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1 Introduction

As numerical weather prediction models began to increase considerably in resolution, it
became clear that traditional grid-point-by-grid-point verification methods did not provide
material information about forecast performance. Traditional verification scores often indi-
cate poor performance because of the increased small-scale variability. Numerous methods
have been proposed in order to assess the value of very-high-resolution forecasts, including
spatial verification methods. Availability of radar and merged radar-station observations
contributed to the growth of popularity of these methods. Furthermore, the plethora of
spatial verification methods has led to the need to analyse how these methods relate to one
another, how each method works, what information could be gleaned from each method, and
whether any given method actually conveys any useful information or not. The ICP inter-
national project and its second phase MesoVICT (Mesoscale Verification Inter-Comparison
over Complex Terrain) were initiated to study how these methods provide feedback about the
forecast skill through well-structured experiments (http://www.ral.ucar.edu/projects/icp/).
The main objectives of MesoVICT international project can be summarized as follows:

• To investigate the ability of existing and newly developed methods to verify fields other
than deterministic precipitation forecasts

• To demonstrate the capability of spatial verification methods over complex terrain and
gain an understanding of the issues that arise in such cases

• To encourage community participation in the improvement of spatial methods

• To provide the community with a test-bed with common datasets but also to provide
assistance in developing and testing these methods

Figure 1: Classification of spatial verification methods and applications in COSMO within the
INSPECT project (red signs).

The INSPECT project ran in parallel to MesoVICT to summarize the experience of ap-
plying spatial verification methods to COSMO forecast systems of very-high-resolution (1-3
km) compared to high-resolution models, providing criteria for deciding which methods are
best suited to particular applications. In addition to targeting the goals of the MesoVICT
project, PP-INSPECT provided COSMO users with more choice as to verification domains
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and reference data, encouraging the participation of the COSMO community in the testing,
development and improvement of spatial verification methods. Fig. 1 represents the clas-
sification of spatial verification methods and applications in COSMO within the INSPECT
project indicated with red signs.

2 The main outcomes of PP INSPECT Summary

In this section, the main outcomes of the project are listed, while in the following paragraphs
a detailed description will be given.

• A number of reruns of deterministic and ensemble forecast systems were performed
for MesoVICT test cases (ARPAE-SIMC, MCH, RHM) (Table 1). All the reruns are
interpolated into the same grid by M. Dorninger (Austria) in order to make easier the
comparison, and are available by request at the MesoVICT site
(http://www.ral.ucar.edu/projects/icp/).

• Scripts with examples for running neighbourhood, CRA, and SAL methods using free
SpatialVx package are available at WG5 repository (HNMS, IMGW-PIB, RHM). Also
examples of scripts to adapt radar and satellite data in a gridded format comparable
with model output are available. For Neighbourhood (filtering) and SAL (object-
based) methods, testing was performed by means of comparison of results from two
independent software packages; bugs are reported to SpatialVx developer E. Gille-
land (IMGW-PIB, HNMS). For Intensity Scale (IS) method (scale separation), MET
software (NCAR) was also tested in addition to SpatialVx, but the graphical outputs
of the packages were different and not comparable with those of SpatialVx. Further
investigation is required for the differences in the application of the method.

• Several ways of compact visualization of neighbourhood, CRA and SAL methods were
proposed (DWD, MCH, RHM). Especially for neighbourhood scores, such a cumulative
framework can be implemented as part of the Common Verification activity.

• An object-based SAL (Structure-Amplitude-Location) method was found easier to im-
plement than MODE and CRA methods as it does not require pair-wise matching of
observed and forecast objects. The results however must be considered carefully as the
method considers average characteristics over a domain. The accumulation precipita-
tion range should not be small. It is recommended to calculate the SAL parameters
with 6h precipitation range and higher, unless a highly convective case with significant
precipitation amounts is tested. Object-based MODE and CRA methods provide more
information compared to SAL about individual features of precipitation field, as they
estimate matched pairs of observed and forecast objects. Smoothing of the fields can
lead to the creation of bridges among different objects that are close to each other
and unify them. This can significantly change the results of all object-based methods.
On the other hand, smoothing can be undesirable for estimating objects with intense
precipitation (or other variable of interest). The option to discard objects that are
smaller than a certain size is found useful. When applied to observations, it eliminates
small objects of any intensity that can be erroneous noise. Option for splitting objects
is desirable sometimes. (HNMS, RHM, IMGW-PIB, ARPAE-SIMC).

• For MODE and CRA methods, it was found not feasible to identify one optimal univer-
sal matching function, in particular for high-resolution fields with objects of complex
shape. For lower precipitation thresholds (and, consequently, wider features), more
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Institution Forecast system

MCH (P. Baumann)
COSMO-1 reruns for ALL MesoVICT cases
are done and available at WG5 repository

ARPAE-SIMC (A. Montani)
ECMWF-IFS reruns (51 member)
for cases 1 and 2 (8 initial dates)

MCH (A. Walser)
COSMO-E reruns (21 member)
for cases 1 and 2 (8 initial dates)

RHM (D. Alferov and E. Astakhova)
COSMO-Ru2-EPS (51 member) for case 1
(1 initial date) and case 2 (1 initial date)

Table 1: Reruns of forecast system for MesoVICT cases.

reasonable results were obtained for a criterion based on matching observed and fore-
cast objects if the distance between them is less than their average size. For higher
thresholds, this criterion often does not allow for successful matches due to the small
areas of features. A minimum boundary separation criterion seems more promising
for intense events, but with a minimum boundary separation distance, beyond which,
features should not be matched (RHM, IMGW-PIB).

• The IS scale separation method allows for the skill to be diagnosed as a function of
the scale of the forecast error and intensity of the precipitation events. Results show
that reduction of skill is mainly due to the small-scale misplacement of more intense
(rare) precipitation events. Wavelet-based (Hier wavelets) scale-separation statistics
are suitable for comparing models with different resolutions as the reference forecast
accounts for the forecast variability. The method allows the analysis of precipitation
instances, but it is not able to provide generalized information on the relative long
term performance of a modelling system based on aggregated data.

• Applications of DIST, SAL and CRA methods to ensembles were made and new ap-
proaches on summarizing performance over various members and time accumulations
were proposed.

• First results of experiments on introducing observation uncertainty into the spatial
methods are given.

What was not completely fulfilled within the project and needs to be further studied:

• Introducing orography factor explicitly.

• Wind characteristics were only partially explored by M.S. Tesini (ARPAE-SIMC). The
upscaling DIST method was applied, which analyses the statistical parameters of values
in boxes of increasing size. For wind speed, the representative value of the box was
defined as the median exceeding a predefined threshold; for wind direction, as the most
populated category after having binned the direction in 8 categories. First results on
DIST application to wind, were found not very satisfactory. The possible reasons were
identified as follows:

– possibly, the representative value of the box could be defined in another way;

– the verification period was very short;

– wind is too localized and the aggregation has benefit only if the boxes were chosen
based on a different criteria that those of precipitation;

– taking into consideration the orography (valley,) is required.
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• Spatial applications to wind and other variables (e.g. Cloud cover) besides precipitation
should be further developed.

• Only a limited number of applications to ensembles were performed. This direction of
spatial method application is much demanded at present, and should be developed.

• Introducing observation uncertainty in the analyses was initiated by D. Boucouvala
(HNMS) (see Sec. 4.1.3). This topic requires further study.

• Processing large amounts of data (for example nowcasting forecasts verification) will
be of increased demand in the future. In Sec. 4.3.3, we describe an RHM experience of
assessing the nowcasting scheme during the summer 2017 using the CRA method. The
computational efficiency and the optimal organization of the data will be of utmost
importance for processing large amounts of data.

Moreover, the PP INSPECT supported the efforts to increase COSMO visibility worldwide
due to the active participation of COSMO members in the international project MesoVICT
and its activities as well as in the WMO-JWGFVR workshops. Finally, it should be noted
that the project was focused on the comparison of the spatial methods, and not on assessing
the model performance, although some reflections to the advantages of different forecast
systems were made.

3 Filtering methods

3.1 Neighbourhood Methods (Flora Gofa, HNMS)

3.1.1 Method applied (related to an INSPECT Task) and objectives

Neighbourhood verification is based on the principle of expanding the field of view to nearby
(neighbours) data points in space, employing a spatial window around the forecast and
observed points. In this way, the penalty for differences between modelled and observed
values is relaxed. The size of this neighbourhood can be modified in order to verify model
performance at several different scales, thus providing insight into the scales the model
has the most skill at. Since the size of the neighbourhood can be varied, such approaches
are well suited to verification of high-resolution models (Casati et al., 2008). In addition
to neighbourhood size, the type and degree of filtering applied can also be modified. For
example, extreme values may not be filtered out when examining severe weather events.
Furthermore, in most cases, as in this research, the filter is applied to both the forecast and
the observations. A more detailed review of neighbourhood approaches is available in Ebert
(2008).

3.1.2 Short description of the dataset (forecast-observation data), adaptation
required, software for the method application

The datasets used in the context of this study have been obtained from the Mesoscale Ver-
ication Inter-Comparison over Complex Terrain (MesoVICT) project. MesoVICT has been
established in order to facilitate the application, capability and enhancement of spatial meth-
ods both for deterministic and ensemble forecasts (Dorninger, 2013). MesoVICT benefits
from a huge data collection effort within the framework of the World Weather Research
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Programme (WWRP) Project: Mesoscale Alpine Programme (MAP) D-PHASE over Cen-
tral Europe in 2007. All six available test cases were analysed that cover a wide range of
meteorological phenomena in and around the Alps. The example that is presented here is
for the period 20-22 June 2007. With respect to the synoptic situation, the region of interest
is ahead of a trough located over the British Isles, and warm moist air is being advected
towards the Alpine Region. This leads to strong convective events on the evening of 20
June in the area north of the main mountain range. Subsequently, a cold front reaches the
Alps from the west and moves to the east rather quickly while convective events are again
observed ahead of the front (Fig. 2).

