some other percentile
values of the precipitation field over the catchment areas of the Emilia-Romagna region.
Exceeding predefined thresholds can give useful indications for situations of intense pre-
cipitation possibly leading to floods. Probabilistic products help forecaster to assess confi-
dence in one modeling chain or the other. Deterministic products for each warning area are
validated on a seasonal basis using “bubbles plot” charts, a sort of the scatter plot in which
the data points are replaced with bubbles and the sizes of the bubbles are determined by
the number of events. The advantage of this approach is that the nature of the forecast
errors can more easily be diagnosed.
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3 Future Work

PP-AWARE was a particularly extensive project that dealt with a broad range of issues re-
lated to high impact weather. Consequently, many parts were analysed only partially or not
at all when there was no active contribution due to lack of human resources. It provided
however a better understanding of the areas that is worth investing more effort to approach
through a next project or a dedicated WG5 research activity. It is worth mentioning that in
the guidelines that define the future work of WG5, there are actions that are connected to
the knowledge gained through AWARE.

The following list summarizes the work that could define the next phase of a project that
deals with the evaluation of such weather:

HIW phenomena: visibility range (fog), discrimination between severe and non-severe con-
vection, extreme temperatures and winds,

Observation Types: application of non-conventional observations

Methodologies: Multivariate verification statistics (several gridpoints-leadtimes-variables
in all possible combinations with respective τo obs), further study on obs uncertainty with
application to scores, Impact-based warnings issuing and evaluation

Models: application on convection permitting ensemble systems.

More specifically, there are two main directions of future work:

1. Stressing of observations role in HIW through the use of non-conventional observa-
tion types in the evaluation of HIW phenomena and the impact of observation uncer-
tainty on the statistical scores.

2. Verification scheme for convection permitting ensemble forecasts that could include
the building of a robust verification framework that is based on object-based ap-
proaches.

7



4 Challenges in Observing High Impact Weather (HIW)

Question: How well high-impact weather is represented in the observations, including
biases and random errors, and their sensitivity to observation density?

HIW phenomena studied: visibility range (fog), thunderstorms (w. lightning), intense
precipitation, extreme temperatures and winds.

4.1 Overview of Challenging/High Impact Weather observational data sources
characteristics - Review of non conventional observations and their use in
verification

Andrzej Mazur, Institute of Meteorology and Water Management – National Research Institute

Chiara Marsigli, DWD

Anastasia Bundel, RHM

This task considers which observations are necessary to verify HIW forecasts, as well as
issues related to observation sparseness, quality, and thresholds. HIW prediction improve-
ment depends crucially on availability of dense observations. The uncertainty is higher in
new types of observations, and it becomes necessary to take it into account. The overview
of methods to account for observation uncertainty is considered in paragraph 1.2. Often,
the best way is to use several observational datasets to this purpose. For verification and
postprocessing, the essential step is to find good correspondence between the forecast and
observation, or reference. In [C. Marsigli et al, 2021], a framework for the verification
of high-impact weather is proposed, including the definition of forecast and observations
in this context and creation of a verification set. This was discussed at the IVMW2020
[https://jwgfvr.univie.ac.at/]. It was noted by T.Bullock [https://www.univie.ac.at/img-
wien/jwgfvr/2020IVMWO_Outcomes&Photo Mosaic.pdf] that there is always some pro-
cessing (both on observations and forecast) for enabling comparison. We need just to be
clear on what is being done to the model output and/or obs prior comparison (e.g., conver-
sion of radar reflectivities to rainfall rate, versus forward model to reproduce radar reflec-
tivities).

It can be said that every weather has its impact. Starting with the least inconvenient, like:

1. inconvenience of carrying an umbrella/sun glasses,

2. higher power bills,

through moderately troublesome:

1. possibility of dispersion of atmospheric pollutants,

2. flight delays due to weather conditions

to very dangerous in consequences, like:

1. catastrophes in sea, land and air traffic

2. destruction caused by a flood or a tornado
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To someone affected, any of these may seem “significant” at that moment. Some impacts
are clearly more significant than others. There are four general categories of impacts:

1. Low-impact – minor inconvenience, small and local economic losses, etc.

2. Moderate-impact – minor damage, some social disruption, etc.

3. High-impact – damage, risks to health, broad economic impact, etc.

4. Extreme-impact – dramatic losses, deaths, injuries, major social disruption, etc.

Since every (kind of) weather has its impact, each weather element can be treated as an
impact source. It’s just a matter of scale.

1. ”regular” elements – temperature, precipitation, wind speed. . .

2. ”specific” elements – visibility limitations, thunderstorms, tornadoes, . . .

Observational data for each element can be obtained from a variety of sources. The main
sources can be divided into:

1. Data from SYNOP stations

2. Lightning Detection Networks (LDN)

3. Radar data, Doppler radar data

4. Satellite products

5. Nowcasting products used as reference data

6. Non-conventional data such as datasets derived from telecommunication systems,
data collected from citizens, reports of impacts and claim/damage reports from in-
surance companies, social networks, data from cameras and images

7. Other data

Below, an overview of these sources is given. This overview is far from being exhaustive,
and, according to the purposes of PP AWARE, is focused on the types of observations used
in the project tasks, namely, events of convective origin (extreme precipitation, lightning,
convective cells, tornadoes) and fog. In [C. Marsigli et al, 2021], an overview of new obser-
vation types is given in more detail.

1. (a) Data from SYNOP stations∗, climatological stations, rain gauges, telemetry sta-
tions includes measurements of, among others, the following values: tempera-
ture, precipitation, visibility range/limitations, wind speed, wind gusts, occurrence of
fog/haze, occurrence of thunderstorm with lightning (limited to a remark as ”day with
lighting” or similar).

∗ An exemplary inf ormation f rom European/P olish SYNOP station af ter decoding a SYNOP (encoded) wire
rrrr mm dz gg number n dd f f vv ww w1w2 pppp ttt nh cl h cm ch tdtdtd a ppp rrr
2020 3 3 6 01001 7 120 6 10 2 22 1013.2 1.1 7 5 3 − 1000 − 1000 − 3.7 7 − 0.6 0
tntntn txtxtx tgtg sss f f _911 ddd ss_931 statists f f _910 p0 rrr_24 −0.2 −1000 −1000 0 12 −1000 −
1000 − 1000 − 1000 1012 0
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These conventional observations remain the basic source of data for many HIW events, e.g.,
extreme precipitation, extreme temperatures and wind. They pass thorough quality con-
trol and are regular in time. There are long time series of synoptic measurements, which
is important in the study of rare phenomena. However, the problem with these stations
(both manned and unmanned) is that the measurement is valid only for the location of a
particular station. The representativeness may be (artificially) extended up to some dozens
of kilometres, but it is not necessarily valid for example for stations located in complex
terrain etc. Some specific measurements (like fog/visibility range†) are being transferred,
however, to more universal, mobile installations. Data of SYNOP stations: visual thunder-
storm occurrence at a given obs time and between obs times in a radius of 5 km.

Another problem with SYNOP observations is that they often do not permit full characteri-
zation of specific HIW phenomena, such as visibility limitations, thunderstorms, tornadoes.
Thus, in Europe, 10 years ago, a list of new weather elements to be subject to routine veri-
fication was proposed by [Wilson and Mittermaier 2009]. Among others, visibility/fog, at-
mospheric stability indices and freezing rain were mentioned, and the observations needed
for the verification of these additional forecast products were reviewed.

A general remark regarding LDN, and (even more) especially radar or satellite data, is as
follows: for their correct use, a proper software is needed that will allow the data to be
transferred to the appropriate (required) format.

1. (a) Lightning Detection Networks

Lightning Detection Networks (LDNs) are based on lightning detectors that indicate elec-
trical activity. The basic assumption made when creating LDN ensures that due to proper
triangulation, it is possible to estimate the almost exact location of the flash. LDNs can
detect dry thunderstorms. Furthermore, lightning detectors do not suffer from a masking
effect and provide confirmation when a shower cloud has evolved into a thunderstorm.

If used as a proxy for a thunderstorm, a question arises: How many strokes are needed to
detect the occurrence of a thunderstorm? The matching of the two entities in the verified
pair should be checked before the computation of summary measures. Any thresholds used
to identify the objects of the two quantities must also be studied to ensure that the iden-
tification and comparison is as unbiased (from the observation point of view) as possible
[C. Marsigli et al., 2021]. In the present report, verification using LPI (lightning potential
index) and LDN data is studied in Tasks 3.1 and 3.2 (Chapter 6).

Global LDN: websites

The most popular global resources about lightning are:

1. https://blitzortung.org, a worldwide social network for determining location of light-
nings in real time. In figures below exemplary screenshots from the webpage in static
and dynamic presentation.

†Haltere, Nicolas et al., 2006, Automatic fog detection and estimation of visibility distance through use of
an onboard camera, Mach. Vis. Appl., 17, 8-20, 10.1007/s00138-005-0011-1
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Figure 1: Webpage https://blitzortung.org. On the left – standard discharge image – loca-
tions marked with crosses, the more red the crosses are – the older occurrence of lightning.
On the right, a dynamic map with additionally marked locations of the detectors and lines
to the detectors that detected a specific discharge.

1. http://wwlln.net/TOGA_network_global_maps.htm: Very Low Frequency sensors.
Lightning stroke positions are shown as colored dots which "cool down" from blue
for the most recent (occurring within the last 10 min) through green and yellow to
red for the oldest (30-40 minutes earlier).

Figure 2: http://wwlln.net/TOGA_network_global_maps.htm

Regional LDNs

Regional lightning detection networks: Very Low Frequency sensors in the real time within
100-300 km radius, detect two types of lightnings: cloud-earth and intra-cloud. In Poland
LDN operated by NWS is called PERUN. It is basically identical to French SAFIR. (Surveil-
lance et Alerte Foudre par Interférometrie Radioélectrique).

An exemplary information from PERUN LDN: time, location, flash type, intensity etc.

11/01/2011 00:24:50;0004FCFFFFFFFFFFFFFFFFFF;1;0;7561;538442;193454;0;218;0;0;0;0;0;0;7;10;0
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11/01/2011 00:25:58;0004FCFFFFFFFFFFFFFFFFFF;1;0;6839;537325;196241;0;218;0;0;0;0;0;0;7;10;0

11/01/2011 00:26:35;0004FCFFFFFFFFFFFFFFFFFF;2;0;8280;536018;194977;0;203;0;0;0;0;0;0;7;10;0

11/01/2011 00:26:35;0004FCFFFFFFFFFFFFFFFFFF;2;0;8788;536502;190226;0;103;0;0;0;0;0;0;5;2;0

In Russia, the lightning detection system of Roshydromet ALVES 9.07 is used [Gubenko
I. 2016; Snegurov A.V., Snegurov V.S. 2012]. In [Gubenko I. 2016], it is shown that the
accuracy of regional Russian LDN is higher than WWLLN (comparison to SYNOP data).

Other examples of European LDNs are BLIDS (which stands for Blitz-Informationsdienst
von Siemens), FLITS (in Netherlands and Belgium) or LINET, developed in Munich, Ger-
many. In [C.Marsigli et al. 2021], other lightning detection networks are listed, and ref-
erences to works with applications of LDN data in verification are given including spatial
approach and combining different data sources.

1. (a) Radar data, Doppler radar data

-Precipitation intensity and type, wind speed, lightning

Radar data and/or Doppler radar data are acquired from weather radar that indicates pre-
cipitation (in a standard mode) and wind field (in Doppler mode). Both phenomena are
associated with thunderstorms and can help indicate storm strength. In general, weather
radar will show a developing storm before a lightning detector does. However, weather
radar also suffers from a masking effect by attenuation, where precipitation close to the
radar can hide precipitation farther away. Moreover, if there is no precipitation (at all),
availability of radar data declines rapidly in both standard and Doppler mode. This situa-
tion may occur in connection with the phenomenon of so-called dry thunderstorm. In this
case lightning(s) may be also located outside any precipitation recorded by radar.

In addition to stationary (ground-located) installations for the detection of flashes, mobile
devices are also used and carried on ships or airplanes. Large airliners are more likely to use
weather radar than lightning detectors, since weather radar can detect smaller storms that
also cause turbulence. Modern avionics for additional safety include lightning detection as
well. For smaller aircraft, especially in general aviation (where the aircraft nose is not big
enough to install a radome) lightning detectors can find and display IC and CG‡ flashes.

Digital radar systems now offer thunderstorm tracking surveillance. This provides users
with the ability to acquire detailed information of each storm cloud being tracked. Thun-
derstorms are first identified by matching precipitation raw data received from the radar
pulse to some sort of template preprogrammed into the system. In order for a thunderstorm
to be identified, it has to meet strict definitions of intensity and shape that distinguish it
from any non-convective cloud. Usually, it must show signs of organization in the horizon-
tal and continuity in the vertical: a core (more intense center) to be identified/tracked by
digital radar trackers.

Radar reflectivity fields are used for the estimation of the risk of tornadoes, and for verifi-
cation of these events (see Task 4.1.2).

1. (a) Satellite products

Occurrence of fog/haze, detection of convective storms, cloud properties (direct measurement of
moisture and instability§), also via convective indices and CAPE

‡ IC −− inter − cloud lightning, CG −− cloud − to − ground f lash
§ inf rared (IR) 10.8 µm and water vapor (WV ) 6.2 µm channels
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An advantage of the satellite products is that they provide data over data-sparse regions.
Satellite data detection of convective storms is based on direct measurement of moisture
and instability:

Intensity = IR + ((IR-NWP)-(WV-IR))¶

with IR, NWP, WV being temperature obtained from different channels.

From the above equation, it is necessary to use the PA (e.g., the results of the global GFS
model).

Convective indices: in general, can be a good prognostic tool if only forecasters could under-
stand why values are approaching critical levels, like in the examples below:

1. (a) i. A. Showalter Index – extreme instabilities for SI less than -6
B. Total Totals Index – severe storms with TTI greater than 50
C. K Index – high convective potential for K greater than 40
D. SWEAT Index – severe phenomena possible for SWEAT greater than 300
E. Lifted Index – extreme instabilities for LI less than -6
F. CAPE – extreme values of 2500 and more

An example of thunderstorm verification for clouds based on satellite data is given in
[Keller et al. 2015].

In RHM, a study on identification of the areas of deep convection based on satellite data is
carried out [Shishov A.E., I.A. Gorlach 2020; Shishov A.E. 2021]. Based on calibrated ra-
diative temperature from Seviri, Meteosat-11, using a threshold, a mask of deep convection
areas is found. Then the cell shape is determined. The cells are traced in time based on
the normalized overlapping area. Cell destroying is also taken into account. Then, the cell
movement direction, deformation, and other characteristics are identified. Figure 3 gives
an example of the areas of deep convection in the visualization system developed by the
authors. It is planned to involve other data for deep convection area identification, such as
surface obs (KH01, METAR) and COSMO-Ru / ICON-Ru prognostic fields. It is planned to
study the feasibility of using this product as a reference for verification of a model analogue.

¶da Silva et al., 2016. A method for convective storm detection using satellite data. Atmòsfera, 29 (4),
343-358
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Figure 3: An example of the areas of deep convection in the visualization system.

Satellite products are now widely used to derive the information about the fogs and low
stratus, besides SYNOP reports containing visibility range/limitations. Problems of visibil-
ity measures from manual and automatic stations are described in [Wilson and Mittermaier
2009]. The main problem of point observations is that they are scarce and not sufficient to
reproduce the spatial structure of fog.

In [Morales at al. 2013], verification is performed for low clouds in the model as proxy
for fog vs cloud type product from satellite NWC-SAF as observations. In [Ehrler 2018,
Westerhuis et al. 2018], liquid water path (LWP) in the model is compared vs satellite data
(channel combination) to give a Cloud Confidence level. A paper is under preparation by
the Russian team (N. Chubarova, Yu. Khlestova, et. al.), which compares model LWP using
one- and two-moment physics COSMO scheme with satellite product.

Satellite images also enable reconstruction of tornadoes tracks by fallen trees (see also Task
4.1.2).

1. (a) Nowcasting products used as reference data

National Meteorological Services develop tools for nowcasting, where data from different
sources (satellite, radar, lightning, etc.) are integrated in a coherent framework. The de-
tected variables/objects of nowcasting (such as thunderstorm cells, hail) can become obser-
vations against which to verify the model forecast. Thus, nowcasting products are proposed
as observed data instead of prediction tools if we consider step 0 of the nowcasting algo-
rithm as an “analysis”.
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Figure 4: Nowcasting objects from KONRAD3D system.

Advantage of this approach is the high spatial continuity over vast areas and detection
of high-impact weather phenomena, while the disadvantage is that some data have only
a qualitative value. But qualitative evaluation could become quantitative by “relaxing”
the comparison through neighborhood/thresholding. The link with the nowcasting groups
should be strengthened to explore the possible usage of the variables/objects identified
through nowcasting algorithms for forecast verification.

1. (a) Non-conventional data

The number of applications of non-conventional data grows rapidly. They include:

1. Data from insurances

2. Data from citizens (private met stations, phones), cars

3. Impact data (emergency calls, fire brigade operations) – high spatial resolution

4. Social media (social networks, etc.)

5. Data from cameras and photos
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Figure 5: Weather recognition from images [Bin Zhao et al. 2018].

A detailed overview and examples of the studies using new non-traditional sources of data
is given in C. Marsigli et al. 2021.

The aim of the Second international verification challenge in 2021 (run by WMO HIWeather
Project and Joint Working Group on Forecast Verification Research) was to promote quan-
titative assessment of high-impact weather, hazards and impacts through the use of non-
traditional observations [https://www.emetsoc.org/second-international-verification-challenge/].

Recognition of weather from cameras and photos widely relies on the use of machine learn-
ing. For example, in [Bin Zhao et al. 2018], the accuracy of several CNN-RNN Architectures
for Multi-Label Weather Recognition from images was studied.

A quantitative estimate of weather variables from images was performed in (Wei-Ta Chu,
Xiang-You Zheng, Ding-Shiuan Ding 2017). The average RMSE of temperature estimate
was 1.98◦C, of humidity, 7.13%, the accuracy of clouds and precipitation estimate was
about 76%.
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Figure 6: Weather variables determined from photographs [Wei-Ta Chu, Xiang-You Zheng,
Ding-Shiuan Ding 2017].

1. (a) Other data sources

Other data sources on CW / HIW (mostly storms, but not only) are mostly websites. A
universal online resource is the European Severe Weather Database, , operated by European
Severe Storms Laboratory.

The information about single event (in general, phenomenon – not only lightning, but gen-
eralized HIW event) is presented in a table similar to the one below:

Event Time and location Other info/Quality Control
Heavy
rain

Inwałd, Małopol-
skie,
Poland
(49.87N,
19.39E)<1 km
22-08-2020 (Sat-
urday)
18:30 UTC(+/-15
min.)

based on information from: a report by a weather
service, a report on a website, government-based
sources/administrative organizations
precipitation: 31.2 mm, duration: 0.5 hours
Automatic IMWM-NRI weather station measured a rain
amount of 31.2 mm in 30 minutes, 26.9 mm in 20 minutes
and 20.2 mm in 10 minutes during passage of a thunder-
storm.
http://monitor.pogodynka.pl/#station/meteo/249190090
Reference: Monitor IMGW, 22 AUG 2020.
report status: plausibility check passed (QC0+)
contact: ***** ***

Similar information can be obtained from Meteoalarm – Severe Weather Warnings in Eu-
rope: https://www.meteoalarm.eu/. By using the dynamic structure of the resource, infor-
mation about HIW events can be obtained at the spatial resolution level of a few square km,
starting from continental, via country, to sub-country (city) scale.
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Figure 7: Meteoalarm main page

Figure 8: Warnings for selected country

Figure 9: Detailed warning for city/small region

Figure 10: Alert map in Russia similar to Meteoalarm

One important difference is that this portal only allows you to check alerts (forecasts). How-
ever, later, for verification, one can compare the data from this webpage with e.g. the data
from ESWD/ESSL. For this reason, this webpage should also be considered valuable.
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Conclusions

1. Combining all available datasets is usually the best choice

2. The usefulness of data strongly depends on the particular case. For example, during
the stormy season, all methods can be equally useful, as well as their combination.

3. For individual cases of thunderstorms, LDN seems to be the best to determine their
intensity and location. Supplementing LDN results with radar data would give a full
picture of the situation.

4. Data quality and data uncertainty assessment: usage of multiple data sources

5. Introducing uncertainty information in applications – one of the implicit ways: spa-
tial verification methods

6. Closer cooperation with nowcasting, where products for high-impact weather detec-
tion are developed

And one final note, definitely written in time and under the influence of the state of the
outbreak. In the CoVid-19 era, strangely enough, the number of available data may signif-
icantly decrease – as a result of data limitation, e.g. from cancelled flights or sea cruises.
That is therefore so important to make the best use of the available data.
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4.2 Approaches to introduce observation uncertainty

Anastasia Bundel, RHM

Quantification of observation uncertainty is important for forecasting all the hydromete-
orological variables. For HIW events, which are often the rare ones, it is of extreme im-
portance. Accounting for observation uncertainty can change verification results and it
becomes even more important at present when the forecast quality tends to approach the
level of observational errors.

Observation uncertainty comes from:

1. Instrumental errors

2. Random errors

3. Reporting errors

4. Representativeness errors

5. Analysis errors

6. Other errors

Observation uncertainty can change verification results. If observation errors are not ac-
counted for during the ensemble verification process, then the investigator may draw inap-
propriate conclusions about the quality of the prediction system.

Observation errors are the sum of measurement errors and representativeness errors [Janjić
et al. 2018]

Methods to account for obs uncertainty [B. Brown, 7th Verification Workshop]

1. Indirect estimation of obs uncertainties through verification approaches (spatial meth-
ods, e.g., neighbourhood method with neighbourhood observations). These approaches
were explored in AWARE tasks 3.3, 3.4, and 3.6 (see the respective chapters of this re-
port)
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2. Incorporation of uncertainty information into verification metrics (e.g., rmse decom-
position into components due to “true” frc errors and obs errors)

3. Treat observations as probabilistic / ensembles

4. Assimilation approaches

It was mentioned during the Verification workshop 2020 [!!!] that DA needs background
model because cannot deal with missing values, but for verification we can. Verification
community might aim for a gridded product without background and accompanied by
observation uncertainty mask (reflecting station density, measurement errors, etc.)

The ensemble forecasts run from perturbed initial conditions are perhaps the most tradi-
tional way incorporate observation uncertainty. Another method is creating ensemble of
observations. One of the most well-known is VERA: Vienna Enhanced Resolution Analy-
sis ensemble [Gorgas, T. and Dorninger, M. 2012]. VERA ensemble has the resolution of
8 km, hourly, 50 members. The generation of perturbations is the core task in the VERA
observation ensemble procedure. The observation error information is primarily derived
from residuals (i.e. correction increments for individual observations) provided by a data
QC scheme for surface station data. The steps towards ensemble analyses are as follows
[Dorninger, MesoVICT kick-off meeting 2014]

-Correct station observation values by removing biases derived from deviations proposed
by quality control

-Analyse bias-corrected observations = reference analysis

-Generate normal distribution fitted to distribution of quality control outputs

-Create a number of sets of (Gaussian) randomized observation values

-Use perturbed data to create ensemble analyses (Figure 1)

Figure 11: Schematic randomization procedure performed for each station and parameter
in VERA analysis.

Such an analysis can be used in the calculation of special verification scores. For exam-
ple, [Simon Kloiber and Manfred Dorninger 2018] compare the distributions of VERA and
model ensembles for the MesoVICT core cases and calculate different scores adapted for ob-
servation ensemble, in particular, the CRPS, for different combinations model-observation
Ensemble-Deterministic runs.
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Radanovics with colleagues studied SAL approach using the observation ensemble [S. Radanovics
et al. 2018]. The SAL approach using VERA ensemble was also investigated in the COSMO
PP INSPECT by D. Boucouvala [INSPECT Tech. rep. 2019]. In [Ben-Bouallegue et al.
2020], a method is proposed for incorporating representativeness error into the ensemble
forecast (The scale mismatch between in situ observations and gridded numerical weather
prediction (NWP) forecasts is called representativeness error) [Göber, M., E. Zsoter, and
D. Richardson, 2008] Let us note that in [Ben-Bouallegue et al. 2020] the instrumental
errors are out of the scope, the representativeness errors being dominant source of error.
[Ben-Bouallegue et al. 2020] assess the impact of accounting for observation representative-
ness on ensemble precipitation verification results. They developed the parametric model
of variability on unrepresented scales by fitting a censored, shifted gamma distribution
(CSGD). The CSGD is fitted in the form of a conditional distribution for observed precip-
itation at smaller spatial scale, say B, given the observed precipitation at a larger scale,
say A (e.g., the grid scale of an NWP model). They estimated the parameters of CSGD for
24h precipitation accumulations as a function of the averaging spatial scale. They used
then the perturbed-ensemble approach that consists of convolving the forecast and obser-
vation error distributions [Saetra et al. 2004; Candille and Talagrand 2008]. Each ensemble
member gets assigned a random value drawn from the fitted parametric distribution whose
scale and shape parameters are a function of the original forecast value: the distribution
is centered over the forecast value and its spread accounts for representativeness uncer-
tainty. This approach can also be seen as a forecast downscaling that provides a description
of the subgrid-scale uncertainty that is not captured by the NWP model. The additional
uncertainty from the perturbed-ensemble approach is merged with the original forecast
uncertainty generated by the ensemble system, and together they represent the forecast
uncertainty at the observation scale. The verification results showed a large impact of in-
corporating the representation uncertainty on ensemble scores, in particular at the smaller
lead times. As the lead time increases, the forecast error becomes larger predominant. The
authors note that more complex approaches cab ne applied, for example, to describe pre-
cipitation subgrid variability as a function of the weather situation.

Experiments with incorporating observation uncertainty using MET/METplus verifica-
tion package

In MET [Newman et al. 2022], a random perturbation approach based on Candille and Ta-
lagrand (2008) has been implemented in an attempt to ameliorate the effect of observation
errors on the verification of forecasts. The user selects a distribution for the observation
error, along with parameters for that distribution. Rescaling and bias correction can also be
specified prior to the perturbation. Random draws from the distribution can then be added
to either, or both, of the forecast and observed fields, including ensemble members. Details
about the effects of the choices on verification statistics should be considered, with many
details provided in the literature (e.g. Candille and Talagrand, 2008; Saetra et al., 2004;
Santos and Ghelli, 2012). Generally, perturbation makes verification statistics better when
applied to ensemble members, and worse when applied to the observations themselves.
Normal is the most common choice for observation error. However, the user should realize
that with the very large samples typical in NWP, some large outliers will almost certainly
be introduced with the perturbation. The lognormal error perturbation prevents measure-
ments of 0 from being perturbed, and applies larger perturbations when measurements are
larger. Observation errors differ according to instrument, temporal and spatial represen-
tation, and variable type. Unfortunately, many observation errors have not been examined
or documented in the literature. Where possible, it is recommended to use the appropriate
type and size of perturbation for the observation to prevent spurious results.

