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1 Introduction

Atmospheric processes such as the development of the boundary layer, low level cloudiness,
and the onset and intensity of convection are significantly influenced by the evolution of the
lower boundary conditions. Consequently, an accurate representation of exchange processes
between the soil and the atmosphere is essential to produce high quality NWP forecasts. At
the time of the definition of the project, many activities concerning the lower boundary of the
COSMO model had been undertaken, but most of these activities lacked some final efforts to
bring them into operations and to make them accessible to the whole COSMO community.
In 2008, the COSMO steering committee (STC) established a new Priority Project named
Consolidation of Lower Boundary Conditions (COLOBOC), to finalize these developments
and to incorporate them into well tested and documented software packages. The project
was structured in 8 tasks, namely:

• Facilitate the access and usage of soil and surface observations (task 0)

• Consolidate an externalized TERRA module (task 1)

• Consolidate the software used to generate the external parameters (task 2)

• Consolidate and extend the external parameters database (task 3)

• Find and validate an optimal configuration of TERRA with its associated external
parameters and look-up tables (task 4)

• Revise the snow model and the snow analysis (task 5)

• Deploy an urban module developed at EPFL/Switzerland (task 6)

• Consolidate the parameterization of land surface heterogeneity (task 7)

The project spanned the period 09.2008 to 09.2011; during these 3 years, about 8.5 FTE have
been invested, with resources coming from 6 different institutions. Many discussions with
colleagues of the CLM community took place during this project, resulting in the organization
of regular COSMO / CLM meeting around this topic. Although not all tasks were successful
(see chapter 3 for details), most of the developments done during this project have resulted
in follow-up activities in the COSMO working group dedicated to soil and surface activities
(see http://www.cosmo-model.org/content/tasks/workGroups/wg3b/default.htm).

2 State of the modelling system at the start of the project

The soil vegetation atmosphere transfer (SVAT) scheme TERRA and the associated external
parameters provide the terrestrial lower boundary conditions for the atmospheric component
of the COSMO model. TERRA is a multilayer model with a direct solution of the heat con-
duction equation and considers moisture transport due to hydraulic processes within the
soil and the effects of transpiration by plants. Phase change processes of soil water (freez-
ing/thawing of soil water/ice) are incorporated in the scheme both for their thermodynamic
effect and for their impact on the hydraulic properties of the soil. In addition, the COSMO
model employs a single layer snow module considering melting of a snow pack with prognos-
tic snow density and time dependent snow albedo. Many uncertainties in the description and
simulation of surface characteristics are partly caused by well-known problems. A critical
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issue is the limited knowledge of the physical properties of the surface in the form of the
so-called external parameters (e.g. soil type, root depth). These parameters play a vital role,
e.g. in the simulation of the hydrological state, but both the quality of the raw databases
and the methods used to derive the required model properties from these databases are not
optimal. Moreover, the increase in horizontal resolution of current NWP models implies
that some surface types previously neglected, such as lake and urban regions, are becoming
more important. The simulation of the evolution of the soil is also hampered by inadequate
knowledge of the initial state. Unrealistic drifts in soil moisture are ubiquitous in most NWP
models, due to both incorrect representation of soil processes and the accumulation of pre-
cipitation errors (Scipal and Drusch, 2007). As demonstrated for the global model GME,
an improvement may be achieved through a change in the root density distribution together
with the introduction of seasonal vegetation parameters (Ritter, 2007). Due to the non-linear
relations between surface parameters and fluxes, neglecting subgrid-scale land-surface het-
erogeneities by using average external parameters, may result in erroneous flux estimates.
Studies have shown that, even with a grid spacing of only a few kilometres, considerable
aggregation effects may indeed occur and must be corrected for. This can be tackled by
introducing one of the so-called tile or mosaic approaches: the surface within a coarse scale
atmospheric grid box is subdivided into patches with assumed homogeneous surface char-
acteristics, fluxes are computed for each patch separately and then averaged. The current
representation of the snow does not allow liquid water to stay within the snow pack, which
is a severe limitation in spring when the freezing of trapped water during the night slows
down the melting of the snow pack. Furthermore, many local effects such as snow transport
by wind and influence of slope orientation make a correct representation of the snow cover
particularly difficult.

3 Tasks and achievements

A summary of the different project tasks and of the achieved results are presented in this
chapter. More details on some of these developments can be found in the following chapters.

Task 0: Facilitate the access and usage of soil and surface observations.