Figure 2: Left: COSMO-1 (dashed yellow), COSMO-2 (dashed red) integration domains, Right:
Satellite image, cloudiness on 21.06.2007, 00UTC.

Figure 3: 12h accumulated precipitation at 21.06.08: 18UTC Left: COSMO-1, Right: COSMO-
2.

From the multitude of NWP models with varying resolutions that are available through the
MAP-D Phase, forecasts derived from COSMO-2 ( 2km res.) and COSMO-1 ( 1km res.) of
the Swiss Meteorological Service were used. The domain of the COSMO model is shown in
Fig. 3. Both models were nested on a coarser 7km COSMO model. Hourly precipitation
forecasts from both models were upscaled prior to the application of neighbourhood methods
in order to match the resolution of the observation fields in a final 8km grid spacing to match
the observations.

3.1.3 Verification software

For the purposes of this research, the VAST (VERSUS Additional Statistical Techniques)
software package, which was developed by the COSMO consortium and is based on Beth
Eberts fuzzy verification IDL (Interface Design Language) code, was employed (Vela, 2017).
VAST offers a number of neighbourhood verification tools, of which the following were tested
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in the context of this research: upscaling, anywhere in the window, minimum coverage, fuzzy
logic and joint probability. What distinguishes one method from another is the decision
model, i.e. how strict or relaxed are the criterion that determine whether a forecast is
successful or not. A large variety of methods and scores were calculated for a number of
thresholds and window sizes, but only a selection of representative results are presented here.

3.1.4 Main findings (plots and explanation)

In this section, a short evaluation of the results of the application of some neighbourhood
methods (Fig. 4) is given. Fractions skill score. The decision model is: “A forecast is useful
if the frequency of forecast events is similar to the frequency of observed events“, giving
information on the spatial scales that the forecast resembles the observations, ranging from
0 to 1 (perfect). The score is most sensitive to rare events (e.g., small areas of precipitation);
the useful scales are indicated in bold (Fig. 4). The FSS values for both COSMO forecasts
are greater for light rain thresholds and larger scales, with useful skill displayed at spatial
scales of around 130 km or larger for light rain and not at all for the heaviest rainfall rates.
COSMO-1 forecasts exhibit similar behaviour with COSMO-2, being more useful for slightly
smaller spatial scales ( 70km) for small to medium rainfall thresholds, while for higher
thresholds COSMO-2 seems to be slightly more useful than COSMO-1.

Pragmatic approach. Instead of verifying the forecast probability within a neighbourhood
against the observations within that same neighbourhood, the forecast is verified against
the observed value in the central grid box. The decision model is that a useful forecast has
a high probability of detecting events and non-events supported with the use of Brier skill
score (BSS) to quantify the forecast success. The limited application of this method over
the test case in Alps indicated that there is only minor improvement of the forecasts versus
the reference, which is the sample climatology of the observations over the whole domain.

Upscaling method. It is the most widely used neighbourhood verification technique. Fore-
casts and observations are simply averaged to increasingly larger grid scales for comparison
using a range of standard statistics. The decision model is that a good forecast has approx-
imately the same mean rainfall amount as the observations. For this particular case, the
ETS (equitable threat score) was calculated for each window size/threshold and, as shown,
the scores generally improve with increasing scale and smaller rainfall thresholds, while the
relative advantage of COSMO-1 forecasts is demonstrated.

Fuzzy logic approach. It is based on the fact that a forecast has a certain likelihood of being
an event and a certain likelihood of being a non-event, and this is also the case for the
observations. This likelihood is called the weight of support. This means that a forecast
can be somewhat correct and somewhat incorrect at the same time (window). The decision
model is, a forecast is useful if it is more correct than incorrect. From the categorical scores,
BIAS is calculated in order to provide a more precise picture of the scales and thresholds that
each model overestimates (BIAS > 1) or underestimates (BIAS < 1) hourly precipitation
amounts. Other neighbourhood methods and scores for each method were calculated in an
effort to explore the variability in the information that can be provided from their application
to two different modelling systems which have not been included in this paper.
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Figure 4: Fraction Skill Score (FSS) (first row), Pragmatic Approach (BSS) (second row),
Upscaling (ETS) (third row), and Fuzzy Logic (BIAS) (fourth row) for COSMO-1 and COSMO-
2.
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3.1.5 Characteristics of the method applied)

• Efficiency in calculation time: the efficiency in time is quite satisfactory with respect
to VAST. A significant effort is required to adapt the datasets and make them identical
in size (grid dimension and resolution) prior to the application of VAST. If the user
keeps the default amount of space windows (5) the calculation is rather fast, while it
increases dramatically with the addition of even one additional space window. The
adjustment of thresholds is easier and faster. No application was performed on time
windows so far.

• Ability to deal with different density of observations: the method requires a complete
set of gridded observations and forecasts with no gaps in the domain of verification.
In case of inhomogeneous density of observations, the user has to adapt the dataset
accordingly.

• Stability against observation errors: neighbourhood methods do not account for obser-
vation errors, as by relaxing the requirement of exact match in point and the use of
averaged values over space windows for both forecast and observations, the weight of
such errors on the verification results is eliminated.

• Ability to assess the added value of high-resolution models: neighbourhood methods
provide a tool to compare modelling systems of various resolutions and are particularly
valuable in the case of high resolution forecasts. However, before deciding on the
methodology or score that is more suitable for a model evaluation, the first step in this
approach involves carefully defining the attributes of a good forecast and subsequently
identifying the specific methods and their associated decision models best suited to the
particular application. Neighbourhood verification is particularly valuable in the case of
high resolution forecasts, providing useful feedback on the scale and intensity for which
each model configuration is advantageous. Precipitation events on different spatial
scales are produced by different physical processes (e.g. large-scale frontal systems or
small-scale convective events). Verification at different spatial scales provides greater
insight into model performance to simulate these different processes.

Although the value of a neighbourhood verification framework has been demonstrated for
this particular test case, its most sensible use is for evaluating sets of forecasts to determine
typical forecast performance. For example, it can be used to monitor monthly or seasonal
forecast performance in a region. It can also be used to evaluate updated versions of a model
to identify at which scales and intensities, if any, skill has been improved (Gofa, 2017).

3.2 Analysis of long time series of neighbourhood scores (in particular:
FSS, upscaling with ETS and FBI) for precipitation. Further investi-
gation into the most informative and compact representation of scores.

3.2.1 DWD experience (U. Damrath)

At DWD, the spatial methods have been developed during many years. This section describes
the analysis of long time series of the following scores: the Equitable Threat Score (ETS) for
upscaling and the Fractions skill score (FSS). In (INTERP 2009), these scores were identified
among the most useful. The analysis scheme is as follows:

• Getting the ETS for upscaling and FSS as monthly values from fuzzy verification
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• No averaging over daily values is applied, but the calculation of scores from the con-
tingency tables of the whole month is performed

• Calculation of running means of the results over one year

• Presentation of mean values and mean averages

Data sources that were used in this study:

• Precipitation forecasts of German COSMO-models and GME (with March 2015 ICON)

• Precipitation observations from radar data

Grid sizes and thresholds:

• Grid size from 0.025 (resolution of COSMO-DE) to 1.625 (65*resolution of COSMO-
DE). For COSMO-EU the values are taken for the whole grid cell that is in this
CDE-grid cell. Thus, there are about 9 points with equal values for the lowest window
size

• Thresholds: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 mm/12h or mm/24h

Fig. 5 gives an example of score visualization for the whole German territory. The red
indicates that COSMO-EU is better, and the blue, that COSMO-DE. In this case, the
higher resolution model advantage becomes evident only for the largest windows.

Overall, the results indicate that we are not able to make real forecasts for the lowest window
size. A coarse value from the model with lower resolution has no double penalty.

Figure 5: Comparison of COSMO-EU to COSMO-DE Differences of upscaling ETS. 06-18 UTC.
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3.2.2 Evaluation of 4dVerif spatial verification visualization (X. Lapillonne, Me-
teoSwiss)

The use of spatial verification can bring new insight to the verification of model variables.
It has a particular added value when it comes to verification of precipitation field since it
can overcome the so called double penalty effect which occurs when a precipitation happen
at a wrong geographical location in the model as compare to the observation. Because of its
two dimensional structure it provides additional information as compared to stations based
verification which needs to be visualized. In this report section we discuss some aspect of
the visualization of these verification results and in particular how this information could be
reduced so as to be easier to interpret.

Fraction skill score with 4dverif at Meteoswiss for precipitation verification

We focus here on the fraction skill score obtained with the 4dverif software run at MeteoSwiss.
The fraction skill score (Roberts N.M., 2008) is one of possible available surface verification
scheme. The basic idea of this score is to define an area or scale (here squares) and to count
events in this region (fraction area) both in the model and in the observation. One then
obtains a score for different scale see Fig. 6 and Fig. 7. A so called useful scale, see (Roberts
N.M., 2008), is also defined above a certain score (in bold in Fig. 7).

The potential scale information introduces a new dimension in the verification parameter
space, which is coming in addition to other existing parameters such as lead-time and initial
forecast time. This provides potentially very detailed insight in the data which might be
very useful for research purpose or to better understand the model but may be overwhelming
for standard verification purpose, see Fig. 8.

Figure 6: Surface evaluation area.
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Figure 7: Fraction skill score (FSS).

Figure 8: FSS for all lead times, initial time, scale and scores.

Simplified visualisation

It is suggested to reduce the available information by showing the most relevant part for
standard verification on a one dimension plot which resembles usual station based verification
or in a table. For the considered score and variable we propose for example 2 different cross
sections of the data. The first one is to select a single meaningful scale and to show for
selected threshold the score as a function of leadtime. In Fig. 9, we show the FSS for two
models for the scale 19.6 km which roughly corresponds to the size of a warning region in
Switzerland.
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Figure 9: FSS for a selected spatial scale (19.6 km).