In MET Ensemble_Stat tool, (https://met.readthedocs.io/en/latest/Users_Guide/ensemble-
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stat.html), the flag entry toggles the observation error logic on (TRUE) and off (FALSE).
When the flag is TRUE, random observation error perturbations are applied to the en-
semble member values. No perturbation is applied to the observation values but the bias
scale and offset values can be applied to observation values prior to perturbing them.
These entries enable bias-correction on the fly. The dist_type entry may be set to NOR-
MAL, LOGNORMAL, EXPONENTIAL,CHISQUARED, GAMMA, UNIFORM, or BETA.
The dist_parm entry is an array of length 1 or 2 specifying the parameters for the distribu-
tion selected in dist_type. The GAMMA, UNIFORM, and BETA distributions are defined
by two parameters, specified as a comma-separated list (a,b), whereas all other distribu-
tions are defined by a single parameter.

MET can provide a lot of control, enabling the user to define observation error distribu-
tion information and bias-correction logic separately for each observation variable name,
message type, report type, input report type, instrument type, station ID, range of heights,
range of pressure levels, and range of values. This study is our first attempt to incorpo-
rate obs uncertainty into verification results. In our setting, the random perturbations for
all points in the current verification task are drawn from the same distribution. We have
chosen the NORMAL distribution for the air temperature at 2 m, defined by one parameter
equal to 1.1 (the option proposed in MET by default for the air temperature at 2 m). Later,
we plan to further explore this method, using other distributions. In particular, the gamma
or lognormal distribution for precipitation accumulations is of interest.

Below are the first results of our experiments on adding observation perturbations to the
ensembles. The model is ICON-EPS-Ru2.2, which is described in more detail in Chapter
3.3 of this report. The observations are SYNOP data on the entire model domain cover-
ing the Central Russian federal district. In Figure 2, the scores are shown for one date,
20220223, 00 run. The RMSE and ME are calculated for the ensemble mean. This can ex-
plain that there is almost no difference in these scores. The spread is considerably higher
for the ensembles with observation error perturbations, and it is closer to the RMSE, which
is a desirable property. The difference should be bigger in the probabilistic scores, which
are unfortunately calculated only for unperturbed ensembles in MET at present. Figure 3
shows the unperturbed and perturbed ensemble spread aggregated for the test period of
23-28 February 2022. It can be seen from the figure that the difference is large, in par-
ticular for the air temperature at 2 m. Our ensembles are found to be under-dispersive
overall (Chapter 3.3 of this report). Thus, the products based on the ensemble with ob-
servation error perturbations may be useful in better assessing the forecast uncertainty.
Further experiments with other distributions to draw the perturbations from are ongoing,
in particular, for precipitation, for which the Gamma and Lognormal options exist in MET.
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Figure 12: The scores without and with (labelled _OERR) observation error perturbations
added to the ICON-EPS-Ru2.2 ensembles, run from 20220223, 00 UTC, (top) air tempera-
ture at 2 m, (bottom) wind gusts, Central Russia SYNOP stations. The RMSE and ME are
calculated for the ensemble mean.

In [Ben-Bouallegue et al. 2020], it was demonstrated that taking into account observation
uncertainty produced larger differences for more high-intensity events in terms of the diag-
onal elementary skill score (DESS). Thus, accounting for observation uncertainty could be
crucial when assessing forecast skill for high-impact events. When the focus is exclusively
on extreme events, that is, on the tail rather than on the whole distribution, an accurate
estimation of the skill in the presence of observation uncertainty would probably benefit
from a more pertinent model definition with the use, for example, of parametric distribu-
tions based on extreme value theory (EVT). An example of the application of the EVT to
precipitation areas is considered in Chapter 2.3 of this report.
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Figure 13: The ensemble spread without (black) and with (purple, labeled _OERR) obser-
vation error perturbations added to the ICON-EPS-Ru2.2 ensembles, aggregated for the
period of 20220223-20220228, 00 UTC, (top) air temperature at 2 m, K, (bottom) wind
gusts, m/s. Central Russia SYNOP stations.
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5 Overview of Appropriate Verification Measures for HIW

Question: How well high-impact weather forecast quality is represented with commonly
used verification measures? What is the most appropriate verification approach?

HIW phenomena studied: intense precipitation, thunderstorm (lightning activity)

5.1 Survey for assessment of proper verification of phenomena – continuous
vs. discrete verification (occurrence vs. specific values)

Andrzej Mazur, Joanna Linkowska

Institute of Meteorology and Water Management – National Research Institute

Introduction

It can be said that every weather has its impact. Starting with the least inconvenient, like:
higher power bills, through moderately troublesome, like: flight delays due to weather
conditions, to very dangerous in consequences, like: catastrophes in sea, land and air traffic,
destruction caused by a flood or a tornado.

To someone affected, any of these may seem “significant” at that moment. Some impacts
are clearly more significant than others. There are four general categories of impacts:

1. Low-impact – minor inconvenience, small and local economic losses, etc.

2. Moderate-impact – minor damage, some social disruption, etc.

3. High-impact – damage, risks to health, broad economic impact, etc.

4. Extreme-impact – dramatic losses, deaths, injuries, major social disruption, etc.

Since every weather has its impact, each weather element can be treated as an impact
source. It’s just a question of scale and intensity.

1. “regular” elements – temperature, precipitation, wind speed. . .

2. “specific elements” – visibility limitations, thunderstorms, tornadoes, . . .

The verification method may be/could be/should be adapted (and specific) for each ele-
ment.

Below one can find a list of items done or to be done in this task:

1. Brief research (case studies) to assess applicability of particular method(s);

2. Comparison and judgment whether continuous or discrete methods may/should be
applied;

3. Overall final recommendations

Methodology

Survey on (basic) methods applicable to the problem (bold marks jobs done/partially done)
consists of:
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1. SAL (Structure/Amplitude/Location) Verification∥

2. FSS (Fraction Skill Score) verification∗∗

3. Categorical analysis (Contingency tables and predictands)

where all the above further on called as “discrete” analysis

1. Standard evaluation at the grid scale

hereinafter referred to as “continuous” analysis

1. Cross- (space-lag) correlation approach and verification

Structure-Amplitude-Location (SAL) analysis

This approach is defined via three basic elements to be analyzed:

1. S – structure – compares the volume of the normalized objects.

The structure component S analyses the size and shape of event objects. The values of S are
within [-2,2]. The negative values of S correspond to too small and/or too peaked objects,
while positive values indicate too large and/or too flat simulated objects. S=0 indicates a
perfect structure.

1. A – amplitude – corresponds to the normalized difference of the domain-averaged
values

The amplitude component A evaluates the total amount of event occurrence in a predefined
region. The values of A are within [-2,2]. Negative values of A correspond to too little and
positive values to too much predicted event occurrence, respectively. A=0 denotes perfect
forecasts in terms of amplitude.

1. L – location – Combinations of a difference of mass centers of fields and averaged
distance between the total mass center and individual objects

The location component L quantifies the displacement of observed and simulated precipi-
tation objects, relative to their overall centers of mass. The values of L are within [0,2]. L=0
denotes the perfect value.

Overall, the perfect forecast is expected for S = A = L = 0

The examples of input data for SAL analysis, pertaining to verification of flashrate intensity
forecasts and results are shown in the chart of following figures.

∥Wernli et al., 2008, SAL – a Novel Quality Measure for the Verification of Quantitative Precipitation Fore-
casts, Mon. Wea. Rev. 136(11), 4470–4487, https://doi.org/10.1175/2008MWR2415.1
∗∗Blaylock and Horel, 2020. Comparison of Lightning Forecasts from the High-Resolution Rapid Refresh

Model to Geostationary Lightning Mapper Observations, Wea. Forecasting 35, 402-416
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The most common case is marked with bold. As it can be seen the parametrization of
flashrate intensity based on the CAPE generally overestimates FR compared to the observa-
tions.

Fraction Skill Scores (FSS) assessment

This method allows for direct comparison of the forecast and of observed fractional cov-
erage of grid-box events in spatial windows of increasing size. It is supposed to be most
sensitive to rare events. Assuming probability of the occurrence of the phenomenon (in the
sense of observation) as po, and the forecast – pf , can be defined by the FSS according to
the formula below.

with N being number of sub-domains (or windows in an overall domain).

Figure 14: Exemplary verification of flashrate intensity forecasts – Structure-Amplitude-
Location approach.

When FSS is equal to 0, there is no correspondence between observations and forecasts. If
FSS is equal to 1, it describes a perfect match. Again, exemplary results are shown in the
following figures.
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Figure 15: Results of FSS for the worst (2015), the best (2013) year and mean for the entire
period of 2011-2017; parametrization of flashrate intensity based on the CAPE.

Categorical analysis based on contingency table:

Forecast given Event observed
Yes No

Yes Hit (a) False alarm (c)
No Miss (c) Correct non event (d)

Using values a, b, c and d from the table above, predictands may be constructed as follows:

Predictands used: def. n==a+b+c+d range perfect
Frequency Bias Index a+b

a+c - to + 1
False Alarm Ratio b

a+b 0 to 1 0
Probability Of Detec-
tion

a
a+c 0 to 1 1

Probability Of False De-
tection

b
b+d 0 to 1 0

Threat Score a
a+b+c 0 to 1 1

True Skill Statistics a•d−b•c
(a+c)•(b+d) -1 to 1 1

Equitable Skill Score a−ar
(a+b+c−ar )

ar = (a+b)•(a+c)
n

-1/3 to 1 1

Proportion Correct a+d
(a+b+c+d) 0 to 1 1

Success Ratio a
(a+b) 0 to 1 1

Exemplary results are shown in Table 1 and in Fig. 16.
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EQS FAR FBI PFD POD SUC THS TRS
2012 0.0302 0.8832 2.7196 0.1736 0.2366 0.1169 0.0826 0.0754
2013 0.0773 0.8254 2.4679 0.1483 0.3245 0.1747 0.1249 0.2012
2014 0.0299 0.9060 3.4946 0.1550 0.2193 0.0940 0.0681 0.0935
2015 0.0263 0.8785 2.1706 0.1311 0.1659 0.1215 0.0704 0.0538
2016 0.0555 0.8532 2.7295 0.1592 0.2644 0.1469 0.1030 0.1299
2017 0.0505 0.8296 1.9107 0.1180 0.1981 0.1704 0.0925 0.1002
Mean 0.0420 0.8676 2.3164 0.1499 0.2349 0.1324 0.0898 0.1066

Table 1: Results of contingency tables analysis for the entire period of 2011-2017;
parametrization of flashrate intensity based on the CAPE.

Figure 16: Results of contingency tables analysis for the entire period of 2011-2017 – se-
lected predictands; parametrization of flashrate intensity based on the CAPE.

Standard evaluation at the grid scale (“continuous” analysis)
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Year 2011 2012 2013 2014 2015 2016 2017 Mean
ME 2.128 -

2.811
-
3.674

-
3.712

-
2.023

-
2.291

-
1.286

-
1.953

MAE 4.712 5.913 2.184 1.516 2.025 3.360 2.817 3.218
RMSE 18.904 18.866 10.556 9.186 11.871 14.695 12.761 13.834

Table 2: ME/MAE/RMSE for consecutive years and mean values for 2011-2017;
parametrization of flashrate intensity based on the CAPE.

Continuous analysis requires – in general – the calculation of Mean Error (ME), Mean Ab-
solute Error (MAE) and/or Root Mean Square Error (RMSE). The basic question is – which
metric is better? RMSE has the benefit of penalizing large errors more so can be more ap-
propriate in some cases. However, it does not describe average error alone as MAE does.
Yet, distinct advantage of RMSE over MAE is that RMSE doesn’t use the absolute value –
which is good in many mathematical calculations. Results of calculations – both for DMO
and for VOD-applied results – are presented in following table and figures. Table 2 contains
values of ME/MAE/RMSE for consecutive years and mean values for 2011-2017.

Examples of results for year 2013, 2017 (worse, best) and means for the period are pre-
sented in following figures.

Figure 17: Left to right: ME, MAE and RMSE for 2013, 2017 and mean 2013-2017 as in
Table 2.

Space lag (cross-) correlation approach as an addition to basic verification techniques
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When overlap the upper left (observations field) and the upper right (forecasts) charts, in
most cases they do not match. It is possible to improve the forecast by using the cross-
correlation (or space lag correlation) method. To do this (using the example from the figure
above) one should:

1. Calculate coordinates of ”centres of mass” for both distribution patterns (observations
vs. forecasts).

2. Compute vector of displacement (VOD) of forecasts to observations as a difference of
the two above.

3. Displace linearly every value of forecasts field by the vector of displacement.

In operational work, VOD is calculated from previous model runs (as compared to obser-
vations). It is then assumed to remain constant throughout the next run.

Figure 18: Explanation of VOD procedure – see details in text.
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Figure 19: Sample values of (observations – forecasts) for flash rate (lightning frequency).
Left - direct model output results, right panel - corrected with VOD procedure.

Figure 20: Sample values of (observations – forecasts) for visibility range. Left - direct
model output results, right panel - corrected VOD procedure.

All the verification (both “continuous” and “discrete”) was done for archive sets of obser-
vations (2011-2017). Basic analysis of the results showed that VOD improved virtually all
categorical predictands (like FBI, POD, THS. . . ) from 10 up to 45%.

Specific variables

Stability indices

The last part of the report is devoted to specific parameters - stability indicators. These
parameters are most often used to summarize the possibility of difficult weather situations.
Parameters played an important role in forecasting for more than half a century based
on and interpreted upper soundings. The set of these indicators can be considered good
prognostic tools as long as the forecasters understand why the values are approaching the
critical levels.

Showalter Index (SI)

Historically it was developed for forecasting tornadoes in US, using basic data from ra-
diosondes. It is calculated from the temperature difference of the parcel raised from 850
hPa to 500 hPa.

SI = T500 – TP cl500

Measures the displacement of a parcel raised from the lower to the middle troposphere.
It does not take into account the buoyancy (vertical acceleration) above or below 500 hPa,
however it takes into account a humidity of 850 hPa when the lifted package reaches satu-
ration, but not above or below 850 hPa, what means that it does not count for an average
dryness.
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Critical values:

Greater or equal to 0 = stable

-1 to -4 = marginal instability

-5 to -7 = high instability

-8 or less = extreme instability

Total Totals Index (TT)

TT = (T850 - T500) + (Td850 - T500)

It combines lower tropospheric lapse rate and moisture at low levels; does not account for
low level moisture above or below 850 hPa.

Critical values:

Lower than 44 - Convection not likely

44-50 - Likely thunderstorms

51-52 - Isolated severe storms

53-56 - Widely scattered severe storms

Greater than 56 - Scattered severe storms

K Index

This index basically a modification of Total Totals Index for tropical convection; it was
intended to forecast convection in US using basic radiosondes data

K Index = (T850 - T500) + (Td850 – Tdd700)

where Td850 is 850 hPa dewpoint value and Tdd700 is 700 hPa dewpoint depression

It combines lower tropospheric lapse rate with amount of moisture in 850-700 hPa layer,
but, again, does not account for presence of mid-level dryness. It also does not account for
low level moisture others than 850 and 700 hPa. Works best for stations near sea level.

Critical values:

15-25 - small convective potential

26-39 - moderate convective potential

Greater than 40 - High convective potential

SWEAT (Severe Weather Threat) Index

It is in general an evolvement of Total Totals Index, developed to forecast tornadoes and
thunderstorms using basic radiosonde data

SWEAT = 12*Td850 + 20*(TT - 49) + 2*V850 + V500 + 125*{sin[(dd500 - dd850)] + 0.2}

With

Td850 = 850 hPa dewpoint

TT = Total Totals Index

V850 = 850 hPa wind speed
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V500 = 500 hPa wind speed ,

dd500 - dd850 = Directional backing of wind with height (warm advection)

Apart from thermodynamics, it takes account of importance of wind structure and warm
advection; does not account for low level moisture above or below 850 hPa, parcel buoyancy
or mid-level dryness

Intended for stations near sea level

- If TT less than 49, then that term of the equation is set to zero

- If any term is negative then that term is set to zero

- Winds must be veering with height or that term is set to zero

Does not account for low level moisture above or below 850 hPa, parcel buoyancy or mid-
level dryness. Works best for stations near sea level.

Critical values:

150-300 - few severe storms possible

300-400 - severe storms possible

Greater than 400 - tornado possible

Lifted Index (LI)

Mixed Layer (ML) LI describes the difference of temperature of parcel lifted from a layers
representing the lowest portion of the atmosphere and the 500 hPa temperature.

LI = T500 – TP cl500

Measures the buoyancy of a parcel lifted from the lower to the mid-troposphere. Does not
account for buoyancy (vertical accelerations) above or below 500 hPa, but accounts for low
level moisture implicitly when lifted parcel reaches saturation. It works for stations at most
elevations.

Critical values:

0 or greater = stable

-1 to -4 = marginal instability

-5 to -7 = large instability

-8 or less = extreme instability

Convective Available Potential Energy (CAPE)

In general it is an expansion of the Lifted Index, developed to forecast tornadoes and severe
thunderstorms.

CAPE = the positive area on a sounding (the area between the parcel and environmental
temperature throughout the entire sounding)

It includes no wind information nor information about the strength of the inhibiting con-
vection; can be used to forecast storm intensity, including heavy precipitation, hail, and/or
wind gusts, in conjunction with Convective Inhibition (CIN) and Precipitable Water (PW).

Example: maximum vertical motion (without including water loading nor entrainment)
can be expressed as (2*CAPE)1/2
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Critical values:

1 to 1,500 - positive CAPE

1,500 to 2,500 - large CAPE

Greater than 2,500 - CAPE

Convective Inhibition (CIN)

Again, an expansion of the variations of the Lifted Index. Contrary to CAPE, it was devel-
oped to forecast non-occurrence of tornadoes and severe thunderstorms.

CIN is the area of the sounding between parcel’s starting level and to the level at which
CAPE begins to be positive. In this region, the parcel will be cooler than the surrounding
environment – thus defining a stable layer.

CIN will be reduced by:

1. daytime heating,

2. synoptic upward forcing,

3. low level convergence,

4. low level warm air advection (especially if accompanied by higher dewpoints).

CIN is most likely to be small in the late afternoon since daytime heating plays a crucial
role in reducing it.

Critical values:

0 – 50 - weak Cap

51 – 199 - moderate Cap

Greater than 200 - strong Cap

To sum up – the number of convection indicators is quite large. On the one hand, this is a
positive factor, as they collect (and making easier to interpret and understand) the available
information about the state of the atmosphere. On the other hand, their results do not al-
ways clearly indicate the possibility (or lack of possibility) for the occurrence of the severe
weather phenomenon. Moreover, compared to the standard predicted values in the mod-
els (temperature, wind, precipitation ...), the possibilities of verification are significantly
limited to data from atmospheric surveys. Therefore, it is difficult to satisfactorily define
the quality of the forecast of indicators – and hence the possibility of the severe weather
phenomenon occurring – over a large area and / or in high spatial resolution.

Conclusions

In the next part of the report (Chapter 6.1), the results for various lighting frequency pa-
rameters will be presented as examples of verification of severe weather phenomena. De-
tails will be shown in this study, but it can be stated indisputably that both for long verifi-
cation periods and for case studies and short-term incidents – if one has the possibility (for
variables for which it is possible, of course), should do both discrete and continuous verifi-
cation. It is because the procedures and results are – for these variables – complimentary.

Conclusions on convection indices remain valid. They should be used as long as there are
enough points (i.e., upper air soundings) to verify them.
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5.2 Role of SEEPS and EDI-SEDI for the evaluation of extreme precipitation
forecasts

Boucouvala D., Gofa F.

Hellenic National Meteorological Service, Hellinikon GR-16777, Athens, Greece

1 Introduction

Precipitation is a parameter highly variable in space and time and exhibits sharp gradi-
ents. These characteristics make the evaluation of precipitation forecasts a challenging
task which is linked to the observation plurality and spatial inconsistency. On the other
hand, there is a large number of possibilities with respect to the choice of score, verification
method, spatio-temporal aggregation, which imply different approaches. Most of the ver-
ification scores are categorical and based on contingency tables by specifying appropriate
thresholds.

Moreover, combining data from a larger number of stations during the evaluation process
of NWP forecasts can produce false skill if climatologically diverse regions are combined.
In particular, when interest is driven by the presence and implications of heavy precipi-
tation events, one must aggregate regions of similar climatology that will be reflected in
the precipitation thresholds that constitute an ‘extreme’ event in the specific area. Conse-
quently, it is important for HIW events to analyse the relative strengths and weaknesses
of commonly used statistical measures but also to highlight the importance of threshold
choice especially during the aggregation of results of stations with different climatological
characteristics.

This study is focused on the application of two forecast verification skill scores that are
related to the geographical and seasonal variations and are already presented in Boucou-
vala et al. (2016). Short description of the methodology is also given in this paper. The
first score is the Stable Equitable Error in the Probability Space (SEEPS) (Rodwell, 2010),
which uses the categories “dry”, “light precipitation,” and “heavy precipitation” based on
the climatological cumulative distribution. The second one is the Symmetric External De-
pendency Index (SEDI) categorical score which is suitable for extreme events as it is equi-
table, symmetric and does not degenerate for rare events (unlike most categorical scores).
It needs however to be adjusted on the climatological characteristics of a specific region by
using appropriate thresholds. The combination of these two scores can contribute to the
monitoring of model performance and the assistance in the decision making for rare events
forecast.

In this study, SEEPS and SEDI scores already applied in the past to assess the predictability
of coarser resolution models for the 24 hourly precipitation, are now adjusted (climatolog-
ically) and applied for 6h precipitation that is more related to high impact events and are
used to evaluate the performance of higher resolution model (COSMO-GR4) and its finer
(COSMO-GR1) for all seasons on an annual basis. The objective of this paper through these
two metrics is to determine what perspectives these scores provide when climatology is
taken into consideration, and focus on forecast assessment of heavy precipitation in order
to underline model’s ability to reliably capture challenging weather events.

2 Data and Methodology

Statistical Indices: SEEPS is designed to be as insensitive as possible to sampling uncer-
tainty and equitability and adapts to the climate of the region in question. It is based on
climatological probabilities of “light” and “heavy” precipitation calculated over a 30-year
observations database (1980- 2009) for each station. The station climatology database was
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provided by ECMWF while the code calculating SEEPS was developed at Hellenic National
Meteorological Service (HNMS) and adapted for this study for 6h accumulated precipita-
tion.

The score involves three categories: ‘dry’, ‘light precipitation’ and ‘heavy precipitation’.
The boundary between the light and heavy categories depends on the relevant climatology
for the station at which the score is being calculated. The overall scoring matrix for SEEPS is
a function of p1 (the observed climatological probability of dry weather) and p2 and p3 (the
observed climatological probabilities of ‘light’ and ‘heavy’ precipitation, respectively) at
the given observation station (with p1+p2+p3=1). Rodwell et al. (2010) assumed p3=p2/2,
so the final scoring matrix is the following:

Threshold between ‘dry’ and ‘light’ category is assumed constant at 0.2mm/6h for all time
periods and all stations taking into account World Meteorological Organization (WMO)
guidelines (Rodwell et al., 2010). Thresholds between ‘light’ and ‘heavy’ category are ex-
tracted from the database for every station and every month. Therefore, for every month
of our dataset, a 3x3 contingency table with the sum of the daily combination of mod-
elled/observed occurrences of each of the 3 categories (‘dry’, ‘light’, ‘heavy’) was computed
for each station. The resulting SEEPS index matrix was calculated as the scalar product of
the SEEPS weights matrix and the contingency table of total available model/observation
pairs for each station averaged over the number of the days of the month. The SEEPS index
matrix elements represent the HD (modelled Heavy-observed Dry), LD (modelled Light,
observed Dry), LH (modeled Light, observed Heavy), DH (modelled Dry, observed Heavy).

In this study, a weighting distance factor (Rodwell et al., 2010) was also applied in order to
avoid over-emphasis of regions with high density. The sum of these components is the total
SEEPS value for each month. For our study, the monthly values were also averaged for each
season of the whole analyzed period. A perfect forecast has a SEEPS score of 0.

SEDI Symmetric Extremal Dependence Index (Ferro, 2011) is a verification index suitable
for low-base (rare) events. It is a function of hit rate (H), and false alarm (F), is complement
symmetric, and has a fixed range [-1,1]. It is maximized when H ->1 and F ->0 and min-
imized when H=0 and F=1. All contingency tables must be non-zero. It is asymptotically
equitable, and values >0 imply a forecast that is better than random.

Observational and Forecast data: The monthly climatological values of the stations used
in this analysis are presented in Fig. 21 (right) and were extracted from the climatological
map of Greece (www.climatlas.gr). The complex topography of Greece, which is dominated
by both sea and orography, creates variability in both precipitation amounts and frequency,
as factors such as elevation, synoptic conditions as well as the region’s exposure to wind
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lead to small scale climatological patterns (Gofa et al., 2019). A dataset of 6h accumulated
precipitation values for 12 months (June 18 to May 2019) were used for 19 stations from
various locations (continental, coastal, mountainous) (Fig. 21 left).

With respect to forecast precipitation data, NWP data from operational at HNMS COSMO
models were evaluated. Two one-way nested domains were utilized, the coarse domain
(4km resolution) covered a wider Mediterranean area, while the inner domain (1km res-
olution) was set up over the wider geographical domain of Greece. ECMWF operational
analysis is used as initial and lateral boundary conditions of the coarse domain.

Figure 21: Map of stations that were used for the analysis (left), monthly accumulated
precipitation for all used stations (right).

Results

The daily distribution of 6-hourly analysis of precipitation differs for each season as shown
for the months of February and June (representative months for DJF and JJA season). In
JJA the precipitation in the afternoon is more intense as it is has mainly convective na-
ture, while it is relatively equally distributed in the day in winter period. In addition (not
shown), the months with the highest precipitation events were June and January, while the
season with no precipitation extremes was MAM for the examined year.

Because of its linearity, the SEEPS score can be broken down into the individual contribu-
tions from the six off-diagonal elements of the 3×3 contingency table. This provides some
insight into the source of error and also facilitates a comparison of the strengths and weak-
nesses in model intercomparison. In this study, the emphasis is given on ‘Heavy’ observed
which is related to extreme precipitation events. On a seasonal basis, it is shown that for
JJA, the largest SEEPS error contribution comes from predicting the ‘dry’ category, when
‘heavy’ was observed. Therefore, summertime heavy precipitation events are significantly
underestimated from the model. The study of the 6-hourly precipitation allows us to iden-
tify that the maximum error is in the 12-18h interval, when convection mainly occurs in this
season. During DJF however, the contribution of HL (‘Heavy’ observed ‘Light’ predicted)
is the dominant component (purple), so the intense precipitation events are also underesti-
mated but less than in JJA period. In addition, during winter, the daily 6h error distribution
exhibits only slightly higher values at night and early morning, a sign of possible underes-
timation of events at this period of the day. SEEPS values for MAM are the lowest, possibly
due to the lack of heavy precipitation events. The differences between COSMO-GR4 and
COSMO-GR1 are not so significant on a seasonal basis; therefore COSMO-GR1 results are
not shown in this report.
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Figure 22: Daily mean 6-h precipitation values for all stations for February (left) and June
(right) (hours in UTC).