Goals: convenient access to recent operational high quality observations, representative for
different climate and different type of soils.

Achievements: an action started in October 2009 with an official letter sent to a selection of
NMS directors. Soil and surface data from 9 European observatories is now available on-line,
in a common ASCII format (see http://www.cosmo-model.org/srnwp/content/default.htm).
Time series starts in 2006; recent data is added each year, with 6 months time lag. The
DWD has agreed to support this action in the future (C.Heret, F.Beyrich). This action is
also supported by the C-SRNWP Programme of EUMETNET.

Open issues: only 5 sites are regularly updated (Cabauw, Lindenberg, Payerne, SP Capofi-
ume, Sodankyla). Users community is small.

Task 1: Consolidate an externalized TERRA module.

TERRA standalone is the isolated terrestrial surface module of COSMO driven by external
atmospheric fields, taken either from observations or from model runs. This tool provides a
computationally efficient way to generate balanced soil conditions for the whole integration
domain by computing multi-years TERRA integrations; it is also a useful tool to experiment
with the soil model and the external parameters. It has been originally developed by F.
Ament.
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Goals: clean-up and consolidate the TERRA standalone code.

Achievements: a consolidated package, based on COSMO release 4.13, including documen-
tation, is available on the COSMO web site (see
http://www.cosmo-model.org/content/support/software/default.htm).

Open issues: the code is not compliant with the COSMO standard. The TERRA standalone
code is not integrated in the COSMO software, making the synchronization with the model
development difficult. No COSMO resource is available to further support this code, in
particular to coordinate multiple developments taking place in the CLM community (the
situation has changed at the time of writing of this report, IMS being interested taking over
this duty).

Task 2: Consolidate the software used to generate the external parameters for
the COSMO model.

Goals: the software infrastructure should be flexible and modular in order to support various
raw datasets and to allow for experimentation with new aggregation algorithms or different
look-up tables. It should be easily extensible to support future external parameters. It
should support the needs of COSMO, COSMO-CLM, ICON, and GME.

Achievements: a software, called EXTPAR, fulfilling the stated goals and well documented,
has been developed (see the Extpar user and implementation manual at http://www.cosmo-
model.org/content/model/modules). At the time of writing of this report, this software is
an official COSMO software, kept on a centralized repository at CSCS, with D. Lüthi as
source code administrator; EXTPAR can now be activated through a web interface hosted
on the CLM web site (http://www.clm-community.eu/index.php?menuid=221).

Open issues: none.

Task 3: Consolidate and extend the external parameters database.

Goals: a survey of external parameter fields and raw data sources used within the COSMO
and the COSMO-CLM community will be performed. Where appropriate, replace older
data sets by newer ones. Adapt work done for the GME. Consolidate external parameters
required for new extensions of TERRA.

Achievements: the databases used for the external parameters have been updated according
to the stated goals (see
http://www.cosmo-model.org/content/model/modules/externalParams/default.htm).

In particular, a total of 15 new external parameters have been added: (vegetation charac-
teristics) NDVI, NDVI MX, NDVI RATIO, RSMIN, (surface characteristics) EMISS RAD,
(deep soil) T2M CL, (topo corrected radiation) SLOPE ASP, SLOPE ANG, HORIZON,
SKYVIEW, (urban fraction) URBAN, (lake model) FR LAKE, DEPTH LK, (aerosols)
AER BC, AER DUST, AER SO4, AER SS.

Open issues: the need to update the external parameters will always be present, e.g. for
higher resolution applications or when new parameters are required for newly developed
model parameterizations.

Task 4: Find and validate an optimal configuration of TERRA with its associated
external parameters and look-up tables.

Goals: (1) gather and integrate tested developments of TERRA in official COSMO code,
(2) define a consolidated set of look-up tables, (3) find and validate an optimal reference
configuration of TERRA, using the external parameters and the consolidated look-up tables
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developed within task 3.

Achievements: many experiments have been done to evaluate the impact of improved pa-
rameterizations, new external parameters and updated look-up tables. A new unified consol-
idated configuration, based on COSMO release 4.11, used both for the global scale in GME
and for the regional scale in COSMO, has been defined. Experiments at MeteoSwiss and
at DWD with this consolidated configuration showed mixed, neutral impact on verification
scores; however, this consolidated configuration provides a physically sound basis for further
developments. More details are available in chapter 4 of this report.

Open issues: compensating errors in different parts of the model hinders the development of
TERRA.

Task 5: Revise the snow model and the snow analysis.

