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1 Abstract

The APSU Priority Project focussed on the improvement of the ensemble forecast systems
run by the COSMO members, developing both the perturbation methodology and the post-
processing. The aim was to improve the forecast issued by the convection-permitting (CP)
scale modelling system, particularly for severe and high-impact weather events. The research
and development work covered three main areas:

� development of model perturbation methodologies, including new methods and the
development of surface/soil perturbations;

� development of post-processing methods for the convection-permitting ensembles, es-
pecially focused on the forecast of selected severe weather phenomena;

� better use of the KENDA analyses as Initial Conditions (ICs) to initialize the CP
ensembles and improvement of the perturbed Boundary Conditions (BCs).

The project provided also the occasion to discuss and plan the transition of the ensembles
to the ICON-LAM model.

2 Introduction

The APSU Priority Project was initiated due to the need of improving the ensemble systems
run by the members of the COSMO Consortium, in particular for the prediction of near-
surface weather parameters at high spatio-temporal resolution.

During the WG7 meeting held in Offenbach in March 2017, it was recognised that the
perturbations applied to the model in the ensemble configurations do not provide yet a
satisfactory representation of the model error, as evidenced by the spread-skill relation for
near-surface parameters (Marsigli et al., 2019). The shared opinion was that the spread of
the ensembles in terms of near-surface parameters (temperature, wind) should be increased,
in order to better match the forecast error. This should be done with care, since it is
recognised that the ensemble spread cannot be increased up to exactly reaching the forecast
error, because the latter includes also the systematic error, which should be tackled by
improving the model, not by increasing the spread. On top, observation error should be
considered in the computation of the forecast error (Ben Bouallegue et al., 2020). What
should be better represented in the ensembles is that part of the error which depends on
the uncertainties in the determination of initial and boundary conditions as well as in the
description of the physical processes in the model, which are mainly due to the variability of
the model performance in dependence of the meteorological situation, usually called ”error
of the day” or flow-dependent error (see for example Leutbecher et al., 2017). To reach
this goal, it is needed to work on a better representation of the model error. The strategy
proposed in APSU is based on testing new approaches for model perturbation which have
been recently developed or made available to the COSMO model, and to review and improve
the already existing ones. More specifically:

� further develop and test the new stochastic approach to model the model error devel-
oped at DWD

� develop an additive perturbation method based on the Stochastic Pattern Generator
(Tsyrulnikov and Gayfulin, 2017)
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� test of two new available methods for model perturbations: iSPPT (independent SPPT,
Christensen et al., 2017) and the perturbations based on analysis increments (Piccolo
et al., 2018)

� develop perturbations of the soil/surface and test the combination of the different
perturbations

It was also noted that the potential of the ensembles is not fully exploited for the operational
duties, in particular for high spatial and temporal resolution forecasts, therefore it was
identified the need to continue working on ensemble post-processing and interpretation. In
particular it is needed to:

� develop suitable probabilistic products for operational applications. In order to ben-
efit from the link with the SRNWP-EPS Project of EUMETNET, the focus was on
products for thunderstorms and fog;

� further develop suitable calibration procedures for the CP ensembles.

This activity has a strong link with the activities carried out in WG4.

On top of these development areas, the transition from the COSMO to the ICON model
implies also a transition of the ensemble systems. To make this possible, a planning of
the needed activities was started in the APSU PP. A first concrete task was performed at
DWD, where the Parameter Perturbation methodology was transferred and tested in the
new ICON-LAM ensemble.

3 New model perturbation methods

New methodologies for model perturbations have been tested in the APSU PP, and further
developed.

3.1 SMME: Stochastic model of the model error (M. Sprengel, T. Hep-
pelmann, C. Gebhardt, DWD)

3.1.1 Method

At DWD, a prognostic stochastic model of the model error (“EM-scheme”, Ekaterina Machul-
skaya) has been developed. The concepts of the EM scheme have been the basis for the de-
velopment of an improved framework called “stochastic model of the model error” (SMME).
The development of SMME is carried out within the project Gridcast and its precursor Ewe-
Line which both are collaborative research projects of the DWD with the Fraunhofer IEE
and the German transmission system operators (TSOs) in the context of renewable ener-
gies. The growing share of renewable energy in power generation increases the impact of
the weather on the stability of the electrical power grid. Especially prior to severe weather
events, not only high-quality weather forecasts but also information about forecast uncer-
tainties is needed by the TSOs to prepare stability provisions. Improving the description
of the inherent model error is therefore one of the goals of the research project Gridcast.
Even if this development is focused on optimizing the use of renewable energies, it can be
beneficial for NWP model development in general and therefore fits well as a contribution
to PP APSU.
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The EM-scheme and the SMME have in common that the errors of the tendencies of different
model variables are assumed to obey the Langevin-type stochastic differential equation being
correlated in space and time and stochastically driven by Gaussian noise as in equation (1).

BηXpx, tq

Bt
“ ´γpτXqηXpx, tq ` γpτXq∇ ¨

`

λ2pτXq∇ηXpx, tq
˘

` σpτXqξpx, tq, (1)

where

� τX “ τXpx, tq is the tendency of the predictor variable X,

� γ is the damping,

� diffusion λ guarantees spatial correlation,

� ξ is a standard normal random field with standard deviation σ.

The weather-dependent values of the parameters γ, λ, and σ of this equation are determined
by predictors, whereas the dependencies of the parameters on the predictors are inferred
from past data. The solution ηX of eq. 1 is our model of the model error and is added to
the dynamic equations of the model to correct the tendencies from the NWP online for a set
of variables X:

∆X

∆t
px, tq “

„

∆X

∆t
px, tq

ȷ

phys

´ ηXpx, tq.

The method is applied to temperature and zonal and meridional wind as prognostic variables
with the tendency τX of each variable X acting as predictor for the respective error model
parameters.

Going from the EM-scheme to the SMME, the method for estimating the parameters has
been re-developed from scratch by taking the spatial diffusion term into account from the
very beginning of the development. This approach enabled us to have a consistent framework
for all three parameters γ, λ, and σ that includes the spatial diffusion without the need for
a separate treatment.

As first COSMO-D2-EPS experiments with the method showed an increased forecast spread
but at the expense of a substantial degradation of the RMSE (see later in section 3.1.3), a
new method for estimating γ has been developed based on results of (Garćıa-Ojalvo et al.,
1992):

Assuming spatially constant coefficients, we can discretize the stochastic partial differential
equation eq. 1 in space and perform a spatial Fourier transform to obtain a system of
stochastic ordinary differential equations. For these equations certain expectation values
and correlations can be derived analytically. For example for the stationary correlation
function at different times t and t1 and Fourier modes k and k1 one finds

@

ηkptqηk1pt1q
Dst

“
σ2Nx∆xNy∆y

2γck
e´γck|t´t1|δk,´k1 (2)

where ∆x and ∆y denote the horizontal grid spacing, Nx and Ny are the number of grid
points, and ck is the Fourier transform of the differential operator. For the Fourier modes
k “ k1 “ 0 this further simplifies and we can take the quotient at different times t1 “ t ` ∆t
and t1 “ t ` 2∆t to obtain

xηkptqηk1pt ` ∆tqyst

xηkptqηk1pt ` 2∆tqyst
k“k1“0

“ eγ∆t. (3)

This method resulted in a much better RMSE (see later in section 3.1.3).
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3.1.2 Parameter estimation

The estimation of the parameters γ, λ, and σ from past data requires the estimation of the
model error tendencies on the left-hand side of eq. 1 which in turn requires an approximation
of the truth to be compared with model forecast. For SMME, the truth is approximated by
analysis fields of KENDA for COSMO-D2 and the model error is defined as the deviation of
short-range forecasts of COSMO-D2 from these analyses. Other approaches exist to estimate
the model error tendencies by comparing forecasts only (see for example Tsyrulnikov and
Gayfulin, 2019 and Christensen, 2020).
This section exemplifies important aspects of the dependencies of the estimated parameters
γ, λ, and σ on their predictors, on the forecast time and the time of the day as well as
on the vertical model level. The training period for the parameter estimation is 5 months
in autumn 2018 and 2019 with the exclusion of the application month October 2018. The
training data are the operational COSMO-D2 forecasts started at 03 UTC up to 45 hours of
forecast time and the operational analyses for the same period. Fig. 1 shows the changes of
the damping parameter γ with forecast time for temperature at ca. 300m above ground.

Figure 1: Estimated γ for temperature at ca. 300m as a function of the time of the day for
lead times 1h to 45h (first day in black, second day in red, forecast start is 03 UTC).

There is a clear dependence on the time of the day without a significant difference between
day 1 and day 2. The dependence on the time of the day decreases with increasing height of
the vertical model level (not shown). The parameter γ depends on the prognostic variable X
but hardly on the size of its tendency τX (not shown). However, there is a clear dependence
of the diffusion parameter λ on the predictor tendency τX (Fig. 2).
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Figure 2: Estimated λ for the zonal wind at 97m above ground and fitted to a function of
type λpτq “ λae

´p|τ |{λbqλc ` λd. The error bars are the 95%-confidence intervals estimated
from the sample of days for training. The black line is the fit to the empirical values of λ
and the grey lines fit to the limits of the confidence intervals.

The tendencies have been arranged in equally populated bins for the parameter estimation.
A parametrized function can be nicely fitted to the empirical values.

Fig. 3 shows the combined effect of forecast time, time of the day and atmospheric height
on λ for temperature.

Figure 3: Estimated λ for temperature (solid line) at two atmospheric heights (300m in red,
3000m in black) as function of forecast lead time. The dashed lines are the 95%-confidence
intervals estimated from the sample of days for training.

The values of λ are larger for higher altitudes and a given forecast lead time. There is a
general trend of increasing λ with increasing lead time which is modulated by a daily cycle in
the boundary layer. This dependence on the time of the day shows an increase of λ starting
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after dawn with the onset of boundary layer mixing with a moderate decrease in the evening
and a quasi-plateau during the night. In general, the characteristics of λ for temperature
apply to the horizontal wind components as well.

Since the parameter σ is calculated on the basis of the estimated γ and λ it basically inherits
the dependencies on time and height from those parameters. In Fig. 4, the dependence of σ
on model level and predictor tendency for zonal wind is shown.

Figure 4: Estimated σ for zonal wind at different atmospheric heights (different colours) as
function of tendency bin τU , i.e. numbers on the abscissa are bin counts. The error bars are
the 95%-confidence intervals estimated from the sample of days for training. The levels 65,
48, and 34 correspond to the heights 10m, 757m, and 3000m, respectively.

There is an increase of σ with height as well as with the magnitude of τU , the latter being
negligible to moderate for lower values of the tendency. The increase of σ with τU is larger
higher up in the atmosphere.

In practice, the parameters γ, λ, and σ are estimated for distinct model levels only (at 10m,
757m, and 3000m for U and V ; and 300m, 757m, and 3000m for T ). Accordingly in the
application, the model error η is calculated for these three levels and linearly interpolated
vertically between those levels. Above the highest level kmax “ 34 at 3000m (and for T
below kmin “ 55 at 300m) η is exponentially damped towards zero (recall that smaller k
correspond to greater height):

ηkXpx, tq “ ηkmax
X px, tqe´pkmax´kq for k “ kmax ´ 1, . . . , kmax ´ 4,

and similarly for T at k “ kmin ` 1, . . . , kmin ` 4.