The second proposed way of displaying the data is to focus on the useful scale information.
In Fig. 10, we show the useful scale as a function of lead time for different threshold. This
could be interesting for example to help saying which model may be use for warning. Note
that this information has a strong seasonal variability.

Figure 10: Useful scale as a function of lead time for different threshold.

Conclusions
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The spatial verification provides new insight and information in comparison to standard
station based verification. This additional information may be for some usage overwhelming
and some reduction this information may be necessary. Here we propose for the fraction
skill score two different potential ways of displaying the score. The first one is to look at
the score for a given spatial scale while the other one focus on the so-called useful scale for
a given lead-time and threshold.

3.3 Wind verification with DIST method: preliminary results (M. S.
Tesini, ARPAE-SIMC)

3.3.1 Motivation of the study

Current wind forecast verification at ARPAE-SIMC is not completely satisfactory. It pro-
vides too local results difficult to summarize for a large number of stations. The DIST
methodology (Marsigli et al., 2008) used operationally to verify precipitation has pointed
out some advantages with interesting results. DIST provides the scores for different distri-
bution parameters calculated for model and observed variables in boxes of increasing size.
One of its main advantages is that it can be performed using both sparse point observations
and gridded observation against gridded forecast (even if the grids are different). The size
and even the shape of the box can be freely defined (e.g. alert areas for hydrological pur-
poses). It provides simple information to forecaster or hydrologist about the performances
of models in a single area of interest (e.g. Alert Area) or over the whole model domain
aggregating the results of all boxes. The MesoVICT project encourages the investigation of
the ability of existing or newly developed spatial verification methods to verify fields other
than deterministic precipitation forecasts, e.g., wind forecasts.

3.3.2 Representative value of the box for wind characteristics and verification
setup

It is important to define the representative value of the box for DIST application. Thinking
to a more user-oriented verification we considered the median (e.g. the value below (or
above) which 50% of the data may be found) and the 90th percentile (e.g. the value below
which 90% of the data may be found, or above which 10% of data may be found) for wind
speed. For wind direction, as a first step the values were binned into 8 category (N, NE,
E, SE, S, SW,W,NW). Then the most populated category was taken as representative for
the direction in the box. Since the direction for light wind may not be significant, another
representative value has been evaluated considering only the direction for wind with intensity
> 3 m/s. All the values of 3 consecutive hourly forecasts (and observations) that belong to
the same area are put together to account for timing errors. The study was performed for
all three MesoVICT cases (Dorninger, M.et al., 2013). The Swiss COSMO-2 and COSMO-1
model data were used. VERA gridded analysis was used as a reference data (Dorninger,
M.et al., 2013).

3.3.3 First results

Fig. 11 represents three scores for events wind speed median exceeding a threshold. There is
no clear increase of the forecast quality with increasing box size. In Fig. 12, the performance
diagram is displayed for all three MesoVICT cases. In general, enlarging the box increases
BIAS, but POD and FAR are slightly better. The scores move more or less linearly from 1
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to 25 points in the box, but not from 100 to 400 pts. It is unclear if this behaviour depends
on some scale of the considered phenomena or the data are not enough to produce consistent
statistics. More investigation is needed to understand that. In Fig. 13, Wind speed threat
score (TS) for COSMO-2 and COSMO-1 are given for boxes of increasing size. The event is
defined here as 10% of points exceeding a predefined threshold. Scores (and trend of scores)
considering boxes are nearly the same for the two models. COSMO-1 nearest grid point
performs better than aggregation on 8 Km box. It is unclear if this can be explained with
wind field characteristic or it is only an unlucky case. Maybe the choice of this percentile is
not useful as was thought initially. Fig. 14 gives the PSS for wind direction for COSMO-2
and COSMO-1 for boxes of increasing size. The representative value is defined using all the
data and considering only the direction for wind with intensity > 3 m/s. At larger scales,
all the local information is filtered out. For boxes of smaller size, the information about
local winds should be predominant. Another aspect is that it is not completely evident that
VERA analysis is able to reproduce very local features.

Figure 11: Probability of detection, False alarm rate, and frequency bias for wind speed (in
knots), MesoVICT case 1, Cosmo-2 model. The event is defined as median exceeding a predefined
threshold. The scores are plotted as a function of the box dimension.
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Figure 12: Performance diagram for wind speed (in knots), MesoVICT cases 1. 2. and 3,
Cosmo-2 model. The event is defined as median exceeding a predefined threshold.

Figure 13: Wind speed threat score (TS) for COSMO-2 (a) and COSMO-1 (b) for boxes of
increasing size. The event is 10% of points exceeding a predefined threshold.
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Figure 14: Wind direction, MesoVICT case 1, Cosmo-2 (a) and Cosmo-1 (b), PSS (Peirces skill
score: What was the accuracy of the forecast in predicting the correct category, relative to that
of random chance).

3.3.4 Conclusions

The first results on DIST application to wind were found not very satisfactory. The possible
reasons were identified as follows:

• possibly, the representative value of the box could be defined in another way;

• the verification period was very short;

• wind is too local and the aggregation has is benefit only if the box were chosen differ-
ently;

• taking into account the orography (e.g., wind in valleys) is needed.

But before giving up tests are needed for other MesoVICT cases and using the JDC original
observation (one of the main advantages of DIST was to deal with sparse point observations).
It is also important to look at the geographical distribution of the scores.

3.4 Intensity-scale method (F. Gofa, HNMS)

3.4.1 Method applied (related to an INSPECT Task) and objectives

Scale Separation Methods: in general with these methods you decompose forecast and ob-
servation fields into the sum of spatial components on different scales by using spatial filters,
and then you perform the verification on each scale component, separately. Verification
on different scales can provide useful insight into NWP model representation of the dif-
ferent physical processes associated with phenomena on different scales. Scale-verification
approaches aim to assess quality and skill of the forecasts for different spatial scales, analyse
the scale-dependency of the forecast predictability (e.g. evaluate the no skill skill transition
scale), and assess the forecast ability to reproduce scale spatial structure of observed precip-
itation fields. Precipitation fields are characterized by the presence of features on different
spatial scales triggered by different physical phenomena. As an example, events such as
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frontal systems are driven by the mesoscale dynamics of the atmosphere, whereas smaller
scale events such as showers can be developed by local convective motions. Verification on
different spatial scales can provide a deeper insight in the model performance at simulating
different dynamics and give useful feedback for improvements. The intensity-scale technique
for verifying spatial precipitation forecasts was tested in the framework of PP INSPECT.
The technique provides a way of evaluating the forecast skill as a function of intensity of the
precipitation rate and spatial scale of the error. The forecasts are assessed using the MSE
skill score of binary images, obtained from the recalibrated forecasts and analyses by thresh-
olding at different precipitation rate intensities. The skill score is decomposed on different
spatial scales using a two-dimensional discrete Haar wavelet decomposition of the binary
error images. Wavelets are functions characterized by a location and a scale (Daubechies,
1992). Similar to Fourier transforms, wavelets can be used to represent functions on differ-
ent spatial scales, and so can be used to investigate scale properties of physical phenomena.
Because of their local properties, wavelets are more suitable than Fourier series for represent-
ing spatially discontinuous fields such as precipitation. Moreover, because of their locality,
wavelets are more efficient than Fourier components at representing sparse images contain-
ing few non-zero values. Different types of wavelets exist. Each wavelet type is defined by a
mother and a father wavelet, characterized by different shapes and mathematical properties
(e.g. smoothness, symmetry, etc.). In this study, Haar wavelets are used, because of their
square shape which best captures the difference in binary variables. Fig. 15 shows the one-
and two- dimensional Haar wavelets. Note that the two-dimensional wavelets are generated
simply as the Cartesian product of the one dimensional wavelets.

Figure 15: One- and two- dimensional Haar wavelets.

Steps followed in Intensity Scale method application:

• Binary error decomposition: Thresholding is used to convert the forecast and analysis
into binary images for each of the thresholds. Binary error is the difference of this:
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Z = Iy′ − Ix

• Binary error image is then expressed as the sum of components on different spatial
scales by performing a 2-dimensional discrete Haer wavelet decomposition

Z =

L∑
l=1

Zl

• Most substantial binary error image of the mother wavelet components are calculated
for various spatial scales (l =1,..L=7 that corresponds to X km). The spatial scales
refer to the spatial scale of the error and not that of the precipitation features or their
displacement as it happens in the neighbourhood methods

• The MSE of the binary error image is calculated from:

MSE =
L∑
l=1

MSEl MSEl = Zl
2

while for each threshold the skill score can be calculated from:

SS =
MSE −MSErandom

MSEbest −MSErandom

where and MSErandom is associated with a random forecast calculated from the bias
and the base rate at each threshold

• Intensity scale verification technique is a spatial generalization of traditional binary
verification (HSS, PSS).

3.4.2 Short description of the dataset (forecast-observation data), adaptation
required, software for the method application

The datasets used in the context of this study have been obtained from the Mesoscale
Verication Inter-Comparison over Complex Terrain (MesoVICT) project. All six available
test cases were that analysed, cover a wide range of meteorological phenomena in and around
the Alps. The example that is presented here is for the period 20-22 June 2007. From the
multitude of NWP models with varying resolutions that are available through the MAP-D
Phase, forecasts derived from COSMO-2 ( 2km res.) and COSMO-1 ( 1km res.) of the Swiss
Meteorological Service were used. The domain of the COSMOmodel is shown in figure above.
Both models were nested on a coarser 7km COSMO model. Hourly precipitation forecasts
from both models were upscaled prior to the application in order to match the resolution of
the observation fields in a final 8km grid spacing to match the observations. The software
used was the R based SpatialVx and the waveIS routine. MET software (NCAR) was also
tested but the graphical outputs of the methods were different and not comparable with
those of SpatialVx. Further investigation is required for the differences in the application of
the method.