Goals: (1) Finalize and deploy a new multi-layer snow model supporting change of phases
within the snow pack, (2) combine and improve a snow analysis approach based on in-situ
observations and MSG derived snow mask.

Achievements: a detailed analysis of the performance of COSMO-RU has shown very large
T2m errors in spring, up to 12 deg, at the boundary of the snow pack; these errors could be
related to inadequate values of the snow water equivalent provided by the global snow analysis
cycle. Different approaches have been proposed by our Russian colleagues to circumvent this
issue (new parameterization of the snow density, observation driven 1D snow model). The
work on the snow model has resulted in a revised parameterization of the snow albedo (incl.
ageing), in a revised parameterization of the partial snow cover (height instead of snow water
equivalent based), and in an experimental implementation of the multi-layers snow model in
release 4.11 of COSMO (see chapter 5 for a description of this new snow model). The snow
analysis software used at DWD (sfcana) has been adapted to support the use of the MSG
derived snow mask.

Open issues: the multi-layers snow model has still some stability issues, in particular for
very shallow snow layers, and needs more testing (at the time of writing of this report, the
development of the multi-layers snow model has been transferred in ICON but is still not
finalized). More generally, snow analysis and modelling still requires more work, in particular
in complex terrain, during the snow melting period, or when going to finer resolution.

Task 6: Deploy an urban module developed at EPFL/Switzerland.

Goals: Consolidate and transfer an urban model developed at EPFL/Switzerland, based on
the Buildings Effects Parametrization (BEP), into the latest COSMO release.

Achievements: an implementation of BEP, including some documentation, is available in
a COSMO private release at MeteoSwiss (based on COSMO release 4.7). The description
of the BEP implementation in COSMO, and of its impact, is available in chapter 6 of this
report.

Open issues: no code responsible has been found. Furthermore, due to the complexity of
this urban model, possibly not suited for general NWP applications, the decision to take it
in the official COSMO release is pending (at the time of writing of this report, the choice of
a simpler urban parameterization for the official COSMO release has been made).

Task 7: Consolidate the parameterization of land surface heterogeneity.

Goals: Finalize and deploy an implementation of the tile/mosaic approach, using the devel-
opments of Ament, 2006, implemented in a COSMO private release at MeteoSwiss.
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Achievements: these developments have been consolidated and transferred in COSMO re-
lease 4.16. Dynamic snow tile has been introduced. Sensitivity studies have been performed,
without conclusive results about the impact of this parameterization.

Open issues: code implementation is still experimental and has not been validated by
COSMO Source Code Administrator (at the time of writing of this report, the COLOBOC
implementation has been discarded and a new tile parameterization has been fully re-
implemented in the ICON model).
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4 Experiments towards an unified soil-vegetation atmosphere
transfer scheme TERRA for global and limited-area numer-
ical weather prediction (J. Helmert, G. Vogel, H. Asensio,

J. M. Bettems, M. Lange, F. Brenner, B. Ritter)

4.1 Introduction

One of the critical issues in the description and simulation of surface characteristics in at-
mospheric models is due to physical surface properties in the form of the so-called external
parameters (e.g. soil type, vegetation state, root depth, plant physiological parameters).
These parameters play a crucial role, e.g. in the simulation of the hydrological state, but
both, the variable quality of the raw databases and the used methods to retrieve the required
model properties from these databases contribute to uncertainties in NWP model forecasts.

Together with the external parameters the soil vegetation atmosphere transfer (SVAT)
scheme TERRA provides the terrestrial lower boundary conditions for the atmospheric com-
ponent of the global GME model and the limited-area COSMO model. Driven by radiation
fluxes, the evolution of the lower boundary conditions influence the exchange of heat, mois-
ture, and momentum between the surface and the atmosphere and has a large impact on the
simulation of screen level variables and atmospheric processes, such as the development of
the boundary layer, low level cloudiness, and the onset and intensity of convection.

The SVAT model TERRA is a multilayer model with a direct solution of the heat conduction
equation and considers moisture transport due to hydraulic processes within the soil and the
effects of transpiration by plants. Phase change processes of soil water (freezing/thawing
of soil water/ice) are incorporated in the scheme both for their thermodynamic effect and
for their impact on the hydraulic properties of the soil. A snow module (single or multi-
layer) is employed considering melting of a snow pack with prognostic snow density and
time dependent snow albedo. However, there is a need to employ also a canopy layer for
vegetation in TERRA to improve the surface energy budget in COSMO.