Figure 23: Seasonal SEEPS decomposition on a 6-hourly basis (COSMO-GR4). Colors de-
note the different components of the index.
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Figure 24: HD and HL components of SEEPS on a monthly basis (COSMO-GR4, COSMO-
GR) for 12-18h (upper) and 18-24h (lower).

Monthly graphs for 12-18UTC and 18-24UTC 6h precipitation are also calculated for the
SEEPS attributes HD and HL for the whole period. HD (Heavy observed, Dry modelled)
is higher in JJA months and drops afterwards. Small secondary maxima are also exhibited
in January and April. COSMO-GR1 HD error is slightly higher than that of COSMO-GR4
in JJA. One possible reason is that higher resolution models locate convective precipitation
in smaller scale and point verification approach that is used in this methodology, favours
the double penalty effect for small spatial misses. The component HL (Heavy observed,
Light modelled) is also higher in JJA but only for the 12-18h interval. For this component,
COSMO-GR4 values are slightly higher than those of COSMO-GR1, possibly due to the
lower predicted values than observed as a result of smoothing related to the lower grid
resolution. A secondary significant maximum is shown in January (a month with intense
precipitation) implying that in winter, especially during night periods (18-24h), the heavy
rain events are underestimated.

SEDI score was also calculated for thresholds based on percentiles-values with low proba-
bility to occur (extreme). For example, the 90% percentile value means that according to
climatology there is 5% chance that precipitation higher than this occurs. This threshold-
based approach is more suitable when stations of different climatology are taken into ac-
count for the extraction of average scores. The monthly percentile values for each station
were extracted from the 30-year database that was mentioned earlier. SEDI values for 6-
12UTC and 18-24UTC intervals are plotted for each season for COSMO-GR4.
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Figure 25: Seasonal SEDI index for each season for COSMO-GR4 for 06-12UTC (left) and
18-24UTC (right) intervals.

SEDI score values (best is 1), generally reduce with increasing percentile values especially
for 18-24UTC precipitation. Worse SEDI values during daytime are worse in JJA season,
while score is improving in MAM. This result is consistent with the analysis when SEEPS
index was considered for the same season. Moreover, SEDI score values for DJF nighttime
period, are worse than daytime and this also confirms what was previously found for SEEPS
score.

Conclusions

In this study, effort was given to include in the evaluation process of NWP precipitation
forecasts, the aspect of climatology by making regions comparable using variable thresh-
olds depending on precipitation climatology. SEEPS and SEDI scores were adjusted and
applied on 6h precipitation intervals, as the focus was on the model’s ability to capture in a
timely manner intense precipitation events. SEEPS is based on a 3×3 contingency table and
measures the ability of a forecast to discriminate between ‘dry’, ‘light precipitation’, and
‘heavy precipitation’, while SEDI is a verification index suitable for low-base (rare) events.

The analysis of one-year period allowed to identify the source of forecast errors for two high
resolution models (COSMO-GR4 and COSMO-GR1) on a seasonal and monthly basis. The
methodology that was developed, reveals the relative contribution and source of error of
each model. Furthermore, it permits a more fair evaluation of forecast performance during
intense precipitation events, when a model domain of variable climatology is considered.
Climatologically-derived and site-specific percentile thresholds, combined with large time-
windows, give large enough sample to make SEDI and SEEPS robust and informative, both
suggesting that the higher resolution model is more capable (in most cases) to represent
high intensity precipitation events.
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5.3 Extreme Value Theory (EVT) approach- Fitting precipitation object char-
acteristics to different distributions

A. Muraviev, A. Bundel, RHM
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A.V. Muravev, A.Yu. Bundel, D.B. Kiktev, A.V. Smirnov, Verification of radar precipitation
nowcasting of significant areas using generalized Pareto distribution. Part 2: application
to forecasts in warm and cold periods of 2017–2018 // Hydrometeorological Research and
Forecasting, 2022, 3, 385, pp. 42-77, DOI: https://doi.org/10.37162/2618-9631-2022-3-
42-77 [In Russian, abstract and figures in English available]

The study considers the problems of modeling the extreme values on the example of con-
tiguous precipitation areas observed and predicted by the radar-based precipitation now-
casting system of the Hydrometcentre of Russia. Precipitation fields were converted into
objects using spatial averaging (9 nearest points) and the isoline of 1 mm/h. The sets of
objects sizes (or areas) exceeding certain area thresholds were formed so that they at least
partially satisfy the conditions of physical and statistical independence for applying the
extreme value theory (EVT). The model of "peaks above the threshold" described by the
generalized Pareto distribution is chosen as the basic model of extreme values.

Analysis setup:

1. The core of the nowcasting system is the statistical STEPS scheme (Short Term En-
semble Prediction System) (Seed 2003, Seed 2004, Bowler N. et al., 2006)

2. Verification period: Warm: May-September 2017

Cold: November 2017-March 2018

1. Nine DMRL-S radars in the Central Federal District of Russia were used as reference
data

2. 10 min time step until 3 h

3. Grid size of about 2 km, 256x256 grid points domain

The computational procedures were performed using the tools and graphical representa-
tion available in the R language mainly. Objects were selected using the mathematical
module FeatureFinder() of the SpatialVx library. To estimate the distribution parame-
ters, we selected objects with sizes of at least 25×25, 30×30, 35×35, and 40×40 points in
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a two-kilometer grid. Figure 1 shows the object areas of not less than 625 grid points in
subsequent observation fields, the blue lines indicating the times of maximum object area
occurrence in each precipitation situation.

The generalized Pareto distribution (GPD) was used with fixed location thresholds (Pareto
thresholds) equal to the selected object sizes (625, 900, 1225 and 1600 points). The GPD is
an approximation of the peaks-over-threshold distribution, where the peaks are taken from
the data of the generalized extreme value distribution. The times of the peaks on the time
axis being the Poisson point process is the sufficient condition for satisfying the conditions
of the first extreme value theorem (the Fisher–Tippett–Gnedenko theorem). It was checked
(using the R Poisson package) that the times of the peaks in our data satisfy the conditions
of the Poisson point process. Therefore, it justifies applying the GPD to precipitation object
area maxima.

The GPD parameters were estimated using 1) maximum likelihood methods, 2) maximum
likelihood, 3) L-moments, and 3) Bayes with stochastic Markov chain modeling. Based on
the shape estimates and their confidence intervals, it can be argued that all four meth-
ods led to consistent conclusions about the shape parameter for the threshold of 625 grid
points. The standard method is undoubtedly the maximum likelihood method (MLE) asso-
ciated with a modified Chi-square minimum method [Cramer 1999], which, as mentioned
above, can also replace the Akaike information criterion under some general assumptions.
However, on small samples, MLE can lead to unnatural parameter estimates, which has led
to the suggestion of a truncated Bayesian correction (GMLE) [Martins, E. S. and Stedinger, J.
R. 2000, 2001]. The L-moments methods are attractive due to the simplicity of calculations
and the statistical robustness of the estimates. However, [in Martins, E. S. and Stedinger, J.
R. 2001], statistical experiments showed the advantage of the GMLE method over the L-
moments for samples of medium size and heavy tails, i.e. when the shape parameter is at
least positive. Full confidence in the Bayesian parameter estimation strategy is hindered by
a lack of experience in the broad sense, including insufficient mastery of the methodology,
and experience in applying this strategy to extreme values in particular. The existence of
many methods for estimating parameters confirms, on the one hand, the complexity of the
statistical analysis of extrema, and, on the other hand, excludes the existence of one general
and universally applicable method. We used the GMLE method to bring the estimates of
the nowcasting quality to a small number of observable results.

We studied the modeling quality for all thresholds using histograms and Chi-square crite-
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rion of the quality of approximation with Generalized Pareto distribution (GPD). Figures 2
and 3 show the histograms of the size distribution of objects no smaller than 625, 900, 1225,
and 1600 points and the GPD density values connected by linear segments, for one radar.
Parameter estimation method is GMLE. The titles of the panels indicate the sample sizes,
number of gradations automatically calculated, extreme values and median sizes, as well as
the parameter estimates. Differences and similarities between the histograms and approx-
imating Pareto distribution density curves are visually visible for objects with sizes above
the thresholds of 625, 900, 1225 and 1600 points. Let us note that, on average, the number
of objects in the forecast fields is bigger than in the observation fields in our sample. Since
a larger Pareto threshold selects a subset of the maxima selected for a smaller threshold,
the approximation of the higher-threshold subset by the Pareto distribution must increase
the scale (going to the right along the tail) and change the shape.
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Observations: RAKU Locator 60 min forecast: STEPS

size >= 625 vol 87 - 119

size >= 900 vol 69 - 97

size >= 1225 vol 53 - 74

size >= 1600 vol 46 - 65

Figure 26: Warm period. Histograms and Pareto distribution approximation of object
sizes in precipitation fields in Kursk radar observations (RAKU, left column) and forecasts
(STEPS-60, right column) for 60 min. The Pareto threshold is (from top to bottom) 625,
900, 1225 and 1600 field points. Dimensions are given in size/1000 scale.
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Observations: RAKU Locator 60 min forecast: STEPS

size >= 625
vol 59 - 106

size >= 900
vol 51 - 81

size >= 1225
vol 44 - 68

size >= 1600
vol 41 - 55

Figure 27: Cold period. Histograms and Pareto distribution approximation of object
sizes in precipitation fields in Kursk radar observations (RAKU, left column) and forecasts
(STEPS-60, right column) for 60 min. The Pareto threshold is (from top to bottom) 625,
900, 1225 and 1600 field points. Dimensions are given in size/1000 scale.
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WARM PERIOD
RADAR STEPS-60 MIN

RADAR(cases; ndeg) 625 900 1225 1600 625 900 1225 1600
RAKU (87-46;11) 13.190 13.106 13.420 14.009 14.721 14.201 15.788 24.245
RATL (80-57;11) 4.097 5.674 8.708 12.476 11.395 12.140 10.565 17.086
RAVO (90-65;11) 6.921 8.417 13.148 19.733 4.637 7.423 11.288 21.318
RUDB (77-52;11) 6.690 9.289 13.859 21.479 7.695 10.024 15.256 21.446
RUDK (97-66;10) 6.862 8.432 13.818 18.803 5.947 8.044 13.332 20.265
RUDL (93-61;12) 4.711 6.310 9.959 13.958 14.335 16.637 22.859 30.741
RUDN (85-61;13) 4.301 5.301 9.213 12.080 7.474 10.088 14.666 22.267
RUWJ (86-61;11) 4.059 4.499 9.204 12.638 5.220 7.727 13.841 21.949

COLD PERIOD
RADAR STEPS-60 MIN

RADAR 625 900 1225 1600 625 900 1225 1600
RAKU (59-41;12) 10.849 12.427 16.501 22.069 13.646 10.810 10.982 15.125
RATL (48-25;13) 10.775 10.747 11.624 11.623 13.599 12.759 10.450 7.272
RAVO (54-29;10) 10.296 11.282 15.997 23.012 8.947 9.096 15.831 23.653
RUDB (46-25;10) 7.617 8.678 11.632 9.365 7.689 7.192 10.107 14.690
RUDK (41-18;10) 11.502 13.442 13.641 16.047 12.697 12.139 15.109 22.009
RUDL (47-25;7) 3.604 3.020 2.056 1.888 12.928 4.424 3.651 2.909

RUDN (41-20;11) 12.630 11.117 10.904 12.481 6.423 5.255 7.355 10.534
RUWJ (27-16;12) 8.370 10.298 14.593 24.938 13.222 12.296 13.484 18.493

Table 3: Chi-square test values for assessing the quality of histogram approximation by the
Generalized Pareto distribution with estimated scale and shape parameters at thresholds of
625, 900, 1225, and 1600 points.

Table 3 summarizes Chi-square estimates for object areas in radar fields (RADAR columns)
and in 60 min forecast fields (STEPS-60 MIN columns) for tests in warm and cold periods
of the year. In the R hist() function, the number k of bins (necessary to calculate the Chi-
square criterion) is determined using the Sturges rule : k = 1 + [lg2(n)], where n is the sample
size. The analysis was carried out for each period and for each observation-forecast pair.

Note: In the RADAR column, next to the identifier, in brackets are indicated ("sample size
of observations" for a threshold of 625 points - for a threshold of 1600 points; an estimate
of the number of degrees of freedom).

The yellow background highlights the values that exclude the Pareto distribution from the
set of suitable approximations; on the histograms (e.g., Figure 26 and 27), this is, as a rule,
the second bin being larger than the first one, that is, the violation of the characteristic
Pareto distribution density curve. The values highlighted in red reflect one of the most
important conditions of the second extreme value theorem, threshold stability: the larger
the threshold, the more accurately the data is modeled by the Pareto distribution. How-
ever, in real samples of a limited size rapidly decreasing with increasing threshold, this
phenomenon should be recognized as a rare success. Thus, to draw the conclusions, we
chose two basic Pareto thresholds, 625 and 900 points, as these thresholds provide the best
quality of approximation of the data with the GPD (Table 3).

We further introduce a special metric for estimating the STEPS quality. The standard errors
of estimates of GPD parameters are used to construct 95% confidence intervals (CI) and to
subsequently compare estimates of the scale and shape parameters based on the intersec-
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tion ratio (IR). The boundaries of the confidence interval are determined in a standard way
(estimate ± 1.96 * error). Let’s write lower and upper limits of the confidence intervals
like (L1 , U1) and (L2 , U2), respectively. The intersection ratio (IR), visually obvious, is
determined as follows:

IR = (min (U1 , U2) - max (L1, L2))/(max(U1 , U2) - min(L1 , L2))

The intersection ratio gives a diagnostic estimate of model ability to reproduce vast con-
tiguous precipitation areas (or other extremes). The intersection ratios (IR) of confidence
intervals for estimates of the scale and shape parameters are summarized in Table 2. Let us
empirically choose a level of "failure", e.g., intersect <50%, and mark it in red.

IR (%) SCALE IR (%) SHAPE
warm period cold period warm period cold period

RADAR
threshold\
lead time

625 900 625 900 625 900 625 900

30 80 74 75 68 84 (+ +) 74 (+ +) 78 (+ +) 47 (0 +)
60 83 77 50 63 85 (+ +) 76 (+ +) 68 (+ +) 44 (0 +)
90 83 73 23 38 83 (+ +) 76 (+ +) 54 (+ +) 33 (0 +)

RAKU

120 79 68 21 20 80 (+ +) 72 (+ +) 54 (+ +) 23 (0 +)
30 39 27 62 78 74 (+ +) 41 (0 +) 78 (+ +) 87 (+ +)
60 48 23 52 55 72 (+ +) 36 (0 +) 69 (+ +) 71 (+ +)
90 35 17 47 53 66 (+ +) 32 (0 +) 67 (+ +) 69 (+ +)

RATL

120 34 19 50 62 65 (+ +) 34 (0 +) 68 (+ +) 73 (+ +)
30 54 38 70 76 78 (+ +) 40 (0 +) 76 (+ +) 71 (+ +)
60 58 37 64 74 76 (+ +) 36 (0 +) 72 (+ +) 67 (+ +)
90 56 46 61 63 77 (+ +) 38 (0 +) 66 (+ +) 63 (+ +)

RAVO

120 52 35 50 64 69 (+ +) 34 (0 +) 64 (+ +) 60 (+ +)
30 92 88 75 78 93 (+ +) 91 (+ +) 72 (+ +) 72 (+ +)
60 87 90 48 67 91 (+ +) 92 (+ +) 60 (+ +) 64 (+ +)
90 81 94 46 56 92 (+ +) 94 (+ +) 56 (+ +) 57 (+ +)

RUDB

120 88 92 44 56 89 (+ +) 92 (+ +) 55 (+ +) 56 (+ +)
30 78 85 69 73 80 (+ +) 79 (+ +) 75 (+ +) 70 (+ +)
60 76 80 54 68 75 (+ +) 74 (+ +) 64 (+ +) 64 (+ +)
90 80 82 50 60 76 (+ +) 74 (+ +) 60 (+ +) 57 (+ +)

RUDK

120 72 80 52 50 74 (+ +) 73 (+ +) 56 (+ +) 53 (+ +)
30 75 63 47 52 80 (+ +) 76 (+ +) 72 (+ +) 71 (+ +)
60 73 64 32 47 76 (+ +) 73 (+ +) 64 (+ +) 63 (+ +)
90 68 57 40 45 73 (+ +) 69 (+ +) 62 (+ +) 61 (+ +)

RUDL

120 71 66 41 42 74 (+ +) 70 (+ +) 59 (+ +) 57 (+ +)
30 78 85 87 70 89 (0 0) 80 (0 0) 87 (+ +) 89 (+ +)
60 52 86 57 71 38 (0 +) 78 (0 0) 69 (+ +) 71 (+ +)
90 38 83 54 58 30 (0 +) 79 (0 0) 65 (+ +) 63 (+ +)

RUDN

120 31 84 57 54 27 (0 +) 80 (0 0) 64 (+ +) 59 (+ +)

Table 4: Intersection ratios of confidence intervals (intersect) of the estimate of the scale
parameter and the shape parameter for Pareto thresholds of 625, 900, 1225 and 1600 points,
for lead times of 30, 60, 90 and 120 minutes, for the warm and cold periods of 2017-
2018. Values less than 50 are marked in red. Cases of insufficient number of situations
in observations are marked with an asterisk.

Particular attention is paid to the shape parameter, the positivity of which (Pareto-type dis-
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tribution of extrema) indicates the presence of a heavy tail in the distribution: the larger the
value of the shape parameter, the heavier the tail and the more problematic the existence
of distribution moments. It is shown that with increasing threshold, the shape parameter
tends to change sign from positive to zero and, in rare cases, to negative. The zero sign
in observations and forecasts at a threshold of 625 points was observed for only one radar
(RUDN) during the warm period. Negative estimates of the shape parameter are even rarer;
at the threshold of 625 points, such cases are completely absent.

Assuming the IR of 50% or more as an acceptable error, two conclusions can be drawn.
First, the precipitation nowcasting system better predicts objects of extreme size in the cold
season. The number of pairs (++) in the warm period according to the table 2 is about half
of the cases, and in the cold - about 75%. Second, the precipitation nowcasting system most
accurately reproduces the Pareto distribution of precipitation areas in the coverage areas of
the RAKU (Kursk), RAVO (Voeykovo), RUDB (Bryansk), RUDL (Smolensk) radars in the
warm period, and in the coverage areas to the east of the RATL (Tula) and RUDN (Nizhny
Novgorod) radars in the cold period.

The last conclusion from the work can be attributed to the methodology: the extreme value
theory is applicable to such objects of analysis and short-term forecasting as significant con-
tiguous precipitation areas only with a clear understanding of the theoretical prerequisites
and using suitable statistical methods and reliable data processing tools. Otherwise, the
results obtained may be useless, accidental, or even harmful.
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6 Verification Applications to HIW with a Focus on Spatial Meth-
ods

Question: Can spatial verification methods contribute to the proper evaluation of HIW
phenomena and in what way?

HIW phenomena studied: intense precipitation, thunderstorm (lightning activity LPI, re-
flectivities).

6.1 Verification of forecasts of intense convective phenomena

Andrzej Mazur, Joanna Linkowska

Institute of Meteorology and Water Management – National Research Institute

Introduction

As it has already been said (cf. sub-task 2.1 report), every weather has its impact. In
this part of the work carried out in the frame of AWARE Priority Project, all the activi-
ties focused mainly on the verification of the frequency of lightning discharges, predicted
by means of various parametrizations. However, since every weather has its impact, each
weather element can be treated as an impact source. It’s just a question of scale and inten-
sity. Therefore, the general results of the verification of convection indices - determining
the possibility of hazardous meteorological situations - in relation to the measurements and
calculations performed at aerological stations in Poland are additionally presented.

The verification method may be/could be/should be adapted (and specific) for each el-
ement. This report presents once again the basic assumptions of continuous (Mean Er-
ror, Root Mean Square Error) and discrete verification (FSS – Fraction Skill Score, SAL –
Structure-Amplitude-Location, contingency tables) along with the idea of the VOD method,
together with results of both the discrete verification and the continuous method, with the
use of the VOD technique (cross-correlation/lagged correlation based on Vector Of Dis-
placement).

Methods

Survey on (basic) methods applicable to the problem (bold marks jobs done/partially done)
:

1. SAL (Structure/Amplitude/Location) Verification††

2. FSS (Fraction Skill Score) verification‡‡

3. Categorical analysis (Contingency tables and predictands)

all the above further on called as “discrete” analysis

1. Standard evaluation at the grid scale (“continuous” analysis)

††Wernli et al., 2008, SAL – a Novel Quality Measure for the Verification of Quantitative Precipitation Fore-
casts, Mon. Wea. Rev. 136(11), 4470–4487, https://doi.org/10.1175/2008MWR2415.1

‡‡Blaylock and Horel, 2020, Comparison of Lightning Forecasts from the High-Resolution Rapid Refresh
Model to Geostationary Lightning Mapper Observations, Wea. Forecasting 35, 402-416
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2. Cross- (space-lag) correlation approach and verification

Figure 28: Basic idea of cross-correlation (lagged-correlation) approach.

When overlap the upper left (observations field) and the upper right (forecasts) panels, in
most cases they do not match. It is possible to improve the forecast by using the cross-
correlation (or space lag correlation) method. To do this (using the example from the figure
above) one should:

1. Calculate coordinates of ”centres of mass” for both distribution patterns (observations
vs. forecasts).

2. Compute vector of displacement (VOD) of forecasts to observations as a difference of
the two above.

3. Displace linearly every value of forecasts field by the vector of displacement.

In operational work, VOD is calculated from previous model runs (as compared to obser-
vations). It is then assumed to remain constant throughout the next run.

SAL and/or FSS and/or categorical verification for the above period has been applied (both
for direct and VOD approach) to the observed and forecasted Flash Rate FR as follows:

FR =
( W

14.66

)4.54
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EQS FAR FBI PFD
Direct VOD Direct VOD Direct VOD Direct VOD

2012 0.0302 0.0842 0.8832 0.8240 2.7196 2.3366 0.1736 0.1611
2013 0.0773 0.1140 0.8254 0.7920 2.4679 2.1431 0.1483 0.1232
2014 0.0299 0.0671 0.9060 0.8632 3.4946 2.6446 0.1550 0.1258
2015 0.0263 0.1022 0.8785 0.7970 2.1706 1.8439 0.1311 0.1120
2016 0.0555 0.0751 0.8532 0.8370 2.7295 2.4354 0.1592 0.1344
2017 0.0505 0.0954 0.8296 0.7976 1.9107 1.6072 0.1180 0.0978
Mean 0.0420 0.0867 0.8676 0.8221 2.3164 1.9426 0.1499 0.1283

POD SUC THS TRS
Direct VOD Direct VOD Direct VOD Direct VOD

2012 0.2366 0.4287 0.1169 0.1760 0.0826 0.1398 0.0754 0.2551
2013 0.3245 0.4685 0.1747 0.2081 0.1249 0.1667 0.2012 0.3202
2014 0.2193 0.3863 0.0940 0.1368 0.0681 0.1096 0.0935 0.2313
2015 0.1659 0.3890 0.1215 0.2030 0.0704 0.1543 0.0538 0.2579
2016 0.2644 0.3750 0.1469 0.1630 0.1030 0.1274 0.1299 0.2157
2017 0.1981 0.3433 0.1704 0.2025 0.0925 0.1452 0.1002 0.2253
Mean 0.2349 0.3987 0.1324 0.1779 0.0898 0.1390 0.1066 0.2489

Table 5: Categorical analysis based on contingency tables.

with W being updraft velocity, calculated as

W = 0.3 •
√

2 •CAPE

FR is to be limited with the temperatures of top/bottom cloud temperatures, CTT and CBT,
respectively.

if CT T > −15◦CFR = FR •
[
max

(
0.01,

−CT T
15.0

)]
and

if CBT ← 5◦CFR = FR •
[
max

(
0.01,

15.0 +CBT
10.0

)]
Another limitation is due to lack of convective clouds – if (forecasted) cloud cover is be-
low 25%, FR is set equal to zero. Moreover, case was selected to verification if (for both
observations and forecasts) maximum value over the entire domain was greater than 20
strikes/hour , and the duration of the storm was greater than 6 hours.

All the verification (both “continuous” and “discrete”) was done for archive sets of obser-
vations (2011-2017).

Results are presented in the following tables and figures. Basic analysis of the results
showed that VOD improved virtually all categorical predictands (like FBI, POD, THS. . . )
from 10 up to 45%.
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Figure 29: Examples of results of contingency tables-based verification. Top – DMO, bot-
tom – verification with VOD applied.
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The most common case is marked with bold. The parametrization of Flash Rate based on
the CAPE generally overestimates FR compared to the observations. Taking into account all
cases from the selected period (2011-2017), the following analysis results were obtained.

SAL with VOD applied

Figure 30: SAL charts for flashrate, average (2011-2017). Left diagram – direct model out-
put results, right diagram – corrected VOD procedure.

It can be noticed that VOD forces some improvement in L-component and (to some extent)
in A-component. S-component to a large extent remains unchanged. Forecasts, despite of
applying VOD, are evidently overestimated. Choosing smaller domain (when SAL is to be
more effective) and selection of more cases resulted, however, in no significant improve-
ment.

Fraction Skill Scores (FSS) assessment

This method allows for direct comparison of the forecast and of observed fractional cov-
erage of grid-box events in spatial windows of increasing size. It is supposed to be most
sensitive to rare events.

Assuming probability of the occurrence of the phenomenon (in the sense of observation) as
po, and the forecast – pf , can be defined by the FSS according to the formula below.

Figure 31: SAL charts for flashrate, average (2011-2017). Left diagram – direct model out-
put results, right diagram – corrected VOD procedure.
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with N being number of sub-domains (or windows in overall domain).

When FSS = 0, there is no correspondence between observations and forecasts. If FSS is
equal to 1, it describes a perfect match.

Again, results are shown in the following figures.

Results based on the DMO are not very good. VOD, however, significantly improves it, even
up to 75%.