3.4.3 Main findings (plots and explanation)

An example of the verification analysis is presented in Fig. 16 for 20070621-15UTC.
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Figure 16: Example of the verification analysis for 20070621-15UTC.

From the analysis of this precipitation instant, it can be deducted that MSE almost disap-
pears for error tiling of the order of 3x3 grid points. Comparing the two model performances,
COSMO-1 shows slightly improved behaviour compared to COSMO-2. In Fig. 17, the results
from the Skill score are given.

Figure 17: Results from the Skill score.

Small error scales (l=1) have skill close to zero as it is shown in the graphs, while slightly
large scales exhibit large skill. COSMO1 ISS graphs exhibit that errors due to displacement
of small spatial scale features are more important compared to those of COSMO-2. As a
summary, both models have small skills at the smallest scale but skill improves when
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considering larger spatial scales. ISS decreases as the precipitation threshold is increased
and this is due to the poor ability of the models to go beyond just the yes/no rain
discrimination.

3.4.4 Characteristics of the method applied

This filtering method allows the skill to be diagnosed as a function of the scale of the forecast
error and intensity of the precipitation events. Results show that reduction of skill is mainly
due to the small-scale misplacement of more intense (rare) precipitation events.

Wavelet-based scale-separation MSE skill score and scale-separation statistics are suitable
for comparing models with different resolutions as the reference forecast accounts for the
forecast variability. IS method constraints are related to the request to have precipitation
analysis available for each grid point of the forecast field, and to the fact that Haar wavelet
decomposition is designed for a square domain. Computationally, the method was easy to
be applied and to derive numerical and graphical results, while their interpretation is not so
straightforward and easy to comprehend from a non-experienced user.

The method allows the analysis of precipitation instances but it is not able to provide a
generalized information on the relative long term performance of a modelling system based
on aggregated data.

4 Object-based methods

4.1 SAL Method for deterministic and ensemble precipitation verification
at HNMS (D. Boucouvala)

4.1.1 Description of the Method

SAL method (Wernli et. al 2008, 2009) is a spatial three component object- based quality
measure which quantifies a precipitation forecast in terms of 3 parameters which correspond
to a global field measure of Structure (S), Amplitude (A) and Location (L). An object is
defined when it exceeds a fixed or statistically defined threshold value. The objects of the
observed and forecast fields do not require one-to one matching and are identified sepa-
rately. The fields are then transformed into binary representations of 1 (grids exceeding the
threshold) or 0 (grids not exceeding the threshold).

The A component represents a normalized difference between the domain-averaged forecast
D(Rmod) and observation fields D(Robs) and it is the only one that is independent of the
identification of features as it depends on the total precipitation amount. A positive value
indicates overestimation of total precipitation, and negative indicates underestimation. The
value of A is in the range of [-2,2], with 0 value corresponding to the perfect forecast for a
system-averaged precipitation intensity. Values close to -2 show almost missed events and
values close to 2 almost false alarms. A value of A=1 indicates an overestimation by a factor
of 3.

A =
D(Rmod)−D(Robs)

0.5(D(Rmod)−D(Robs))

The S component compares the total of volumes of the normalized precipitation objects
(scaled over the maximum value for each object), and provides information about their size
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and shape. The range of S is [-2,2]. A positive value indicates that modelled precipitation
objects are too large or too flat, and a negative value indicates that objects are too sharp
and too small.

S =
V (Rmod)− V (Robs)

0.5(V (Rmod)− V (Robs))

The L component combines information about the distance of predicted and forecast mass
centres and the error of a weighted average distance between the precipitation objects and
centre of masses. It consists of two parts. L = L1+L2. L1 measures the normalized distance
between the mass centres of the forecast x(Rmod) and observation fields x(Robs), where d is
the maximum distance found in the given domain between two boundary points. Its value
range is [0,1]. The value of 0 indicates that the two fields mass centres are identical. However
many different precipitation fields can have the same mass centres without being identical,
therefore L1 = 0 does not necessarily indicate a perfect forecast. L1 is independent of
identification of features.

L1 =
|x(Rmod)− x(Robs)|

d

L2 is the difference of weighed mean normalized distance between the mass centre and the
individual precipitation objects over observed r(Robs) and forecast r(Rmod) fields and is a
measure of difference of scattering of identified objects between the two fields. L2 ranges
between [0,1]. Therefore, L ranges between 0 and 2.

L2 = 2
|r(Rmod)− r(Robs)|

d

A perfect forecast is therefore characterized by zero values for all three SAL components. A
taSAL index =(|S| + |A| + |L|) is suggested by Lawson et al. (2016) (as an objective skill
score in order to quantify the forecast quality by means of one only parameter. The bigger
the index is the worse is the forecast.

4.1.2 SAL Calculation

Dataset

• In order to apply the method, precipitation objects need to be identified within a
gridded verification domain which should be the same for both observed and forecast
fields. In the case of MesoVICT data used for INSPECT project, gridded data in
ASCII are already available. However, if the method is used for comparison with grib
observations and bufr model data, a software for reading the files in such format should
be available. A file with latitude and longitude of the gridded fields is also necessary.

• The domain size is important. It should be identical for both observed and forecast
fields. It is not recommended to be too large as components from different precipitation
regimes can override each other.

• The accumulation precipitation range should not be small. Hourly precipita-
tion fields are often noisy, with not well defined objects. It is recommended to calculate
the SAL parameters with 6h precipitation range and up, unless a specific case with
significant precipitation amounts is tested.
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Software required

In order to calculate the SAL components, after reading the input files, the following software
are available:

• The original code (in Fortran) which can be provided by the authors.

• The libary SpatialVx (Gilleland, 2017) which is part of the free R language software
with available documentation online. The advantage of this method is that by using
featurefinder (function for defining objects) a the user can easily view objects and
specify thresholds, smooth fields and discard small scale noise. The SAL parameters
are then calculated by using the smaller function.

Object Identification Methodology and examples of SAL calculation

The selection of a threshold value for objects identification is required for this method and
it can be critical if the fields contain objects with different local maxima. A small change in
the threshold can lead to a different number and size of objects and therefore different L2

and S values. The possibilities of setting a threshold R are the following:

• Constant fixed user defined threshold (e.g. 2 mm) for forecast and observed fields.
(This method is more subjective)

• R = f ·Rmax: threshold is a fraction of Rmax (the maximum value of the field) and f is
subjectively chosen factor with a value of 1/15 suggested by Wernli et al. (2008) as the
most appropriate to identify objects. Higher values of f result in threshold increase

• R = f ·R95: threshold is a fraction of the 95th percentile of all gridpoint values in the
domain which are larger than 0.1mm. (This is the method suggested by Wernli et al.,
2009) and is used in the original code. This is sensitive to outliers. (eg. Single grid
points with very intense precipitation)

Examples of SAL are given in Fig. 18, (calculated with method 3) where CMH S value is
positive indicating that objects are flatter than observed (precipitation is more stratiform),
and negative S for COSMO-2 means that modelled objects are sharper than observed. Posi-
tive (negative) values of A for CMH (COSMO-2) indicate overestimation (underestimation)
of total domain precipitation. L values are slightly higher for COSMO-2 as there are fewer
and more localized objects. TaSAL is lower for CMH, which indicates overall better forecast.

Figure 18: CMH and COSMO-2 forecasts versus Observations for MESOVICT case of 12 hourly
Precipitation of 18h for 19/7/2007.
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Model S A L taSAL

CMH 0.22 0.48 0.18 0.88

COSMO-2 -0.12 -0.55 0.25 0.92

Object Identification Options

• Smoothing: smoothing option is available on featurefinder function by setting
do.smooth=TRUE and giving a value to smoothpar (which can also be different for
observed and forecast fields). Specifically, by applying smoothing, the value at each
grid is replaced by the mean value over a disk with a radius of a number of grid points
given by the parameter smoothpar. The convolved data is then thresholded yielding
a binary mask, so mostly affected are the object boundaries which are smoothed. Also
small scale noise is filtered out. The selection of smoothing radius is not straightforward
(Weniger et al., 2016) and it is not obvious how to select it for a given set of data.
It is also relative to grid size. So, the same smoothpar can lead to light smoothing
when applied to a grid of 1km but significant when applied to 7km. Smoothing for
example can lead to bridges creation among different objects that are close to each
other and unify them. If the selected smoothing factor affects one domain (forecast or
observations) more than the other, then S and L2 parameters may completely change
with only a small smoothpar change. In general, the increase of smoothing radius
does not necessarily improve the results of the parameters, as it may unify or separate
objects depending on the threshold, therefore alter the number of objects. Examples
of effects of smoothing for the case of Fig. 18 are shown in Fig. 19. The effects of
smoothing on S in this example are apparent when moving from smoothpar=3 (Fig.
19b) to smoothpar=4 (Fig. 19d) as the unification of the objects in observed field
results in a complete S change (even on sign). Flatter objects were predicted in Fig.
19b due to the larger modelled yellow object, while the observed objects unification in
Fig. 19c resulted in slightly sharper objects now predicted by the model. The bigger
smoothing in Fig. 19d resulted in unification of almost all objects and made small
objects disappear.