Investigations about the model of the model error in the global ICON-EPS within the project
Gridcast have shown further dependencies of the parameters (land/sea grid points, geograph-
ical latitude) which can be neglected for the application of SMME to the limited domain of
COSMO-D2.
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3.1.3 Experiments and verification results

Based on the parameters γ, λ, and σ as estimated from a training data set of the opera-
tional COSMO-D2 forecasts and analyses for autumn 2018 and 2019, two experiments were
performed for October 2018 with the operational COSMO-D2-EPS settings. All forecasts
start at 03 UTC and run for 45 hours. Verification shown in this section is against SYNOP
observations.
The first experiment resulted in an increased spread for several prognostic variables, but
there was a significant increase in the forecast error as well (e.g. for 10m wind speed, see
Fig. 5).

Figure 5: EPS spread (top) and root mean squared error (bottom) of the ensemble mean
for 10m wind speed as function of forecast lead time for the first experiment with the model
of the model error (blue, experiment 10868), the modified SMME experiment (red, 10968),
and a reference run with operational settings but without model error (black, 10672).

These results initiated the changes in the estimation method for the damping parameter
γ following Garćıa-Ojalvo et al. (1992) as mentioned in section 3.1.1. The effect of this
methodological change in comparison to the first experiment can be seen in Fig. 5 as well.
The results are mostly neutral compared to the reference, with a slight increase of the spread
for wind speed in the afternoon hours of the first forecast day.

The new experiment incorporated a further methodological adjustment. The model tenden-
cies acting as predictors for the parameters in the application of SMME are calculated during
the forecast as changes with respect to the model time step. However, the estimation of the
tendency-parameter relation from the training data has to refer to the output frequency of
the model data, i.e. hourly steps being much larger than the model time step. This leads
to a more frequent occurrence of relatively large tendencies in the application compared to
the training of the parameters. To account for this effect, the properties of the tendency
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distributions are harmonized between the two different time scales by applying a factor of
0.43–0.58 to the variance of the tendency distribution during the model forecast.

Fig. 6 shows several verification scores for 10m wind speed and 2m temperature for the
experiment with SMME based on the improved estimation method in comparison to the
operational set-up.

Figure 6: Continuous ranked probability score (CRPS), RMSE, EPS spread, ratio of spread
to the standard deviation of forecast errors and mean error of the ensemble mean (from top
to bottom) for 10m wind speed (left) and 2m temperature (right) as a function of forecast
lead time for the modified SMME experiment (red, experiment 10968) and a reference run
with operational settings but without SMME (black, 10672).

The results are mostly neutral compared to the operational set-up. There are slight increases
in CRPS and RMSE for 2m temperature around 15 UTC day time, but the differences are
not significant (as indicated by the non-filled circles in the plot). There is an increase of
spread for wind speed during the first forecast day which is also not significant.

Most obvious differences occur in the mean error of the EPS mean for both variables. The
SMME run produces consistently an EPS mean of 10m wind with a slightly larger bias
than the reference run which itself has a positive bias. The 2m temperature bias shows
qualitatively the same daily cycle with slightly colder temperatures in SMME. Note that the
SMME is effective only from 2.5 forecast hours onward to allow for the spin-down of forecast
tendencies resulting from minor deviations of analysis fields from the balance properties of
the model dynamics. This leads to almost identical mean errors of the SMME and the
reference run in the first forecast hours.
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In general, the SMME in its current set-up leads to neutral results and the methodological
changes were successful in avoiding the forecast deterioration seen in the first experiments.
This neutral implementation of the SMME into the COSMO-D2 is a promising starting point
for further improvements. A first step for improvements is described in the next section.

3.1.4 Bulk Richardson number as additional predictor

Fig. 7 shows the time series of the mean error of the 24 hours EPS mean forecast of 10m
wind speed for the SMME and the reference run.

Figure 7: Time series of the mean error of the 24 hours EPS mean forecast of 10m wind
speed for the SMME (experiment 10986) and the reference run (experiment 10672).

There are periods with an increased bias in the SMME run, but also periods with neutral
results by the SMME approach. A conditional verification showed that the SMME increases
the error particularly in nights with stable PBLs. This leads to further investigating how
to include knowledge about the stability of the PBL into the SMME. The suggestion is to
introduce the bulk Richardson number as a further predictor in addition to the tendency of
the respective variable.

We chose to discriminate three cases: stable, unstable, and neutral PBL. To this end, we
calculate the bulk Richardson number

RB “
pg{Tvq∆θv∆z

p∆Uq2 ` p∆V q2
(4)

for a bulk layer of levels 65–55 (10m–300m) and perform a horizontal smoothing over 7 ˆ 7
grid points. In eq. 4 we use the following definitions:

� g gravitational constant,

� absolute Tv virtual temperature,

� ∆z layer thickness,

� ∆θv change in virtual potential temperature across layer,

� ∆U , ∆V change in wind speed across same layer.

Our thresholds for the three cases are

R “

$

’

&

’

%

stable RB ą“ 1.5

neutral RB P p0.25, 1.5q

unstable RB ă“ 0.25.

(5)
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Fig. 8 provides the fields of the bulk Richardson number for a stable (14th October) and an
unstable (24th October) case.

Figure 8: Bulk Richardson number for an unstable (24th October) and a stable (14th Octo-
ber) case.

These fields together with Fig. 7 exemplify the link between nocturnal stable/unstable condi-
tions and their effect on the wind forecast of the COSMO-D2-EPS using the SMME method.
The stratification along the three cases stable, unstable, and neutral boundary layer accord-
ing to RB leads to differences in the estimated parameters as can be seen in Fig. 9 for the
diffusion parameter λ. The stratification of the estimation of the parameters γ, λ, and σ by
the bulk Richardson number and the use of RB as an additional predictor will be adopted
in further experiments with SMME.

Figure 9: Diffusion parameter λ for zonal wind at 757m at 2 UTC during the night for stable
(red), neutral (black), and unstable(blue) conditions.

The next steps in the development of the SMME will be its application to ICON-D2-EPS
in its current state, analysing potentials for further improvements of the methodology, and
speed-up of the method from a computational point of view.
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3.2 AMPT: Additive Model-error perturbations scaled by Physical Ten-
dencies (M. Tsyrulnikov, D. Gayfulin, E. Astakhova, RHM)

In this section, we introduce a new ad-hoc approach to generation of model-error pertur-
bations. The idea is to generate additive perturbations as four-dimensional random fields
whose magnitude is determined by the area-averaged modulus of physical tendency. The
AMPT (Additive Model-error perturbations scaled by Physical Tendencies) scheme is ap-
plied to both atmosphere and soil. Nearly-Gaussian and significantly non-Gaussian fields
are treated. Results of numerical experiments with a COSMO-model ensemble prediction
system are given.

3.2.1 SPPT in a nutshell

To facilitate the presentation of the new AMPT scheme, we first outline Stochastic Pertur-
bation of Physical Tendency (Buizza et al., 1999), the very popular technique to represent
errors in physical parametrizations. This simple and effective technique relies on the as-
sumption that the magnitude of error in physical tendency is proportional to the magnitude
of physical tendency itself. There is also a flavour of SPPT called iSPPT in which tendencies
from different physical parametrizations are perturbed independently (Christensen et al.,
2017).

By Ppx, y, ζ, tq “ pP1px, y, ζ, tq, . . . , Pnfields
px, y, ζ, tqq we denote the vector valued physical

tendency (sometimes called the net physical tendency, generated by all physical parametriza-
tions combined) at the spatial grid point with the horizontal coordinates px, yq, the vertical
coordinate ζ, and the time step t. Here Pipx, y, ζ, tq is the component of Ppx, y, ζ, tq in
the i-th model field (variable) Xi, and nfields is the number of model fields selected to be
perturbed, normally, temperature, winds, and humidity.

In SPPT, the perturbed physical tendency P˚ is postulated to be

P˚px, y, ζ, tq “ p1 ` ϵ ξpx, y, tqq ¨ Ppx, y, ζ, tq, (6)

where ξpx, y, tq is a scalar (i.e. common for all physical tendency components) zero mean and
unit variance spatio-temporal random field and ϵ the parameter that controls the magnitude
of the perturbation (normally, 0.4–0.8). For stability reasons, the point wise probability
distribution of ξpx, y, tq is specified in such a way that 1 ` ϵ ξpx, y, tq ą 0, that is, avoiding
sign reversal of the physical tendency (Leutbecher et al., 2017). Note that in SPPT the
random pattern ξ is two-dimensional in space.

From eq. 6, the SPPT perturbation is seen to be multiplicative:

δP “ P˚px, y, ζ, tq ´ Ppx, y, ζ, tq “ ϵ ξpx, y, tqPpx, y, ζ, tq. (7)

Here and elsewhere δ denotes a perturbation.

3.2.2 AMPT

Motivation

The following three deficiencies of SPPT led us to propose the new approach.

1. In SPPT, perturbations are large when and where the physical parametrizations gen-
erate a large physical tendency P. This formulation gives rise to a meaningful scaling
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of perturbations in situations when the model predicts high subgrid-scale variability
and produces a large physical tendency. But it cannot cover situations in which the
model error magnitude is large whereas the magnitude of the physical tendency is
small. This occurs, for example, if in some grid cell convection is initiated in nature
whilst a convective parametrization fails to be activated.

2. In SPPT, the multivariate perturbation vector δPpx, y, ζ, tq is strictly proportional to
the physical tendency vector Ppx, y, ζ, tq (see eq. 7). This implies that SPPT tacitly
assumes that the model error is only in the magnitude of the vector P, whilst the
ratios between the physical tendencies in different variables (i.e. between δPipx, y, ζ, tq
for different variables labelled by i at the same grid point x, y, ζ, t) are error-free,
which is highly unlikely. Indeed, eq. 7 implies that the relationship between any two
components of P, say, those that correspond to temperature T and zonal wind u, i.e.
PT and Pu, is the same before and after the perturbation:

P ˚
T

P ˚
u

“
PT

Pu
. (8)

The ratios of the components of the physical tendency vector are, thus, not perturbed
in SPPT (in iSPPT, this is the case for each individual physical parametrization).

3. Similarly, as the SPPT random pattern ξ does not depend on the vertical coordinate
ζ, the ratios of physical tendencies at different vertical levels are not perturbed:

P ˚
i px, y, ζk, tq

P ˚
i1 px, y, ζk1 , tq

“
Pipx, y, ζk, tq

Pi1px, y, ζk1 , tq
(9)

for any two variables i, i1 and any two vertical levels k, k1. This implies that there are
no errors in those ratios, which, again, is unlikely.

Approach

We propose to address the above deficiencies of SPPT in our AMPT scheme as follows.

1. In SPPT, as it follows from eq. 7, the standard deviation of the perturbation in the
i-th prognostic field (given P) is ϵ|Pi| so that the standard deviation of the multi-
variate (vector) perturbation is proportional to the modulus of the physical tendency:
SDpδP|Pq “ ϵ|P|. In AMPT, we retain this linear dependency of the magnitude (stan-
dard deviation) of model-error perturbations on the modulus of physical tendency. But
we define this dependency to be more general than just point wise.

Specifically, we propose to generate model-error perturbations in the additive (rather
than multiplicative as in SPPT) way and postulate their magnitude to be proportional
to an area-averaged (rather than point wise as in SPPT) |P| in the horizontal. This
allows AMPT to generate non-zero perturbations even at grid points with zero physical
tendency — if there are nearby points with non-zero physical tendency.

2. We allow for errors in the relationships between physical tendencies in different model
variables by introducing independent driving random fields for different model variables.