Although the global GME and the limited-are COSMOmodel share the SVATmodel TERRA
in large parts it is reasonable to test new developments first on the global scale. Therefore
a number of changes in external parameters and modifications of TERRA are used in op-
erational GME, that are still experimental in COSMO. To fill this gap in the SVAT model
between GME and COSMO a unified configuration for TERRA that further improves the
lower boundary condition of NWP models at global and regional scale is proposed. For
soil moisture analysis (SMA), employed to minimize the difference between diagnosed 2m-
temperature and observations this unification between COSMO and GME is now achieved
(Lange, 2011).

The report starts with the operational and experimental configuration of GME and COSMO-
EU, both models with SMA, then show a case study at 10th April 2011 to illustrate the
sensitivity of the results on the applied configuration. Long-term simulations of GME and
COSMO-EU are evaluated from soil-moisture analyis monitoring and objective verification
followed by a summary and an outlook. The appendix contains figures that refers to changes
in external parameters.
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Figure 1: Meteosat VIS image of Europe on 10th April 2011 12 UTC

4.2 Model configuration

The differences in model configuration with impact on the energy budget at surface between
GME and COSMO include the aerosol distribution, surface emissivity, vegetation albedo,
vegetation climatology, root density profile, and minimum stomatal resistance (Tab. 1).

The radiation budget at Earth surface forces the energy fluxes into the atmosphere and
to the ground. The magnitude of these fluxes depends on the amount of incoming global
radiation, which is altered primarily by clouds and aerosols. While the global model GME
uses a aerosol climatology from Tegen et al. (1997), the COSMO model employs a constant
distribution of aerosols according to Tanre et al. (1984) with a known overestimation of
desert dust aerosol in Europe (e.g. Hohenegger et al., 2005). In order to obtain a similar
surface radiation budget in COSMO in comparison with GME, the aerosol climatology from
Tegen et al. (1997) was applied in the COSMO experiment that used similar to the GME
the land-use dependent surface emissivity.

In addition to the incoming radiation, the surface radiation budget of vegetation covered
areas depends also on the vegetation albedo. The approach of a constant vegetation albedo
of 15 % is enhanced in the numerical experiments of GME and COSMO, following e.g.
Moody et al. (2008) by taking into account the land-use by distinction of evergreen (10 %),
deciduous (15 %) , and non-forest (20 %). Given the radiation budget at surface, the partition
of energy fluxes is influenced by the evapotranspiration depending on plant physiological
parameters. The prescribed annual cycle of vegetation parameters (e.g leaf-area index (LAI)
and vegetation fraction) in the outer-tropics depending on latitude and height (Doms et al.,
2005) was modified in the GME and the COSMO experiments by employing an annual cycle
from the climatology (1998-2003) of the normalized differential vegetation index (NDVI).

The partition of energy fluxes at the surface depends also on a large extent on the soil
moisture (Balsamo et al., 2009), that has therefore a large impact on the Bowen ratio.
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GME COSMO-EU GME EXP COSMO-EU EXP

Model status operational operational 109/1009 8474
Aerosol distribution climatology fixed climatology climatology
Emissivity land-use const land-use land-use
Vegetation albedo const const land-use land-use
Vegetation climatology NDVI analytical NDVI NDVI
Root density profile exponential uniform exponential exponential
Min. stomatal resistance GLC2000 const ECOCLIMAP ECOCLIMAP

Table 1: Configuration of GME and COSMO routine and numerical experiments.

However, the simulation of the evolution of the soil is hampered by inadequate knowledge
of the initial state. Unrealistic drifts in soil moisture are ubiquitous in most NWP models,
due to both incorrect representation of soil processes and the accumulation of precipitation
errors (Scipal and Drusch, 2008). As already demonstrated for the global model GME, an
improvement may be achieved through the introduction of the NDVI-based annual cycle
of vegetation together with a change in the root density distribution (Ritter, 2007). The
exponential root density profile used in GME was employed also in the COSMO model and
applied in the limited-area experiments.

The maximum possible evapotranspiration of plants is connected with a minimum stomatal
resistance rmin. The constant value of this parameter of 150 sm−1 in the COSMO model
was replaced by a land-use dependent formulation from GME. However it was found in
GME that large uncertainties in the value of rmin for individual land-use classes exist that
leads to a domain averaged overestimation of rmin. In connection with the soil-moisture
analysis (SMA) that was adapted from COSMO to the GME to minimize the difference
between diagnosed 2m-temperature and observations (Lange, 2011), an overestimation of
rmin results in an accumulation of soil moisture. To further improve the SMA in GME and
COSMO the relationship between land-use classes and rmin was adapted from ECOCLIMAP
Masson et al. (2003) and applied in numerical experiments of GME and COSMO. From the
observed reduction of domain averaged rmin, a more realistic annual cycle of soil moisture
with reduced SMA increments was expected.