• Omission of small objects: the min.size option of featurefinder (min.size=c(n min obs,
nmin fcs)) defines objects as cohesive threshold exceedances and objects with less than
n.min are omitted. The interpretation of this parameter is more straightforward that
smoothing (Weniger et al., 2016) and it is easier to foresee the consequences of a
particular choice of a parameter value on the objects as it does not unify or separate
objects. It does not affect shape of large objects. If the selection of factor removes
small objects and affects object spread for one domain (forecast or observations) more
than the other, the S and L2 parameter may increase or decrease. Examples of effects
of using min.size are shown in Fig. 20, where omitted modelled objects resulted in more
widespread forecast precipitation with a slight and stable increase of S and L2 values
with min.size increase. User can visualize objects after using the function featurefinder
in order to decide about the best threshold and smoothing selection, but this selection
is more straightforward for one specific case and not for a series of data with different
precipitation regimes, that will be plotted afterwards on a SAL Plot.

Errors in observations (too big values) can be discarded in the calculations when
threshold is a fraction of a percentile of all gridpoint values in the domain. Also, by
applying the min.size option in the observed field, small objects of any intensity that
can be erroneous noise vanish. However, erroneous values within normal range can
lead to wrong observation objects and therefore SAL components.
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Figure 19: Examples of different smoothing factors and their impacts on objects and S / L2

applied on the case of Fig. 18.
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Figure 20: Examples of different min.size options and their impacts on objects and S / L2

applied on the case of Fig. 18.

SAL Plots

The SAL method can be applied to a set of forecasts performed by the same model in order
to define a general model tendency of predicting each of the three SAL components. This is
done by the SAL diagram in which each point represents one case. The median value of S
and A together with the 25th to 75th percentile box can also be plotted. The L component
value for each point is depicted with a colour scale. Example of this plot is shown in Fig.
21.

Warning: if no features are found in either or both forecast and observed fields, the SAL
values cannot be defined. In this case (no objects found by featurefinder in forecast, observed,
or both fields), saller function cannot be executed and the case is defined as Miss, False Alarm,
or Correct Negative respectively. The use of extreme values of SAL parameters (-2.2) in case
of lack of objects is not recommended and cases are simply omitted.

Statistically Specified thresholds (with selection of appropriate scaling factor) can be used
when dealing with a significant number of cases in one SAL plot, as the precipitation amounts
are different for each one, and a fixed threshold can be too big for some cases of them and
exclude them. However, for one particular case, or for a number of cases with similar situation
(ex. only convective) or if only extreme events exceeding a specified threshold are studied,
then a fixed threshold can be used. SAL parameters can also be used to test the performance
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of an EPS ensemble by plotting the SAL values of each of the members on a SAL plot and
get an estimate of the ensemble forecast for one particular time (Barrett et al, 2015).

Figure 21: SAL diagram for COSMO-LEPS 3h precipitation for 21/6/2007 12UTC. The red lines
denote the median values of A and L, the gray box is the area of 25th to 75th percentile.

In Fig. 21, an example of a SAL diagram with 16 members of COSMO-LEPS indicates that
median S is positive, meaning that as an ensemble, predicted objects are flatter and larger
than observed. The A median parameter is close to zero and slightly positive which means
that amplitudes of observed and modelled fields are comparable. Members in quadrant 1
produce too much rain with too large or flat objects. L values are relatively low and less
than 0.5. The forecast fields for each member may be significantly different. Therefore,
fixed thresholds applied to a set of members may be too big for some of them, resulting in
no object formation for some members, therefore S and L may be calculated with fewer of
them. On the other side statistically specified thresholds for each member, imply a different
threshold for each of them when compared to the observed field. It is up to the user and the
specific case to select the appropriate method.
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Figure 22: COSMO-LEPS hourly variation of ensemble SAL parameters (Statistically Specified
threshold) for 20/6/07 with a Run beginning on 19/6/07.

EPS forecasts hourly variation can also be plotted as boxplots (each one representing the
distribution of the members) of each parameter as a function of time lead (Fig. 22). The L
parameter distribution is now also better represented than SAL Plots. The R SAL plot and
boxplots are written in R language. The calculation time can be significant if the program
reads a large number of files and plots many cases for one SAL Plot In order to perform a
SAL plot over a set of many different forecasts of an EPS model, there are two possibilities:

• Medians of the SAL parameters over the members for each case are calculated and
then plotted on a SAL plot. The number of points will be equal to the number of cases;

• Medians of the SAL parameters over all cases for each member are calculated and
then plotted on a SAL plot. The number of points will be equal to the number of
members.

Examples for MESOVICT COSMO-LEPS 3 hourly forecasts of the Run beginning on 18/07
12 UTC (from 20 to 22/7) with the two methods given in Fig. 23. The two methods give
comparable A and S median values with different spreads, as expected.
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Figure 23: COSMO-LEPS SAL parameters for all 3-hourly forecasts from 20-22/7/07 with a run
beginning on 18/6/07.

Further research on SAL applied to EPS models includes comparison of objects in fields of
probability (Radanovics et al, 2015), and consideration of observation uncertainty.

4.1.3 EPS in terms of probability (a research topic)

Further research on SAL applied to EPS models includes comparison of objects in fields of
probability (Radanovics et al, 2015) with consideration (if available) of observation uncer-
tainty. In an effort to apply this concept to MESOVICT dataset the following ideas (which
require further research) are presented in this document:

• when the observation domain is constant and uncertainty is applied only for LEPS

First, the setting of precipitation threshold to be tested is needed (eg. 2mm). The frac-
tion of the 16 LEPS members that predict precipitation above this specified threshold
applied on every grid point consists the probability field in the model domain (range
0-1). In Fig. 24, different colours represent the different probabilities and the brown
objects are of probability 1(all the 16 members predict precipitation above the thresh-
old). When uncertainty is applied only to the model domain, these objects (in order
for the comparison to be fair) can be compared to the observation objects which reflect
the real conditions, and can also be represented by probability 1 (Fig. 24). In this
case, A parameter will be only calculated for the 2 fields by taking into account only
the objects with value 1 and setting to zero the remaining grid points for observed and
modelled domains (because in the observations field the remaining grid points cannot
be represented as probabilities) . Also, S parameter will reflect only their size and
not sharpness. These objects are detected by the featurefinder function (Fig. 25) and
the resulting SAL parameters will be a measure of how the objects over a specified
threshold can be forecasted by all 16 members of EPS model. In this particular case
S=1, A=0.38, L=0.3;
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Figure 24: Probabilities of 3h precipitation threshold > 2mm for observations (left) and LEPS
(right). 21/06 12UTC. The colour scale is the probability range.

Figure 25: Objects of probability=1 as detected by the featurefinder function for observations
(left) and model (right). Colours indicate different objects.

• when uncertainty is applied also to observations (in this case 16 members of VERA
ensemble)

When uncertainty is also applied to observations (Gorgas and Dorninger, 2012a), the
concept of the fraction of the members exceeding the specified threshold can be applied
in the same way to observed and LEPS domains, and fields of probability can now be
created in both of them. In this case, probability thresholds of less than 1 can also
be tested. For example, for precipitation threshold 2mm, the objects of each field
created by the different probabilities exceeding it, are shown in Fig. 26a. In Fig.
26b, the objects of probability=1 (all members in observation and VERA fields predict
precipitation above 2mm) detected by featurefinder in both domains are shown. In
this case, S=0.37, A=0.6, L=0.1. The objects of probability threshold < 1 (0.5 in
the case of Fig. 26b, which denote that at least half of members predict precipitation
above the threshold) are bigger and include also higher probabilities can be compared
with the SAL method for the two domains. In this case, S=0.65, A=0.5, L=0.05.
Further research on LEPS SAL parameters includes the introduction of a SAL index
(Radanovics, 2017a) for LEPS (Ensemble SAL) with average means over the members
of the equation parameters for observed and model fields. This formulas that may
be introduced in SpatialVx (Radanovics, 2017b), will be a more efficient way of SAL
parameters estimation for Ensemble Forecasts.
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L1 =
|⟨x(rrmod)⟩ − ⟨x(rrobs)⟩|

d

L2 = 2× CRPS(P (
rmod

d
), P (

robs
d

))

S =
⟨V (mod)⟩ − ⟨V (obs)⟩

0.5⟨V (mod)⟩+ ⟨V (obs)⟩

Figure 26: a) Probabilities of 3h precipitation threshold > 2mm for VERA ensemble (left)
and LEPS (21/06 12h). b) Objects of probability threshold=1 as detected by the featurefinder
function for VERA ensemble (left) and LEPS (right). Colours denote different objects. c) Same
as b with probability threshold=0.5.
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4.2 MODE, CRA, SAL: IMGW-PIB experience

The experience described in this section is unique in INSPECT, as IMGW-PIB applied three
different object-based methods, which facilitated their intercomparison.

4.2.1 Method applied (related to an INSPECT Task) and objectives

MODE - Method for Object-Based Diagnostic Evaluation, its objective is to identify local-
ized features of interest in scalar fields, merge and/or match features and compare features
in two fields to identify which features best correspond to each other. CRA Contiguous
Rain Area, identifies features of interest, uses pattern matching techniques to determine
the location error, errors in area, mean and maximum intensity, and spatial pattern. The
total MSE (Mean Square Error) is decomposed into components due to location, volume,
and pattern error (MSE displacement, MSE volume, MSE pattern) (see also Chapter 4.3)
SAL - Structure, Amplitude, and Location, requires a preselection of a domain of interest,
a definition of a threshold to identify objects in the observational data and model forecast,
one-to-one matching between the identified objects in the observed and forecasted fields is
not required. A forecast is perfect if S = A = L = 0. (see also Sec. 4.1.1.)

4.2.2 Short description of the dataset (forecast-observation data), adaptation
required, software for the method application

• Radar data

– OPERA (Operational Programme for the Exchange of Weather Radar Informa-
tion), 1 hour rainfall accumulation. The composites cover the entire Europe in a
Lambert Equal Area projection. For the project data in HDF5 format was used.
The HDF5 files are read directly in the R software by using ”HDF5 interface
to R”. The data are adopted to geographical coordinates (latlon geographical
projection) in terms of verification against COSMO PL data

– Polish national RADAR (POLRAD network) data composite. The data are avail-
able in Rainbow binary XML format and can be processed with additional php5
tool available at IMGW-PIB to extract rainfall accumulation and geographical
locations.