3. We allow for errors in the relationships between physical tendencies at different model
levels by making ξ a four-dimensional random field ξpx, y, ζ, tq rather the three-dimensional
field ξpx, y, tq as in SPPT.
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It is worth remarking that the SPPT perturbations at any given horizontal-grid point and
time step are perfectly correlated between different variables and different levels, whereas
the AMPT perturbations are uncorrelated between different variables and partly correlated
in the vertical. This suggests that a hybrid SPPT+AMPT scheme might be considered. In
this study we focus on the pure AMPT.

3.2.3 AMPT model-error perturbations: “Gaussian” atmospheric variables

In the context of limited-area modelling, we define the area-averaged magnitude of physical
tendency for nearly Gaussian distributed fields such as temperature T and the two wind
components u, v (T, u, v are denoted generically as Y in this section) through averaging over
the whole domain in the horizontal:

PYpz, tq “ pE|PYpx, y, ζ, tq|, (10)

where ζ stands for the vertical coordinate, PY is the tendency in Y due to all physical
parametrizations, and pE is the horizontal averaging operator on the model grid. Then, the
perturbation is defined to be

δY px, y, ζ, tq “ ϵY ¨ PYpζ, tq ¨ ξYpx, y, ζ, tq, (11)

where the multiplier ϵY is the external parameter that controls the overall magnitude of the
perturbation and ξYpx, y, ζ, tq is the Gaussian pseudo-random field with zero mean, unity
variance and the tunable spatio-temporal structure (that is, spatial and time scales). The
four-dimensional pseudo-random fields ξ are to be generated “online”, that is, in the course of
the forecast model’s time integration. In this study we used the Stochastic Pattern Generator
(Tsyrulnikov et al., 2017) for this purpose. The perturbations δT px, y, ζ, tq, δupx, y, ζ, tq, δvpx, y, ζ, tq
(and any other perturbations referenced below) are computed and added to the model state
at each time step.

Note that theoretically, specifying mutually uncorrelated random stream function and ve-
locity potential fields instead of specifying uncorrelated random u and v wind components
is to be preferred. The reason is that the former approach allows for isotropic vector-wind
perturbations (Monin et al., 2013), unlike the latter approach. However, in practical terms,
we were not able to identify any significant flaw in the vector field composed of two inde-
pendent u and v fields. For this reason and due to the almost complete lack of evidence
on the actual structure of model errors, we stick to the simpler formulation of AMPT with
mutually independent δupx, y, ζ, tq and δvpx, y, ζ, tq in this study.

From δT px, y, ζ, tq, we compute the pressure perturbation δppx, y, ζ, tq integrating the hy-
drostatic equation (in which δq is neglected as a small contribution to a small perturbation).
The integration goes from the model’s top pressure downwards.

3.2.4 AMPT model-error perturbations: Humidity and hydrometeor fields

In contrast to roughly Gaussian distributed physical tendencies for T, u, v, physical tenden-
cies for specific humidity qv, cloud water content qc, and cloud ice content qi are highly
non-Gaussian. Specifically, there are areas of high physical tendencies (related, mainly, to
precipitation) and there are much (orders of magnitude) lower tendencies in non-precipitating
areas (not shown). To simplify notation, we denote in this subsection any of these fields
generically by Z in this section.
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The highly variable magnitude of the physical tendency for non-Gaussian fields in different
areas across the forecast domain makes the above whole-domain averaging (eq. 10) not
meaningful. For these fields, we propose the local-area (moving-window) averaging as a
means to compute the local (instead of global) area-averaged magnitude of physical tendency:

PZpx, y, ζ, tq “

ť

G hApx ´ x1, y ´ y1q ¨ |PZpx1, y1, ζ, tq|dx1dy1

ť

G hApx ´ x1, y ´ y1qdx1dy1
, (12)

where G is the model domain and hA is the averaging kernel chosen to have the simplest
“boxcar” shape:

hApx, yq “
1

A2
if |x| ă

A

2
and |y| ă

A

2
and 0 otherwise (13)

(A is the averaging radius). The local averaging of the absolute (i.e. the absolute value or
modulus of the) physical tendency, eq. 12, allows us to model the non-Gaussian perturbation
field δZ still using the Gaussian SPG random pattern ξZ:

δZpx, y, ζ, tq “ ϵZ ¨ PZpx, y, ζ, tq ¨ ξZpx, y, ζ, tq, (14)

where ϵZ is the external parameter (like ϵY in eq. 11). In mathematical terms, eq. 14 implies
that δZ is conditionally Gaussian given PZ and thus unconditionally non-Gaussian due to
the random nature of the PZ field.

After the perturbation δZ is added to the model state at the current time step, Z˚ “

Z`δZ, we limit the perturbed humidity and hydrometeor fields below by nullifying negative
Z˚px, y, ζ, tq. We do not apply a humidity supersaturation limiter (because otherwise the
perturbations led to biases in perturbed forecasts).

Note that if the local averaging radius A is big enough, the moving-window scheme becomes
equivalent to the formulation of AMPT with the whole-domain averaged magnitude of phys-
ical tendency. Therefore, we will assume by default that the AMPT scheme is formulated
with the moving-window-averaged area-averaged magnitude of physical tendency P (as de-
scribed in this section). Thus, for the i-th field, we specify its own averaging radius Ai,
larger for Gaussian and smaller for non-Gaussian model variables (see section 3.2.8 for the
actual choices we made).

Note that the local-averaging formulation of AMPT is applicable for the global domain as
well as for the local (regional) domain.

3.2.5 AMPT model-error perturbations: Soil fields

In the land-surface model, tendencies of the two prognostic fields are perturbed: soil tem-
perature Tso and soil moisture (more specifically, soil water content Wso), at nz levels in the
soil (which are counted downwards).

Due to the lack of reliable error statistics in the soil, we set up a scheme which is (i) as simple
as possible, (2) consistent with statistics of the soil fields, and (iii) provides a reasonable
forecast spread both in the soil and just above the land surface in the atmosphere.

The approach is to apply the above AMPT scheme. The differences with the atmospheric
AMPT are:

1. In the soil AMPT, we perturb the total (not physical) tendency, assuming that all
processes in the soil that contribute to the total tendency are modelled with substantial
uncertainty.
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2. The area-averaged absolute tendencies, PTso and PWso , are computed using grid points
over land only.

3. The perturbation patterns (SPG random fields) in the soil, ξTsopx, y, tq and ξWsopx, y, tq,
are two-dimensional (not three-dimensional as in the atmosphere).

4. The range of Wso is limited so that the volumetric soil water content

ηsopx, y, z, tq “
Wsopx, y, z, tq

∆z
(15)

(where ∆z is the thickness of the z-th soil layer) lies between the wilting-point ηwp and
field capacity ηfc:

ηwp ď ηsopx, y, z, tq ď ηfc. (16)

If the perturbed soil water content Wsopx, y, z, tq (at any spatial grid point and any
model time step) does not satisfy the constraint eq. 16, it is truncated accordingly.

For Tso, the domain averaging is used to compute the area-averaged tendency PTso (as in eq.
10). For Wso, the moving-window averaging is employed to compute PWso (as in eq. 12).
These choices are motivated below in section 3.2.9.

3.2.6 Initial soil perturbations

In the soil, processes have much longer time scales than in the atmosphere, therefore weeks
of cycling are needed to reach equilibrium in the ensemble statistics there. To avoid long
cycling, we developed a generator of initial Tso and Wso perturbations.

The initial soil temperature perturbation is specified to be

δT ini
so px, y, zq “ σini

Tso
¨ κ1´z

Tso
¨ ξpx, yq, (17)

where σini
Tso

is the external parameter that defines the magnitude of the perturbation at the
uppermost level, κTso ą 1 is the vertical-decay external parameter, z “ 1, 2, . . . , nz labels
the vertical level, and ξpx, yq is the 2D SPG pseudo-random field. Note that the perturba-
tion pattern ξ is the same for all vertical levels, whilst the magnitude of the perturbation
exponentially decreases downwards (the decrease was motivated by the experimental results
given below in section 3.2.9).

With the soil moisture Wso, the technique is to perturb the Soil Moisture Index

S “
ηso ´ ηwp

ηfc ´ ηwp
(18)

as follows:
δSinipx, y, zq “ σini

S ¨ κ1´z
Wso

¨ ξpx, yq, (19)

where σini
S is the magnitude parameter like σini

Tso
in eq. 17 and κWso is the vertical-decay

parameter. If at some grid point the perturbed S appears to lie outside the meaningful
range r0, 1s, the perturbation δSini is truncated accordingly.

Using equations(18) and (14), we finally convert the perturbation δSinipx, y, zq into the per-
turbation of Wso:

δW ini
so px, y, zq “ ∆z ¨ rηwp ` δSinipx, y, zqpηfc ´ ηwpqs. (20)
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3.2.7 Stability

Stochastic-dynamic schemes in which the magnitude of forcing depends on the current state
of the system can be unstable due to the positive feedback loop: a larger perturbation at
the current time step may lead to a greater deviation of the state from its time-mean value,
which may result in a larger physical tendency at the next time step, which would give rise
to a larger perturbation, etc. until explosion.

To break this vicious circle, we considered two strategies. A technically simpler one, which
we adopted in this study, is to update Pi not at every time step, but less frequently, once per
T update
Pi

lead time, where T update
Pi

is the external parameter defined below in section 3.2.8.

A somewhat more involved but potentially more powerful approach (which we left for future
research) is to calculate Ppx, y, ζ, tq from the unperturbed (control) model run (possibly,
on a coarse spatio-temporal grid) and then use it to compute AMPT perturbations for all
ensemble members. This will completely destroy the harmful positive feedback.

3.2.8 Experimental setup

The domain is shown in Fig. 10 (the Sochi Olympics-2014 area). Note the complexity of
the area, which contains high mountains adjoining the sea and the valleys. The centre of
the domain is located nearly at 44˝ N. The climate at the sea level is humid subtropical.
Numerical experiments were carried out in this study mostly for the winter-spring season: in
February and March, for which we had access to all data needed to run and verify an EPS.
Some sensitivity experiments were also conducted for May cases.

Figure 10: Model domain and orography.

The COSMO model (Baldauf et al., 2011) (version 5.01) in the convection permitting con-
figuration with the horizontal grid spacing of 2.2 km, with the grid of 172*132 points in
the horizontal, and 50 vertical levels was used for numerical experiments in this study. The
model integration time step was 20 s. All calculations were performed in a single precision
mode. The model’s vertical coordinate was the height-based hybrid (Gal-Chen) coordinate
(Gal-Chen et al., 1975).

The following AMPT parameters were selected for numerical experiments. The horizontal
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length scale Li of the SPG driving random fields ξi (where i labels the perturbed fields) was
equal to 50 km (i.e. 20–25 horizontal mesh sizes) for T, u, v, 70% of this value (i.e. 35 km)
for qv, and 50% (25 km) for the cloud fields.

The time scales Ti of the atmospheric random fields ξi were specified as Li{U , where U is
the characteristic velocity. By trial and error, we found that U “ 15 m/s worked well (and is
physically meaningful). For both soil fields, i.e. Tso and Wso, the common time scale Tso was
specified as the time scale for atmospheric temperature, TT, multiplied by a factor τso ą 1
that reflects a much greater inertia of the soil as compared to the atmospheric air, so that
Tso “ τso ¨ TT. The optimally tuned value of the soil inertia factor τso was 12 (i.e. the time
scales were, roughly, 1 h in the atmosphere and 12 h in the soil).

The time-update interval T update
Pi

(see section 3.2.7) for the model field Xi was set equal to

the time scale Ti of the respective random pattern ξi. Note that with T update
Pi

much lower

than Ti, the perturbed model may become unstable (see section 3.2.7), whereas with T update
Pi

much greater than Ti, the resulting area-averaged Pi may become irrelevant in a rapidly
developing meteorological situation.