4.3 Numerical experiments - Case study 10th April 2011

The soil-moisture analysis was introduced in the operational GME at 9th March 2011 for
the 00 UTC analysis. The accompanying numerical GME experiment (experiment code
109/1009) was initialized at 12th March 2011 00 UTC, which applies the land-use based
vegetation albedo and minimal stomatal resistance from land-use classes of ECOCLIMAP.
In order to allow for a spin-up of the GME experiment the numerical COSMO experiment
(experiment code 8474) was initialized at 1st April 2011 00 UTC. This spin-up is considered
as sufficient for atmospheric processes and processes of the upper soil. It used the boundary
conditions from 109/1009 and shares the configuration of the external parameters and the
SVAT scheme with the global model experiment.

As a case study the sensitivity of the COSMO-EU 36 hour forecast on the used configuration
was investigated for a clear-sky situation in central Europe on the 10th April 2011 12 UTC.
Figure 1 shows the visible satellite image on this date with a large cloud-free area in central
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Europe.

As shown in Tab. 1, the GME experiment 109/1009 uses the same configuration setup as
the COSMO experiment 8474. Therefore, the following figures show the absolute values for
the GME experiment and the difference between operational COSMO-EU and the COSMO
experiment 8474 assuming a much smaller difference between GME experiment 109/1009 and
the COSMO experiment 8474. The 36 hour forecast of the averaged net radiation budget at
surface from the GME experiment (Fig. 2 top) shows small values in North-Scandinavia due
to the snow pack with high albedo compared to the snow free regions in central Europe. The
difference of the averaged net radiation budget at surface between operational COSMO-EU
and COSMO-EU experiment 8474 reveals the changes in aerosol optical depth, vegetation
albedo, and surface emissivity. The dominant effect of the reduced desert dust aerosol optical
depth leads to the expected increase of the averaged net radiation budget at surface in the
domain mean.

The surface albedo (Fig. 14 top) is dominated by snow in northern Europe and the mountains
but the difference in the snow free regions refers to the changes in annual cycle of vegetation
and formulation of the vegetation albedo (Fig. 14, bottom). The modified albedo of evergreen
forest (set to 10 % in the experiment) is visible for the low-mountain range of central Europe.
An additional contribution to the difference in vegetation albedo comes from the vegetation
coverage (Fig. 15, top). Replacing the analytical function by a NDVI-based climatology leads
to a significant higher vegetation coverage in south-west and central Europe and a decrease
north-east after the first third of April (Fig. 15, bottom) .

As expected this is also the case for the leaf ara index LAI (Fig. 16). The GME experiment
(Fig. 16, top) refers the LAI to the NDVI climatology and shows therefore realistic maximum
values in south-western Europe. The comparison to the operational COSMO-EU (Fig. 16,
bottom) shows that the difference to the empirical relationship in this region is increased.

For the plant evapotranspiration, in addition to the LAI, the minimum stomatal resistance
rmin is one important vegetation parameter (Fig. 17, top) . The impact of the relationship
of the land-use classes to rmin based on ECOCLIMAP is large, exceeding 30 sm−1 in domain
average (Fig. 17, bottom). Only for the low-mountain range and Scandinavia the difference
is below 15 sm−1.