Figure 32: Values of FSS for flashrate, worst/best/average (2015, 2013, 2011-2017). Upper
charts – direct model output results, lower charts – corrected VOD procedure.
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Direct VOD
Year ME MAE RMSE ME MAE RMSE
2011 2.128 4.712 18.904 1.887 4.213 18.051
2012 -2.811 5.913 18.866 -3.681 5.027 17.482
2013 -3.674 2.184 10.556 1.078 1.949 9.970
2014 -3.712 1.516 9.186 -2.192 1.374 8.960
2015 -2.023 2.025 11.871 -3.722 1.819 11.391
2016 -2.291 3.360 14.695 -0.699 2.950 13.904
2017 -1.286 2.817 12.761 -0.176 2.015 11.879
2011-
2017

-1.953 3.218 13.834 -1.071 2.764 13.091

Table 6: Values of ME/MAE/RMSE for consecutive years and mean values for 2011-2017
both for “raw” (direct) values and corrected with VOD procedure.

Figure 33: Values of FSS for flashrate, worst/best/average (2015, 2013, 2011-2017). Upper
charts – direct model output results, lower charts – corrected VOD procedure.

Finally, "continuous" analysis requires – in general – the calculation of Mean Error (ME),
Mean Absolute Error (MAE) and/or Root Mean Square Error (RMSE). Then, the basic ques-
tion is - which metric is better?

RMSE has the benefit of penalizing large errors more so can be more appropriate in some
cases. However, it does not describe average error alone as MAE does. Yet, distinct advan-
tage of RMSE over MAE is that RMSE doesn’t use the absolute value – which is good in many
mathematical calculations. Results of calculations – both for DMO and for VOD-applied
results – are presented in following tables/figures

Examples of results for year 2013, 2017 (worse, best) and means for the period are pre-
sented in following figures.
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Figure 34: Values of ME/MAE/RMSE for flashrate, worst avg. year (2013). Upper charts –
direct model output results, lower charts – corrected VOD procedure.

Figure 35: Values ME/MAE/RMSE for flashrate, best avg. year (2017). Upper charts –
direct model output results, lower charts – corrected VOD procedure.

When consider MAE/RMSE calculated from DMO it can be seen that the worst values are
apparently in mountainous regions. Maybe it is related to the fact, that it’s hard(er) to pre-
dict thunderstorms in elevated terrain? When VOD procedure is applied to MAE/RMSE,
slight improvement can be seen in comparison to direct verification, with a maxima of
MAE/RMSE shifted towards domain centre.
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Figure 36: Average (2011-2017) values ME/MAE/RMSE for flashrate. Upper charts – direct
model output results, lower charts – corrected VOD procedure.

In general VOD improves the results in all analyzed - continuous and discrete. This state-
ment can be applied to all the cases presented.

With test period for direct- and VOD-verification extended to 2011-2017 SAL and/or FSS
and/or categorical verification for the above period has been applied, both for direct and
VOD approach, to four parametrizations of lightning intensity:

1. CAPE-based with cloud top/bottom temperatures correction (as described before)

2. Lightning Potential Index (LPI) (cf. U. Blahak, X.Lapillonne, D. Cattani)

3. Combination of the two above (cf. P. Lopez, D. Cattani)

4. Graupel flux at -15ºC level/total ice mass (cf. J. Wilkinson, McCaul et al. 2019).

These four parameterizations were tested and verified against observations for two periods:

1. Case study – August 11th, 2017

2. Longer period verification (June-August 2020; 7- and 2.8km only)

Results of the studies are shown in the following figures/tables.

61



Resolution 7.0 2.8 0.7
Parametrization 1 2 3 4 1 2 3 4 1 2 3 4

ME 3.1 3.1 2.0 3.7 1.2 0.4 -0.4 0.6 -0.6 0.2 -1.5 -0.9
STD 15.7 17.7 19.9 18.0 1.9 7.4 10.0 8.2 4.0 3.4 7.2 5.7
MAE 5.7 6.3 7.0 6.4 2.3 2.6 3.4 2.8 1.3 1.0 2.3 1.8

Table 7: Continuous verification results. ME (Mean Error), STD (Standard Deviation), MAE
(Mean Absolute Error).

Figure 37: Basic assumptions of different parametrization of lightning intensity.

Case study August 11th, 2021

Discrete verification (Fraction Skill Score)
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Figure 38: FSS, 7km. DMO, left to right: parametrization #1-4 (2017.08.11).

Figure 39: FSS, 2.8km. DMO, left to right: parametrization #1-4 (2017.08.11).
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Figure 40: FSS, 0.7km. DMO, left to right: parametrization #1-4 (2017.08.11).

Summer (June-August) 2020 verification

Parametrization EQS FAR FBI PFD POD SUC THS
#1 0.051 0.830 1.911 0.118 0.198 0.170 0.093
#2 0.056 0.853 2.730 0.159 0.264 0.147 0.103
#3 0.030 0.906 3.495 0.155 0.219 0.094 0.068
#4 0.030 0.883 2.720 0.174 0.237 0.117 0.083

Table 8: Verification based on contingency tables, 7km resolution.

Parametrization EQS FAR FBI PFD POD SUC THS
#1 0.084 0.823 2.337 0.126 0.386 0.176 0.140
#2 0.095 0.798 1.607 0.098 0.343 0.203 0.145
#3 0.075 0.837 2.435 0.161 0.429 0.163 0.127
#4 0.067 0.863 2.645 0.134 0.375 0.137 0.110

Table 9: Verification based on contingency tables, 2.8km resolution.

Resolution 7km 2.8km
Parametrization ME MAE STD ME MAE STD
#1 -9.32 3.61 23.51 -1.92 5.12 25.75
#2 -5.61 5.39 27.98 -5.66 3.49 21.41
#3 5.36 13.83 49.71 -9.23 12.16 45.61
#4 -7.28 11.87 48.63 4.18 10.71 46.83

Table 10: Continuous verification results. ME – Mean Error, MAE – Mean Absolute Error,
STD – Standard Deviation.
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Figure 41: Flashrate continuous verification – parameterizations (summer 2020). Average
values of Standard Deviation.

Considering the four compared parameterizations for continuous verification, the first two
seemed to work better than others. Namely, CAPE-based parametrization worked better in
coarse resolution while LPI-based – in high resolution. As far as the discrete verification is
concerned (FSS, contingency tables analysis), in low resolution, results of 3rd parametriza-
tion seemed to be slightly better than the other two. In high resolution first parametrization
worked best. For a longer period, CAPE-based parametrization again worked better than
others, while in low resolution – the one based on LPI.

Stability Indices

As far as these variables are concerned it has to be remembered that compared to the stan-
dard predicted values in the models (e.g. temperature, wind or precipitation), the possibil-
ities of verification are significantly limited to data from atmospheric soundings and – to
some extension – from satellite scans.

Atmospheric sounding (aerological) stations are located over Europe in much more scat-
tered manner than – for example – SYNOP ones. Figure 11 presents basic available aero-
logical stations in Europe.
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Figure 42: Aerological stations in Europe used to verify forecasts of stability indices (from
http://weather.uwyo.edu/upperair/sounding.html, access: September/October, 2021).

The following table presents an exemplary output from sounding at Wrocław aerological
and SYNOP station, July 1st , 2021, 1200 UTC

On the other hand, some stability indices can be assessed using satellite images. For in-
stance, Showalter index is a measure of thunderstorm potential and severity. In other
words, it gives a good indication where the atmosphere is unstable and where convective
development may be expected. Fields of Showalter index (obtained via model forecasts,
esp. in high resolution) may be compared with Meteosat 8 IR 10.8 satellite images. In
some cases the discrepancy between the values of stability indices and the real situation
(satellite image) can be noticed. Similarly, CAPE (Convective Available Potential Energy)
– as a measure of the amount of energy available for convection – may be compared with
Meteosat 8 IR 10.8 satellite images. It should be remembered that CAPE represents poten-
tial energy, and will only be used should a parcel be lifted to the level of free convection.
The derived stability indices such as convective available potential energy (CAPE), lifted
index (LI), total totals (TT), Showalter index (SI), and the K-index (KI) are computed from
the retrieved atmospheric moisture and temperature profiles. These indices aid forecasters
in nowcasting severe weather by providing them with a plan view of these atmospheric
stability parameters. Forecasters use this information to monitor rapid changes in atmo-
spheric stability over time at various geographic locations, thus improving their situational
awareness in pre-convective environments for potential watch/warning scenarios.

Of course, the limitations of satellite soundings (e.g. problems with scanning in cloudy con-
ditions, space resolution etc.) set the limits for possibility of verification of indices. Hence,
it is sometimes difficult to satisfactorily define the quality of the forecast of indicators – and
the possibility of the severe weather phenomenon occurring – over a large area and / or in
high spatial resolution.

In this part of the report authors decided to focus on the soundings-derived values of in-
dices for summer period (June-August) of 2020. In order to maintain a consistent image for
2.8 and 7 km resolution, eight aerological stations, located in the domain for high resolu-
tion, were selected, as listed in Table 12.
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Station information and sounding indices
Station number: 12425

Observation time: 210107/1200
Station latitude: 51.13

Station longitude: 16.98
Station elevation: 116.0
Showalter index: 8.79

Lifted index: 8.76
LIFT computed using virtual temperature: 8.79

SWEAT index: 50.51
K index: 13.10

Cross totals index: 23.10
Vertical totals index: 23.60
Totals totals index: 46.70

Convective Available Potential Energy: 4.69
CAPE using virtual temperature: 5.21

Convective Inhibition: 0.00
CINS using virtual temperature: 0.00

Equilibrum Level: 864.74
Equilibrum Level using virtual temperature: 864.36

Level of Free Convection: 942.45
LFCT using virtual temperature: 943.83

Bulk Richardson Number: 1.78
Bulk Richardson Number using CAPV: 1.98

Temp [K] of the Lifted Condensation Level: 270.88
Pres [hPa] of the Lifted Condensation Level: 952.54

Equivalent potential temp [K] of the LCL: 284.16
Mean mixed layer potential temperature: 274.69

Mean mixed layer mixing ratio: 3.42
1000 hPa to 500 hPa thickness: 5235.00

Precipitable water [mm] for entire sounding: 9.65

Table 11: Output results from sounding at Wrocław (#12425), July 1st , 2021, 1200 UTC.
http://weather.uwyo.edu/upperair/sounding.html, access: September/October, 2021.

67



Name WMO Num-
ber

Country Longitude Latitude

Łeba 1210 Poland 17.50 54.75
Wrocław 12425 Poland 16.98 51.13
Legionowo 12374 Poland 20.93 52.38
Praha 11520 Czech Re-

public
14.46 50.00

Prostejov 11747 Czech Re-
public

17.09 49.46

Poprad 11952 Slovakia 20.26 49.05
Greifswald 10184 Germany 13.39 54.09
Lindenberg 10393 Germany 9.89 47.61

Table 12: Aerological stations selected for verification of stability indices.

Figure 43: GOES-16 (Geostationary Operational Environmental Satellites—R Series) de-
rived stability indices product from July 1, 2017, including lifted index (upper left),
convective available potential energy (upper middle), total totals (upper right), K-
index (lower left) and Showalter index (lower middle). Source: https://www.goes-
r.gov/products/baseline-derived-stability-indices.html, access: October 1st, 2021.

Due to the small amount of points, lagged correlation procedure(s) has not been carried out.
For the same reason, only continuous verification has been performed. For this verification,
following indices have been selected: Showalter Index (SI), Lifted Index (LI), SWEAT index,
K Index (KI), Totals Totals Index (TTI), Convective Available Potential Energy (CAPE) and
Convective INhibition (CIN). Results are presented in the following tables.

Conclusions
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Name SI LI SWEAT KI TTI CAPE CIN
Łeba -1.4 1.1 25 -8 -10. -49 15
Wrocław -2.0 1.3 29 6 17 38 -18
Legionowo 1.2 -0.9 19 9 11 35 -14
Praha 2.0 1.2 28 11 -18 50 22
Prostejov 2.5 1.1 -19 -10 -12 68 31
Poprad 2.1 -1.4 21 12 22 -54 -19
Greifswald 1.9 2.1 -23 12 -17 -51 21
Lindenberg 2.9 -2.5 -25 10 21 40 30
Average
val.

1.2 0.3 7 5 2 10 9

Table 13: Mean error (ME) of stability indices forecasts’ as compared to values at stations.

Name SI LI SWEAT KI TTI CAPE CIN
Łeba 4 2 35 12 18 73 19
Wrocław 5 2 45 11 22 81 21
Legionowo 4 1.5 39 17 24 59 25
Praha 4 2 51 15 32 75 38
Prostejov 6 2 29 19 28 80 45
Poprad 4 2 40 21 35 67 32
Greifswald 5 4 39 22 29 65 34
Lindenberg 6 5 42 17 40 81 51
Average
val.

5 3 40 17 29 73 33

Table 14: Mean absolute error (ME) of stability indices’ forecasts as compared to values at
stations.

Name SI LI SWEAT KI TTI CAPE CIN
Łeba 8 4 67 23 34 139 36
Wrocław 10 4 86 21 42 155 40
Legionowo 8 3 74 32 46 113 48
Praha 8 4 97 29 61 143 72
Prostejov 11 3 55 36 53 153 86
Poprad 8 4 76 40 67 128 61
Greifswald 10 8 74 42 55 124 65
Lindenberg 11 10 80 32 76 155 97
Average
val.

9 5 76 32 54 139 63

Table 15: Root mean square error (RMSE) of stability indices’ forecasts as compared to
values at stations.
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In every parameterizations, taking into account MAE/RMSE calculated from DMO it can
be seen that the worst values are apparently in mountainous regions. Authors suggest that
this effect may be related to the fact that it’s hard(er) to predict thunderstorms in elevated
terrain. Similar correlation is hard to find considering stability indices and measurements
at aerological stations. This may be, in turn, caused by the small amount of verification
point and their space locations.

Comparing ME/MAE/RMSE with the boundary values of individual stability indices that
determine the change in the convection situation, it should be stated that – perhaps – only
in the case of CAPE the compliance of the forecast with the measurements does not sub-
stantially affect the determination of this situation. In other cases, a forecast error may
result in incorrect determination of the possibility (or lack thereof) of high-impact weather.
An open question remains about the compatibility of measurements (and stability indices
values, which, as it should be remembered, are not DMO) on aerological stations with real-
ity.

When VOD procedure is applied to MAE/RMSE, slight improvement can be seen in com-
parison to direct verification, with a maxima of MAE/RMSE shifted towards domain centre.
In general VOD improves the results in all analyzed - continuous and discrete. This state-
ment can be applied to all the cases presented.

Further works are planned to improve the Flash Rate parametrization and verify the results
obtained in this way, accordingly. And last but not least important conclusion that could
be drawn from all the above results is that if there is a possibility it is strongly suggested
do both discrete and continuous verification.
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6.2 Calibration of the Lightning Potential Index (LPI) in COSMO-1E and COSMO-
2E for the production of meteogram in Data4web

Benoit Pasquier, MeteoSwiss

Introduction

Since April 27 2021 Data4web 4.0 has been used in production. It has automatized the
production of the lightning pictograms that where previously done by the forecaster. It
uses currently a lightning density (LD) in [F lashes/km2/h] produced by APN from the NWP
parameter Lightning Potential Index (LPI) [J/kg]. The LPI does not provide a flash number
or flash density therefore its interpretation is not intuitive and of no value to the forecaster.
A transformation from the LPI into LD is necessary and was conducted by Jonas Jucker
on COSMO-1 during a Master thesis in 2018 and applied to COSMO-1E and -2E. Later
on the quality of the forecasts for the productions of lighting meteograms using the LD
were investigated by Nicolas Schwaller for COSMO-2E and IFS-ENS. He found that the
prediction with COSMO-2E were of good quality during the summer season, but the LD
resulted in a strong overforecasting in Fall. To correct this overprediction he concluded that
a seasonal calibration of the LPI into LD was necessary. This work is therefore exploring
the different options that are possible to solve the overforecasting problem in fall.

Figure 44: Different steps in the production of meteograms. The LPI is produced by NWP
then it is converted in a lightning density that is then used by data4web to produce me-
teograms.

Lightning Potential Index

LPI [J/kg] is the kinetic energy of the updraft in the developing thundercloud scaled by
the potential for charge separation based on ratios of ice and liquid water within the main
charging zone of the cloud (Yair et al., 2010). Additional filters are necessary to remove
spurious signal, they are taken without modification from Blahak (2015). As a reminder
the LPI function is given below.

Figure 45: Different steps in the production of meteograms. The LPI is produced by NWP
then it is converted in a lightning density that is then used by Data4web to produce me-
teograms.

71



ω the cloud updraft

1. ϵ: the scaling factor for the cloud updraft attaining a maximum value when the mix-
ing ratios of the ice species and the supercooled water are equal (Yair et al., 2010).

2. f 1: Neighbourhood updraft based filter, f 1 /= 0 if the majority of the neighbour grid
cells (∼ 10 × 10km2) have a maximal updraft velocity exceeding 1.1ms−1 This value is
resolution dependant but taken as it is from COSMO-DE at 2.8km gridcells

3. f 2: A neighbourhood column based stability filter for filtering the LPI with regard to
graupel formation regions of intense orographic wave related clouds, where lightning
activity does not develop. f 2 /= 0 if the neighbour (∼ 20 × 20km2) grid cells all have an
average of the vertically integrated buoyancy of more than —1500Jkg−1. Details from
the comments in the COSMO-2E code: ”The buoyancy is used instead of CAPE, because
CAPE is by definition 0 in the column of an upright convective updraft core and only
counts the positive buoyancy parts of a parcel ascent. It is only a measure of instability,
not stability. Buoyancy also takes into account the negative buoyancy contributions and
can better distinguish between a convective updraft (buo = ≈ 0 J/kg) and orographic clouds
in stable stratification (buo << 0 J/kg). A threshold of -1500 J/kg has been determined
by U. Blahak based on COSMO-DE summer season data of 2014. If the smoothed buo
falls below this threshold, LPI is set to 0.”

4. g(ω): velocity based filter function within the column g(ω) /= 0 if ω > 0.5ms—1

Filters in the LPI formula

It is important to notice that the filters were not adapted from the work of Blahak (2015)
that was done on COSMO-DE that has a resolution of 2.8km between 28.7-16.8.2014 for
f 1 and 6.10-23.10.2014 for f 2 and g(ω), with two runs a day at 00UTC and 12 UTC and
a leadtime of 11h. The LPI was compared to the time averaged observed flash rate +-15
min around the date in the unit 1/(km2min). They were not adapted for the COSMO-1 or
COSMO-2E resolution. Additionally the timeframe that was used for the determination of
the thresholds of the filter was short and done ’by eye’. The solution implemented by APN
was to set a threshold in [J/kg] on the values rather than adapting the filters.

COSMO-1 Lightning Potential Index to Lightning Density conversion

The first study on the transformation from LPI to LD was done in 2018 by Jonas Jucker in
a master thesis, where more details can be found on the method.

Model

COSMO-1 was used to calibrate the transformation from LPI to LD. Reforecast on the
month of July 2017 with one run per day initialized at 00 UTC with a leadtime of 24h
were used. Instantaneous values of LPI were calculated at every exact hour for each grid-
point. The LPI was then upscaled from 1.1 × 1.1km2 to 6.6 × 6.6km2 by taking the maximal
value. Finally different threshold were used between 0 and 20 J/kg, when the gridpoint LPI
value would be above this threshold. It would be considered that there is at least a flash on
the gridpoint per hour.

Observations

Jonas Jucker used lightning data from the European Cooperation for Lightning Detection
(EUCLID) (Schulz et al., 2016). It detects 95% of all Cloud to Ground (CG) and 45 % of
Cloud to cloud lightning strikes with an location accuracy of 500m. The network provides
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data for central Europe, including Switzerland. The observation were first gridded on the
1.1km2 grid and then summed on a 6.6km2

Results

To evaluate the quality of LPI in COSMO-1 the proposed verification procedure by Wilkin-
son (2017) was applied. The predictions are compared to the observations using a con-
tingency table for each threshold. A coverage score (SEDS) that measures the skill of the
forecast in covering the correct number of gridpoints with lightning activity was used. It is
explained in section 5.1

As stated before, in the definition of the LPI the filters (especially the updraft velocities)
were defined for the COSMO-DE model (Blahak 2015) that has a larger resolution than
COSMO-1. This results in an under pruning of predicted flashes. Assuming that a value
of LPI > 0 for a gridpoint would be equal to at least one flash is a large overprediction. To
correct this bias without adapting the filter to the domain resolution of the model (out of
the scope of his work and this one as well), Jonas Jucker used the value of the LPI for the
maximal coverage score as a threshold under which all values of LD would be set to zero.

He also did a categorization of the different lightning intensities, but this is not in the scope
of the production of Flashes/no Flashes meteograms. Additionally the intensities scores
were poor with LPI values calculated only every hour. This means that until the capacities
to calculate the LPI more than every hour are created, the intensities will be unreliable. A
good forecast in terms of intensity is only possible when capturing the right coverage as
well. This means that having a right coverage is the first step towards a further usage of the
promising LPI.

Figure 46: Mean SEDS for thresholds of LPI from 0 to 20 J/kg. The vertical grey dotted
lines mark the maximum SEDS for 1.1 km resolution. The green continuous line is what
interest us. Its maximum value is for a threshold just below 2 J/kg (Jonas Jucker Master
thesis).
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Figure 47: Thresholds for the 7 categories estimated by Jonas Jucker. The flash-no flashes
threshold is the one interesting for the creation of meteograms.

Another problem that was found is the overforecast that takes place right after the model
initialization. Jonas Jucker assumed that this was because of the latent heat nudging that
takes place up to 1h and 15min leadtime. This is not a problem as the predictions at such
small leadtime won’t be used and proves again the necessity for a nowcasting of lightning
strikes.

Evaluation of the Lightning density in COSMO-2E for the production of Meteogram by
Data4web

The conversion LPI-LD calculated by Jonas Jucker on COSMO-1 was then used on COMSO-
2E. Nicolas Schwaller has evaluated its use for the production of meteograms (flash vs.
noflash). He has tried to find which spatial upscaling area was optimal and the probability
threshold above a lightning pictogram should appear. Only the problematic results are
presented here. The rest can be found in his presentation and report.

Observations

He used the observation from the Meteorage detection Network (part of EUCLID). That
is able to detect 98% of CG strikes and between 30 to 50% of CC strikes with a medium
accuracy of 100m. The observations were gridded to the nearest COSMO-2E gridpoint, by
aggregating observations that occurred +- 30min around each exact hour.

Model

The LD in flash/km2/h was available at every exact hour its validity is for +- 30min around
the reference time. Two runs per day are confronted to the observations up to a leadtime of
48 hours for the period of summer 2020.

Method

Some data post-processing was done prior to evaluation of the prediction. First the scale of
reference of the prediction was change to account for the spatial uncertainty in the model
prediction and compensate for the underdispersiveness of the model. A spatial square
window of area A centred on each gridpoint is used, the data of each gridpoint is replaced
by the sum of the number of flashes for observations and by the maximum value of LD for
the model prediction, computed over all gridpoints inside the window. A change of the
time scale of reference can be performed in the same way, with a 1D window in the time
dimension.
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Probability of having more than one flash in an area A around each gridpoint are then com-
puted for each gridpoint as the fraction of members with a LD of at least 1 Flash/gridpoint/h.
The upscaling produces increased and smoothed probabilities. Then a threshold is used as
a separation for the flash no flash prediction.

Fall overforecasting

The quality of the prevision in summer were satisfying, but the results for fall showed a
strong overforecasting of lightning activity as seen in fig 4. The observation bias in fig ??
shows also an overprediction for a 20% threshold and an upscaling of 20x20km2 (the values
that were chosen based on summer forecast for the prediction of meteograms. Changing
the threshold on the number of flashes predicted per gridcell from 1 to 2 for the creation of
a meteogram with a meaning: at least one flash is not coherent. This is why a change along
season of the conversion table LPI-LD used in fig 1 is necessary.

Figure 48: Reliability diagrams for summer 2020 on the left and fall 2020 on the right.
Both are for a detection level of 1 flash/km2/h. The situation in Fall shows a strong over
forecasting.

Monthly calibration

The same methodology that Jonas Jucker used for the definition of the flash/noflash thresh-
old is used on a monthly period to see if there is an evolution in the threshold that would
maximize the SEDS along the different months.

Results

Forecasts are then compared to the observations using the Symmetric Extreme Dependency
Score (SEDS). It compares the skill of the forecast to a hedged forecast, which is a forecast
that predicts lightning for every gridcell in the model domain. SEDS varies between 0 for a
hedged forecast and 1 for a perfect forecast.

Additionally, edge cases where either p = 0 or q = 0 are considered as zero skill and SEDS
is set to zero. This would be situation where there is no flashes observed but some are
predicted, or the opposite, flashes are predicted but none is observed. The cases where no
flashes is observed or predicted that means there is only true negatives are removed from
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the calculation of the SEDS as they would affect greatly the average SEDS if the SEDS would
be set to one in this case.

For the interpretation of the results one must be careful of some characteristics of the SEDS.
It is important to note that SEDS is dependant on the Base Rate and will decrease with de-
creasing base rate and that also it varies slowly for increasing coverage bias and number of
observations in the model domain (Ferro 2011). Also, the probability that a random fore-
casting system produces a contingency table very different from the expected contingency
table decreases as n increases.

Doing verification one must be careful to the problem of the so-called double penalty. A
predicted flash that is displaced in space or delayed in time is scored worse than either a
complete miss or a false alarm since it is penalized as both at once. Also, there is almost no
flashes during the winter season, therefore they are of no statistical relevance.

Figure 49: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E on a
monthly basis using the methodology of Jonas Jucker.

Discussion

The first result is that the currently used threshold that was calculated on one summer
month for COSMO-1 is not appropriate for the months of September 2020 to April 2021.
For COSMO-1E the threshold is close to the current one in August, which is in concor-
dance with the results previously obtained for a summer month and this scale of upscaling.
However the best threshold for COSMO-2E in August 2020 is close to zero and this could
be because the filters in the implementation of the LPI in section 2 were calculated for
COMSO-DE that had a gridsize of 2.8km which is close to the 2.2 km grid of COSMO-2E.
The filters should be adapted when changing the resolution of the model, but they were not
adapted for COSMO-1E and this is seen as the threshold that maximize the coverage score
is not zero.

The second straight forward results that can be noticed is that the value for the optimal
threshold in August 2020 is not the same in fall and winter months with a big variability
between every month and also some missing values, this is probably because of the sparsity
of the data thus having no statistical relevance. This would mean that the LPI has been
developed to predict lightning strikes well during summer months were the vast majority
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of lightnings happened. But that is overpredicts lightnings during the colder season and
Especially the transition months. A month to month calibration would be more appropriate
to find the threshold for each period, but data is only available for a year, that is why season
calibration would make more sense.

Seasonal calibration

The same methodology that Jonas Jucker used for the definition of the flash/noflash thresh-
old is used on a monthly period to see if there is an evolution in the threshold that would
maximize the SEDS along the different months with the exception that an upscaling is done
to take into account the fact that even though the LPI is a localized event, it has a wide im-
pact, as the noise of thunder can scare people in a wide area. A compromise was found for
the area of the upscaling to be 7km x 7km. It was considered that the thunder is really loud
in such an area.