The magnitude parameter of the initial Tso perturbation, σ
ini
Tso

, was set to 1 K. The magnitude
parameter of the initial soil moisture index perturbation, σini

S was set to 0.01 (larger values
led to unrealistically large model tendencies in Tso).

After some experimentation, the model-error multipliers ϵi were specified equal to 0.75 for
T, u, v, Tso, and Wso, and 0.5 for qv, qc, and qi.

The absolute-physical-tendency averaging length scale Ai (see section 3.2.4) was specified
equal to the length scale Li of the respective SPG random field ξi for qv, qc, qi, and Wso.
For the nearly Gaussian fields T, u, v, the respective Ai were selected large enough to ensure
the whole-domain averaging of |Pi|.

In the ensemble prediction experiments presented below, we actually perturbed only tem-
perature and winds because this configuration produced stable and positive results. As for
humidity and cloud fields perturbations, they led to mixed results in EPS verification scores
and so were not included in the model-error perturbation scheme.

We also compared AMPT with SPPT, implemented in the COSMO model by L. Torrisi and
tuned by Maurer et al., 2014. In the SPPT, the standard deviation of the random field was
set to 0.8, the spatial scale to 5˝ (i.e. some 500 km), and the time scale to 6 h. Temperature,
wind, and humidity were perturbed.

Tapering, that is, a gradual reduction of the perturbation magnitude (1) in the lower tro-
posphere towards the surface and (2) in the stratosphere from the tropopause upwards,
was handled in the SPPT as follows. The stratospheric tapering was always active in our
experiments because it is believed that the radiation tendency, which is dominant in the
stratosphere, is quite accurate in clear-sky conditions (e.g. Leutbecher et al., 2017). As for
the lower-tropospheric tapering, which is intended to prevent instabilities due to inconsisten-
cies of perturbed physical tendencies and unperturbed surface fluxes (Wastl et al., 2019), we
found that the SPPT worked better without it. Specifically, our experiments showed that,
on the one hand, the SPPT without tapering was stable in the boundary layer. On the other
hand, with tapering, SPPT led to an unacceptably small ensemble spread in the near-surface
fields, so we switched off the lower-tropospheric tapering in the SPPT. In AMPT, tapering
was switched off in the experiments described below.

Note that the above spatial and time scales employed in AMPT were an order of magnitude
less than those in the SPPT (50 km vs. 500 km and 1 h vs. 6 h). This is reasonable because
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in SPPT, the perturbation is multiplicative, i.e. the random field (pattern), ξpx, y, tq, is
multiplied by the physical tendency, Ppx, y, ζ, tq, which is a rather small-scale random field
itself, so that the perturbation, ξpx, y, tq ¨Ppx, y, ζ, tq, appears to be a reasonably small-scale
field even if ξpx, y, tq is large-scale. If ξpx, y, tq were small-scale in SPPT, the product ξ ¨ P
would be too patchy, which would reduce the effect on the forecast. In contrast, AMPT
introduces an additive perturbation, which needs to be small-scale in order to represent the
errors in parametrizations of subgrid-scale processes.

To find out if this argument is reasonable, we ran the SPPT with the smaller time scale of 1
h and the spatial scales of 50 and 100 km. The resulting spread in the ensemble forecast was
very small, confirming the conclusions of Maurer et al., 2014 (made for a different domain,
orography, physiography, etc. ) and justifying the choice of the SPPT parameters for our
domain (the setup was also consistent with that employed in AROME-EPS, (Bouttier et al.,
2012)). For the set-up of SPPT in COSMO, see also Klasa et al. (2018).

Note that in what follows, by “model perturbations” we mean model-error perturbations
generated by AMPT and SPPT in the atmosphere and also the initial and model-error
perturbations generated by AMPT in the soil.

3.2.9 Unperturbed Tso, Wso total tendencies

Fig. 11 shows the unperturbed tendencies for Tso and Wso at the soil level z “ 2 and lead
time 2 h (the forecast started at 00 UTC on the 1st of May 2014). The tendencies were
computed as one-time-step differences and recalculated w.r.t. 1 h (so that the Tso tendency
is measured in K/h).

The Tso tendencies (left panel in Fig. 11) look more or less uniform (albeit with a few isolated
outliers) and thus not far from Gaussian. For this reason, the AMPT perturbation scheme
for Tso model-error perturbations was selected to involve whole-domain (not moving-window)
averaging of the modulus of the tendency.

The Wso tendencies on the contrary (right panel in Fig. 11), are highly inhomogeneous
and thus non-Gaussian. This motivated the use in the AMPT perturbation scheme for
Wso of a moving-window averaging of the modulus of the tendency to scale the model-error
perturbation of Wso.

In the vertical, the mean absolute tendency in Tso roughly halved when going one level down
in the soil (not shown). So did (again, roughly) the maximal absolute tendency in Wso

1.

We found no significant dependencies in the magnitude and spatial structure of soil tendencies
on the soil type (there were only two soil types in the COSMO model across the domain,
not shown).

One can see a signature of orography (Fig. 10) in the soil tendency fields (Fig. 11).

3.2.10 Testing AMPT in an ensemble prediction system

Numerical experiments were carried out to study the effect of AMPT model perturbations in
COSMO-Ru2-EPS (Montani et al., 2014 and Astakhova et al., 2015), the ensemble prediction

1The maximal absolute tendency looks more appropriate to measure the magnitude of the tendency in
Wso than the mean absolute tendency — because the magnitude of the soil moisture tendency exhibits very
big changes over the model domain (see Fig. 11, right panel) so that the averaged value is irrelevant for areas
of both big and small model tendencies (that is, almost everywhere).
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Figure 11: Total tendency of Tso (left, K/h) and Wso (right, Wso units per hour) at level 2,
forecast lead time 2h. The forecasts were initialized at 00 UTC 1 May 2014. Tick labels are
grid points in the longitudinal (x-axis) an latitudinal (y-axis) directions

system developed within the FROST-2014 project (Kiktev et al., 2017) and CORSO priority
project of the COSMO consortium (Rivin et al., 2018). For the COSMO model set-up
used in the ensemble prediction system, see above section 3.2.8. The ensemble size was
10. COSMO-Ru2-EPS performed a dynamical downscaling of the forecasts of the driving
COSMO-S14-EPS system developed by ARPA-SIMC for the Sochi Olympics (Montani et
al., 2013). Thus, both initial and lateral boundary conditions for the control forecast and
the ensemble members were provided by COSMO-S14-EPS. In turn, COSMO-S14-EPS was
a clone of the consortium ensemble prediction system COSMO-LEPS (Montani et al., 2011)
with a smaller ensemble size and shifted to the area of the Sochi Olympics. COSMO-S14-EPS
had the horizontal grid spacing of 7 km and 40 levels in the vertical.

Experiments setup

A continuous series of experiments was performed with COSMO-Ru2-EPS for the two-month
period of February-March 2014 without model perturbations as well as using AMPT and
SPPT with the parameters indicated above (section 3.2.8). The forecasts were initialized
every day at 00 UTC. The local time for the region considered was UTC+3 h. The results
were verified against near-surface observations (about 40 stations) using the COSMO unified
verification system VERSUS (Raspanti, 2009). Ensemble forecasts in the free atmosphere
were verified against zero-lead-time ECMWF forecasts (with the horizontal resolution of
about 16 km).
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Below we show verification scores for the whole two-month period. Similar results were
obtained for each of the two months separately (not shown).

We concentrate on the impact of model perturbations on probabilistic forecasts of T2m and
precipitation.

The list of experiments and their basic features are presented in Table 1.

Table 1: List of experiments with COSMO-Ru2-EPS

Experiment Model perturbations in addition to initial and lateral-boundary ones

NOPERT None
SPPT SPPT model-error perturbations in the atmosphere
AMPT-NOSOIL AMPT model-error perturbations in the atmosphere
AMPT-SOIL AMPT perturbations: atmosphere + soil

Deterministic verification

Fig. 12 shows the root-mean-square error (RMSE) of the T2m ensemble mean forecast (the
upper bunch of curves). One can see that, excluding the initial transient (spinup) period of
some 3 h (likely, due to imbalances in the initial perturbations), the RMSE had a prominent
diurnal cycle with a broad minimum at night and a narrower maximum shortly after midday.
This corresponds to the known systematic error in T2m in the COSMO model (Fig. 2 in
Kirsanov et al., 2020).

Fig. 13 displays the normalized ensemble-mean RMSE reduction w.r.t. NOPERT (to high-
light the barely seen in Fig. 12 differences between the experiments), that is, pRMSENOPERT ´

RMSEq{RMSENOPERT . SPPT led to a persistent slight reduction in RMSE. AMPT model
perturbations gave rise to a more significant decrease in the T2m RMSE most of the time
except for the rather short time periods in the afternoon, when the ensemble-mean fore-
cast deteriorated. Soil perturbations added skill to the ensemble mean forecast: the RMSE
reduction is higher in the experiment AMPT-SOIL than in AMPT-NOSOIL.

Reliability

The lower bunch of curves in Fig. 12 shows the ensemble spread, which was a bit too low
with both SPPT and AMPT. This implies that the ensemble forecast was lacking reliability,
though AMPT perturbations increased the spread to a much greater extent than SPPT
perturbations. The effect of the AMPT perturbations on the spread was nearly the same
for all lead times. The gradual overall growth of the spread with time was, likely, caused by
the lateral boundary perturbations as they propagated from the boundaries to the domain
interior. This explanation is consistent with the gradual reduction in the differences between
the experiments (since they had the same lateral boundary perturbations).

Higher in the atmosphere, the RMSE of temperature and wind speed was negligibly affected
by AMPT perturbations while the related spread grew most efficiently near the surface and
fell with height.

For temperature, the AMPT atmospheric perturbations resulted in a spread growth by 0.3
K at 20 m, 0.25 K at 150 m, and 0.1 K at 1000 m. The soil perturbations added only about
0.08 K to the spread below 150 m and their effect vanished towards the top of the boundary
layer.

For wind speed, the spread gain due to the AMPT purely atmospheric perturbations was
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Figure 12: RMSE of T2m ensemble mean and spread. Experiments NOPERT (blue),
SPPT(green), AMPT-NOSOIL (orange), and AMPT-SOIL (magenta).

about 0.3-0.4 m/s below 150 m and reduced to 0.2 m/s at 1000 m. The impact of soil
perturbations on the wind speed was rather weak. Even at the lowest model level ( 20 m)
the spread difference between AMPT-NOSOIL and AMPT-SOIL was only 0.01 m/s.

AMPT perturbations of humidity and cloud fields generated significant spread in precipi-
tation and in the upper-air temperature during precipitating events but the effect of those
perturbations on the ensemble prediction performance scores was mixed (not shown). Fur-
ther experiments are needed to reach more conclusive results.

Probabilistic verification

Standard probabilistic scores for near-surface variables were calculated for all experiments.
The continuous ranked probability score (CRPS), which generalizes the mean absolute error
to the case of probabilistic forecasts, is presented in Fig. 14 for T2m. CRPS measures the
difference between the predicted and occurred cumulative probability distributions. Both
SPPT and AMPT improved CRPS but AMPT was undoubtedly more successful, especially
with additional soil perturbations.

The advantage of AMPT over SPPT for T2m is also supported by the analysis of the Brier
score, which characterizes the magnitude of the probability forecast error, see Fig. 15. In
fact, this result could be expected as CRPS is usually interpreted as the integral of the Brier
score over all possible threshold values (Hersbach,2000).