Both data sets require a procedure of matching to COSMO PL model domain.

• Vienna Enhanced Resolution Analysis - VERA data

• Forecast data

– COSMO-PL 7 km, COSMO-PL 2.8 km

– COSMO-2 data - interpolated on the VERA grid.

4.2.3 Main findings (plots and explanation)

The all plots and statistics below were obtained using SpatialVx R-package developed at
NCAR (Gilleland, 2015).
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• MODE example. MODE graphical output shows matched objects (e.g. Hits) and
unmatched objects (e.g. False alarm in forecast field, Misses in observation field),
which are based on the interest value. The interest value is an overall measure of
similarity between objects in the observed and forecast fields, ranges from 0 to 1. The
value of 0.70 is used for objects to be considered matched. COSMO-PL7 precipitation
model output was verified against OPERA radar data. The result of MODE method
shows a good correspondence of the precipitation objects between COSMO-PL7 and
radar data.

Figure 27: 24h QPF ending at 00 UTC on 05.05.2017.

Figure 28: Identified, matched objects, threshold 5mm, Matched objects are indicated in the
same colour in both the observed and the forecast fields .Grey colour corresponds to unmatched
objects.

• CRA example. CRA verification was used to verify forecast model COSMO-2 against
VERA data. One of the cases was chosen for the verification. For object pairs 2 and
4 the total error is associated with the error in location, while for object pairs 1 and 3
the total error is associated with the fine scale structure.
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Observation feature Forecast feature Total interest

1 1 0.85

2 2 0.7

2 1 0.46

1 2 0.42

Table 2: Ranking of feature pairings based on total interest.

MSE.total MSE.disp MSE.volume MSE.pattern

1 0.01222 0.00232 7.405e-05 0.00983

2 0.00173 0.00123 4.615e-07 0.0005

3 0.07752 0.01059 3.919e-03 0.06301

4 0.00166 0.00124 3.645e-07 0.00041

Table 3: Total MSE and its components.

Figure 29: 1h accumulated precipitation 26.09.2007, 18UTC.

Figure 30: Objects, threshold 2 mm, 26.09.2007, 18 UTC.

main.tex
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• SAL example. SAL verification was used to verify 1 hour accumulated precipitation
output of forecast model COSMO 2.8 against radar data of POLRAD network. The
verified period was from 05 18UTC to 07 06UTC August 2016. Almost all SAL entries
are found in the top right quadrant of the diagram. The bottom right quadrant contains
only a few of them. For all entries component S is positive which means that the
predicted forecast objects are too large or widespread with respect to the observed
objects. For most entries component A is positive which indicates an overestimation
of the domain-averaged precipitation coming from the model. There are only a few
entries when the model underestimates the precipitation (negative A component). No
entries were found in top and bottom left quadrants.

Figure 31: 1h accumulated precipitation, Radar data composite (POLRAD) against COSMO-PL
2.8, 06.07.2016, 20 UTC.
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Figure 32: SAL verification, 1h accumulated precipitation, 05 18UTC 07 06UTC August 2016.
Every dot shows the values of the three components of SAL for a particular forecast. L component
is indicated by the colour of the dots. The grey area extends from the 25th to the 75th percentile
of the distribution of S and A, respectively. The dashed lines depict the median values of S and
A components.

4.2.4 Characteristics of the method applied

Identification in MODE is done separately in observation and forecast fields by using two
parameters such as convolution radius and threshold. The method looks at characteristics of
the objects such as intensity distribution, centroid location, area, curvature, orientation, and
attempts to match objects in the forecast and observed field based on these characteristics.
Objects nearby can be merged. CRA method gives useful information of the forecast errors.
The total mean square error is decomposed due to location, pattern and intensity. The
method depends on pattern matching. To find the optimal rigid transformation between
two features can be difficult. SAL components correspond to aspect of amplitude, location
and structure of precipitation field in a preselected area. All three methods MODE, CRA,
SAL require identification features first. Applied method calculation time using SpatialVx
library can depend on chosen merging/matching function, additionally all these methods are
able to deal with different density of observation. Depending on the model resolution object
features may have different pattern complexities and fine structures which further affects
merging algorithm performance and computed scores.
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4.3 CRA experiments in Roshydromet for MesoVICT (A.Bundel and A.
Muraviev))

In the framework of MesoVICT (Mesoscale Verification Intercomparison over Complex Ter-
rain, phase 2 of the ICP, https://ral.ucar.edu/projects/icp/), a set of cases is provided to
compare various spatial verification methods. The object-based CRA (Contiguous Rain
Area) method is used (Ebert, McBride, 2000). First, the objects are identified in ob-
served and forecast fields. Then, the objects pairs are identified using some matching
criterion based on the distance between the objects. Then, an optimal shift of the fore-
cast object to the observed object is found by minimizing the error. Here also, differ-
ent criteria can be used, such as the correlation coefficient and the mean squared error
(MSE). In this study, the MSE criterion was used. Then, the difference is found be-
tween the initial MSE (represented as MSE.total = MSE.displacement+MSE.volume+
MSE.pattern) and the MSE after the shift. This difference is the error due to forecast
displacement: MSE.displacement = MSE.total −MSE.shifted. The MSE, which is left,
consists of the squared difference between the mean precipitation volume in the forecast
and observed object MSE.volume = (F − X)2 and of fine scale pattern discrepancies
MSE.pattern = MSE.shift − MSE.volume. To calculate the CRA scores, free R Spa-
tialVx package (https://cran.r-project.org/web/packages/SpatialVx/index.html) was used.
It is developed by E. Gilleland contains most part of existing spatial methods, including
identifying, matching, and merging features in observed and forecasted fields.

4.3.1 Deterministic study

Setup of experiments

• Mesovict core case: 20-22 June 2007;

• 1-h precipitation accumulations;

• Vienna Enhanced Resolution Analysis (VERA) observation analysis (Dorninger, M.et
al., 2013) is used as reference data in this study;

• the Swiss COSMO-2 deterministic model is used as model data (2.2 km grid step).

Fig. 33 shows the time series of domain precipitation maximum during the MesoVICT core
case. It can be seen that the absolute VERA maximum on 20 June 2007, 21h UTC, (49.84
mm/h) falls within the COSMO-2 domain. Most of other observed maximums were within
the COSMO-2 domain. Overall, COSMO-2 reproduces well the time series of maximums,
but gives the highest maximum 12 hours later, on 2007062020 much later, on 2007062108.
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Figure 33: Time series of domain 1h precipitation maximums during the MesoVICT core case of
20-22 June 2007.

Identification of objects in R SpatialVx

Function FeatureFinder is used to identify objects in both observed and model fields. First,
the field is smoothed using a convolution smoother, and then it is set to a binary image where
everything above a given threshold is set to one (Davis et al, 2006). Features are identified by
groups of contiguous events (or connected components in the computer vision/image analysis
literature). Option min.size enables eliminating features with a size less than determined
value from the analysis. Through a set of experiments, the reasonable value was determined
as min.size = 20 grid points or ∼36*36 km.

The effects of smoothing

By applying smoothing, the value at each grid is replaced by the mean value over a disk with
a radius of a number of grid points given by the parameter smoothpar (see also Chapter 4.1
about the effects of smoothing). The FeatureFinder option uses disc kernel smoother from
the R package smoothie.
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Figure 34: VERA gridded observation analysis on 2007062106: no smoothing (top), smoothing
parameter =1 (middle), smoothing parameter = 3 (bottom).
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Smoothing spreads the maximum over wider areas (Figure 4.3.1.2). Therefore, no or minimal
degree of smoothing is needed in estimating intense precipitation areas. Smoothing param-
eter = 1 is chosen for the experiments described in this chapter. Functions for matching
objects in R SpatialVx used in this study are as follows:

• Minboundmatch, the minimum boundary separation is calculated by first finding the
distance map for every feature in the observed field, masking it by each feature in the
forecast field, and then finding the minimum of the resulting masked distance map (Eric
Gilleland, SpatialVx Manual). The distance map is found using distmap. The function
distmap of point pattern computes the distance from each pixel to the nearest point in
the given point pattern. If type is single, then the features are matched by the smallest
minimum boundary separation per feature in each field. If type is multiple, then every
feature is matched so long as their minimum boundary separation (measured in grid
squares) is less than or equal to a specified value

• Centmatch is based on the method proposed by Davis et al. (2006a). It is possible for
more than one object to be matched to the same object in another field. Objects are
matched, if the centroid distance D is less than

– the sum of the sizes of the two objects in question (size is the square root of the
area of the object) (Centmatch 1)

– the average size of the two objects in question (Centmatch 2)

Centmatch does not merge objects explicitly, but determines possible merges applied
if MergeForce function is run after centmatch (used in this study). The merging al-
gorithm is described in (Eric Gilleland, SpatialVx Manual, deltamm and centmatch
functions). It merges objects according to the minimum of distance metric between
the objects.

Examples of CRA application

In Fig. 35 1h precipitation maps are given for 2007062021, VERA max precipitation during
MesoVICT core case.
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Figure 35: 1h precipitation maps from 2007062021 in mm/h: VERA observations (top),
COSMO-2 (bottom).

Fig. 36 gives the matched features for a precipitation threshold 0.5 mm/h as an output of
different matching functions for 2007062021.
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Figure 36: Matched objects pairs using (for precipitation > 0.5 mm/h) using different matching
functions for 2007062021: Minboundmatch (top), Centmatch 1 (middle), Centmatch 2 (bottom).
Same colours indicate paired objects.