The methodology that was used to determine the threshold that would be the best to predict
at least one flash per grid point per hour was also used for two and three flashes per grid
point per hour.

Model

The control run of COSMO-1E and COSMO-2E is used with runs on a respective leadtime
of 33h and 48 hours, with runs respectively every 3h and 6h. The LPI is still an instanta-
neous value calculated at every hour for each gridpoint. It is upscaled on 6.6km2 which is a
neighbourhood of 7 gripoints wide for COSMO-1E and 3 gridpoints wide for COSMO-2E.

Observations

The observations are from the Meteorage detection network. They are gridded to the clos-
est gridpoint and then upscaled by summing for each gridpoints the observations on the
neighbouring gridpoints on a 7kmx7km window centred on the grid point. After upscaling
the observations, there is 49 times more observations than before.

Results

Figure 50: Threshold that maximizes the SEDS for COSMO-1E for one, two and three
flashes per hour per km2.
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Figure 51: Threshold that maximizes the SEDS for COSMO-2E for one, two and three
flashes per hour per km2.

Figure 52: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.
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Figure 53: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly.

Figure 54: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.
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Figure 55: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.

Figure 56: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.
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Figure 57: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.

Figure 58: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.
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Figure 59: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.

Figure 60: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.
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Figure 61: Threshold that maximizes the SEDS for COSMO-1E and COSMO-2E to predict
at least one flash per gridpoint per hour on a monthly basis.

Discussion

It can clearly seen from the coverage bias plots and the threshold that a yearly threshold
for the LPI can’t be used for good prediction of thunders. Especially during the transi-
tion month of September October and Mars-April, but also during the winter season. The
threshold is usually lower for COSMO-2E compared to COSMO-1E maybe because the fil-
ters that are gridsize dependant, are more efficient because they were calculated for a 2.8km
gridsize, that is closer to 2.2km than 1.1km.

The coverage bias varies massively for cases showing only little lightning activity. It was
already noticed by Jonas Jucker. His hypothesis was that it was because of the double
penalty but using spatial upscaling and time upscaling that should reduce significantly
the double penalty has only a mild effect on the threshold in the month with little lightning
activity. This speaks again for the hypothesis that the filters are not adapted and do not
filter some type of weather that crated spurious signal during the transition and winter
month.

One could ask about the definition of the lightning meteogram, if the meaning of at least
one flash per km2 per hour if meaning full and should not be set to a higher number.
The interpretation of the lightning pictogram could have a tendency to be interpreted as
”stormy weather”. This is why maybe to create the lightning pictogram, maybe two or three
flashes per hours per km2 per hour should be used as a limit.

It is important to note also the effect of the leadtime on the threshold, with increasing
leadtime, the localization of the convective cell will diminish, and uncertainty will rise and
thus using longer leadtimes will lead to a higher threshold to compensate for the wrong
values created by the uncertainty. Thresholds should be adapted for each leadtimes as the
skill of the model to predict convective cell decreases.

Setting a threshold would mean that in the type of weather that do not need to be filtered,
flashes would be ignored and in the situation that would need to be filtered, wrong predic-
tion will be made. Therefore if a good prediction and communication to the public on the
thunderstorm using the LPI wants to be used, it will go through an evaluation for prob-
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lematic situations in Switzerland and filters parameters to be adapted to the grid of each
model.

Conclusion

The Filters in LPI formulas are more efficient in COSMO-2E than COSMO-1E, but for both
models they show inefficient pruning of spurious signal especially in orographic precipi-
tation. An adaptation of the filters threshold should be done. However, the production of
meteogram can be improved immediately by changing flash threshold to suggested level
along seasons. Or if the LPI would be directly available in Data4web.

Using a threshold does not rely on physical parameters and is always a trade-off. In weather
type where the values are well filtered by the LPI formula setting an additional threshold
would prune unnecessary values and create missed and in weather types where the filters in
the LPI formula are not efficiently removing spurious signal, setting a high threshold would
be good to prune false alarms. The two cases are opposing each other. Another aspect that
speaks for the adaptation of the filters in the LPI formula is that the conversion from LPI to
LD depends on the degree of freedom of the methodology (time area upscaling, leadtime)
and is therefore arbitrary and the best calibration will depend of the methodology for the
production of meteograms. Therefore, the pruning of the spurious signal should be based
on physical parameters from the model and not the methodology used for the production
of meteogram. A way of overcoming this problem would be to use directly LPI in Data4web
instead of using the lightning density.

Future work

Some ideas for future improvements:

1. Do a full year study on the remaining month (Mai –July 21)

2. Adjust the filters or try out the new qg-filter from ICON at DWD.

3. Evaluate the suggested thresholds with probabilistic means now that data is available.

4. Use other NWP inputs or topographic descriptor in combination with LPI to produce
lightning meteograms.

84



6.3 MODE verification of ensemble precipitation forecasts at RHM

Anastasia Bundel and Elena Astakhova (who wasn’t participant of AWARE, but participated in
writing this chapter), RHM

Papers published within this theme:

Bundel Anastasia, Elena Astakhova, Elizaveta Olkhovaya, Alexander Kirsanov and Dmitry
Alferov, Spatial verification of a regional ensemble precipitation forecasting system at the
Hydrometeorological Research Center of the Russian Federation using a free verification
package, MET // 2022 IOP Conf. Ser.: Earth Environ. Sci. 1023 012001 DOI 10.1088/1755-
1315/1023/1/012001

A.Yu. Bundel , A.V. Muraviev, E.D. Olkhovaya, Overview of spatial verification methods
and their application to ensemble forecasting, Hydrometeorological Research and Forecast-
ing, 2021, No. 4 (382). PP. 30-49. DOI: https://doi.org/10.37162/2618-9631-2021-4-30-49
[In Russian]

Introduction

The applicability and usefulness of spatial verification methods were tested for a limited-
area ensemble prediction system ICON-Ru2-EPS. The system is based on the ICON model
[8], which is a nonhydrostatic model with an icosahedral grid.

Data and verification setup

Ensemble prediction system

ICON-Ru2-EPS is a convection-permitting system with a horizontal resolution of about
2.2 km and 65 vertical levels. The integration domain covers the Central Federal District
of Russia (approximately 50-60◦N, 29-43◦E) and contains 200416 grid cells. The grid is
a rotated one and the North Pole is shifted to 35◦N 215◦E. Initial and lateral boundary
conditions are obtained from the global ICON runs with a grid step of about 13 km and
90 vertical levels (provided by the German Meteorological Service). The lateral boundary
conditions are updated every 3 hours. The verification experiment was held with a research
version of the system. The ensemble comprised eleven realizations. One realization was a
control one (with no perturbations included) and ten other realizations were generated only
through model perturbations. To this end, the parameters of physical parameterizations
of several processes like convection, turbulence, soil processes, etc. were stochastically
disturbed. A set of variables to perturb was defined from model sensitivity experiments.
The tuning parameters were perturbed within a meaningful range so that the forecast skill
on average did not get worse. The forecasts were run for 48 hours starting from 00UTC for
summer conditions (July 2021). The output was prepared on the regular latitude-longitude
grid with a step of 0.02◦.

Observations

The radar composite over the Central Russia was used as gridded precipitation observation
dataset. The radar data were provided by the Central Aerological Observatory of Russia.
The radar composite data with 1 km grid mesh were interpolated to the model grid with 2.2
grid mesh using the nearest grid point approach. Ten minute accumulations were summed
up to obtain 1h accumulations considered in this paper. This dataset is used as the reference
data hereinafter.

Verification software package MET

Several verification packages are used at the Hydrometcentre of Russia at present, includ-
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ing VERSUS and Rfdbk packages of the COSMO Consortium. For the new high-resolution
EPS verification system of the Hydrometcentre of Russia we decided to use the free MET
package, which is a core of METplus verification system developed and supported to com-
munity via the Developmental Testbed Center (DTC) for use by the numerical weather
prediction community (https://dtcenter.org/community-code/metplus). The core compo-
nents of the framework include MET, the associated database and display systems called
METviewer and METexpress, and a suite of Python wrappers to provide low-level au-
tomation and examples, also called use-cases. METplus is being actively developed by
NCAR/Research Applications Laboratory (RAL), NOAA/Earth Systems Research Labora-
tories (ESRL), NOAA/Environmental Modeling Center (EMC), and is open to community
contributions.

The motivation for using MET has been the availability of almost all the necessary meth-
ods in one package (Pointwise scores in the PointStat tool, grid-to-grid verification in the
GridStat tool, object-based MODE method, EPS scores, etc.) and good support from MET
developers. Each MET tool is set up by a configuration file and run by a bash script, thus
enabling a transparent and flexible verification setup.

The MET 9.1.3 version was installed on the Roshydromet supercomputer CRAY XC40-LC
under UNIX. Only MET package was used in this study, but other METplus components
are being implemented now, among the most important are the METviewer for the visual-
ization of the scores and the METplus wrappers. The primary goal of the METplus wrap-
pers development is to provide MET users with a highly configurable and simple means to
perform model verification using the MET tools. A wrapper is a Python script that encap-
sulates the behaviour of a corresponding MET tool.

Methods and results

Ensemble_stat tool

In the MET tool for probabilistic scores (Ensemble_stat) a large number of scores are cal-
culated: ensemble mean, ensemble standard deviation, RPS, CRPS, Ignorance score, Prob-
ability Integral transform (PIT), Talagrand diagrams, ME and RMSE of the ensemble mean,
etc. [9]. The Ensemble_stat tool also produces the spatial products: the Neighbourhood en-
semble probability, NEP, and Neighbourhood maximum ensemble probability, NMEP [10,
11].

The scope of this paper is the application of the spatial approach to verification, so we are
not giving examples of all standard pointwise probability scores. However, let’s consider
the Talagrand diagrams, also called the rank histograms [12, 13, 14], as they provide a use-
ful means to analyzed if the EPS is enough dispersive and if it is biased. Figure 6.3.1 shows
an example of the Talagrand diagram. The U-shape of the diagram in Figure 6.3.1a for lead
time 2h means that the ensemble forecast is underdispersive, and the observations fall most
often in the tails. In Figure 6.3.1b, for lead time 23h, most part of the ensemble members
predict more precipitation than was observed, thus overforecasting bias is present. Such
defaults can be partly eliminated by ensemble calibration.

Neighbourhood maximum ensemble probability, NMEP [10, 11]. In NMEP, the fraction
of ensemble members is computed for which the event is occurring somewhere within the
surrounding neighbourhood. The NMEP output is usually smoothed with a Gaussian ker-
nel filter. The neighbourhood sizes and smoothing options can be customized in the config-
uration file. We applied the filter radius of 3 points; that is, the NMEP value at each point
was averaged in the radius of three points. In Figure 6.3.1c and d, the NMEP precipitation
fields are shown for two lead times. The ensemble spread is larger for longer lead time,

86



but it is not sufficient. Such products are useful for the forecasters, as the requirement of
exact forecast at a given point is relaxed. However, they are often too smoothed out, and the
local features of weather systems, in particular, of convective origin, are lost. They show
the need for object-based methods [5].

MODE, Method for Object-Based Diagnostic Evaluation (MODE tool in MET) [15, 16]
compares objects in gridded model and observation data. MODE was developed to mimic
the subjective forecaster judgment providing at the same time the objective evaluation mea-
sure. The scores in MODE are computed as follows:

1. The objects are identified in the forecast and observation fields using the two parameters
defined by a user: the threshold value for the variable under study and the convolution
filter (we used the filter with a 5-points radius for this method). The objects are contiguous
points where the variable exceeds the threshold.

2. The object attributes important for the user are chosen: for example, areas, centroids
(geometric centres of mass of the objects), axis angle, complexity of the object contour, etc.

3. The differences in area ratio, centroid distance, angle difference, etc. are computed for
each pair of objects in the fields, which are compared

4. The fuzzy logic functions F are set up to calculate the total interest, which is a measure of
similarity of two objects. The fuzzy logic function controls the importance of the attribute
difference. A good value of the attribute difference (for example, a small centroid distance)
corresponds to the fuzzy logic function value of 1, and this fuzzy logic value decreases up
to zero for the attribute difference of a useless forecast (e.g., the centroid distance is more
than 200 km). Thus, all the attribute differences are transformed to values from 0 to 1 by
the fuzzy logic functions. Figure 6.3.2 shows the fuzzy logic functions we choose.

5. For each attribute, a weight w is chosen and a confidence coefficient c is defined, which
indicates our confidence about the attribute measuring (c=1 was chosen here). Table 1
shows the weights w used as the basic MODE setup in this study. Weights for other at-
tributes available in MET were set to zero.
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Figure 62: Products from MET Ensemble stat tool for hourly precipitation accumulations,
2021 01 July, 01-02 UTC (left column) and 2021 01 July, 22-23 UTC (right column), run
from 01 July 2021, 00 UTC. Talagrand diagrams, aggregation over the forecast domain
(Central Russia) (top row) and neighbourhood maximum ensemble probability, NMEP, pre-
cipitation threshold 0.1 mm/h (bottom row).

Figure 63: Fuzzy logic functions in the interval [0, 1] for the attribute differences used in
this study.

6. Finally, the interest values I are calculated for each attribute i and object pair j and the
total interest (TI) value is computed.

Iij = Fijwici (1)
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Fuzzy engine
weights w
Centroid distance 2.0
Minimum boundary
separation

4.0

Angle difference 1.0
Area ration 1.0
Intersection area ratio 2.0

Table 16: Attributes used in the basic MODE setup and corresponding weights.

T Ij =

∑
iIij∑

iwici
(2)

7. The objects in MODE can be matched using a TI threshold. If the TI in a forecast-
observation object pair is greater than the TI threshold, this object is considered correctly
forecasted. We used the TI threshold value of 0.7 proposed by the MODE authors [15, 16].
MET has also several algorithms for merging objects within the same field, that is, object
clustering. In this study, if two objects in one field happen to match the same object in the
other field, then those two objects are merged.

8. Output of statistical characteristics of objects, object pairs, and clusters of objects, cal-
culating of the median of maximum interest, MMI, the summary characteristic of forecast
quality in MODE. The matrix with TI values for all pairs of objects in the forecast and ob-
servation field is composed, then the maximums in the columns and in the rows of this
matrix are taken. The MMI is the median of these maximums.

The advantage of MODE is that it is a very flexible tool due to the choice of fuzzy logic
functions, weights and thresholds depending on the variable and the goal of the verifica-
tion. Forecast and observed objects can be matched in MODE, but it doesn’t necessarily
require matching. A single score, MMI, is computed, but it provides more detailed infor-
mation about the object properties if needed, including the information about object misses
and false alarms.

Figure 65 shows the model and reference precipitation fields (a, b) and the objects in the
field of control ensemble forecast and radar composite for two thresholds, 0,1 mm/h (c-f)
and 1 mm/h (g-j), for the experiment with all the attributes from (Table 16) and only the
centroid distance chosen for calculating the TI. In 65 (c-j), the colours indicate matched
pairs of objects, black contour indicates the merged objects within each field (i.e., object
clusters), and blue colour indicates objects left unmatched (i.e., misses and false alarms). It
is seen from the figure that using only the centroid distance (e, f, i, j) creates more merg-
ing. It can be more appropriate for lower precipitation thresholds producing vaster objects.
However, for more intense precipitation (higher thresholds), where localization is more
important, the choice of several attributes as in Table 16 (c, d, g, h) seems better.
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Figure 64: Fuzzy logic functions in the interval [0, 1] for the attribute differences used in
this study.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 65: MODE results for hourly precipitation accumulations, 2021 01 July, 01-02 UTC,
run from 01 July 2021, 00 UTC6.: (a, b) precipitation fields; (c-j) objects, (a, c, e, g, i) control
ensemble member; (b, d, f, h , j) radar composite, (c-f) precipitation threshold > 0.1 mm/h;
(g-j) precipitation threshold > 1 mm/h; (c, d, g, h) all attributes from Table 1 are used to
calculate TI, (e, f, i, j) only centroid distance attribute is used to calculated TI.

MODE for EPS

At present, MODE is being adapted for the EPS at the Hydrometcentre of Russia. It’s a
development of work [7] following the approach proposed in [17, 5]. The procedure pro-
posed in [5] consists of taking the objects from all ensemble members and constructing a
hypothetical so-called ensemble “pseudomember” using the objects that are locally most
representative of the ensemble distribution. These objects are obtained in several steps: 1)
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A list of all objects in all forecast ensemble members is prepared; the total interest (TI) is
calculated for all the pairs of the objects in this list. 2) The probabilities are calculated from
the percentage of ensemble members with a matching object (matching is determined using
the TI threshold as in the paragraph above). All objects are sorted by probability. Within
the group of matched objects with the highest probability, the most representative object is
chosen according to the highest average TI. 3) This object is added to the object list of the
pseudomember. 4) The added object as well as all matching objects in its group that con-
tributed to the probability of the added object are removed from consideration; thus a new,
smaller list of objects is left. 5) Steps 2-4 are repeated until no objects remain in the list of
ensemble forecast objects. Let’s note that in [5] the TI calculation was modified compared
to [15, 16] to multiply I components from Eq. 1, while we use the standard approach (Eq.
2) with the attributes listed in Table 1 and the matching criterion TI > 0.7 [15, 16].

Figure 6.3.4 shows the test cases with ensemble pseudomembers. It should be noted that
the program is currently operating in test mode, it is planned to improve visualization, the
probabilities of objects will be ordered in the legend. For case 1 (Figure 6.3.4a, lead time
2 hours), the largest object of the ensemble (object 3) is determined, which was also visible
in the control member (Figure 6.3.3c). The probability of object 3 is 100%. This means that
it is found in each of the ensemble members. Objects 1, 2, 5 also have a 100% probability.
Part of the selected objects is not visible in the chart, this is due to the fact that the selected
objects may be small or overlap with other objects. A possible way to solve this problem is
to increase the weight of attributes related to object position matching. Another possible
way is to combine close objects into clusters before running the pseudomember calculation
(MET MODE provides several clustering algorithms).

Figure 6.3.4b shows the pseudomember for case 2 (lead time 23 hours). It consists of a very
large number of small objects. However, the largest object of the control member was not
included in the pseudo-member, because it is not the most representative of the contribu-
tion of the area attribute. This demonstrates the added value of the ensemble, since the
pseudomember fits the observational data better than the control term containing unre-
alistically large precipitation area. The selected objects have different probabilities, which
indicates a spread over the ensemble.

In Figure 6.3.4c, only five objects are selected, and only one of them has a 100% probability
of appearing in the ensemble. Other pseudomember objects are close to each other and
practically form a single object. The most common of these is object 2, which has a 63.64%
probability of appearing in an ensemble member, meaning that it occurs in more than half
of the ensemble members. The ensemble underestimates precipitation.

Figure 6.3.4d shows the pseudomember for case 4 (lead time 23 hours). Many small objects
characterize it, some of them overlapping. In total, 74 objects were identified for case 4.
Note that according to observations, there are many separate small objects, so the pseudo
term is closer to reality than the control one. Another conclusion from this case is that it
may be useful at the initial stage of the analysis to filter out objects that are less than a
certain area threshold in the forecast and observation fields.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

m) n)

Figure 66: Ensemble object pseudomember (left panel: a, d, g, j) with probabilities of the
objects, ensemble control forecast objects (centre panel: b, e, h, k) and observation objects
(right panel: c, f, i, l); precipitation threshold > 0.1 mm/h. (first row: a-c) 2021 01 July,
01-02 UTC, run from 01 July 2021, 00 UTC; (second row: d-f) 2021 01 July, 22-23 UTC,
run from 01 July 2021, 00 UTC; (third row: g-i) 2021 02 July, 01-02 UTC, run from 02 July
2021, 00 UTC; (fourth row: j-l) 2021 02 July, 22-23 UTC, run from 02 July 2021, 00 UTC.

Note: Figure 66m is the legend with object probabilities for Fig. 66d and Fig. 66n is the
legend for Fig. 66j, given outside the plots because of a large number of the objects in these
test cases.

The pseudomember will be used later to obtain MODE estimates for the ensemble forecast
using a set of threshold values for the probability of objects. It is made in the following
way: For a fixed probability threshold, only objects with probabilities above this threshold
are selected, and the rest are discarded; then MODE is run in the usual deterministic mode.
Thus, a set of MODE scores is formed for each probability threshold.

It was found in this analysis that in some cases overlapping of the selected objects occurs.
In our opinion, this is an undesirable feature. To avoid it, more experiments with attribute
weights are underway.

Conclusions and plans
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The high-resolution ensemble verification system is being developed at the Hydrometcen-
tre of Russia based on the free MET package. It includes both standard and spatial ver-
ification techniques. Verification is performed on the precipitation test cases up to now.
The MET package is found to be a highly configurable and flexible tool. At present, ac-
cumulation and aggregation of the scores for larger number of forecast cases and for the
variables besides precipitation are under preparation. The experiments will be continued
with MODE method applied to deterministic and ensemble forecasts to find the optimal
combination of tuning parameters for different weather situations.

The ensemble forecasts examined in this paper are underdispersive as they were performed
within the research of purely model uncertainty and therefore no perturbations of initial
and boundary conditions were introduced. Further, we plan to apply the verification sys-
tem to ensemble forecasts with perturbations of initial and boundary conditions down-
scaled from the global ensemble prediction system ICON-EPS. We will also extend the ver-
ification period.
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6.4 DIST methodology tuned on high-threshold events for flash floods forecast
evaluation

Maria Stefania Tesini, ARPAE-SIMC

Introduction

This task proposed to explore and highlight the suitability of an evolution of the DIST
methodology (see Marsigli, C., Montani, A., and Paccagnella, T.: A spatial verification method
applied to the evaluation of high-resolution ensemble forecasts, Meteorol. Appl., 15, 125–143,
2008) for the verification of HIW, such as high precipitation over catchment areas used
operationally for issuing Civil Protection alerts

The proposed methodology has been developed as a spatial method for the verification of
heavy precipitation issued at high resolution. In fact, it permits the use of a high-resolution
rain-gauges network, but gridded observations, such as radar precipitation analysis, can
be used as well. The main advantage of this approach is that no precipitation analysis is
required and information about localized maxima of precipitation can be considered, as
well as the variability of the precipitation field inside the area of interest.

Similarly, all the grid points that belongs to the selected area are considered, in this way the
ability of the model in reproducing high precipitation events, even if with some possible
positioning errors, is evaluated.

Verification results can be used directly to interpret how to use the forecast system and to
decide in which situations one system is better than another.

The verification system

It is an evolution of DIST, a spatial verification method based on the verification of the pre-
cipitation distributions within boxes of selected size (Neighbourhood obs – Neighbourhood
fcs). In DIST methodology, the verification domain is subdivided into boxes, each of them
containing a certain number of observed and forecast values.

For each box, several parameters of the distribution of both the observed and forecast values
falling in it can be computed (mean, median, percentiles, maximum).

Verification is then performed using a categorical approach, by comparing for each box one
or more parameters of the forecast distribution against the corresponding parameters of
the observed distribution, using a set of indices.
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Figure 67: Ensemble Original DIST methodology.

In the evolution of the methodology, squared regular boxes are replaced with catchment
areas. One of the main reason of this choice is the need to reduce problems related to
complex terrain, e.g. if a ridge of a mountain divides the box this can give misleading
results combining upwind and downwind situation.

A second aspect, no less important, is the possibility of communicating the results more
easily and directly to end users (e.g. meteorologists or hydrology) because the scores can be
provided on each catchment area.

Figure 68: Example of score (TS) on the Italian catchment areas (left) and Evolution of DIST
methodology (right).

The new methodology has been validated over Italy comparing results from DIST original
“squared boxes” and from new catchment areas considering the maximum value exceeding
some thresholds in each box or area.

The improvement in the scores obtained using the catchment area as a reference for ver-
ification seem to support the choice made, in particular by reducing the number of false
alarms and increasing the Success Ratio for all the considered models and thresholds.
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Figure 69: Results comparing maximum value exceeding thresholds of 1 mm/24h (top left),
10 mm/24h (top right), 20 mm/24h (bottom left) and 50 mm/24h (bottom right) during
MAM2019 over Italy. The colour of the symbols represents the different models (red for
Cosmo-2I, blue for Cosmo-5M and green for IFS-ECMWF. Filled symbols are for scores
evaluated on the catchment areas, empty ones for those on squared boxes.

Operational use of DIST: interpretation of the results

One of the main goals of this verification methodology is to provide to end users results
that can be used directly to interpret how to use the forecast system and to decide in which
situations one system is better than another.

Considering different parameter of the precipitation distribution in each area it is possible
to focus the attention on some characteristics of the precipitation field:

1. Average: it can be used to investigate the ability of models in reproducing different
amounts of precipitation over each area. Hydrologist are very interested in this infor-
mation.

2. Maximum: the use of the maximum of precipitation over the areas can provide some
information on high precipitation, even if not in the correct location but in the neigh-
bourhood, represented by the catchment area.

3. Median & Maximum: the combination of a condition on the median and one on the
maximum of precipitation can separate high localized precipitation from extensive
precipitation.
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Figure 70: Example of maps of different scores for the event defined as average precipitation
in the area greater than 1 mm/24h (in the upper panel) or 10 mm/24h (in the lower panel).
Differences can be noted both between the various areas and on the same area for different
thresholds.

The comparison between the results of the verification using the average or maximum value
over the area allows to highlight the different behaviour of the models: in many cases lower
resolution models have better performance considering the mean values, but they tend to
underpredict precipitation maxima. On the other side higher resolution models such as
convection permitting models are less performant on predicting average values, but they
are able to forecast higher values of precipitation, at the expense of a large number of false
alarms.
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Figure 71: Performance Diagrams showing results of verification for SON2020 over Italian
catchment areas for different models and forecast steps. In the left panels the mean value
exceeding the threshold of 1 mm/24h (top) and 20 mm/24h (bottom) are considered, while
on the right panels are reported the results concerning the maximum value exceeding the
threshold of 20 mm/24h (top) and 75 mm/24h (bottom).

The user can then form his own opinion on the performance of the model based on the type
of use he has to make of it. For example, if the interest is aimed at issuing alerts for the
possibility of high precipitation, the choice to give more credit to the model that has the
best results on the average precipitation could lead to numerous missed alarms. In this case
it would be preferable to take the higher resolution model into consideration.

Furthermore, we investigated the possibility of characterizing the distribution of precipita-
tion in the area.
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Figure 72: Schematized example of precipitation distribution over an area. The dots repre-
sent the rain-gauges or the grid-points of the model, the colours the amount of rain.

We are not interested in the exact position of the maxima, the DIST method is in fact used
to minimize spatial errors, but the idea is to discriminate, as a first approximation, between
high but localized precipitation and widespread rainfall. For this purpose, we tested the
use of the combination of two conditions: one on the maximum of precipitation and one on
the median.