We also examined the ability of our EPS with different model perturbations to discrimi-
nate between two alternative outcomes (say, “T is below a threshold” and “T is above the
threshold”). The relative operating characteristic (ROC) is normally used to assess the dis-
crimination ability of an EPS. Fig. 16 shows the area below the ROC curve (ROCA) for two
thresholds. Note that the perfect value for ROCA is 1 and the value less than 0.5 indicates
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Figure 13: Normalized T2m ensemble-mean RMSE reduction (the greater the better).

no skill. Actually, ROCA in Fig. 16 is quite high, indicating that the EPS was skillful.
Like the previously mentioned probabilistic scores, ROCA demonstrates the advantage of
the EPS configuration AMPT-SOIL for both thresholds indicated in Fig. 16 and for the
majority of other thresholds we tested (not shown).

The effect of T, u, v perturbations on precipitation was rather ambiguous (see Fig. 17)),
perhaps because the time period considered was rather dry (Vasil, 2015). The first half of
February 2014 was characterized by an anticyclonic weather, that favoured the precipitation
deficit. Only during the second ten-day period of March 2014 considerable amounts of
precipitation were observed. Further experiments are needed and will be conducted after
this study.

3.2.11 Discussion on AMPT

Limitations of the experimental setup

1. The initial and lateral-boundary (driving) ensemble was under dispersive. This factor
might lead to an overestimation of the tuned AMPT model-error parameters (the
model-error perturbations might be forced to, partly, do the job of initial and lateral-
boundary perturbations).

2. The study is conducted on a small model integration domain and for a time period
of only one season, which may imply that additional experiments with AMPT on a
domain in a different climate zone, different orography and physiography in different
seasons and weather conditions need to be conducted to get more conclusive results.

3. In particular, the period of February-March 2014 was rather dry, so it was hard to
justify the effect of AMPT perturbations on precipitation. However, sensitivity exper-

25



Figure 14: CRPS for T2m. The lower the better.

iments for May 2014, not presented in this report, suggest that AMPT humidity and
cloud-fields perturbations can be important during periods with convective events.

4. For the same reason, we do not present here results of experiments with humidity
perturbations. Only perturbations of temperature, wind, and soil were introduced in
the above experiments.

Advantages and limitations of AMPT

Theoretically, potential advantages of AMPT w.r.t. SPPT are:

� AMPT generates additive model-error perturbations, which can represent errors in
physical parametrization schemes when they produce an erroneously small physical
tendency. SPPT cannot do that because its perturbations are multiplicative.

� AMPT can account for errors in the relationships between errors in different variables
and at different model levels. In SPPT, these relationships are, effectively, assumed to
be error free.

A potential disadvantage of AMPT w.r.t. SPPT is:

� AMPT produces, likely, less balanced perturbations than SPPT because the latter
preserves the relationships between different variables and between different model
levels. But model-error perturbations (imposed at every model time step) are very
small and so are the imbalances. In our numerical experiments we found no evidence
of problems related to the imbalances, unless the AMPT perturbations were “too big”
(i.e. having an excessive magnitude and/or spatial or time scale). For “not too big”
AMPT perturbations, the model was able to cope with the small imbalances without
any indication of spinup-like behaviour.
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Figure 15: The same as Fig. 14 but for the Brier score for the events T2m ą 0 C (the upper
panel) and T2m ă ´5 C (the lower panel). The lower the better.

3.2.12 Conclusions on AMPT

� A new technique called Additive Model-error Perturbations scaled by physical Ten-
dency (AMPT) is proposed. AMPT employs the Stochastic Pattern Generator (Tsyrul-
nikov et al., 2017) to generate four-dimensional random fields with tunable spatio-
temporal correlations. The SPG random fields in AMPT are independent for different
model fields. They are scaled by an area-averaged modulus of physical tendency and
added to the model fields at every model time step. Gaussian and non-Gaussian fields
are treated by AMPT.

� Three-dimensional model fields of temperature and winds were perturbed.

� Three-dimensional soil fields (temperature and moisture) are perturbed as well.

� In ensemble experiments, it was found that AMPT perturbations were very effective
in generating spread in the ensemble.
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Figure 16: The same as Fig. 14 but for ROCA for T2m for the events “T ą 0 C” and “T ą 5
C”. The higher the better.

� Perturbing humidity and cloud fields generated significant spread in precipitation and
upper-air temperature during precipitating events (not shown).

� Soil perturbations contributed significantly to the spread of near-surface fields.

� AMPT was able to reduce the average root-mean-square error (RMSE) of the ensemble
mean w.r.t. no model perturbations and w.r.t. SPPT, however sometimes RMSE was
degraded.

� Probabilistic ensemble verification scores (CRPS, Brier score, and ROC area) for near-
surface temperature and wind speed were improved due to AMPT model perturbations
in the atmosphere w.r.t. no model perturbations and w.r.t. SPPT.

� AMPT soil perturbations further improved the probabilistic verification scores.

� Probabilistic verification of precipitation gave mixed results, perhaps due to the insuf-
ficient number of precipitating events during the time period examined.
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Figure 17: Brier score for total precipitation for the various thresholds indicated in the
panels. The lower the better.

3.3 Model perturbations at IMGW (A. Mazur and G. Duniec, IMGW)

At IMGW, the basic instance of the COSMO model runs in a deterministic mode, using the
initial (IC) and boundary (BC) conditions from the global ICON model. ICON generates
a sets of IC/BC for 78-hour mesoscale COSMO forecasts. In turn, COSMO model with a
horizontal resolution of 7 km (COSMO-7) uses nudging-based data assimilation to correct
the forecasts of the global model by retrieving the latest data from the WMO network. The
forecast results with a resolution of 7 km are further used as sets of IC/BCs for a nested
COSMO model instance with a higher resolution of 2.8 km, and 48-hour forecasts. These
deterministic COSMO-2.8 km forecasts define the basis for the operational configuration of
the Ensemble Prediction System (EPS). In the final configuration of the operational EPS at
IMGW, the set of twenty ensemble members is grouped into four packages, staggered in time
by 6 hours from one another, obtained from previous model runs. Each package contains five
members (Mazur and Duniec, 2015). All forecast (ensemble) results are then processed to
provide the selected statistics (ensemble mean, spread, probability of exceedance of selected
thresholds, etc.) in a graphical form. Model perturbations are added, by perturbing the
parameter describing evaporation from the soil (c soil).

3.3.1 Perturbations based on adapted Random Number Generator.

Computer-generated random numbers are called “pseudo-random” numbers as they are de-
signed to mimic randomness but they are determined in a deterministic, though often very
complex, way. Due to the ever-growing demand for good pseudo-random numbers, the lit-
erature describes many ways to generate them, and many people are still working on new
methods. To generate numbers from the uniform distribution are used, among others, the
following algorithms: Wichmann-Hill (Wichamnn and Hill, 1982), Marsaglia (Marsaglia,
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2003), Knuth (Knuth, 1981). In general, a Random Number Generators (RNG) is a deter-
ministic function. It uses the so-called “seed” that completely determines the values of the
subsequent pseudorandom numbers. The seed is the value on the basis of which successive
random numbers will be constructed. For a permanent generator and seed, identical ran-
dom numbers will be generated regardless of the operating system or computer type. This
property can be easily exploited. By controlling the selection of the seed, it is possible to
obtain identical sequences of random numbers on different computers. In this way, one can
repeat the simulation results, reproducing these results on other computers, or continuing
calculations interrupted by some error. However, the basic selection of seed has its weak-
nesses. The seed on most computers is based on machine time (generally milliseconds). On
high-speed machines, seeds can be identical for many, if not all, processes (threads). This
problem is illustrated in the Fig. 18. More threads means more likelihood to have identical
seeds. With an exemplary operating configuration of 400 threads versus 999 milliseconds,
one will not get 999 ms (and, hence, 999 values of seed) on high-speed machines, but much
less. This increases the probability that multiple threads (the blue diamonds) will have the
same grain (red rectangles). The basics of the new RNG have already been presented in the
framework of the Priority Project SPRED. Here, therefore, just to reminder is provided: the
basic scheme of the new RNG assumes a sequence (in particular, even several stages) of gen-
erating seed values. That is, the first operation in a sequence generates a (pseudo-random)
number which is the input to the next operation, and so on (see Fig. 18). Ultimately, the
final seed value suitable for the RNG is obtained. At the expense of a slight extension in
time, significantly randomized seed values are obtained.

Figure 18: Left (a): Problem with parallel threads of stochastic computations - seeding RNG
with machine time (milliseconds). Right (b): Block scheme of new seeding for RNG

Changing the RNG to the proposed one causes (may cause) a problem related to the loss of
reproducibility of the results, mentioned in the introduction. However, from a mathemat-
ical point of view, the reproducibility requirement cannot be applied to single samples of
partially or wholly nondeterministic phenomena, although it still applies to a probabilistic
description of these phenomena, with the error tolerance defined by the probability theory.
Apart from repeatability for technical or comparative tests, however, it is difficult to see too
many arguments in favour of choosing permanent seeds. Perturbations based on an adapted
Random Number Generator (RNG) were prepared for the years 2011-2015 (archive data).

This part of the report presents a comparison between a ”new” RNG vs. a standard one.
Essentially, the ”new” RNG has been operating in operational mode since 2019, replacing the
”old” one. The modification was made when the perturbed parameter (c soil) was defined in
the code. The main reason for choosing where to introduce the random variation was code
maintenance. By introducing variations in the original position (defining the field of the
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disturbed parameter) on all nodes, it is possible to avoid excessive communication between
the processors during the redistribution of the field. The use of machine time was due to the
fact that initialization is performed only once (i.e. at the beginning of the model launch).
The disturbed parameter is used only in the soil model (only once after the model started),
and further during computations the distribution is no longer needed. The procedure does
not repeat afterwards and does not affect efficiency in any way, but it seems to be one of the
best sources of stochastic initiation. The results of the initial application of the new RNG
were presented in PP SPRED, while further results of the RNG use tests are shown here.
The influence of the RNG on the air temperature and dew point at 2m, wind speed at 10m
and relative humidity at 2m is shown (Table 19 and Fig. 20, compared to values obtained
with the standard ”old” generator.

Figure 19: Average spread values for T2m and Td2m for years 2011-2015, modified RNG
(left) and standard RNG (right). Tests with perturbations included, lagged members ex-
cluded.

Upon completion of the tests, the standard RNG was turned off. Currently, taking into
account the quality from the new RNG, a new method of seed generation is operationally
used for perturbations.

3.3.2 Perturbation of soil surface temperature in combination with upper air
perturbation

The usage of other types of model perturbations has been tested and the results are here
presented. Perturbations include soil surface temperature, coefficient of performance and
combinations thereof. The following cases were considered:

a. operational set-up: perturbation of the parameter describing evaporation from the soil
(c soil);

b. eff-coeff: perturbation of the collection efficiency coefficient;

c. laf-pert: perturbation in soil surface temperature (initial values, with the amplitude of
perturbation depending on the type of soil, see Duniec and Mazur, 2020);

d. combination of b) and c)

The general perturbation scheme have the following form:
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Figure 20: TD2M average spread values for years 2011-2015, modified RNG (left) and stan-
dard RNG (right). Tests with perturbations included, lagged members excluded.