It can be seen from Fig. 36 that it is difficult to objectively choose a best matching function.
All methods are acceptable. The choice depends on the user preferences. Centmatch 1 makes
implicit merging. In Fig. 37 the objects matched using minboundmatch are given for the
same date, 2007062021, but for precipitation threshold > 5 mm/h. The functions Centmatch
1 and 2 do not make any matching in case of intense precipitation. Thus, these matching
criteria are too strict for small features.
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displacement volume pattern

first pair 0.0006 0 0.0006

second pair 0.0007 0 0.0018

Table 4: CRA error components

Figure 37: Matched objects pairs using minboundmatch, 2007062021, precipitation threshold >
5 mm/h.

The CRA scores (Table 4) show that the fine scale pattern error contributes most to the
total mean squared error in this case. Let us consider another time slot from the MesoVICT
case 1, 2007062115, when COSMO-2 made a good forecast (Fig. 38) with higher maximum
intensities at the northeast of the domain. Fig. 39 for precipitation threshold 0.5 mm/h
demonstrates that Centmatch 1 merges several features in the observed field to match them
with one big precipitation object in the COSMO-2 field, while Centmatch 2 and Minbound-
match, which imply stricter distance criteria, do not merge separate objects. The CRA
scores show that the fine scale pattern error is most important also in this case.
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Figure 38: Matched objects pairs using (for precipitation > 0.5 mm/h) using different matching
functions for 2007062021: Minboundmatch (top), Centmatch 1 (middle), Centmatch 2 (bottom).
Same colours indicate paired objects.
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Figure 39: Matched objects pairs and corresponding CRA error components using (for pre-
cipitation > 0.5 mm/h) using different matching functions for 2007062115: a) Centmatch 1 b)
Centmatch 2 and Minboundmatch (give same matches in this case), same colours indicate paired
objects.

For higher precipitation threshold (Fig. 40), all matching functions give the same result. The
best match is detected (the central object in COSMO-2 field with precipitation maximum).
It should be noted that there were another two intense precipitation areas forecasted, which
represent false alarms. In this method, the false alarms are discarded.
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Figure 40: Matched objects pairs and corresponding CRA error components (for precipitation >
5 mm/h) for 2007062115. All matching functions (Centmatch 1, Centmatch 2, and Minbound-
match) give the same matches in this case), same colors indicate paired objects.

Other time slots and synoptic situations were considered, which are not given here.

Conclusions

Smoothing can be undesirable for intense precipitation estimation, although it depends on
the user requirements. Option for splitting objects is desirable sometimes. For lower precipi-
tation thresholds and thus wider features, centmatch 2 gives more reasonable results overall.
Centmatch 1 makes more merging. For higher thresholds, centmatch often leaves all the
objects unmatched due to small areas of features. Minboundmatch seems more promising,
but with a minimum boundary separation distance beyond which features should not be
matched. According to CRA, most of the error usually comes from the fine structure of the
fields (MSE.pattern) for lower precipitation thresholds. For higher thresholds, displacement
error contribution increases. The optimal choice of matching procedure can be rather dif-
ficult. Each case should be considered before application of particular matching function.
Aggregation of results is difficult. The SAL method seems easier to apply because it does
not require pair-wise matching.

Ideas for future work

It seems useful to formalize the complexity of situations when the application of metrics is
useless. Below is the list of possible approaches to that. It should be noted that it is only
an idea at the present state:

• by the maximum number of different features in the field;

• by the complexity of their boundaries (fractals?);

• simple spatial dispersion of the field;

• by the number of holes in a feature (Betti number?);

• other criteria?
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4.3.2 An object-based approach to assess the MesoVICT ensemble data

This chapter contains an exploratory study with a goal to transfer the object-based method to
ensemble data. The results are preliminary. The starting point was the method proposed in
(Johnson and Wang, 2012). The forecast probability is generated for each forecast object as
the fraction of ensemble members forecasting the object of interest. In this case, the objects
of interest are the observed objects unlike (Johnson and Wang, 2012) where one of the
ensemble members was taken as reference to calculate object probabilities. In our approach,
performance of the ensemble system could be assessed a posteriori, but the probabilities of
objects defined in this way could not be forecasted in the real time, as the observations are
not yet known at the time of the forecast. If we want to assess the real forecasts, we need
to choose the objects of interest from the ensemble. Then, the member defining the forecast
objects should be randomly chosen so that the results were not improved by attempts to
select a ”best“ member. Then, the probability of each observed object can be estimated
using the traditional probabilistic scores, the BSS, for example, but verification was not yet
implemented. The setup of the experiments is as in Sec. 4.3.1, but COSMO-E ensemble of
Swiss meteoservice is taken as model data. In Fig. 41, the upper map represents the VERA
observed objects, and the pairs of maps below are the matched observed and model objects
for the first six ensemble members from a 21st member ensemble. The colours indicate
matched pairs. Then we can calculate the probability of predicting each of observed objects.
For example, the VERA object painted in yellow colour in the upper map was matched to
an object in 20 of 21 ensemble fields, thus, its probability is 20/21.

Figure 41: Minboundmatch: 2007062021, COSMO-E ensemble, first 6 of 21 members, precipi-
tation threshold > 0.5 mm/1h. Probabilities of each of 5 observed objects: 1/21 20/21 10/21
19/21 14/21.

A deficiency of such an approach is that the CRA method itself cannot be applied, only
the usual probabilistic measures, such as the BSS, can be calculated when a large number
of forecasts is aggregated. Another drawback is that no merging of objects is possible as
the list of observed objects must be the same for matching with all ensemble members, thus
centmatch matching function, which produces merging, cannot be applied. To apply CRA,
the possible approaches could be:
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• to calculate location, volume, fine pattern errors for each ensemble member, and to
average them;

• to identify objects using the probability threshold (Gallus, 2010).

An example of the second approach to object-based method is given in Sec. 4.1 (by D.
Boucouvala).

4.3.3 Processing nowcasting forecasts using CRA at RHM (A. Muraviev)

The studies on test cases, such as MesoVICT cases, were conducted having in mind the
main goal to verify operational forecasts, in particular, short-range and very-short-range
forecasts. Below are the first results of verification of a nowcasting system implemented at
the Hydrometcentre of Russia of Roshydromet (Muravev et al., 2018). The core of the system
is the statistical STEPS scheme (Short Term Ensemble Prediction System) (Bowler N. et
al., 2006) constructed as a multiplicative cascade model with an optical flow technology (the
radar fields sequences are considered as an optical flow). Its motto is ”seamless, stochastic,
scaling, spectral, self-learning“. STEPS can run in deterministic and ensemble modes. The
results below are obtained with deterministic version. This chapter focuses on verification
technology rather than on the scientific findings described in (Muravev et al., 2018).

Verification setup

Period: May 1, 2017 September 30, 2017(∼22000 forecasts). Nine radars over the Central
Russia with a total area of about 1100x1300 km were used. For each radar, the area is
500*500 km was considered. The STEPS precipitation intensity forecast calculates fields up
to 2.5 h lead time with 10-min time step (15 consequent fields for each forecast) with about
2km grid step. For verification, only 169 situations with intense precipitation were chosen
by visual analysis. The SpatialVx package was used to identify objects and to calculate
CRA scores. The objects with areas less than 1225=35*35 grid points (about 7070 km)
and lager than 16384=128128 grid points (about 250250 km) were excluded from analysis
using min.size and max.size option in FeatureFinder function. The radius of averaging for
convolution smoothing was chosen empirically as 9 grid points (18 km).

Analysis

Let us consider a case from 17 May 2017. It can be seen from Fig. 42 that the nowcasting
system forecasted well the rain object at the first lead time, but by the end of the forecast,
the single object in the radar field splitted in two. In Fig. 43, it is reflected in the abrupt
change in x shift (shift in object mass centre in longitude) from positive to negative values at
the last two lead times (14 and 15), because the system of object recognition and matching
switched to a new object when the single object in the radar field (Fig. 42, lower right
field) splitted in two. It follows from the CRA scores that the nowcast object is shifted
eastward relative to the corresponding radar object. This case demonstrates the difficulties
in matching objects during intense convection cases, as the objects appear and disappear
chaotically and it is difficult to follow their history in both reference and forecast fields.
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Figure 42: Objects matched using SpatialVx matching function Centmatch 1 (see Sec. 3.2.1)
on 17 May 2017. Upper panel: the first nowcast time (11:30 UTC), lower panel: the penultimate
nowcast time (13:50 UTC); on the left, the radar fields, on the right, the nowcast fields. Colours
indicate matched pairs. Kursk (RAKU) radar.

Figure 43: CRA scores for the case of Fig. 42.

Aggregation of the scores and conclusions

To assess the forecast (or nowcast) system, we need to aggregate a large number of cases.
The following method was proposed in this study: the distribution parameters of CRA scores
were calculated: the mean, median, upper and lower quartiles, and minimum and maximum
values. In Fig. 44, an example for the x shift (longitudinal shift of the forecast object relative
to the reference one) is given. A critical shift error value was introduced from the following
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reasoning: the larger object areas intersect, the better. If the smallest object size is 35 by 35
grid points, the reasonable shift error in each of two horizontal axes could be chosen as 35
grid points (about 70 km in this case), that is the radius of round objects of 35 by 35 grid
points. The green frame indicates that no less than 50% of object shifts do not exceed the
critical value. The red frame indicates that all forecast object shifts do not exceed the critical
value. It follows that not less than half of the objects are forecasted with an admissible shift
in longitude (green frame) up to 90 min. In Fig. 44, the scores are displayed for one radar
only (radar in the Kursk town, RAKU). The same aggregation was performed for nine radars
in the Central region of Russia. This analysis enabled the following conclusions about the
systematic object shift in longitude: the forecast objects are shifted westward (thus going
too fast) for radars RAKU and RAVN and eastward (going too slow) for radars RUDK,
RUDN, and RUWJ.