For example, a precipitation with a maximum on the area greater than 50 mm/24h can
be due to different scenarios, which is possible to represent imposing a condition on the
median:

1. intense and widespread precipitation: in at least half of the points in the area it
rained more than 30 mm/24h (median > 30 mm/24h) with at least one (the maxi-
mum) greater than 50 mm /24h.

2. intense precipitation but not extended to the whole area: in half the points of the
area it rained less than 20 mm/24h (median <20 mm/24h), while in the other half
of the points of the area it rained more than 20 mm/24h with at least one point (the
maximum) greater than 50 mm/24h.

3. intense but more localized precipitation: it rained in half of the points in the area less
than 10 mm/24h (median <10 mm/24h), ), while in the other half of the points of the
area it rained more than 10 mm/24h with at least one point (the maximum) greater
than 50mm/24h.

To support the use of the median/maximum combination to distinguish the various pre-
cipitation scenarios, since we know that most of the high localized precipitation are due
to convective events, we considered a dataset of observed precipitation over the eight alert
areas of the Emilia-Romagna region and the corresponding lightning data. Different con-
ditions on median an maximum had been imposed to separate the scenarios, then, for each
different scenario, the events were classified on the base of the presence of lightning or not,
with the assumption that if there is lightning the precipitation is of convective type.

The dataset was composed of 270 day of observed precipitations for the period March-
November 2015, described by median and maximum on the 8 alert areas of Emilia-Romagna
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region, and the corresponding total number of lightning per day over each area, simplified
in lightning/no-lightning.

Figure 73: Classification of observed precipitation events on the base of conditions on max-
imum and median of precipitation over the eight alert areas of Emilia-Romagna region, for
a period of 270 days (March-November 2015). Each category has been further stratified
based on the presence of lightning.

Out of a total of 2160 cases considered, 1571 were rain events but in only 76 the maxi-
mum of precipitation exceeds the 50 mm/24 thresholds. Considering these high precip-
itation events with no condition on the median, the 58% were convective and the 42%
not-convective (i.e. with lightning or not) and it’s difficult to distinguish between cases
of convection or not. But if the condition “median less than 20 mm/24h” is imposed, the
events associated with the presence of lightning are the 66% of the total. The number of
convective events then becomes 72% when the condition "median less than 10 mm 24/h".

These results confirm that using joint use of conditions on maximum and median can be a
good approximation to select high localized precipitation that are mainly due to convection.

By applying this type of classification in the verification activity, it is possible to evaluate
the behavior of the models in the reproduction of different precipitation scenarios, high-
lighting, in broad terms, the meteorological situation in which the models perform better
or worse.
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Figure 74: Performance Diagrams showing results of verification for MAM2020 over Italian
catchment areas for different models and forecast step considering the events with maxi-
mum precipitation exceeding 50 mm/24h. In the top left panel all the events are consid-
ered: in the top right panel only those with median greater than 30 mm/24h, representing
a scenario of intense and widespread precipitation, in the bottom panels those with median
less than 20 mm/24h (left) and 10 mm/24h (right), representing scenarios of high of local-
ized precipitation (e.g. mainly thunderstorms).

For example, referring to the results of MAM2020 in which the maximum precipitation in
the area exceeds the threshold of 50 mm/24h, it is possible to attribute the high number of
false alarms of the COSMO models or of the misses of IFS-ECMWF to a bad representation
of localized convection, while considering intense but diffuse precipitation the scores are
in general better.

This type of information can provide the user with a more complete picture of the forecast-
ing system.

Communication of the results

Reports of verification results obtained applying the DIST methodology illustrated in this
work are produced on a seasonal basis internally for Arpae and Civil Protection usage.
Several COSMO models with different resolution and IFS-ECMWF are considered over the
Italian catchment areas using the dataset of rain-gauges provided from the National De-
partment of Civil Protection.
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6.5 LPI verification and correlation of convective events with microphysical
and thermodynamical indices

F. Gofa, D. Boucouvala, HNMS

Approach

The distribution analysis of several convective events in both space and time will allow
lightning/thunderstorm regimes to be determined. Lightning Potential Index (LPI) is a
measure of the potential for charge generation and separation that leads to lightning flashes
in convective thunderstorms and can be calculated from COSMO model. While the connec-
tion between cloud microphysics and lightning seems apparent, the common indices used
for forecasting thunderstorms and the potential for lightning usually rely on stability and
thermodynamical indices (e.g., CAPE).

An effort will be given to correlate LPI with observed lightning. In this way, it will be eval-
uated if for Greek territory LPI can be useful parameter for predicting lightning as well as
a tool for improving weather forecasting of convective storms and heavy rainfall. Statistical
evaluation of LPI forecasts with traditional dichotomic scores as well as with SAL spatial
method on selected intense convective events will be also performed by comparing gridded
lightning data with model forecasts. LPI will be evaluated (optimum upscale window) over
Greece on certain events, as a useful parameter for predicting lightning as well as a tool for
improving weather forecasting of convective storms and heavy rainfall.

Lightning formation

The microphysical processes that lead to the formation of precipitation particles are in-
volved in charge separation and the build-up of electric fields in convective clouds.

The non inductive mechanism, involves rebounding collisions between graupel particles
and cloud ice crystals and requires the presence of supercooled liquid water. Lightning
Potential Index (LPI) is a measure of the potential charge separation that leads to lightning
flashes in convective thunderstorms (Yair et al. 2010, JGR). It is calculated from model
simulated updraft and microphysical fields within the charge separation region of clouds
between (0o C and - 20o C), where the non-inductive mechanism involving collisions of
ice and graupel particles in the presence of supercooled water is most effective (Saunders,
2008).

LPI is defined as the volume integral of the total mass flux of ice and liquid water within
the “charging zone” in a developing thundercloud. The LPI (J kg-1) and is defined as:

Where V is the volume of air in the layer between 0oC and -20oC, w is the vertical wind
component (ms-1) and q_s, q_i and q_g are the model-computed mass mixing ratios for
snow, cloud ice, and graupel respectively (in kg-1). ϵ is a dimensionless number that has a
value between 0 and 1 and is defined by the formula above.
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Where: Ql is the total liquid water mass mixing ratio and Q_i is the ice fractional mixing
ratio (kg/kg) defined by,

ε is a scaling factor for the cloud updraft and attains a maximal value when the mixing
ratios of supercooled liquid water and of the combined ice species (the total of cloud ice,
graupel, and snow) are equal.

Calculation of the LPI from the cloud-resolving atmospheric model output fields can pro-
vide maps of the microphysics-based potential for electrical activity and lightning flashes.

Methodology

Model setup: LPI can only be calculated if you run model with the graupel microphysics
(itype_gscp=4) or the 2-moment microphysics. Results for LPI are only meaningful in con-
vection resolving mode, i.e., deep convection parametrization switched off and grid spacing
smaller or equal to 4 km. LPI is a column integral involving the square of the vertical ve-
locity and the presence of graupel (=rimming process) and other ice hydrometeors at the
same locations. It needs explicitly simulated convective cells with realistic updraft speeds.

The COSMO-GR4 LPI forecasts were used with 0.04 deg resolution forecasts (not a oper-
ational product) as well as CAPECON outputs, while other indices were calculated from
model outputs. This serves as the original resolution of the analysis performed. Then
aggregated forecast and observations gridded format with multiple of the original space
resolution are calculated through scripts that were developed.

Forecasts gridded fields: For the original resolution (0.04), the LPI value of each grid point
is checked, and if it is higher than the value of 0.3 (see table below) , a value of 1 is given
to the specific grid point. Next, grids with increased (multiple) resolution based on the
original dimensions are created (e.g., 0.04x2, 3, . . . , 20). For each new grid cell or each new
grid, the MAX LPI value of the 3x3 points is assigned.

Observations: For all new grids with resolution from 0.04deg up to 20x0.04deg, a lat-lon
based check is performed in the boundaries of each grid cell, for the existence of lightning
observations and a value of 1 is assigned to that grid point for positives checks or else a
value of zero.

Statistics:

To statistically evaluate LPI forecast performance the following are applied:

1. Direct comparison of obs-fcs gridded values and calculation of contingency table
properties.

2. SAL methodology for steady LPI threshold of one (lightning existence).

Thermodynamical indices

Stability indices were calculated using temperature and relative humidity profiles from the
COSMO-GR4 model forecasts. The formulas used for the estimation of the various indices
in this analysis are specified below.

K index (KI)
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It calculates the thunderstorm potential based on the vertical temperature lapse rate be-
tween 850 and 500 mbar pressure levels, moisture content at 850 mbar pressure and moist
layer depth at 700 mbar pressure (George 1960).

KI = (T850-T500)+Td850-(T700-T700),

with the suffix values indicating the pressure level.

The critical values of KI index indicating thunderstorm activity (Johnson 1982) are given
below:

KI ( K) Thunderstorm chances
under 288 0% Chance
In the middle of 288
and 293

20% chance

In the middle of 294
and 298

20-40% possibility for little thunder-
storms

In the middle of 299
and 303

40-60% possibility for little to medium
thunderstorms

In the middle of 304
and 308

60-80% possibility for heavy thunder-
storms

In the middle of 309
and 313

80-90% possibility for severe thunder-
storm event

above 313 Over 90% possibility for thunderstorm
event

Total Totals Index (TTI)

The TTI is procured by basic deduction among temperature and dew point temperature
values at 850 and 500 hpa pressure levels (Miller 1967).

Cross totals, CT = Td850 – aT500; Vertical totals, VT = T850 – T500

Total Totals Index, TTI = CT + VT = T850 + Td850 – 2T500

The critical threshold values of TTI parameter (Miller 1972) are given below:

ITTI values (K) Thunderstorm possibility
Ranging between 44
and 45

Possibility for small thunder-
storm activity

Ranging between 46
and 47

Possibility for moderate thunder-
storm activity

Ranging between 48
and 49

Possibility for moderate to severe
range of thunderstorm activity

Ranging between 50
and 51

Possibility for heavy thunder-
storm activity

Ranging between 52
and 55

Possibility for scattered thunder-
storm activity

above 55 Possibility for severe thunder-
storm activity

Improved total totals index

The improved total totals index is obtained by the average of the temperatures at surface
(at 2 m), the 925hpa and the 850hpa pressure levels (Miller 1967).

ITTI = (2mT+ Td925+T850)/3 +(2mTd+ Td925+Td850)/3 – 2T500 -
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The threshold for thunderstorm occurrence is usually seen at 57 K.

Humidity Index (HI)

It is obtained by calculating the availability of water vapour at 850, 700 and 500 hPa pres-
sure levels. The importance of relative humidity as the major component needed for the
severe thunderstorm activities is being estimated by this index.

HI= (T850-Td850)+(T700-Td700)+(T500-Ts500)

When HI values lies less than or equal to 30K, high possibility for thunderstorm occurrence
has been noticed on that region.

Convective available potential energy (CAPE)

The buoyant energy required to accelerate an air parcel vertically is referred to as CAPE.
The sum of positive buoyant energy from the level of free convection to the equilibrium
level can be used to measure it (Moncrieff and Miller 1976).

CAPE =
∫ y

x
g[
T V parcel − T V env

T V env
] dz

Where T V parcel represents the parcel’s virtual temperature and T V env represents the vir-
tual temperature of environment respectively. x and y denote the level of free convection
and neutral buoyancy. The critical values of cape parameter (Grieser 2012) are:

CAPE (IN
J/KG)

Thunderstorm chances

UNDER 300 no energy for convection
FROM 300 TO
1000

Poor potential for weak
convection

FROM1000 TO
2500

moderate potential for
convection

GREATER
THAN 2500

strong potential for con-
vection

Selection of intense precipitation events

For the application of the methodology, eight test cases with significant convective precip-
itation amounts around Greece were analyzed, thus only three of them were proved to be
significant and presented with respect to the LPI values forecasted.

1. Test Case 1: 15 Nov 2017

2. Test Case 2: 12 Nov 2019

3. Test Case 3: 24 Nov 2019

Other cases analyzed were: 10/07/2019, 07/12/2020, 08/08/2020, 02/06/2018, 03/10/2019.
Below the synoptic description for weather situation is provided.
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Figure 75: Upper row: MSLP maps during the event. Lower row: accumulated observed
lightnings (left) and RBG air masses.

1. Test Case 1

A cut-off low in Tunisia over upper troposphere on 11/11/2017 associated with a low
over Syrti Gulf which caused severe thunderstorms over Central Mediterranean, moved
northeastwards and on 13/11 influenced initially western Greece and gradually east parts,
mainly Attica, Cyclades, Crete and Dodecanese with heavy phenomena. In addition, on
13/11 a second deep low over Genoa Gulf (995hpa) transferred polar air masses over South-
ern Italy. On 15/11 the low expanded and moved over Central Mediterranean. Over the
warm sea of Ionian, the cold air destabilized. Due to weak wind shear, a cyclone (Medicane)
was formed. Heavy rainfall and flooding caused severe damage over Western Attica (Fig.
75).

1. Test Case 2

Deep barometric low with frontal activity over South Italy moved north eastwards leading
to strong gale southerly winds (9 Beaufort), heavy rain, thunderstorms and electrical dis-
charge all over Greece (except Dodecanese). Flooding over Attica and Crete were reported
while Ionian islands suffered from severe damages especially Corfu and Cefalonia (Fig. 76.)
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Figure 76: Upper row: MSLP maps during the event. Lower row: accumulated observed
lightnings (left) and RBG air masses.

1. Test Case 3

Deep low over Italy moved eastwards and produced a cold front over Ionian Sea which
influenced all the country of Greece with severe damages due to heavy rainfall. Flooding
were reported in South Attica, Rhodes, Central Macedonia and East Aegean Islands. Strong
southerly gale winds 9Bf over all seas. First snowfall of the year was reported in mainland
mountains (Fig. 77).
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Figure 77: Upper row: MSLP maps during the event. Lower row: accumulated observed
lightnings (left) and RBG air masses.

Evaluation of LPI Forecasts – Dichotomic Approach

In this section, the statistical results of the evaluation of the upscaled forecast and observa-
tion fields are presented. The methodology presented in section 3 was applied for all three
test cases and the relevant plots for POD, FAR, ETS and FBI.
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Figure 78: Test case 1 - From top to bottom: POD, FAR, FBI, ETS for various time intervals
during the event and for increasing spatial resolution.
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Remarks from Test Case 1: No skill for LPI forecasts for the first 12h of the event

POD: reduced skill during afternoon hours, improved performance for scales larger than
16x0.04∼64km

FAR: Improved performance for scales higher than 14x0.04∼56km, no variation in perfor-
mance with lead time.

FBI: no impact of the upscaling approach in the performance, high overestimation in first
10 forecast hours

ETS: performance does not increase linearly with increased resolution, optimum skill in
most time intervals when the 64km resolution is applied.

112



Figure 79: Test case 2 - From top to bottom: POD, FAR, FBI, ETS for various time intervals
during the event and for increasing spatial resolution.
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Remarks from Test Case 2: No skill of forecasted fields in the original resolution

POD: no change in skill with lead time. Improved performance for scales higher than
12x0.04∼48km with no clear improvement in further upscaled fields.

FAR: Improved skill for almost all fields during evening hours

FBI: no impact of the upscaling approach in the performance, higher overestimation for
the original resolution but also for almost all upscaled forecasted fields.

ETS: performance increases linearly with window size until 14x0.04deg∼56km
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Figure 80: Test case 3 - From top to bottom: POD, FAR, FBI, ETS for various time intervals
during the event and for increasing spatial resolution.
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Remarks from Test Case 3: Good performance of LPI forecasts for this event compared to
the previous cases even with the original resolution.

POD: Skill is reduced with lead time

FAR: For resolution higher than 10x0.04∼40km has reached already adequate skill.

FBI: Small underestimation of LPI predictions is shown in all upscaled grids

ETS: Performance increases linearly with window size. For windows higher than 40km
there is a good skill in LPI forecasts.

Evaluation of LPI Forecasts – SAL Approach

During the application of Structure, Amplitude, Location (SAL) spatial methodology the
original resolution of both forecast and observed fields was used.

Figure 81: Test case 2 – Objects matching for several time windows during the event. SAL
components with respect to forecast horizon.
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The S values are negative, indicating that the model predicts sharper objects than the ones
observed.

The A is positive with value higher than 0.5 during afternoon hours (total LPI overesti-
mated as shown in FBI index in upscaling approach).

The L parameter is also increases after 09h, indicating some differences in the location of
objects with respect to the observed ones.

Remarks from Test Case 3:

The S values trend is variable with horizon time and seems that model predicts more
widespread objects in the beginning and around the end of the forecasted period.

The A absolute values are smaller than 0.5 while the total LPI is satisfactorily predicted
(slightly overforecasted mainly around 20-23h).

The L parameter is low (around 0.2) and shows good agreement on the location of objects
with respect to the observed ones.

Figure 82: Test case 3 – Objects matching for several time windows during the event. SAL
components with respect to forecast horizon.

Post Processed Thermodynamical Indices
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Using the necessary forecasted fields in the original resolution, several thermodynamical
indices were calculated and plotted according to the information provided in paragraph 4.
Appropriate colour pallets were utilized for each index in order to notify areas with high
possibility of presence of convection.

Figure 83: Test case 1 – Presentation of various thermodynamical indices during the evo-
lution of the event with indication of color/threshold that corresponds to high convection
probability.
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Figure 84: Test case 2 – Presentation of various thermodynamical indices during the evo-
lution of the event with indication of colour/threshold that corresponds to high convection
probability.
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Recommendations

The main outcomes from the work performed for Task 3.5, can be summarized as follows:

1. It is necessary to derive upscaled LPI products in resolution larger than 40km (10times
the original one), in order to gain reliability in the forecasts. From the analyzed
events, the performance of COSMOGR4 for LPI seemed to be strongly dependent
on weather regimes.

2. LPI raw values need to be thresholded according to the area and period examined.
Further study for longer periods is necessary in order to determine what thresholds
are appropriate for the specific geographic area.

3. Thresholds for thermodynamical indices associated to severe thunderstorms need to
be appropriately defined to provide useful indication of a thunderstorm area. Default
values often do not apply.

4. The lightning potential index produces reliable lightning information during stronger
storms, much like observed in observational data. A general overestimation of the
presence of lightning was derived when native resolution was used.

5. ‘Forecasters would be able to anticipate lightning activity from other model outputs
such as CAPE or postprocessed thermodynamical indices even with less accuracy in
the position, For forecasters the added value of direct LPI forecasts used proved to be
very small, or not present at all.

6. ‘Probably, the LPI is somewhat better at distinguishing lightning-producing storms
and this may be of importance to some user groups.
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6.6 Comparative verification of NWC and NWP results using spatial verifica-
tion methods as part of the SINFONY project at DWD

Gregor Pante and Michael Hoff, DWD

Introduction

Germany is exposed to various kinds of high impact weather phenomena. Strong impacts
are expected from convective events during summer which happen to be especially hard to
predict. The Seamless Integrated Forecasting System (SINFONY) project at DWD focuses
on such events, which mostly take place on the kilometre scale. One aim of the project
is therefore the development, adaptation, and operationalization of innovative, spatially
based verification methods of the entire process chain of the integrated forecasting sys-
tem consisting of data assimilation, nowcasting and numerical short-term prediction. The
advantage of spatially based verification methods is that exact matching of forecasts and
observation no longer needs to prevail to obtain good scores because these methods cir-
cumvent the “double penalty” problem, i.e. a miss due to a displaced observation event
and a false alarm due to a displaced forecast event. Following Gilleland et al. (2009) there
exist mainly four categories of spatial verification – neighbourhood (or fuzzy) and scale-
separation basically applying filtering methods, as well as feature (or object) based and
field deformation basically yielding information about displacements. In the SINFONY
project, we decided to apply neighbourhood as well as object-based verification methods.
Both methods are well established and cover a huge amount of information which is helpful
for model development, user interpretation and many more.

The neighbourhood (also known as fuzzy) approaches compare values of forecasts and
observations in space–time neighbourhoods relative to a point in the observation field.
Properties of the fields within neighbourhoods (e.g., mean, maximum, existence of one or
more points exceeding a certain threshold) are then compared using various statistical sum-
maries, which are often simply the traditional verification statistics. Such comparisons are
typically done for incrementally larger neighbourhoods so that it is possible to determine
the scale at which a desired level of skill is attained by the forecast (Gilleland et al., 2009).
The neighbourhood methods apply a smoothed filter on the original field(s). Summary
statistics, such as traditional verification statistics, can be applied to the smoothed field.
The process is typically repeated using increasingly larger neighbourhoods. The most es-
tablished neighbourhood method is called Fractions-Skill-Score developed by Roberts and
Lean (2008).

Of particular interest, especially in SINFONY, are object-based methods which require a
threshold-linked object identification algorithm. It is applied to pixel-based forecast and
observation fields of radar reflectivity. The resulting objects contain certain attributes re-
garding their geometry (e.g., centroid, area), intensity (e.g., min, max), and forecast infor-
mation (e.g., trajectory). In SINFONY, we focus on the object-based evaluation metric called
median of maximum interest (MMI) after Davis et al. (2009) to assess the quality of the pre-
dicted precipitation objects. The object-based evaluation is extended to cope with ensemble
forecasts. Besides basic single member verification a new technique to define a so called
“pseudomember” (Johnson et al., 2020, J20 hereafter) is analyzed. The pseudomember
comprises a reasonable and representative selection of objects from all ensemble members
that have locally the highest probability of occurrence.

Data and methodology
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Data sets

In SINFONY will be a variety of data available for verification. The case study period of the
underlying data will be mentioned in the respective section.

Grid-based data

For numerical weather prediction, NWP, the underlying model is the regional ICON-D2-
EPS in a quasi-operational setup since 2019. Before 2019, we were using COSMO-DE-
EPS in a quasi-operational setup. The EMVORADO operator (Zeng et al., 2016) simulates
synthetic radar reflectivity for each of the 17 polarimetric Doppler-C-Band radar systems
in the DWD radar composite. Subsequently, the model volume scans will be processed by
POLARA and mapped onto a Radolan grid with a horizontal resolution of 1km. We are
using 40 members for data assimilation and 20 members for the forecast of up to 8 hours.

For nowcasting, we are using STEPS DWD with a localization filtering approach (planned
to submit in IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing) to generate an ensemble with 30 member (20 member used for verification) with
a nowcasting time of two (or four) hours. All nowcasting data are on the 1km horizontal
resolution Radolan grid.

Object-based data

For object identification, we are using our in-house product KONRAD3D. With the help of
adaptive thresh-olding schemes and other filtering methods, which will not be specified in
this report, KONRAD3D identifies cell objects in each radar volume scan. The default basic
threshold for object identification is 35dBz whereas a subcell within such regions must
fulfill a minimum-maximum difference to the basic threshold of at least 7dBz. This means
that cells mostly obtain a minimum value of 42dBz. By optimized combination of objects
in each radar volume scan, three-dimensional objects will be built taking into account the
entire DWD radar network.

KONRAD3D is used for object nowcasting as well. Currently in development is an en-
semble based object nowcasting which will unfortunately not be available for the current
study. However, since EMVORADO simulates reflectivity for all radars and respective vol-
ume scans, KONRAD3D can be applied to the NWP forecasts, described in the previous
section. Therefore, we can fall back on an 20 member ensemble object-based NWP fore-
cast of 8 hours with temporal resolution of five minutes to test our object-based verification
methods. Further, a comparison of 1-moment vs. 2-moment microphysics scheme will be
made. As the latter is able to produce higher reflectivity, it is expected to better capture
extreme events.

Combined product Seamless combination of nowcast and model forecast, grid-based and
object-based.

Spatial verification methods

Neighbourhood-based methods

We apply mostly well-known neighbourhood-based verification methods to our data. The
most established method is the fractions skill score, FSS, (NO-NF) by Roberts and Lean
(2008). Further, we implemented the minimum coverage method (NO-NF), Fuzzy-logic
(NO-NF), fuzzy-logic with joint probabilities (NO-NF), multi-event contingency table (SO-
NF) and pragmatic approach (SO-NF) for which the reader is referred to as Ebert (2008).
All necessary information about the underlying methods can be found in this publication.
Since the above mentioned methods for building a contingency table from neighbourhood
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probabilities have weaknesses in their bias behaviour, we implemented the neighbourhood-
based contingency table including errors compensation by Stein and Stoop (2018). This
method uses a practical approach in which it the same number of misses and false alarms
in a certain neighbourhood compensate each other to hits and correct negatives, i.e. it is
a correct forecast in the respective neighbourhood. A positive side effect of this method
is that the frequency bias is independent of the neighbourhood size (small deviations on
domain edges are possible), which makes it quite practical using it for verification.

Another useful method we implemented is the displacement estimation of precipitation
fields based on fractions skill score by Skok and Roberts (2018). The authors used the FSS =
0.5 threshold for a useful forecast to estimate a global distance metric. The results are quite
promising even though the method is not applicable for frequency biases larger than two
and lower then 0.5. Also for frequency biases larger than 1.5 (< 0.75) the method exhibits
shortcomings. However, for the remaining data, the displacement metric is a useful infor-
mation apart from the classical categorical verification metrics. To go one step further, G.
Skok presented a new metric called displacement from NSS (neighbourhood skill score) at
2020 International Verification Methods Workshop. Further, Skok showed that the results
are closer to the real displacement and also in more realistic cases the score showed more
reliable results. The Displacement-NSS is no more limited to small biases which makes it
quite useful for application in our SINFONY project. Therefore, with the help of G. Skok,
we implemented this metric as well. However, the deviation of the NSS displacement from
real displacement becomes larger the closer precipitation objects are to the domain edges.
Up to now, we did not correct this fact in our verification analyses but postpone it to future
work.

Another useful method, we implemented, is Neighbourhood-Ensemble-Probabilities (NEP)
proposed by Schwartz et al. (2010). Here, the thresholding, neighbourhood-smoothing (for
different box lengths) will be done for all M ensemble member separately. Finally, the
resulting M neighbourhood probabilities will be averaged to obtain NEP. On the NEP field,
all above described methods can be applied, however, not all methods will give benefits for
using NEP. The most reliable method in combination with NEP is FSS. The NEP is most
beneficial for smaller neighbourhood sizes around a certain point of interest. For larger
neighbourhoods, the effect will be smoothed out or the areas of precipitation probabilities
become to large in comparison with the observation.

Finally, we implemented reliability and ROC diagrams for analysing our grid-based deter-
ministic and ensemble data. As reference, however, we made a compromise and took only
binary observation into account, since otherwise the huge quantity of verification data is
not manageable in an operational framework.Further implementations are planned for the
future.