Figure 21: Upper panels: observations minus ensemble means, lower panels: spread-skill
diagrams. Left to right are shown the 4 configurations of the ensemble: (a), (b), (c), (d) (see
explanations in the text). Averaged values for the years 2011-2015.

perturbed value=basic value * [1+(random number -0.5 ) * amplitude]

where the “random number” (obtained from a computing dependent pseudorandom number
generator, see section 3.3.1) varies from 0 to 1. In the laf-pert perturbation it is assumed
that the ability to transfer heat and water is related to the compactness of the soil. If the
soil is coarse (like sand), the amplitude of the disturbance is one, and the more compact the
soil texture, such as peat or clay, the smaller is the disturbance amplitude. For example, for
sand the amplitude was set to 1.0, for clay it was set to 0.6 and for peat it was set to 0.5.
Thus, for sand, the perturbation ranged from 0.5 to 1.5 of the original (undisturbed) value.
A climatological analysis for the warm period of a selected year was presented in Duniec and
Mazur (2015). The overall results were also presented at the ICCARUS 2020 seminar. In
Fig. 21 are reported only the most significant results, a comparison of different perturbation
methods vs. measurements at SYNOP stations in Poland.

Research results essentially confirmed that:

32



1. the influence of the perturbation of the efficiency coefficient is, as expected, significant
only in the case of precipitation;

2. the combination of different types of perturbations does not necessarily have a linear
effect on the spread value and, moreover, on the quality of the forecasts. In some
cases, the size of the spread produced by the perturbation combination was significantly
greater than the algebraic sum of the spread produced by the perturbations applied
separately;

3. compared to the operational EPS setup, new types of perturbation improve the quality
of the forecasts in terms of skill and spread. The most effective perturbation scheme in
terms of MAE and spread, averaged over the period 2011-2015, was the combination
of perturbation types, with the mentioned restriction concerning point (1).

3.4 Perturbations based on SPPT with independent pattern (iSPPT)
(André Walser and Linda Füzér, MCH)

The operational ensemble prediction system (EPS) of MeteoSwiss, COSMO-E, is under-
dispersive, i.e. the forecast shows a lack in the ensemble spread near surface, particularly
in the short-range during the winter season. Stochastic perturbation of physical tendencies
(SPPT) is operationally used in COSMO-E to represent model errors by perturbing the sum
of the physical tendencies from the parametrization schemes. Although SPPT increases the
spread significantly, there are still opportunities for further improvements. Christensen et
al. (2017) suggest a modified version of SPPT called independent stochastically perturbed
physical tendencies (iSPPT) which allows more flexibility in the perturbation setup and
yields a better spread-error relationship in a global ensemble prediction system. For this
reason, we have implemented iSPPT in the COSMO code in a test branch and investigated
whether an iSPPT scheme can improve COSMO-E forecasts.

The results of the iSPPT experiments are shown in detail in Füzér (2018). In summary,
iSPPT does not reveal a consistent improvement of the COSMO-E forecast spread-error
relationship as compared to SPPT experiments. The ensemble mean error of the forecast is
hardly sensitive to iSPPT, and a positive effect on the spread is found for wind speed and
humidity and in some setups only while the spread for temperature could not be increased.
The flexibility provided by iSPPT to perturb the individual physical tendencies differently
is not helpful to achieve better scores for COSMO-E. Best results with iSPPT are achieved
with the same random number setup as for SPPT applied to all physical tendencies.

3.5 Perturbations based on analysis increments (André Walser and Linda
Füzér, MCH)

Perturbations from both SPPT and iSPPT do not account for model errors different than
the ones arising from the parametrization schemes. For a global EPS, Piccolo et al. (2018)
thus propose model perturbations using analysis increments (AIs) of the data assimilation
cycle, as they are not random quantities but rather include possible sources of forecast errors.
Such perturbations could also be beneficial for a limited-area EPS like COSMO-E. However,
the characteristics of the AIs from the KENDA system, which provides the initial conditions
for COSMO-E, has not been investigated yet and is thus unknown.

Füzér (2018) shows a detailed analysis of the AIs from the operational KENDA system of
MeteoSwiss. The considered time period is 1st June 2017 to 31st August 2018 to cover all
seasons and to be able to compare the summer of two different years. In summary, the AI

33



dataset only shows notable biases for summer temperature and humidity. Between 8 and 16
UTC, a negative temperature bias of up to -1.5 K can be found in the lowest model levels.
During the other seasons and variables, regional biases are visible. Both the absolute mean
AIs and standard deviation show clear variability among the seasons and have a diurnal
cycle that also varies with the seasons. The magnitude and variability of the AIs increase
throughout the course of the day and reach a maximum at 12 UTC and a minimum at
night time. The most pronounced diurnal cycle is visible for summer, followed by spring
and autumn. A comparison of summer 2017 and 2018 leads to the conclusion that the AIs
analysed in this thesis are representative for the respective seasons because the two years
show very similar characteristics although they were different in terms of meteorology. The
comparison of AIs and model verifications against radiosondes reveals that the magnitude
of the AIs is in good agreement with the model first guess mean error. Additionally, as
expected, the AIs have opposite signs compared to the mean error of the FG ensemble mean.

The results of the analysis point towards a possible suitability of the AIs as model per-
turbations. There is a variability within the data, therefore the individual members of the
ensemble prediction system would be perturbed differently and lead to an enhanced spread
in the result. The AI fields should be grouped by season and time of the day and drawn
from the corresponding group when the perturbations are applied. As the AIs are in good
agreement with the bias of the FG ensemble mean, perturbations generated using AIs have
the potential of reducing the model error and local biases. Before using the AIs as model
perturbations, the outliers in the AI data set should be further investigated. It might be
useful to set a range for the AIs in order to avoid disproportionally large perturbations.

Even though the study confirms that model perturbations with analysis increments have a
large potential to be beneficial for a high-resolution EPS too, it has not been implemented
and tested yet due to missing resources.

4 Post-processing and interpretation of ensembles

4.1 Calibration (A. Mazur, W. Interewicz, IMGW)

The development and application of calibration methods at IMGW were initiated in the
previous Priority Project SPRED, and here only the results and conclusions from the con-
tinuation of the research and method(s) development are presented. The research essentially
focused on three basic methods of determining the ensemble mean.

� The most common procedure for calculating the ensemble mean is to use the arithmetic
mean of values obtained for all particular members, here called ”Simple” Average.
Values obtained from the members affect the ensemble mean with the same weight.
The simplicity of the method implies that no additional procedures or assumptions are
required.

� An alternative approach can be described as (multi-) linear regression (MLR), where
pre-made predictions of all (X) EPS members are compared with the observations
during a learning phase. The weights of each member are then calculated to judge how
”important” the selected member should be in the overall EPS average (or how large a
member’s share in the EPS average should be). The least squares method used for the
computation of the weights can also take into account all potentially important factors
such as geographic coordinates, altitude, hour of forecast start, current forecast hour
etc. An additional condition is the normalization of weights to one.
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� Finally, an artificial neural network (ANN) was investigated to see if this approach
could be a valid substitute for a Simple Average or MLR Mean. The basic idea is
that the weights, according to the same scheme as in the MLR calculation, are calcu-
lated (learned) using the concept of the neuron layer(s), appropriately activated during
the learning phase. This approach uses the commonly used ANN back-prop method
combined with the activation function of a hyperbolic tangent. During the research
(and later in the operational application of the method), a system with two layers of
neurons (input and hidden) was used. The first (input) layer contains six neurons, the
second, hidden layer contains two neurons. Such a scheme is due to the fact that the
EPS creates four sets of five members, corresponding to four neurons, while the other
two input neurons are related to spatial (geographic coordinates, terrain height) and
time constants (forecasts leadtime). In the hidden layer, two neurons are assigned to
variables (forecast members) and constants.

The effectiveness and superiority of the ANN method compared to the Simple Average and
MLR were proven (Fig. 22). After the tests and this comparison the ANN method was
implemented in an operational mode.

Another calibration technique applied and tested was the VOD (Vector Of Displacement)
procedure. The method based on the space-lagged (cross-) correlation technique was used
in this respect.

The basic principle of the method is based on the assumption that the forecast value field
(including the ensemble mean forecast) can be spatially shifted relative to the actual value
field, maintaining the spatial ”shape”. To determine the size of this shift (i.e. VOD - Vector
Of Displacement), these steps are followed:

1. Calculate the ”centre of mass” of the two-dimensional field of forecast values

2. Calculate the ”centre of mass” of the two-dimensional field of measured values

3. Define VOD as the vector connecting these two points

4. ”Shift” the forecast field by the VOD vector

An example of the result of using this procedure is shown in the figure 23.

As the number of SYNOP stations in Poland is not quite large (61), the procedure has been
modified for the elements measured at the stations. Instead of calculating the ”centres of
mass” of continuous fields, the procedure is as follows:

1. at each SYNOP station, find the grid point (in a specific vicinity) with the forecast
value closest to the one measured at station;

2. calculate the displacement vector for single station as the difference between the station
location and the location of this point in the forecast field;

3. calculate an overall VOD as the average over all the stations

4. displace every value of forecasts by the vector of displacement

An example of the result of using this procedure is shown in figure 24.

After finding an improvement in the quality of the forecasts, this procedure was also applied
operationally. In the operational mode, VOD is being determined at the beginning of each
calculation cycle for each forecasted meteorological element. It is assumed, that this value
does not change in the current calculation cycle, but it is updated at the next model run.
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Figure 22: Skill comparison for different calibration methods, in terms of 2m air temperature
(upper four panels) and dew point temperature (lower four panels). Panel (a) Simple average,
(b) Multiline Regression (MLR), 24 predictors, (c) ANN, 20 predictors (ensemble values
only), (d) ANN, 24 predictors (ensemble values + spatiotemporal coordinates). Results are
for the years 2011-2015.
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Figure 23: 2011-2012 average skill, spread and skill-spread relation for Flashrate (FLR)
frequencies using the VOD procedure (upper panel) against the “raw” scores (lower panel).

Figure 24: Same as Fig. 23 but for air temperature at 2m.

4.2 Specific products from ensemble outputs (R. Golino, F. Marcucci,
COMET)

In the framework of the EUMETNET SRNWP-EPS project, a tool for thunderstorm fore-
casting has been developed. The algorithm combines different indices following the decision
tree in Fig. 25 and evaluates for each grid point the suitable weather phenomenon according
to the WMO table 4678.

The most important indices used in the code are: Cape, Cin, Total total index (TT), Showal-
ter Index (SI), Updraft Helicy (UH), Lighting Potential Index (LPI), Integrated Graupel
(QG), Cloud Physics Thunder Parameter (CPTP). Indices can be computed internally if
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Figure 25: A schematic overview of the algorithm decision tree to evaluate the phenomenon
assigned to a specific grid point.

Figure 26: Output of the algorithm applied to deterministic COSMO-IT (left). Most proba-
ble phenomenon computed using the 20 outputs of the algorithm applied to the COSMO-IT
EPS ensemble members (centre) and related probability (right). All pictures are referred to
the 00UTC run of 08 March 2021, forecast step +6h.

not available as model output. The algorithm has been applied to deterministic outputs of
COSMO-IT model and also to the 20 forecast members of the ensemble convection permitting
system COSMO-IT EPS. In order to have a synthetic picture of the scenario predicted by the
ensemble, the EPS outputs can be post-processed to obtain a single field (grib format) that
represents the most probable phenomenon. For each grid point, the phenomena predicted by
all the members are collected and clustered, then the most populated cluster is considered
to decide the suitable phenomenon. The associated probability is computed taking also into
account events from the most severe group. Low-probability phenomena (less than 20%)
are discarded. An example of the algorithms output from different models (deterministic
COSMO-IT and ensemble COSMO-IT EPS) is given in Fig. 26. In the ensemble outputs
(two rightmost pictures) fog/mist events (BR/FG - yellow/orange in the colorbar) are not
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Figure 27: A schematic overview of the method proposed by Dey et al (2016).

considered. To enlarge the sample, a nearest neighbour post processing is applied using the
similarity criterion proposed by Dey et al (2016). Namely, for each single grid point (i,j)
the values of the EPS members are considered in pairs (190 independent comparison with
20 members) in order to assess if there is an agreement among the ensemble members. The
value Dij is computed for all the pairs as shown in Fig. 27, where A and B are the values
of the 2 chosen members at the grid point (i,j). If the averaged value Dij is greater than
a given parameter ( = 0.05 by default), there is no similarity and the agreement is further
verified increasing the scale (stopping at nb-order of neighbourhood, 1 by default resulting
in 3x3 box and 9x20 values to be compared). Finally, the most representative phenomenon
is assigned to the (i,j) grid point. The similarity criterion, currently under evaluation, is
expected to be able to filter out showers and drizzle if more significant weather is predicted
by other members/neighbours, thus producing a more realistic output.