Figure 44: Statistical parameters (mean, median (med), upper (q75) and lower (q25) quartiles,
and minimum and maximum values) of CRA x shift score (longitudinal shift of the forecast
object relative to the reference one) calculated over the whole verification period May 1, 2017
September 30, 2017. The green frame indicates that no less than 50% of object shifts do not
exceed the critical value, the red frame indicates that all forecast objects do not exceed the
critical value. Kursk (RAKU) radar.

The same analysis for the latitudinal shift error showed that the systematic shift is to the
north for all nine radars. This can be a feature of the optical flow organization in STEPS.
The error does not exceed the empirical critical value of 35 km up to 90 minutes in both
latitude and longitude for all the radars.

4.4 SAL deterministic study in ARPAE-SIMC (M. S. Tesini and D. D’Alessandro)

4.4.1 Method applied (related to an INSPECT Task) and objectives

The SAL method has been applied; it is an object-oriented method proposed by Wernli et al.
in 2008 and provides information about structure (S), amplitude (A) and location (L) of a
quantitative precipitation forecast (QPF) (See also Sec. 4.1.1) The definition of a threshold
allow to identify the precipitation features inside the domain; a smooth parameter is used
to filter small scale noise.
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4.4.2 Short description of the dataset (forecast-observation data), adaptation
required, software for the method application

The JDC dataset has been used as observations. This dataset consists of reports from
more than 12.000 stations over Central Europe which results in a mean station distance of
approximately 16 km. With the aim to interpolate irregularly distributed observations to
a regular grid in mountainous terrain, the Vienna Enhanced Resolution Analysis (VERA)
scheme has been used (horizontal grid resolution of 8 km). The forecast precipitation fields
comes from the run 00 of COSMO-2 (horizontal grid resolution of 2.8 km). Due to the
different resolutions, the forecast fields have been interpolated on the VERA grid. The
COSMO domain extension has been adapted to the observational domain. The R software
(SpatialVx package) has been used to apply the SAL method to six interesting cases occurred
during the summer of 2017.

4.4.3 Main findings (plots and explanation)

The main result which comes out from the SAL application is that its verification ability is
not constant but changes relatively to the considered configurations, in particular it seems
to be higher with the decrease in the precipitation fields complexity. A single parameter to
evaluate the structure, the amplitude or the location error in forecast is not enough in that
cases in which the precipitation field complexity is too high; this becomes evident in Fig.
45: the precipitation intensity is overestimated in Germany and underestimated in France;
these errors in forecast compensate each other and determine an amplitude value, referred
to the total domain, which is approximately null.

Figure 45: Precipitation intensity and SAL scores, MesoVICT case 6.
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As evident from Fig. 46, the SAL scores derived from domains with reduced dimensions
are more reliable because they refer to a restricted number of precipitation systems with
similar characteristics, avoiding the problem of the loss of information over small scale due
to the averaging over the complete domain. This suggests that the choice of the verification
domain extension should be done taking it into account. It is clear that this kind of issue
emerges for verification over limited accumulation period (1-3h); considering longer periods,
the precipitation structures tend to be less fragmented and articulated, allowing the SAL to
better evaluate the forecast.

Figure 46: Precipitation intensity and SAL scores, MesoVICT case 6, smaller domain.

4.4.4 Characteristics of the method applied

The SAL has not required an excessive computational time for the verification of the con-
sidered cases.

The three scores provided by this method allow pointing out the characteristics of a high
resolution model. For instance, the structure component S clearly emphasizes the ability of
a high resolution model to predict more realistic precipitation features compared to coarser
models. The threshold allows identification of the precipitation objects in the domains; the
SAL is able to provide information about the location, amplitude and structure errors of
these detected features. With respect to the location component L, this is provided as a
sum of a L1 and L2 components; L1 gives a measure of the distance between the centres
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of mass of the modelled and observed precipitation fields, while L2 takes into account the
average distance between the centre of mass of the total precipitation fields and individual
precipitation objects. Both L1 and L2 ranges from 0 to +1, so the final component L lies
within the range [0,+2]. Based on this definition, different situations can yield the same
value of L, in particular there is no sensibility to the rotation around the centre of mass.
Furthermore the L value is strictly connected to the maximum dimension of the considered
domain. In practical terms it means that, considering the same absolute displacement error,
the smaller the domain dimensions, the bigger is L. The amplitude component A is defined
as the difference of the domain-averaged precipitation values. The values of A are within
[-2,+2] with A = 0 representing the best forecast. Although a zero value is desirable, it
is important to remark that it does not necessarily represents a perfect forecast due to
the infinity number of possible situations which can lead to identical values of the domain-
averaged precipitation. A better indication is obtained integrating the structure component
S. The threshold parameter can be a fixed value or a flexible one. The advantage of a
fixed threshold is that verification can focus on a particular category, for instance, of intense
events, and the statistical results are not blurred by weak events that might be of less interest.
However, specification of a fixed threshold excludes poor forecasts from an object-oriented
verification in situations in which the threshold is not exceeded in either the model (missed
events) or the observations (false alarms).

5 Sensitivity of COSMO-LEPS forecast skill to the verifica-
tion network: application to MesoVICT cases (A. Montani,
C. Marsigli, T. Paccagnella, ARPAE-SIMC)

5.1 Overall aims

• To test the forecast skill of COSMO-LEPS in terms of total precipitation for different
verification networks and different verification methods;

• to understand the meaning of the differences in the verification scores.

5.2 Verification datasets

Reference data are the verification networks available in 2007 (Fig. 47):

• JDC (Joint DPhase-Cops) dataset. About 12000 observations (mean station distance
∼ 12 km);

• VERA (Vienna Enhanced Resolution Analysis), gridded analysis at the resolution of
8 km (Dorninger M. et al., 2013).

The model data come from the COSMO-LEPS suite available in 2007 at ECMWF (Montani
et al., 2011).
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Figure 47: Verification area: DPHASE area (43-50N, 2-18E) (bold black frame).

5.3 Verification setup

• variable: 6h cumulated precipitation (0-6, ..., 18-24 UTC);

• period: all 6 mesoVICT cases (Jun Sep 2007);

• region: 43-50N, 2-18E (D-PHASE area);

• method: nearest grid point, bilinear interpolation, boxes of different sizes;

• forecast ranges: 0-6h, 6-12h, ..., 126-132h;

• thresholds: 1, 5, 10, 15, 25, 50 mm/6h;

• probabilistic scores: ROC area, RPS, Outliers.

5.4 Results

In Fig. 48, the precipitation ROC area scores are displayed for two interpolation methods
using two different reference datasets (JDC and VERA). For precipitation threshold 1mm/6h
(Fig. 48a), the system performance is similar with respect to the 2 verification networks. For
precipitation threshold 10 mm/6h (Fig. 48b), higher skill is observed when COSMO-LEPS
is verified against VERA gridded analysis. There is almost no impact of the verification
technique (nearest grid point versus bilinear interpolation) for both thresholds.
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Figure 48: ROC area scores for two interpolation methods using two different reference datasets
(JDC and VERA) for precipitation threshold 1mm/6h (top) and 10mm/6h (bottom).

In Fig. 49, a comparison is given between the probabilistic scores in DIST boxes of different
size calculated using different reference datasets (JDC and VERA). DIST method is described
in Sec. 3.3. It is seen that slightly higher skill is observed when COSMO-LEPS is verified
against VERA gridded analysis. The skill increases with increasing box size. There is
increasingly less dependence of the score on the verification network for larger boxes.
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Figure 49: ROC area scores in DIST boxes of different size calculated using different reference
datasets, JDC (blue) and VERA(red).
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5.5 Conclusions

• For nearest grid point versus bilinear interpolation methods, the similar COSMO-LEPS
forecast skill is observed using either gridded analysis or sparse observations (VERA
or JDC) for verification network;

• for average precipitation in DIST boxes, there are similar scores for verification against
gridded analysis or sparse obs for larger and larger boxes;

• as long as we ”throw“ everything in a box and compare average values (similar re-
sults considering the max values), the verification network does not make too much
difference.

5.6 Future work

• To consider observation uncertainty: work with ensembles of VERA analysis and quan-
tify scores variability;

• to work on higher-resolution ensembles (COSMO-E reruns).
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Issues of the COSMO Technical Reports series are published by the COnsortium for Small-
scale MOdelling at non-regular intervals. COSMO is a European group for numerical weather
prediction with participating meteorological services from Germany (DWD, AWGeophys),
Greece (HNMS), Italy (USAM, ARPA-SIMC, ARPA Piemonte), Switzerland (MeteoSwiss),
Poland (IMGW), Romania (NMA) and Russia (RHM). The general goal is to develop, im-
prove and maintain a non-hydrostatic limited area modelling system to be used for both
operational and research applications by the members of COSMO. This system is initially
based on the COSMO-Model (previously known as LM) of DWD with its corresponding data
assimilation system.

The Technical Reports are intended

• for scientific contributions and a documentation of research activities,

• to present and discuss results obtained from the model system,

• to present and discuss verification results and interpretation methods,

• for a documentation of technical changes to the model system,

• to give an overview of new components of the model system.

The purpose of these reports is to communicate results, changes and progress related to the
LM model system relatively fast within the COSMO consortium, and also to inform other
NWP groups on our current research activities. In this way the discussion on a specific
topic can be stimulated at an early stage. In order to publish a report very soon after the
completion of the manuscript, we have decided to omit a thorough reviewing procedure and
only a rough check is done by the editors and a third reviewer. We apologize for typographical
and other errors or inconsistencies which may still be present.

At present, the Technical Reports are available for download from the COSMO web site
(www.cosmo-model.org). If required, the member meteorological centres can produce hard-
copies by their own for distribution within their service. All members of the consortium will
be informed about new issues by email.

For any comments and questions, please contact the editor:

Massimo Milelli
Massimo.Milelli@arpa.piemonte.it
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