Object-based methods

Total Interest and Median of Maximum Interest

The TI (Davis et al., 2009) is a measure for the similarity of two objects with respect to the
objects’ attributes. For each selected attribute i of an object pair j a “fuzzy logic function”
(F) is defined in order to transform the value of i into the interval [0,1]. For example, the
function of the centroid distance (FCD) – one attribute of an object pair – is defined to be
equal 1 if CD is less than 10 km, then linearly decreases with increasing CD and equals 0
for CD larger than 100 km. The F-values of different attributes result in the “interest” (I) by
multiplying with weights (w) and confidence factors (c). The TI of an object pair j, finally,
is the weighted sum of all I-values of all considered attributes i (Davis et al., 2009):
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Attribute w, % c fmin fmax
Centroid distance 28 Area ratio 10 km 100 km

Minimum boundary distance 40 1 5 km 50 km
Area ratio 19 1 0.0 0.8

Intersection area ratio 13 1 0.0 0.25

Table 17: Attributes and parameters used to calculate the total interest TI. fmin and fmax
are the lower and upper limits below and above which the fuzzy logic function of the re-
spective attribute takes its minimum, respectively maximum value.

In the presented analysis we employ the settings as described in Davis et al. (2009) and
listed in Table 17 to calculate the TI. Having one set of observed and one set of predicted
objects, the TI-values of all possible object pairs are calculated. They fill the so called
TI matrix which contains all observed objects as columns and all predicted objects as rows.
The next step selects the maximum values along each row (column) and adds them as a new
column (row) at the right (bottom) of the TI matrix. The median over all these maximum
values builds the final score for the object-based ensemble verification, i.e., the median of
maximum interest MMI.

Ensemble forecasts

The object-based evaluation of ensemble forecasts is one major challenge in the verification
for two reasons. First, the amount of objects to be processed can be very large depending on
the weather situation and number of ensemble members. And second, new methods must
be developed to reveal a fair score. Two rather simple ideas are the verification of the objects
from each single ensemble member separately or of the merged set of all objects from all
members. The first one yields simply the quality of each member and can additionally
provide information about the spread of the ensemble. The second one is very likely to
generate so called “over-forecasting”, i.e., the combined set of objects comprises much more
objects than the observation which may generate many false alarms. Therefore, a third
method is analyzed in which a reasonable selection of objects is chosen to build the so
called “pseudomember” which comprises the objects from all ensemble members that are
locally the most representative ones of the ensemble distribution (J20).

The selection of objects for the pseudomember follows five steps as described in J20:

1. “Make a list of all objects in the forecast ensemble, together with the objects’ proba-
bilities, calculated from the percentage of ensemble members with a matching (i.e., total
interest > 0.2) object.

2. Sort all of the objects by probability, breaking ties according to the average total interest
with all the objects from other ensemble members that it matched to.

3. Add the highest probability object to the object list of the pseudomember.

4. Remove from consideration the added object, as well as all matching objects in other
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members that contributed to the probability of the added object, leaving a new, smaller list
of objects.

5. Repeat from step 2 until no objects remain in the list of ensemble forecast objects.”

Here these steps are performed for constructing the pseudomember but another matching
criterion (first step of J20) was used. For the comparison of one specific object from one
member with all objects from all other members, the TI of this specific object with all other
objects is calculated as:

where FCD and FAR are the interest functions of centroid distance (CD) and area ratio (AR).
These functions are defined as

Below CD1 and AR1 and above CD2 and AR2, which are set to CD1 = 10 km, CD2 = 70
km, AR1 = 0, and AR2 = 0.8, the interest functions take their minimum (0), respectively,
maximum (1) values. For object pairs to be defined a match the TI must exceed a value
of 0.7. This criterion limits the ranges of CD and AR within which matches are possible.
Hence, if CD is larger than 38 km no match can occur even if AR was perfect while no
matches occur for AR below 0.16 even if CD was perfect.
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Figure 85: Procedure of selecting the objects of the pseudomember for a forecast initialized
on 30 May 2016 12 UTC with a lead time of 3 hours. All objects of all ensemble members
in a given region are shown in panel (a). Panels (b)–(k) depict the single pseudomem-
ber objects (gray bordered polygons) according to their probability of occurrence (colours).
The lighter colours around these objects mark the uncertainty regions, i.e., the unified area
of all objects from other members that were defined a “match” with the respective pseu-
domember object. The combined result with all pseudomember objects is given in panel
(l). Coloured areas of the uncertainty regions are stacked on top of each other with increas-
ing probability, hence, regions with low probability can be covered by those with higher
probabilities.

Figure 85 illustrates the procedure of selecting the pseudomember objects following the
steps described above. Technically, the pseudomember is a list of polygons, i.e., the se-
lected objects, together with their probabilities of occurrence and uncertainty regions. The
probability of occurrence p (colour scale in Fig. 85) is the percentage of ensemble mem-
bers with at least one matching object. The member of the object in consideration itself is
counted as well, hence, for a 20 member ensemble, as used in this study, p varies in 5%
steps between 5% and 100%, where 5% means no other member has a matching object and
100% all other members have at least one matching object. If a member has more than
one matching object all these objects are removed from further consideration (step 4 in
the description above) but this member still counts as only one member with regard to the
probability. The uncertainty region of a pseudomember object is the unified area covered
by all the matching objects from other members (light colours in Fig. 1). In the example one
object has matching objects in all other ensemble members and gets a value of p = 100%
(Fig. 85b). The probability of the subsequently selected objects decreases until only one
object remains which has no matching objects in other members and therefore p = 5% is
assigned to this object (Fig. 85k).
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Results

The different spatially based verification methods described before are applied to predic-
tions from the SINFONY reference period between 27 May – 25 June 2016. This early
summer period is characterized by almost daily strong convective activity over Germany.
Unfortunately, only COSMO-DE-EPS runs are available for this time period.

Neighbourhood-based methods

In this section, we show some representative results from the SINFONY reference period in
May/ June 2016.

Figure 86: FSS tiles plots for reflectivity (dBz) averaged over the SINFONY reference period
(27 May – 25 June 2016) and over all initial times (11 – 15 UTC) and all ensemble members
(1 – 20, incl. NEP). The top row shows results for a lead time of 30 minutes, the bottom row
for 4 hours. COSMO-DE-EPS 1-moment microphysics scheme (left panels), 2-moment mi-
crophysics scheme (middle panels) and STEPS nowcasting (right panels). Greenish colours
represented a skilful FSS (≥ 0.5), reddish colours represent non-skilful FSS (< 0.5).
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Figure 87: FSS as a function of lead time for reflectivity (dBz) averaged over the SINFONY
reference period (27 May – 25 June 2016) and over all initial times (11 – 15 UTC). The
top row shows results a threshold of 15dBz, the bottom row for 30dBz. The left column
shows results for a box length of 1pixel (1km), i.e. no neighbourhood, the right columns for
17pixel (17km). Thin solid lines show the FSS of all ensemble members, the thick dashed
line shows the FSS of the NEP field. In black 1-moment microphysics scheme NWP, in red
2-moment microphysics scheme NWP and in blue STEPS-DWD nowcasting.

A first overview of the quality of the forecasts is given by Fig. 86. It shows FSS tiles plots
for 30 minutes lead time (upper row) and 4 hours lead time (bottom row), as well as three
different model setups, COSMO-DE-EPS 1-moment microphysics scheme (left panels), 2-
moment microphysics scheme (middle panels) and STEPS nowcasting (right panels).

Aggregated over all parameters, the FSS shows normal behaviour, i.e. increasing values
with increasing box length (neighbourhood size) and decreasing values with increasing
thresholds. The STEPS nowcasting (right panels) is, as expected, of better quality after
30 minutes in comparison to the NWP setups. Especially the higher thresholds show better
scores in the nowcasting, mostly because the NWP is not able to produce such high re-
flectivity. However, after 4 hours lead time (lower panels), the NWP quality is superior to
nowcasting quality, which is not surprising since the nowcasting does not include dynami-
cal information.
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Fig. 87 shows the FSS results for reflectivity (dBz) as a function of lead time, aggregated
of the SINFONY reference period and all initial times (11 – 15 UTC). The top row shows
results a threshold of 15dBz, the bottom row for 30dBz. The left column shows results for
a box length of 1pixel (1km), i.e. no neighbourhood, the right columns for 17pixel (17km).
Thin solid lines show the FSS of all ensemble members, the thick dashed line shows the
FSS of the NEP field. In black 1-moment microphysics scheme NWP, in red 2-moment
microphysics scheme NWP and in blue STEPS-DWD nowcasting.

It can be seen that the NWP (red, black) exhibits a short spin-up phase, whereas the spin-
up effect is much stronger for the 2-moment microphysics scheme (red). The reason for
this was that the model produced way to many reflectivity features in the early lead times.
This effect is correct for ICON-D2-EPS in 2020 and 2021 (not shown). It is obvious that the
NEP (thick dashed lines) has a quite positive impact on the score, especially for smaller box
lengths. This fact answers the question whether we need an ensemble for our forecasting
systems.

Another powerful tool in neighbourhood verification is a respective reliability and ROC
diagram. First, it must be clarified which type of observation should be taken into account.
Since neighbourhood verification methods potentially produce a huge amount of data, we
decided for a compromise and used the binary

observation as reference for the diagrams. Otherwise, the user has to decide which obser-
vation neighbourhood probability threshold he is interested in.
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Figure 88: Reliability diagram (upper panels) and ROC diagram (lower panels) of NEP
member for 30dBz and two different box lengths, pixel-based (left) and 17pixel (right).
The model setups are coded as different line types. Red lines represent the lead time of 30
minutes and turquoise of 4 hours. The reference observation is of type binary.

Fig. 88 shows reliability diagrams (upper panels) of NEP member for 30dBz and two dif-
ferent box lengths, pixel-based (left) and 17pixel (right). The left panel shows the classi-
cal reliability diagram based on ensemble probabilities. It can be seen that there is over-
forecasting for almost all cases, which increases for greater lead times (4 hours, turquoise).
However, when we include a neighbourhood box length of 17pixel (17km, right panel),
there is almost perfect reliability of all model setups after 30 minutes lead time (red) and
for some setups even after 4 hours lead time (turquoise). This confirms the fact that includ-
ing a neighbourhood can exhibit a massively increased forecast quality. A similar picture
is given by the ROC diagrams in the lower panels of Fig. 88. The discrimination of events
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and non-events is much better when including a neighbourhood box length of 17pixel.

Another advantage of the neighbourhood-based reliability diagrams is that they can be
computed even for deterministic forecasts, i.e. based on neighbourhood probabilities. This
gives another great added value to forecast verification.

Finally, we want to show results for Displacement FSS and Displacement NSS developed by
Skok and Roberts (2018) and Skok (2021, not yet published). In contrast to the previously
described results, we have now chosen STEPS DWD nowcasting data from May/June 2021
period.

Figure 89: Displacement FSS (left), number of samples for D-FSS with 0.5 ≤ FBI ≤ 2 (mid-
dle) and Displacement NSS (right) for STEPS DWD nowcasting in May/ June 2021 with 20
members. Data are aggregated over initial times from 6 – 18 UTC, 1-hourly.

The left and middle panels of Fig. 89 show the Displacement FSS (D-FSS) and respective
number of samples for D-FSS with 0.5 ≤ FBI ≤ 2, which are taken into account. It can be
seen that the displacement is increasing almost linearly, which is in correspondence with
the mechanism of nowcasting. After 2 hours of lead time, the global displacement ended
up with about 14km ensemble and 13km deterministic. However, the number of samples
with low bias decreased with increasing lead time.

In contrast, the Displacement NSS (D-NSS) score in the right panel of Fig. 89 has no lim-
itation to the bias. Biased fields could simply be bias-corrected via constant factor. The
displacement from D-NSS ended up at around 20km ensemble and 16km deterministic.
This is slightly more than for D-FSS, however, the D-NSS score should be more confident
than D-FSS. Not only because there is no bias limitation, also because some shortcomings
of D-FSS are corrected in D-NSS score (see presentation of G. Skok at 8th IVMW 2020).

All in all, we found that D-FSS and D-NSS are very useful scores for interpreting other
neighbourhood scores, since most of them give no information about deviations in physical
parameters. Even if the absolute values are not that exact as the reality, the relative values
when comparing two experiments give added value to the verification. However, there is a
problem of not negligible deviations from real displacement at domain edges. Up to now,
we found no solution for this but this will be done in future work.

Object-based methods

Deterministic predictions

The MMI is calculated for the nowcasting and two sets of deterministic COSMO-DE fore-
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casts, the first one employing the one-moment-, the second one the two-moment micro-
physics scheme. Nowcasts are initialized hourly between 12 UTC and 16 UTC and run for
seven hours. The model is initialized hourly between 11 UTC and 15 UTC and evaluated
for the first 8 forecast hours. The shift of one hour in the initialization explains with the fact
that it takes about one hour from the model start until the predictions are available. For a
fair comparison the 11 UTC model forecast is therefore compared to the 12 UTC nowcast
and so on.

Figure 90: MMI vs lead time averaged over the SINFONY reference period (27 May – 25
June 2016) and over all initial times (12 – 16 UTC). Predictions are shown in black for the
nowcasting and in red and blue for the deterministic model forecasts employing the one-
and two-moment-microphysics scheme, respectively. The lead time of the model starts at
-1 hour (i.e., 11 – 15 UTC), since about one hour is required for forecasts started at that
time to become available.

The nowcasting starts at forecast time 0 with the perfect value of 1 (Fig. 90) because the
observations serve as initialization for the nowcast and the fields are identical. The MMI
decreases rapidly and is below the model forecasts after about 3 hours. The one-moment
model forecasts start with higher MMI-values than the two-moment model data. At initial-
ization, i.e., lead time -1 hour, this difference is most distinct. The artificial initialization
of too many objects in the two-moment model causes the bad performance (see also dis-
cussion of Fig. 92). The MMI of the model forecasts approach after 30 minutes and the
two-moment model is superior to the one-moment model after 4 hours of forecast time,
i.e., 3 hours lead time in Fig. 90. From that lead time on the model forecasts perform better
than the nowcasting with the clear trend that the two-moment model is superior to the one
moment model.

Ensemble predictions

The analysis of ensemble forecasts is restricted to the two-moment model because its ad-
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vantages at the longer lead times compared to the one-moment model.

Example of pseudomember characteristics

Figure 91: Observed objects (black) and objects of the pseudomember (gray-bordered) for
forecasts initialized on 30 May 2016 12 UTC at lead times of 0 hours (top) and 6 hours
(bottom). Pseudomember objects are coloured according to their probabilities and areas
in the respective lighter colours around these objects mark their uncertainty regions (see
text for further details). The effect of considering only pseudomember objects exceeding a
certain probability of occurrence p is illustrated by plotting all pseudomember objects (a,
d: p > 0%) and only objects with p ≥ 50% (b, e) and p = 100% (c, f), respectively.

Figure 91 illustrates the objects of the pseudomember, their probabilities and uncertainty
regions, and the observed objects for 30 May 2016. The forecast was initialized at 12UTC.
The ensemble shows little spread for a lead time of 0 hours as evidenced by the fact that
most of the pseudomember objects have a probability of 100% (Fig. 91 top). For a lead time
of 6 hours this has massively changed and only one object with p = 100% remains (Fig.
91f).

In comparison with the observed objects the pseudomember contains objects that represent
the observations over large parts of the domain well. For lead time 0 all objects, i.e., p >
0%, contain several false alarms, e.g., in the north-western and south-western part of the
domain (Fig. 91a). In the South-east the pseudomember has many objects with p = 100%
where several but much less objects are observed (Fig. 91c). Removing objects with low
probability from consideration generally reduces the number of false alarms while intro-
ducing only few missed events over the central to western areas (Fig. 91c). This leads to
a slight increase in the MMI from 0.55 (p > 0%) to 0.58 (p = 100%). For all p-values the
number of predicted objects is clearly overestimated by a factor of 3.2 for p > 0% and still
1.7 if only objects with p = 100% are considered.

133



After 6 hours all objects (p > 0%) still contain false alarms over the south-western and
south-eastern parts of the domain (Fig. 91d) and the total number of objects is overesti-
mated by a factor of 1.5. Considering only objects with p ≥ 50% again removes many false
alarms on the one hand but the number of missed events increases on the other hand, over
the central-western areas, for example (Fig. 91e). This leads to an underestimation in the
number of predicted objects, 70, compared to 137 observed objects. In comparison with
lead time 0, the behaviour of the MMI is reversed. Considering all objects yields the high-
est MMI (0.58) although about 50% more objects are predicted than observed. Constraining
the pseudomember to objects with p > 50% causes a strong reduction in the number of pre-
dicted objects leading to a lower MMI of 0.49. Constraining the objects to p = 100% is not
useful for this forecast range because all but one objects have lower probabilities (Fig. 91f)
yielding a MMI of 0.03.

Number of objects

The number of objects can be used as a first criterion for the quality of a forecast and it
can give a rough overview about false alarms and missed events in the prediction. The
mean numbers for the SINFONY reference period at all initial times between 11 and 15
UTC are shown in Fig. 92. The observations have maximum 85–100 objects at early lead
times between 0 and 3 hours, i.e., 11–18 UTC depending on the initial time. The number
decreases with lead time to 13 objects at +8 hours lead time, i.e., 19–23 UTC. This reflects
the diurnal cycle of convective activity with most objects occurring in the afternoon that
become less during the evening and early night-time hours.

The number of pseudomember objects obviously decreases with increasing values of p (Fig.
8). At lead time 0 the model has too many objects which is a well known issue in the initial-
ization of simulations em-ploying the 2-moment microphysics scheme. These artificially
initialized, unphysical objects have vanished after 30 minutes and from that lead time on-
ward the numbers of the pseudomember objects scatter around the observed number of
objects depending on p. The number of objects with p > 30% (light green in Fig. 8) repre-
sents the average number of observed objects best in both the temporal evolution with lead
time and in the mean number (65 observed and 70 predicted objects).
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Figure 92: Number of observed (black) and predicted (colours) objects depending on the
lead time, averaged over the SINFONY reference period (27 May – 25 June 2016) and
over all initial times (11–15 UTC). Different colours distinguish which objects of the pseu-
domember are considered depending on their probability of occurrence from blue (all ob-
jects, p > 0%) to red (p > 90%). Mean values at the right are averaged over all lead times
but 0 hours in order to remove the impact of artificial objects at initialization time.

MMI vs lead time

The forecast quality of different prediction types is again quantified in terms of the MMI.
The following analysis comprises the MMI of the nowcasting, the deterministic forecast, all
the single ensemble members, the pseudomember with p > 30%, and two “best member”
selections. For the latter the MMI is calculated for each forecast and each single ensemble
member separately. The best member then is selected for the evaluation. We distinguish
between the best member at each forecast time step (“best member at each step”) and the
best member on average over forecast lead time (“best member over lead time”). For these
selections the observations for all lead times are required, hence, they cannot be used as
forecasts. Compared to the other real forecasts this method globally (over the entire do-
main) selects the best ensemble member as if one knew a priori which member will be the
best for each forecast. The best member selections help to classify the quality of the other
members.

The MMI of all these prediction types is illustrated in Fig. 93. The nowcasting (black) and
the de-terministic forecast (dashed blue) are the same as in Fig. 90. The MMI of the now-
casting is below the different model forecasts (blue) after about 2–4 hours. The determin-
istic forecast is slightly better than any individual ensemble member (dotted). The quality
of the pseudomember is persistently the best, except lead times -1 and 7 hours, surpassing
the quality of the nowcasting after only 2 hours. The pseudomem-ber even outperforms the
“best member” selections showing that it is better to do a localized selection of representa-
tive objects from the ensemble distribution than to choose the member that is globally the
best. Again, the pseudomember is purely based on the ensemble forecasts while the “best
member” selections need observational data for all lead times. This shows the enormous
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potential of the pseudomember for the object-based forecasting of precipitation.

Figure 93: MMI vs lead time averaged over the SINFONY reference period (27 May – 25
June 2016) and over all initial times (12 – 16 UTC). Predictions are shown in black for
the nowcasting and in blue for the model. The lead time of the model starts at -1 hour
(i.e., 11 – 15 UTC), since about one hour is required for forecasts started at that time to
become available. Different forecast types are distinguished by line types and symbols.
The pseudomember is restricted to objects with p > 30%. “bmEachStep” and “bmLeadtime”
stand for “best member at each step” and “best member over lead time”, respectively. See
text for further details.

Conclusions

In the running PP-AWARE period, we have applied a lot of verification metrics which are
already established (neighbourhood verification) and tested also new verification metrics
based on MMI (pseudomember by Johnson et al. (2020)). Especially the latter is quite useful
in the SINFONY project. When using a 40 member object ensemble from NWP, nowcasting
and combined products, the number of existing objects could become massively huge and
not manageable without applying filter methods like pseudomembers.

All above described methods, and some more, are implemented in R-packages predomi-
nantly for DWD-internal usage. However, if the packages are well developed, they could
be provided to the community. The R-packages are applicable by namelist control but also
interactively. We will provide a flexible reading capability. The packages will have a flex-
ible aggregation functionality over different parameters. A visualization via R-Shiny app
will give the possibility to interactively visualize and aggregate scores in a way the user
desired. Up to now, we do not plan to integrate an extensive pre-processing like regrid-
ding or restructuring. We focus only on the computation of the scores and the user has the
responsibility to unify the data in advance.
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7 Overview of forecast methods, representation and user-oriented
products linked to HIW

Question: How well is HIW represented in postprocessing? What are the pros/cons of
DMO vs. PostPro with respect to HIW phenomena predictions? What is the current predic-
tive skill, and the user’s interpretation of forecast value in high-impact weather situations
(observed and/or forecast)?

HIW phenomena studied: fog/visibility, convection related CW (thunderstorms, light-
ning, squalls, showers, flash floods)

7.1 Postprocessing vs. direct model output (DMO) for HIW

This task relates to the following key project aspect: How well high-impact weather is rep-
resented in postprocessing and modeling. In order to be able to choose the best method to
predict HIW, we need to understand the state-of-the art in this field, both in direct mod-
elling and processed model data.

Part 1: Overview of fog forecast

Yu. Khlestova and E. Tatarinovich RHM

The fog is suspended cloud particles in the air near the surface (height 1.5-2 m), which
reduces horizontal visibility up to 1 km and less (Khrgian and Mazin, 1989). The main rea-
sons of fog formation are the air mass advection, radiative cooling due to cloudless meteo-
rological conditions, orography effects and anthropogenic activity. Anthropogenic activity
stimulates an increase of cloud condensation nuclei number concentration and promotes
cloud formation. The most complete fog forecast includes the time of fog formation and
duration, its vertical extent and intensity. The fog vertical extent and fog duration depend
on atmospheric moisture content and specific meteorological conditions (air stratification,
wind speed, cloud amount and structure). Fogs along the vertical extent are divided into
ground level (below 2 m), low (2-10 m), medium (1-100 m) and high (more 100 m) fog
(Khrgian and Mazin, 1989).

The horizontal visibility (VIS) is the main characteristic of fog intensity. VIS is based on the
Koschmieder’s formula (Koschmieder H., 1924):

where ε is the eye contrast sensitivity threshold (usually 0.05 or 0.02) (ICAO, 2010; Stoelinga
and Warner, 1999), β is the extinction coefficient, λ is the irradiance wavelength, which is
usually equal to 550 nm (Trautmann and Bott, 2002). The theoretical formulation of β is
based on Mie theory:

where Qext is Mie efficiency factor, r is the radius of cloud droplets, n(r) is the number den-
sity of cloud droplets (Gultepe and Milbrandt, 2007). The Mie efficiency factor is about 2 for
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cloud and rain droplets (Koening, 1971). The theoretical equation of β is not used in the op-
erational forecast. Firstly, the theoretical formulation is expensive for operational weather
prediction. Secondly, the theoretical formulation of extinction coefficient requires a more
detailed description of cloud droplet’s number density. The extinction parameter can also
be parametrized using standard meteorological values or microphysical cloud characteris-
tics. There are three main approaches to fog prediction using parametrization. According
to the first approach, visibility can be forecasted using empirical relations between β and
meteorological parameters (air temperature, dew point temperature, wind speed, air pres-
sure) by observation. Empirical ratios are created for specific points (specific climate and
orography) and synoptic situations. This method requires a preliminary analysis of meteo-
rological conditions, since empirical relations are found for specific air conditions and fog
physical mechanisms.

The second approach is the use of fog forecasting techniques based on machine learning
methods (Abdulkareem K. H. et al., 2019; Zhu et al., 2017; Oguz and Pekin, 2019). The
input data is observed or simulated air temperature, dew point temperature, atmospheric
pressure, relative humidity, wind speed and direction at 10 m. ML methods organize the
forecast based on a set of air condition data. The result is the extinction coefficient or
visibility.

According to the third approach, the extinction coefficient can be calculated using β parametriza-
tion and numerical weather prediction results (directly in the model or in postprocessing).
All parametrizations are obtained based on observations. There are two types of numer-
ical visibility prediction: the meteorological approach and the microphysical approach.
The extinction coefficient is based on meteorological characteristics according to the me-
teorological approach. Examples of “meteorological approach” parametrizations with its
applications are shown in Table 18. The T is the air temperature (◦C), Td is the dew point
temperature (◦C), RH is the relative humidity (%), a1−8 are constants based on measurement
data. The main limitation of the meteorological approach is that meteorological values are
not able to describe the cloud structure, which reduces the forecast accuracy.

Parametrization of β and VIS, km Source Application
β = 6000(T − Td)/RH1.75 Doran et al., 1999 Forecast System Laboratory
V IS = a1ln(RH) + a2
V IS = a3RH

a4 + a5
V IS = a6RH

2 + a7RH + a8

Gultepe et al., 2009

V IS = 60000exp((−2.5)/80(PH − 15)) Bang et al., 2009

Table 18: The meteorological approach of extinction coefficient.

The microphysical approach of β is based on cloud characteristics. The microphysical
parametrizations are shown in Table 19. The Nc is the number concentration of cloud
droplets (cm−3), Ni is the number concentration of ice particles (cm−3), QC is the liquid
water content (g/m3), QI is the ice water content (g/m3), R is the radius of cloud droplets
(m), b1−3 are constants based on measurement data.

The relation (Stoelinga and Warner, 1999) is operatively used for numerical weather fore-
casting in the WRF model (Weather Research and Forecasting Model). The parametrization
of β(Kunkel B.A., 1984) is based on (Eldridge R.G., 1966; Eldridge R.G., 1971; Pinnick et al.,
1978; Tomasi and Tampieri, 1976) works and is widely used in HARMONIE (HIRLAM AL-
ADIN Research on Meso-scale Operational NWP In Europe), AROME (Applications of Re-
search to Operations at Mesoscale) and is also applied to the one-dimensional fog forecast
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model COBEL. The β-description of the PAFOG fog prediction model is based on (Traut-
mann and Bott, 2002). The fog forecast in Unified Model uses the method (Clark et al.,
2008).