4.3 Specific products from ensemble outputs (A. Mazur, G. Duniec, IMGW)

Flashrate (as a storm indicator) and visibility range or visibility limitations (caused by fog,
but also precipitation) are derived as non-standard products from the EPS.

Forecasts of visibility range were calculated from direct model output using an algorithm
based on the forecast of the extinction parameter ext (calculated as a function of water/ice
amount in the air, see Stoelinga and Warner, 1999, or Gultepe et al., 2006):

Figure 28: Visibility range from extinction parameter.

These forecasts were verified against measurements at Polish SYNOP stations (see Fig. 29.

Overall conclusions drawn from this research were as follows:

� the average spread is two to ten times lower than the error measured as MAE: the
ensemble FVIS is strongly under-dispersive;

� as far ad the spatial relations are concerned, the error is smaller for central and southern
Poland, while spread is bigger in the southern and northern part of Poland;
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Figure 29: An example of skill (left), spread (middle) and skill-spread relation (right) of the
VIS forecasts. Averaged values for June to September, 2011-2015.

� skill and spread are in general better (i.e., smaller and bigger, respectively) for ”dry”
months (June and September).

In the FLR calculation it is assumed that there is a relationship between the CAPE (from
which the maximum updraft velocity W is calculated), the cloud top/base temperatures
(CTT/CBT respectively) and the lightning frequency (FR, 1/minutes):

Figure 30: Flashrate forecasts calculated from CAPE and cloud top/base temperatures.

Additional filters were used to improve the quality of forecasts (see e.g. Wong et al., 2013).

Forecasts were verified against measurements at Polish lightning detection network PERUN
(Fig. 31).

A general conclusion drawn from this part of the study was that the CAPE-based forecasts of
flashrate intensity produce good skill values for central and north-western Poland, with the
spread being bigger in central and western Poland. This algorithm, however, significantly
overestimates flashrate intensity. A precipitation filter is applied, that is, it is assumed that
flashrate intensity is zero in the absence of rainfall.

The Universal Tornadic Index (UTI, Taszarek and Kolendowicz, 2013) was a possible candi-
date for thunderstorm recognition and forecasts, to be verified against data from the lightning
detection network:

In the above formula, CAPE is the surface based Convective Available Potential Energy,
CAPE3km the Surface based CAPE released below 3 km, LCL the Surface based lifting
condensation level height, AMR500 the Average mixing ratio below 500 m, LLS the 0-1
km wind shear, DLS the 0-6 km wind shear (magnitude of vector difference) and SRH1km
the 0-1 km storm relative helicity. It is also assumed that SRH1kmis non-negative, and if
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Figure 31: An example of skill (left), spread (middle) and skill-spread relation (right) of the
FLR forecasts. Averaged values for June to September, 2011-2015.

Figure 32: Universal Tornadic Index as a possible indicator of thunderstorm occurrence.

LCL is greater than 1500m or CAPE is equal to zero or convection precipitation is less than
2mm/h, then UTI becomes zero. UTI increases with the probability for a significant tornado.
For Poland, the operational significance of UTI should attract attention when greater than
0.5-1.0. It should however be kept in mind, that these (climatologically obtained) values do
not guarantee that if a forecaster uses threshold values in real-time data, he will be able to
specify whether a tornado will occur. Results rather suggest that tornadoes can (may) be
formed at all. Universal Tornadic Index was assumed as an indicator of the occurrence of
a extreme convective phenomenon. Since it contains many factors (CAPE, storm relative
helicity, convective precipitation, wind shear etc.), it may be useful in forecasting not only
tornadoes, but also thunderstorms or squall lines. The ensemble mean value of the UTI is
comparable to the one calculated in a deterministic run, however significantly less amount of
“noise signal” is observed. Further research was carried out to determine any climatological
connection between UTI and FLR values. Still, this index did not meet the expectations,
in the sense that no significant correlation of this kind was detected. It was perhaps due
to a different spatial range of the predicted convective phenomena, namely tornadoes (basic
scale of tens to hundreds of meters) vs. ”regular” thunderstorms (hundreds of meters to few
kilometres).

5 Transition to ICON-LAM

The COSMOConsortium is moving towards the model ICON. This means that the convection-
permitting ensemble systems must be converted to the ICON-LAM model. In order to be
able to perform a transition to ICON-LAM in the current ensemble configurations, two in-
gredients are needed: (i) data assimilation for ICON-LAM based on LETKF and (ii) a model
perturbation method for ICON-LAM. The first issue is addressed by the data assimilation
projects and plans, the second is addressed in the present PP.

For tackling the issue of model perturbation with ICON-LAM, in addition to the technical
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adaptations, it has to be examined whether the previous approaches to the representation
of the model uncertainties can also be used with ICON-LAM. Due to the change in the
characteristics of the model, modifications of the applied methods are likely to be required.
The migration of the CP ensemble systems to ICON-LAM will require: forecast experiments
for different test periods to explore the properties of the new systems, identification of further
development requirements, adaptation of ensemble generation methods.

During the APSU Priority Project, all the ensembles were still running based on the COSMO
model, and the model perturbation methods were developed in COSMO. The only exception
was DWD, where the transition was more advanced. Here, experiments on the Parameter
Perturbation in ICON-LAM (ICON-D2-EPS configuration) were carried out. This work is
described in the next subsection.

At the time of writing, a new Priority Project on ensemble development is ongoing (PROPHECY),
where model perturbation methods are developed, implemented and tested in ICON in sev-
eral COSMO members.

5.1 Randomly perturbed parameters in ICON-D2-EPS (C. Gebhardt, DWD)

Coinciding with the lifetime of PP APSU, the ICON-D2-EPS has been prepared as oper-
ational EPS application of the ICON limited area mode at DWD. ICON-D2-EPS replaces
COSMO-D2-EPS as ensemble prediction system on the convection-permitting scale.
On the one hand, the general methodological approach for member generation in COSMO-
D2-EPS is transferred to ICON-D2-EPS, i.e. local ensemble transform Kalman filter for the
initial conditions, forecasts of ICON-EU-EPS as lateral boundaries, and randomly perturbed
parameters representing model uncertainties. The EPS set-up is identical for the first phase
after the transition, with 20 members running every 3 hours for up to 27 hours lead time
(45 hours for the 03 UTC run) on a similar domain with a grid spacing of ca. 2.1km.
On the other hand, some of these methods require adjustments to fit to the characteristics
of the ICON model in a beneficial manner. Within the PP APSU, the adjustments and
the effects of the method of randomly perturbed parameters (RPP) in ICON-D2-EPS are of
particular interest and can provide valuable information for the COSMO community. This
section reports about the adjustments made to both the range of perturbed values of cer-
tain parameters as well as to the technical implementation of the perturbation approach.
This implementation is now fully controlled via the ICON namelists and applied within the
model. There is no need for preparatory processing scripts in contrast to the procedure for
COSMO-D2-EPS.
The general approach remains the same, i.e. for each parameter to be perturbed a value
is selected randomly from the default and one or two pre-defined perturbed values in each
member. This selection is done at forecast start and the selected parameter values are fixed
for the entire forecast range of an EPS run. This selection from a limited number of possible
values is different from approaches with a random choice of any parameter value within the
given range.

Most aspects of the physics parametrizations do not substantially change between COSMO-
D2 and ICON-D2, which means that many parameters of RPP for COSMO-D2-EPS can
be perturbed analogously in ICON-D2-EPS, subject to minor re-tuning. Some parameters
have to be adjusted to changes in the parametrization (i.e. the dependence of the vertical
diffusion on the Richardson number affects the appropriate range of values for tkhmin /
tkmmin). There are a few replacements (i.e. radqc fact vs. box liq for radiation/cloud
cover) and some new parameters are added. More details are listed in Table 2 together with
the default values and perturbation ranges for ICON-D2-EPS resulting from preparatory
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sensitivity studies.
For the sensitivity studies, 14 days of deterministic ICON-D2 00 UTC runs are performed for
each potential perturbation of a parameter with only this perturbation applied for the entire
forecast range of 24 hours and all other parameters set to the default value. This procedure
is, of course, different from the application in the EPS with its daily randomized mixture of
perturbations, but it turned out to be very efficient in detecting which perturbations have a
potential for leading to outliers in terms of verification scores. The sensitivity studies aim
at a selection of parameter perturbations leading to similar forecast quality without outliers
(neither ’better’ nor ’worse’). The starting point for the perturbation ranges for ICON-D2
are based on experiences with perturbations for COSMO-D2-EPS (acting on the same scale)
and for the global ICON-EPS (using the same model). Note that differences in the scale
can lead to differences in the appropriate perturbation ranges between ICON global/EU
and ICON-D2. Fig. 33 exemplifies the results of the sensitivity study for the initial set of
perturbations for selected variables and for mean error only (other scores were tested as well
but they are not shown).

Figure 33: Mean error of 10m wind speed (left), 2m temperature (middle), and 2m dewpoint
temperature (right) as a function of the forecast lead time averaged over 14 days of 00 UTC
deterministic ICON-D2 runs. Each coloured line corresponds to exactly one parameter being
perturbed in just one direction (see legend with ’PL’ for ’increased’ and ’MI’ for ’decreased’)
keeping all other parameters at their default values. The fully unperturbed run (’d2first’) is
contained as well but overlaid by the other runs.

Most of the mean errors are very similar among the different runs for the three variables
10m wind speed, 2m temperature, and 2m dewpoint temperature. Just a few parameter
perturbations are considered to produce outliers, e.g. the perturbation in both directions
of box liq (blueish lines) for wind speed and 2m temperature and rain n0 factor for 2m
temperature or the reduction of tur len for the 2m dewpoint temperature. The parameter
perturbations pointing at possible outliers with this quite conservative test have been ad-
justed for the first experiments with ICON-D2-EPS and table 2 lists the accordingly selected
perturbation set-up.
Note that these perturbation ranges are subject to change in light of further developments
of the parametrizations and of the ICON-D2-EPS. An up-to-date list of perturbations used
in operational set-up can be found online in the ICON database reference manual (Reinert
et al., 2021, latest version).

In the following, verification results of the pre-operational ICON-D2-EPS in comparison to
the operational COSMO-D2-EPS are presented for a winter (December 2019 to February
2020) and summer (June to August 2020) period. Fig. 34 shows verification scores of the
winter period for 2m temperature, 2m dewpoint temperature, hourly precipitation, and
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CD2 ID2 meaning def- – +

a stab a stab stability correction 0 none 1
of turbulent length scale

c diff c diff length scale factor for 0.2 0.1 0.4
vertical diffusion of TKE

q crit q crit critical value for 2 none 3.5
normalized super-saturation

tur len tur len asymptotic maximal 300 250 350
turbulent distance

rlam heat rlam heat scaling factor of the laminar 10 7.5 12.5
boundary layer for heat

(rlam heat ˆ rat sea = 8.)

thick sc tune rdepths maximum allowed depth 2 1.5 2.5
of shallow convection ˚104 ˚104 ˚104

entr sc tune entrorg Entrainment parameter 1.95 1.75 2.15
valid for dx=20 km ˚10´3 ˚10´3 ˚10´3

radqc fact tune box liq box width for 0.05 0.05 0.06
liquid cloud diagnostic
in cloud cover scheme

&
tune box liq asy asymmetry factor 3.25 3.0 3.5

radqi fact none - - - -

tkhmin tkhmin scaling factor for minimum 0.5 0.4 0.6
vertical diffusion coefficient

for heat and moisture

tkmmin tkmmin ... for momentum 0.75 0.6 0.9

none tkred sfc reduction of 1 0.25 4.0
minimum diffusion

coefficients near the surface

none rain n0 factor tuning factor for intercept 0.1 0.05 0.2

parameter of raindrop
size distribution

none a hshr length scale factor 2 1 3
for the separated

horizontal shear mode

none tune zvz0i terminal fall velocity of ice 1.25 1 1.5

none tune texc excess value for temperature 0.125 0.075 0.175
used in test parcel ascent

none tune qexc excess fraction 0.125 0.075 0.175
of grid-scale QV

used in test parcel ascent

Table 2: Perturbed parameters in COSMO-D2-EPS (CD2) and in first experiments with
ICON-D2-EPS (ID2). The default (def.) and perturbed values (decreased: –; increased +)
refer to ICON-D2-EPS. The updates to operationally used parameters, default values, and
perturbation ranges in ICON-D2-EPS are available online (Reinert et al., 2021) together with
information about the perturbation being additive or multiplicative for a given parameter
(e.g. rlam heat changes from multiplicative to additive with ICON-D2-EPS).
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hourly 10m wind gusts as a function of the forecast lead time for 00 and 12 UTC runs
combined.

Figure 34: Continuous ranked probability score (CRPS), mean error and root mean squared
error of the EPS mean, and EPS spread (from top to bottom) for 2m temperature, 2m
dewpoint temperature, hourly precipitation, and hourly 10m wind gusts (from left to right)
as a function of the forecast lead time of the pre-operational ICON-D2-EPS (red) and the
operational COSMO-D2-EPS (black) for winter 2019/2020. Scores of 00 and 12 UTC runs
are combined.

Comparing ICON-D2-EPS with COSMO-D2-EPS an improvement of CRPS is evident for all
variables. The mean error for 2m temperature is clearly improved both in terms of magnitude
as well as reduced daily cycle. The reduction of the daily cycle of the bias supports the
beneficial use of ICON-D2 compared to COSMO-D2 in forecasting. It is observed for other
variables as well (not shown, e.g. 10m wind speed). The dewpoint temperature shows a dry
bias at forecast start of ICON-D2-EPS compared to COSMO-D2-EPS which extends up to
forecast hour 15. This problem has been overcome in the further development of the system
by different measures, of which the most important is the incorporation of 2m temperature
and 2m relative humidity observations in the data assimilation.
The bias of the hourly precipitation in the early forecast hours is reduced in ICON-D2-EPS.
Very remarkable is the reduction of the mean error for 10m wind gusts to nearly 0 m/s over
most parts of the forecast range.
The RMSE of the EPS mean is reduced by ICON-D2 for most variables and neutral otherwise
(hourly precipitation) and is similar to changes in CRPS. It should be noted here, that
changes in mean error and RMSE for winter and summer for the variables shown here, as
well as for other variables, closely follow the changes of the deterministic run from COSMO-
D2 to ICON-D2 (not shown).
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The EPS spread does hardly change from COSMO-D2-EPS to ICON-D2-EPS except for a
reduction for the 10m wind gusts (as well as mean wind, not shown). The reason for this
reduced spread is not clear yet and subject to further research. Overall, the threshold-based
forecast of 10m wind gusts benefits from the step to ICON-D2-EPS according to the Brier
skill score plotted in Fig. 35 for different thresholds. The improvement affects both the
reliability as well as the resolution component of the Brier score (not shown).

Figure 35: Brier skill score of hourly 10m wind gusts for thresholds of 5 m/s, 10 m/s, and
15 m/s (from left to right) as a function of the forecast lead time for the pre-operational
ICON-D2-EPS (red) and the operational COSMO-D2-EPS (black) for winter 2019/2020.
Scores of 00 and 12 UTC runs are combined.

The selection of verification scores for the summer period is shown in Fig. 36 in analogy to
the scores for the winter period.
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Figure 36: Continuous ranked probability score, mean error and root mean squared error
of the EPS mean, and EPS spread (from top to bottom) for 2m temperature, 2m dewpoint
temperature, hourly precipitation, and hourly 10m wind gusts (from left to right) as a func-
tion of the forecast lead time of the pre-operational ICON-D2-EPS (red) and the operational
COSMO-D2-EPS (black) for summer 2020. Scores of 00 and 12 UTC runs are combined.

The main features seen for winter also hold for the summer period. Main differences are the
remarkable quality gain by ICON-D2-EPS in the mean error of 2m dewpoint temperature
and hourly precipitation and the more pronounced reduction of RMSE for 2m (dewpoint)
temperature around mid-day as compared to the winter period. For 10m wind gusts, the
quality of ICON-D2-EPS in summer and winter is similar. This in turn results in a moderate
improvement in summer around mid-day compared to COSMO-D2-EPS, which itself shows
better scores for the wind gusts in summer than in winter. The improvement in Brier skill
score by ICON-D2-EPS in summer is qualitatively similar to the results for winter and is
not shown here.
One effect to mention here is the increased spread of hourly precipitation during mid-day in
summer which is not observed for winter. However, it should be kept in mind that increased
spread of precipitation tends to be linked to increased mean values. A threshold-based
verification with the Brier skill score for hourly precipitation in summer points at moderate
improvements when using ICON-D2-EPS (Fig. 37).
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Figure 37: Brier skill score of hourly precipitation for the thresholds 0.1 mm/h, 1 mm/h, and
2 mm/h (from left to right) as a function of the forecast lead time for the pre-operational
ICON-D2-EPS (red) and the operational COSMO-D2-EPS (black) for summer 2020. Scores
of 00 and 12 UTC runs are combined.

The last part of this section covers the technical implementation of the parameter perturba-
tions in ICON-D2-EPS. While the perturbation approach for COSMO-D2-EPS requires the
perturbed parameter values to be set explicitly in the namelist for each member separately
as a pre-processing step, including the randomization, the ICON-D2-EPS just needs general
information about the parameters to be perturbed and the relevant ranges provided via the
namelist. The randomization is done during the model run and there are additional namelist
parameters to control a few options of the randomization and parameter selection.
Fig. 38 is a flow chart of the procedure.

Figure 38: Technical implementation of the parameter perturbations in ICON-D2-EPS.

The default values of the parameters (tune )ă pn ą are set in their respective namelists as
for the deterministic run. A range for perturbations is set as (range )ă pn ą in the ICON
namelist ensemble pert nml. There is only one entry for the range which has to be given
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as deviation from the default value. Therefore, only symmetric perturbations (in an addi-
tive or multiplicative sense depending on pn) are possible in ICON-D2-EPS. There are also
restrictions for a few parameters to be perturbed only in one direction.
The namelist ensemble pert nml contains the important switch use ensemble pert to be
set to .TRUE. to activate the parameter perturbation. A random variable αn,m is then
generated in ICON from a uniform distribution between 0 and 1 for each parameter pn and
member m. By setting the parameter itype pert gen=2 in ensemble pert nml, the random
variable αn,m leads to the value of pn being one of default or perturbed value, as indicated in
Fig. 38. A choice of itype pert gen=1 would lead to a perturbed value somewhere within
the perturbation range according to αn,m taken at face value as implemented for the global
ICON-EPS and its nest over Europe.
Another important control switch for the perturbation procedure is the namelist entry
timedep pert in ensemble pert nml. A value of 1 causes the randomization to depend
on forecast start time as it is done in ICON-D2-EPS. The global ICON-EPS uses a value
of 0 leading to a dependence on the member ID only. Some details about these namelist
entries can be found in Reinert et al. as well. They provide for more options to generate
EPS members than just in the way it is presented here for ICON-D2-EPS.
There might be slight drawbacks in the described implementation of the perturbation pro-
cedure in ICON-D2-EPS compared to COSMO-D2-EPS, like the symmetric perturbation
ranges and the methodological aspect that each parameter is no longer perturbed exactly
in 50% of the members of a model run, but only statistically. However, the namelist-based
approach makes it more feasible to run the RPP and makes the approach more portable be-
tween different machines and exchangeable among COSMO partners compared to COSMO-
D2-EPS.

6 Conclusions

Like most of the WG7 Priority Projects, the activities of APSU covered a quite broad range
of ensemble development topics. This allows us to carry out ensemble development in a
coordinated way between the different COSMO partners, while preserving the specificity
of the different ensemble implementations and needs (different domains, focus on somehow
different weather phenomena, different computing capabilities and human resources). How-
ever, thanks to the APSU Priority Project, the activities about ensemble development of the
different COSMO members were focused on specific high-priority themes, benefiting from
each others’ work and avoiding duplications and dispersion of efforts.

Some conclusions can be drawn from this work, highlighting the impact of the Project
activities on the ensemble development and operational usage, and identifying the next
steps needed to perform the transition of the ensembles to the ICON model.

� The new stochastic approaches to model the model error (SMME and AMPT) are
promising methods to describe the model error and incorporate it into ensemble design.
However, their complexity and the difficulty of objectively representing the model error
require a long development phase, which is not concluded in the time frame of APSU.
It is important to keep these developments linked to each other, in order to benefit
from each others’ results and experiences. Due to the transition of the Consortium
to the ICON model, it is now suggested to implement the two methods in ICON and
continue their development in the new model.

� The SPPT method is successfully used at MCH as operational model perturbation
method. Therefore MCH will invest resources in implementing SPPT in ICON, in
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view of the future transition to the ICON model for their ensembles. The proposed
iSPPT variant, even if it did not prove to be more beneficial than the classical SPPT
in COSMO, will be considered for implementation, in order to permit its usage and
further assessment in the new model framework. The study performed on the analysis
increments, to be possibly used as source of model perturbation, lead to positive results.
However, the development of this method would require time and resources, and this
has to be taken in account in planning future actions.

� The implementation of model perturbation methods in ICON will also permit to the
COSMO partners to start working on the new model system and to contribute to the
development of the ICON model

� The application of soil/surface perturbations proved to be successful and lead, in com-
bination to the perturbation of the atmospheric fields, to promising results. Therefore
these perturbations will also be adopted in the ICON-based ensembles.

� In order to apply the parameter perturbation method in ICON it is needed to study
the sensitivity of the ICON model to its parameters, as it was done at DWD during
APSU. Therefore this activity will be repeated for the other domains where ICON-
based ensembles need to be developed. This will also permit to gain a deeper knowledge
of the model and its behaviour, which is in the interest of all the COSMO partners.

� The tasks related to the development of new ensemble products and ensemble output
calibration lead to an operational usage of the new products and of the calibrated
outputs. Therefore this task will be continued in the future, by expanding to new
products and improving the calibration methodology.

Concluding with a poetic note, the APSU PP was like the underground fresh water reservoir
of the Sumerian and Accadic culture, after which the project is named, from which fertilising
quality the future work will benefit.
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