Parametrization of β and VIS, km Source Application

β = b1QCb2

Eldridge R.G., 1966;
Eldridge R.G., 1971;
Pinnick et al., 1978;

Tomasi and Tampieri, 1976

Kunkel B.A., 1984

β = 144.7QC0.88 Kunkel B.., 1984

COBEL (Muller M.D., 2006);
HARMONIE (Kettler T.T., 2020);

AROME (Philip et al., 2016);
WRF (Creighton et al., 2014);

Texeira et al., 2001

β = 163.9QI Stoelinga and Warner, 1999
WRF (Creighton et al., 2014);

HARMONIE (Kettler T.T., 2020)
β = 230R/QC Zverev A.S., 1977 Shatunova et al., 2015

β = 1.5??NcR
2 Clark et al., 2008

UM (Claxton et al., 2008;
Boutle et al., 2016)

β = b3QC2/3(Nc)1/3 Bott and Trautmann, 2002 PAFOG

Table 19: The microphysical approach of extinction coefficient.

The visibility forecast within the numerical weather prediction can be improved using one-
dimensional fog models (1D) and specific settings of model physics. Well-known 1D mod-
els are the University of Toulouse COBEL model (Couche Brouillard Eau Liquide) (Bergot
and Guedalia, 1994; Muller M.D., 2006; Muller et al., 2007) and the PAFOG (PArameter-
ized FOG) model of the University of Bonn (Bott and Trautmann, 2002; Masbou M., 2008;
Mohr et al., 2009). Thermodynamic, radiative and microphysical processes of 1D models
are presented with higher vertical resolution, especially in the planetary boundary layer.
The lower vertical grid spacing promotes to improve the description of turbulent fluxes
and radiative cooling in fog conditions (Trautmann and Bott, 2002a-b).

Thus, the operational VIS prediction is usually based only on one-moment microphysics
results (liquid and ice water contents). However, we can also account for the number con-
centration of particles using two-moment microphysics. The two-moment microphysics
implementation and aerosol representation lead to a more sufficient cloud description and
fog.

Finally, the detailed tuning of model physical schemes is required to improve the fog fore-
cast. For example, the formation of stable atmospheric stratification is assumed for radia-
tive fog formation, and this is necessary to reduce the errors of the simulated turbulent
heat transfer (Thoma and Bott, 2011; Masbou and Bott, 2010). The time of fog formation
and dispersion depends on the model description of radiation processes (Antoine S., 2020).
Schemes of fog prediction, including the aerosol physical properties and dynamics and
cloud-aerosol interaction, show more sufficient results (Vie et al., 2015; Clark et al., 2008).

It can be concluded that the quality of fog prediction depends mainly on the model grid
spacing and the approaches of turbulent, microphysical, radiative processes and surface-
air exchanges. The fog prediction tasks today have two basic directions. Firstly, we need to
decrease the model grid spacing due to the locality and spatial heterogeneity of fog events
(Boutle et al., 2016; Philip et al, 2016). And, secondly, the lower grid spacing requires a
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revision of model physics, new approaches and description of urban environment (Roebber
et al., 2004; Zangl G., 2021).

Taking into account the development of atmospheric modeling, the forecast of the horizon-
tal visibility in the postprocessing (including machine learning methods) seems to be the
most appropriate option. It is physically justified, since it is based on the prognostic cloud
characteristics and/or parameters of environment. We can apply a set of parametrization
(ensemble) of horizontal visibility (Tables 18 and 19). The fog is a meteorological phe-
nomenon with a high degree of locality. We try to reduce the probability of prognostic
error by using a set of postprocessing approaches. The main issue of the development of
these methods is the lack of instrumental measurements of visibility due to the specifics of
observations.
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Part 2: Tornado hazard prediction with COSMO-Ru parameters and indices

Denis Zakharchenko, RHM

Recent research [Chernokulsky et.al, 2020] showed that on average Russia experiences from
100 to 150 tornadoes per year, although during some years this number can rise up to 350
events. Although the majority of these tornadoes are considered non-significant, about
10 percent of twisters can reach F-2 [Fujita, 1971] (or EF-2 [McDonald, et.al, 2004]) rated
intensity and higher, causing serious damage and human deaths and injuries. With very
few exceptions, these significant tornadoes are associated with deep persistently rotating
updrafts, found within supercells [Doswell & Burgess, 1993] and mesoscale convective sys-
tems.

Current numerical weather prediction models accepted by RosHydroMet cannot resolve
tornadic vortices in operative forecasts. Although, a number of indices and parameters
based on simulated characteristics of deep convection systems can help to predict the risk
of a significant tornado forming along with accompanying severe weather hazards.

The current operative configuration for the COSMO-Ru model allows to run simulations
with 2.2 km horizontal grid spacing within a domain covering the European Part of Rus-
sia (EPR) and other eastern European countries (Figure 94). Simulations with this 2.2-
km grid configuration are performed with the Latent Heat Nudging (LHN) application.
Parametrization schemes for COSMO-Ru domains are listed in Table 18.
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The model output data includes the parameters for severe weather hazard diagnosis and
prediction, such as the Lightning Potential Index (LPI) [Yair et.al, 2010], Hailcast Param-
eters [Adams-Selin & Ziegler, 2016], Supercell Detection Index (SDI) [Wicker et.al, 2005]
along with common convective instability indices (CAPE, CIN).

The Supercell Detection Index represents a useful tool for identifying rotating updrafts
in simulated convective cells and systems. Though the formation of a significant tornado
requires the existence of mesocyclonic updrafts, it is not a sufficient condition, and other
tornadogenesis factors must be taken into account. It is noted by the authors, that a value of
0.003 1/s is considered a significant threshold for supercell storms. It is important to note,
that the SDI has two variations. In this study we refer to SDI_2. In this index, the positive
values represent counterclockwise rotation (meso-cyclonic) whilst the negative represent
meso-anticyclonic clockwise rotation.

Figure 94: Operative domains of the COSMO-Ru NWP system: 1- 6.6 km grid, 2- 2.2-km
grid, 3- 1.1-km grid.

Grid spacing 6.6 km 2.2 km 1.1 km
Vertical layers 40 50

Mircophysics scheme Two-category ice scheme Three-category ice scheme

Convection scheme Mass flux Tiedke scheme
Mass flux Tiedke scheme

(Shallow convection scheme)
Turbulence scheme 1-D TKE based diagnostic closure

Time step [s] 50 20 5

Table 20: Preferences for COSMO-Ru operative domains.

Another parameter for estimating conditions favorable for significant tornado formation
is the Significant Tornado Parameter (STP) [Thompson et.al, 2003]. It has not been im-
plemented in the model, but can be calculated using the simulated instability indices and
wind fields. This parameter requires the 0-1 km layer Storm-Relative helicity, which is cal-
culated for right-mover (meso-cyclonic) tornadic supercells using the Bunkers storm mo-
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tion method [Bunkers et.al, 2000]. It is specified that STP values higher than 1 represent a
hazard for significant tornado occurrence. However, the disadvantage of this parameter as
noted by the authors is in a high false alarm rate.

In previous studies with COSMO-Ru it has been noted, that the STP marks vast areas of
favorable conditions for significant tornado formation, though often not within the range
of simulated convective cells.

In respect to the statements above, the Significant Tornado Parameter (STP) and the Super-
cell Detection Index (SDI) simulated fields can be more informative if examined in complex.

Figure 95: Occurrence of Tornadoes in the European part of Russia in 2021.

The idea of this study is to analyzed simulated COSMO-Ru fields during severe weather
outbreaks with tornado activity in the European part of Russia in 2021. According to the
European Severe Weather Database [ESWD], there were 85 tornado records in Russia dur-
ing the year, with 45 events identified as waterspouts, mostly observed on the coasts of the
Black sea (Figure 95).

The most significant events took place on May 15 and August 2 the central European part
of Russia. Our case studies are based on these two events.

On May 15, 2021 a group of supercells and mesoscale convective systems travelled across
Moscow, Vladimir, Yaroslavl, Ivanovo, Kostroma and Vologda regions, resulting in a tor-
nado outbreak and widespread straight-line wind damage. Analysis of satellite imagery of
forest damage revealed at least 6 tornado tracks and a 360-km long squall damage path,
indicating a possible derecho event in Vladimir and Kostroma regions (Figure 96). Several
tornadoes, including one originated in a supercell in Yaroslavl region are rated F-2 and
considered significant.

The initial time for the COSMO-Ru 2.2km simulation is 0:00 UTC May 15, 2021. At 08:00
UTC simulated convective cells already develop along the frontline, following a NNE tra-
jectory and become recognizable in the simulated radar reflectivity field. In several cells
the SDI already reveals signs of rotation, including a meso-cyclonic and meso-anticyclonic
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couple of updrafts in Yaroslavl region, which can be an indicator of a process known as
“Supercell splitting”. At the moment, a stretched and narrow area of STP values exceed-
ing the thresholds is present to the east of the simulated supercells with a maximum of 6
located in Ivanovo region (Figure 97).

Figure 96: Black hatching represents squall forest damage, red hatching – tornado-induced
damage.

At 13:00 UTC the area of increased STP values breaks into separate fragments, one of which
migrates to Yaroslavl region. Approximately at this time an EF-2 tornado hit the town of
Lyubim in the northeastern part of the region. In the simulation, a cell with high SDI values
is located just at the northern border of the region, though not crossing the area with the
highest STP values at the time (Figure 5).

Between 15:00 and 16:00 UTC a simulated mesoscale convective system with several ro-
tating updrafts passes over the Kostroma region, matching the time the derecho event and
tornadoes were observed. The STP field showed a maximum of 8 approximately at the loca-
tion where tornado-induced forest damage were found. The maximum wind gust potential
field revealed a vast area of high gust speed potential values, exceeding 38 m/s in some
places (Figure 99).
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Figure 97: Simulated 2.2-km grid COSMO-Ru fields at 08:00 UTC May 15, 2021: Top left:
Radar Reflectivity (dBz). Top right: Supercell Detection Index 2 (SDI_2). Bottom: Signifi-
cant Tornado Parameter (STP).
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Figure 98: Simulated 2.2-km grid COSMO-Ru fields at 13:00 UTC May 15, 2021: Top left:
Radar Reflectivity (dBz). Top right: Supercell Detection Index 2 (SDI_2). Bottom: Signifi-
cant Tornado Parameter (STP).

In order to examine the structure of the simulated mesoscale convective system in detail,
the 2.2-km grid model data was used to initialize a 1.1-km grid simulation within a small
domain, surrounding the path of the derecho. As a result, the simulated radar reflectivity
field revealed a “nearly textbook” picture of a bow echo system evolution with a detailed
pattern-following area of severe wind gusts exceeding 40 m/s with a distinct gust front
(Figure 100).
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Figure 99: Simulated 2.2-km grid COSMO-Ru fields at 15:00 UTC May 15, 2021: Top left:
Radar Reflectivity (dBz). Top right: Supercell Detection Index 2 (SDI_2). Bottom: Signifi-
cant Tornado Parameter (STP). Bottom right: Maximum 10m AGL wind gust (m/s) for the
last forecast hour.
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Figure 100: Simulated 1.1-km grid COSMO-Ru fields at 15:00 UTC May 15,2021. Left:
Radar reflectivity. Right: Maximum 10m AGL wind gust (m/s) for the last forecast hour.

The other case study event is the August 2 tornado outbreak in Tver and Pskov regions in
western Russia. Satellite imagery analysis showed that at least 15 tornadoes touched down
during the outbreak, including an F-3 rated tornado hitting Andreapol town in Tver region,
killing 3 people and injuring 10 more [ESWD].

Figure 101: Left: The Andreapol F-3 Tornado before hitting the town; Right – Tornado-
induced damage in Andreapol town [https://vk.com/meteodnevnik].

As in the previous case study, the model is initialized at 0:00 UTC. The 2.2-km grid simula-
tions revealed the growth of a family of convective cells at 10:00 UTC over the western part
of Russia. At 12:00 UTC numerous cells in Pskov and Tver region show signs of rotation
and are marked with high SDI values. At the time, a widespread area of increased STP val-
ues is present over the surrounding regions with maximum values above 8 in Pskov region
(Figure 102). According to ESWD, the tornadoes in Pskov region occurred between 12:00
and 13:00 UTC and reached F-1 intensity.

At 14:00 UTC the STP maximum values, accompanied by several simulated convective cells
with high SDI values are observed in Tver region, matching the area where the number of
tornadoes, including the Andreapol event occurred between 14:00 and 16:00 UTC (Figure
103).

As in case study 1, a 1.1-km resolution simulation within a smaller domain was initialized.
As a result – more distinct radar reflectivity supercell shapes with higher values of SDI
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were acquired (Figures 104-105).

Figure 102: Simulated 2.2-km grid COSMO-Ru fields at 12:00 UTC August 2, 2021: Top
left: Radar Reflectivity (dBz).Top right: Supercell Detection Index 2 (SDI_2). Bottom: Sig-
nificant Tornado Parameter (STP).
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Figure 103: Simulated 2.2-km grid COSMO-Ru fields at 14:00 UTC August 2, 2021: Top
left: Radar Reflectivity (dBz).Top right: Supercell Detection Index 2 (SDI_2). Bottom: Sig-
nificant Tornado Parameter (STP).
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Figure 104: Simulated 1.1-km grid COSMO-Ru fields at 12:00 UTC August 2, 2021: Left:
Radar Reflectivity; Right – Supercell Detection Index 2 (SDI_2).

Figure 105: Simulated 2.2-km grid COSMO-Ru fields at 14:00 UTC August 2, 2021: Top
left: Radar Reflectivity (dBz).Top right: Supercell Detection Index 2 (SDI_2). Bottom: Sig-
nificant Tornado Parameter (STP).

In conclusion: predicting tornado occurrence remains a challenge, considering today’s op-
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erational numerical weather prediction systems and the complex and unexplored nature
of these intense phenomena. Nevertheless, convection-permitting models and grids can
resolve both dynamical and empirical indicators of certain significant tornado events.

The 2021 case study analysis showed that despite definite spatial and temporal errors
when predicting actual significant tornado hazard locations, the joint use of COSMO-
based SDI and STP indices can significantly clarify the risk area and exclude an amount
of false alarms in certain regions.

It is worth noting, that the 1.1-km-resolution simulations revealed, beyond any doubt, a
more detailed picture of the simulated convective cells and systems. This detail may appear
crucial for tornadic event diagnosis. Hence, a possibility of an operative 1-km grid COSMO-
Ru setup for severe weather prediction is in need of consideration.
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7.2 Improving existing post-processing methods

Andrzej Mazur, Grzegorz Duniec

Institute of Meteorology and Water Management – National Research Institute

This work was continued within PP MILEPOST

Introduction

In contrary to other sub-tasks (e.g. 2.1, 3.1) in the Priority Project, the main goal in this ac-
tivities was the verification against observations of various post-processed results. It means
that the effectiveness of post-processing is assessed, not the FR parametrization itself as
follows:

FR =
( W

14.66

)4.54

with W being updraft velocity, calculated as

As it was already used in sub-tasks 2.1 and 3.1, FR is to be limited with the temperatures
of top/bottom cloud temperatures, CTT and CBT, respectively

and

And again, another limitation is due to lack of convective clouds – if (forecasted) cloud
cover is below 25%, FR is set equal to zero. Moreover, case was selected to verification if
(for both observations and forecasts) maximum value over the entire domain was greater
than 20 strikes/hour , and the duration of the storm was greater than 6 hours.

Observation data (intercloud- and cloud-to-ground lightnings) came from the Polish light-
ning detection network PERUN, covering Poland and nearest vicinity - parts of neighbour-
ing countries.

The quality of (any) post-processing used in the study was assessed via continuous verifica-
tion - MAE, RMSE - only. Methods using contingency table nor other discrete verification
methods were not used.

Methods

Various methods of post-processing used in the study essentially belonged to the class of
Least Mean Squares (LMS) methods and the Artificial Neural Network (ANN) method.
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1. Multi-Linear Regression (MLR) – class of LMS method with multidimensional input
data vector, yet constant over time. Marking corrected forecasts as y, DMO (Direct
Model Output) as h, and weight values (to be determined) as b, the method diagram
looks as follows.

Figure 106: Flow chart of the MLR procedure.

1. Adaptive/Recursive LMS methods. Basic scheme of the method is presented below. The
most important here – from the post-processing point of view – was the forgetting
factor λ, that described how long older data should be “remembered”.

Figure 107: Flow chart of the RLMS procedure.

1. Artificial Neural Networking (ANN) – dealing with post-processing for both EPS- and
deterministic forecasts

Inputs to the net were, apart from (time lagged) values of DMO, geographical coordinates
λ,ϕ, and ts,tc – lead time and current time of forecast. Basic idea of the ANN is presented in
the diagram below. Transfer function was assumed linear, activation function – hyperbolic
tangent. The main factor that was modified in the assessment process was the number of
hidden neutrons of the net.
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Figure 108: Schematic depiction of ANN.

Space lag (cross-) correlation approach

Figure 109: Introduction to cross-correlation procedure.

Similarly, as in subtask 2.1/3.1 cross-correlation procedure was applied. To remind a basic
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idea of the approach: when overlap the upper left (observations field) and the upper right
(forecasts) panels (Fig. 109), in most cases they do not match (lower panel, Fig. 109). It
is possible to improve the forecast by using the cross-correlation (or space lag correlation)
method. To do this (using the example from the figure above) one should:

1. Calculate coordinates of ”centres of mass” for both distribution patterns (observations
vs. forecasts).

2. Compute vector of displacement (VOD) of forecasts to observations as a difference of
the two above.

3. Displace linearly every value of forecasts field by the vector of displacement.

In operational work, VOD is calculated from previous model runs (as compared to obser-
vations). It is then assumed to remain constant throughout the next run.

Figure 110: Result of cross-correlation procedure.

Figure 111: Sample values of (observations – forecasts) for flash rate (lightning frequency).
Left - direct model output results, right panel - corrected with VOD procedure.
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Examples and detailed results

Various set-ups of post-processing of various methods have been tested over the seven-years
period (2011-2017). The learning/testing period: 2011-2016 and the entire 2017 as period
for verification were selected. The following table lists the Mean Error, Mean Absolute
Error and Root Mean Square Error values for the various set-ups in the evaluated methods
of post-processing.

The following table shows the same results but using the cross-correlation procedure and
Vector Of Displacement approach.

The figures below show exemplary results for the average MAE/RMSE values for Direct
Model Output and after using the VOD procedure.
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Figure 112: Results for the average MAE/RMSE values for Direct Model Output of Flash
Rate (observation vs. forecasts).

Conclusions

Of all the methods, ANN appears to be the best, basing on the results expressed as the MAE
and RMSE. This confirms the results that has been already obtained in post-processing with
EPS.

When VOD procedure is applied to MAE/RMSE, slight improvement can be seen in com-
parison to direct verification, with a maxima of MAE/RMSE shifted towards centre of the
domain. A similar effect was recognized for all values.

The Recursive/Adaptive Least Mean Square method not necessarily works as good as ex-
pected (i.e. the results are not better than the ANN results), but they are much better
compared to the standard Multi-Line Regression approach.

Extended works are planned to improve the Flash Rate post-processing methods, however,
in the frame of the newly established Priority Project MILEPOST (MachIne Learning-based
POST-processing).
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Figure 113: As in Fig. 112, but after using the VOD (cross-correlation) procedure.
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7.3 QPF evaluation approaches

ARPAE-SIMC, Maria Stefania Tesini

Introduction

The evaluation of the amount of precipitation over catchment areas is one of the most im-
portant uses of the QPF at ARPAE for hydrological purposes and for the issuing of Civil
Protection alert for possible floods. To meet the needs of end-users, such as hydrologists or
forecasters, some tools that provide mean, maximum and some other percentile values of
the precipitation field over the catchment areas of the Emilia-Romagna region have been
developed. Exceeding predefined thresholds can give useful indications for situations of
intense precipitation possibly leading to floods.

Description of the products

To evaluate the hydrological response of a basin it is not necessary (although desirable) to
know precisely the exact location of the amount of precipitation but it is fundamental to
have an estimate of the total amount of water that will fall on the area of interest. Results
of verification based on the DIST methodology applied to the warning areas (as shown in
task 3.4) encourage using the average and the maximum of the precipitation of the points
that fall on the area as good products derived from models forecasts.

Each day, Arpae forecasters must provide hydrologists and Civil Protection Department
with an assessment of the expected average precipitation on the warning basins based on
the data of the models available to them, such as COSMO-5M (5 Km horizontal resolution),
COSMO-2I (2.2 Km horizontal resolution) and IFS-ECMWF (9 km horizontal resolution).

Figure 114: Catchment area of Emilia-Romagna region.

To facilitate the comparison of the QPF of these models, summary tables with estimated
mean and maximum precipitation over each of the eight catchment areas of the Emilia-
Romagna region are produced by means of LIBSIM software developed at Arpae
(https://github.com/ARPA-SIMC/libsim).

For each model, it is possible to visualize the estimated average precipitation over each
catchment area by step of 6 or 24 hours for the available period of forecast, as shown in
figure below. It is also possible to display a text file in which are tabulated the also the
mean and the maximum value of the precipitation in each area and the number of points
that exceed increasing thresholds (1, 5,10,20,50,100 mm in 6h).
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It is also possible to compare models forecast with observed mean values of the previous
days using the same tool in order to have a quick validation of the forecast.
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Figure 115: Example of total precipitation field and corresponding average value on Emilia-
Romagna catchment areas of COSMO-5M (top) and IFS-ECMWF (middle) and correspond-
ing observations average values (bottom) available the day after.
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Figure 116: Example of tabular file with number of points exceeding some thresholds and
some statistical index for each area and forecast step.

Using the COSMO-LEPS system, we also evaluate the probability of exceeding some thresh-
olds of average precipitation in 24 hours over all the 133 Italian catchment areas.

The product was initially developed for the Emilia-Romagna region as a table in which
rows represent the catchment area of the Emilia-Romagna region, columns the threshold
(mm/24) and the color of the cell the probability of exceeding the corresponding threshold.

The probability is evaluated considering the average precipitation on the area of interest
for each of the members of the ensembles. The product has been subsequently extended
to all 133 Italian alert areas with a new graphical version. It is possible to visualize these
products for the 5 days of the Cosmo-LEPS forecast. It should be pointed out that we do not
use thresholds on probability to issue alert, but they help forecaster to assess confidence in
one modeling chain or the other.
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Figure 117: Probability of exceeding increasing thresholds of the average areal precipitation
based on the COMSO system (indicated by the colours). In the table rows represent the
catchment area of the Emilia-Romagna region, while columns the threshold (mm/24).

Figure 118: Probability of exceeding increasing thresholds of the average areal precipitation
based on the COMSO system (indicated by the colors). The rows represent the catchment
areas subdivided by regions, columns represent increasing threshold (mm/24).
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Validation

Deterministic products for each warning area are validated on a seasonal basis using “bub-
bles plot” charts, a sort of the scatter plot in which the data points are replaced with bubbles
and the sizes of the bubbles are determined by the number of events. The advantage of this
approach is that the nature of the forecast errors can more easily be diagnosed.

Observed and forecast precipitation, aggregated on the catchment areas are divided into
classes for average and maximum precipitation on the area and separate plots for each
indicator are produced.

CLASSES FOR MEAN
PRECIPITATION

MEAN
AMOUNT
IN 24h (mm)

NO PRECIPITATION <0.2
NON SIGNIFICANT 0.2 – 5
LIGHT 5-20
MODERATE 20-45
HEAVY >45

CLASSES FOR MAX PRECIPITATION
MAX
AMOUNT
IN 24h (mm)

0.2 -5 5-25 25-50 50-75 75-100 100-
150

>150

Figure 119: “Bubble plots chart” is a sort scatter plot in which the data points are replaced
with bubbles and the sizes of the bubbles are determined by the number of events (when
the number of events is large, a square symbol is used for the most populated category to
preserve the proportions of the other bubbles). The nature of prediction errors can be easily
diagnosed based on the position of the bubbles relative to the diagonal, which represents
the correct predictions.
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Figure 120: Example of “bubbles plot” relative to an area of the Emilia-Romagna region,
as presented in the Arpae seasonal report for MAM2019. In the top panel are displayed
the charts for mean value, in the bottom panel those for maximum for the three models
(COSMO-2I, COSMO-5M,IFS-ECMWF from left to right).

The validation has been extended to all the Italian catchment areas and reports (in Italian),
starting from 2018, they are produced and made available as pdf document to several users
(forecasters/hydrologist) on a seasonal basis.

In addition to charts for each single area, summary plots aggregating the data for all the
Italian areas are also produced. In the following plots results for the last four seasons are
shown.
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Figure 121: DJF2019-2020, summary for all Italian catchment areas.

In the top panel are displayed the charts for mean value, in the bottom panel those for
maximum for the three models (COSMO-2I, COSMO-5M, IFS-ECMWF from left to right)
considering all the Italians catchment areas
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Figure 122: MAM2020, summary for all Italian catchment areas.

In the top panel are displayed the charts for mean value, in the bottom panel those for
maximum for the three models (COSMO-2I, COSMO-5M, IFS-ECMWF from left to right)
considering all the Italians catchment areas.
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Figure 123: JJA2020, summary for all Italian catchment areas.

In the top panel are displayed the charts for mean value, in the bottom panel those for
maximum for the three models (COSMO-2I, COSMO-5M, IFS-ECMWF from left to right)
considering all the Italians catchment areas.
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Figure 124: SON2020, summary for all Italian catchment areas.

In the top panel are displayed the charts for mean value, in the bottom panel those for
maximum for the three models (COSMO-2I, COSMO-5M, IFS-ECMWF from left to right)
considering all the Italians catchment areas.
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COSMO Technical Reports

Issues of the COSMO Technical Reports series are published by the COnsortium for Small-
scale MOdelling at non-regular intervals. COSMO is a European group for numerical weather
prediction with participating meteorological services from Germany (DWD, AWGeophys),
Greece (HNMS), Italy (USAM, ARPA-SIMC, ARPA Piemonte), Switzerland (MeteoSwiss),
Poland (IMGW), Romania (NMA) and Russia (RHM). The general goal is to develop, im-
prove and maintain a non-hydrostatic limited area modelling system to be used for both
operational and research applications by the members of COSMO. This system is initially
based on the COSMO-Model (previously known as LM) of DWD with its corresponding
data assimilation system.

The Technical Reports are intended

• for scientific contributions and a documentation of research activities,

• to present and discuss results obtained from the model system,

• to present and discuss verification results and interpretation methods,

• for a documentation of technical changes to the model system,

• to give an overview of new components of the model system.

The purpose of these reports is to communicate results, changes and progress related to the
LM model system relatively fast within the COSMO consortium, and also to inform other
NWP groups on our current research activities. In this way the discussion on a specific topic
can be stimulated at an early stage. In order to publish a report very soon after the comple-
tion of the manuscript, we have decided to omit a thorough reviewing procedure and only
a rough check is done by the editors and a third reviewer. We apologize for typographical
and other errors or inconsistencies which may still be present.

At present, the Technical Reports are available for download from the COSMO web site
(www.cosmo-model.org). If required, the member meteorological centres can produce hard-
copies by their own for distribution within their service. All members of the consortium
will be informed about new issues by email.

For any comments and questions, please contact the editor:

Massimo Milelli

massimo.milelli@cimafoundation.org
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