In the average over the forecast time, a sensitivity of the heat fluxes on the differences in
external parameters and SVAT model is expected. Figure 3 (top) shows the averaged sensible
heat flux (positive downward) those difference for COSMO is a result of changes in surface
radiation budget (Fig. 2) and differences in partition of energy at the surface. Positive values
of the sensible heat flux averaged over forecast time reveals the cooling over the snow (Fig.
3, top) but the mean value over the domain increased by about 8 Wm−2 for the COSMO-EU
experiment that is larger than the increase in averaged latent heat flux (Fig. 4) of below
4 Wm−2. However, even regions in western and central Europe and northern Africa with
different vegetation properties (higher vegetation coverage, LAI, smaller minimum stomatal
resistance, different root density profile) in the COSMO-EU experiment compared to the
operational COSMO-EU exceeds this value clearly. Considering the change in the Bowen
ratio based on sensible and latent heat flux averaged over the forecast time, Fig. 5 supports
this result since regions in western Europe with positive Bowen ratio below one, i.e. less
sensitive heat flux than latent heat flux with same sign, show a positive difference to the
operational COSMO-EU. It could be expected that the increased latent heat flux in the
COSMO-EU experiment is correlated with a decrease in soil moisture and Fig. 6 confirms
this assumption. Due to the exponential root density profile in the experiment the impact
of the upper soil levels on the evapotranspiration is increased that leads to 10 % dryer upper
soil in parts of western Europe and northern Africa (Fig. 6, top). Here, the correlation of
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this pattern to the changes in vegetation parameters is obvious. The modified root water
uptake leads as expected to a soil moisture increase in the soil layers 54 cm and 162 cm
(Fig. 6, center). However due to the large time scales in the deeper soil after 10 days of the
numerical experiment the change in this case study is just small and below 5 %. This is also
the case for considering all six hydraulic active layers in TERRA (Fig. 6, bottom), where
the soil moisture increase for the experiment in domain average is 0.15 %.

Although feedback effects of changes in the SVAT scheme on precipitation could be assumed,
their identification within one case study is difficult. This is confirmed by considering the
accumulated precipitation fractions over 36 hours forecast time (Fig. 7). In this situation
the increase in domain average is 0.05 kgm−2 for grid-scale and for convective precipitation
with a small increase of the convective fraction on total precipitation in the COSMO-EU
experiment.
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Figure 2: Averaged fluxes of solar and thermal radiation at surface (W/m−2) at 10th April
2011 12 UTC for 36 hours forecast of the GME experiment 109/1009 (top) and difference
between COSMO-EU routine and experiment 8474 (bottom)
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Figure 3: Flux of sensible heat (Wm−2) averaged over 36 hours forecast time at 10th April
2011 12 UTC of the GME experiment 109/1009 (top) and difference between COSMO-EU
routine and experiment 8474 (bottom).
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Figure 4: Flux of latent heat (Wm−2) averaged over 36 hours forecast time at 10th April
2011 12 UTC of the GME experiment 109/1009 (top) and difference between COSMO-EU
routine and experiment 8474 (bottom).
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Figure 5: Bowen ratio based on flux of sensible and latent heat averaged over 36 hours forecast
time at 10th April 2011 12 UTC of the GME experiment 109/1009 (top) and difference
between COSMO-EU routine and experiment 8474 (bottom).
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Figure 6: Difference between COSMO-EU routine and experiment 8474 for soil moisture
including upper soil levels 1,2,6,18 cm (a), deeper soil levels 54 cm and 162 cm (b), and
soil levels 1,2,6,18,54, and 162 cm (c). Shown is the deviation (%) in comparison to the
COSMO-EU routine.



COSMO Technical Report No. 27 19

Figure 7: Difference between COSMO-EU routine and experiment 8474 for accumulated
precipitation (kgm−2) of grid-scale component (top), convective component (center), and
fraction of convective component on total precipitation (grid-scale + convective) (bottom).
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Figure 8: Comparison of 2m-temperature observations at 2011041012 and 36 hours forecast
from 2011040900 of COSMO-EU routine (a) and experiment 8474 (b).

To exclude the impact of different cloud conditions in observation and model simulation,
the clear sky region in central Europe was used for a validation of the COSMO-EU results
with measurements at SYNOP stations. Figure 8 (top) shows that the difference in 2 m-
temperature between operational COSMO and COSMO experiment is small, below 0.2 K in
the area mean, but some measurements in northern Italy and France are in better agreement
with the experiment. The statistical analysis (Fig. 8, bottom) confirms that considering 1817
observations the cold bias of 2 m-temperature of 0.68 K in the operational COSMO decreased
in the experiment by 0.17 K that is mainly due to a better representation of 2 m-temperatures
above 290 K in the experiment. This behaviour can be related to the impact of the aerosol
climatology from Tegen et al. (1997).

Due to the changes in external parameters and in the SVAT scheme a feedback on the 2 m-dew
point temperature can be assumed. Figure 9 (top) reveals that in area mean the difference
in 2 m-dew point temperature of more than 0.4 K between operational COSMO-EU and
experiment exceeds the difference in 2 m-temperature and by eye a better agreement with
observations in the western region of the selected area can be found. For the 1869 observa-
tions the operational COSMO model bias of 2 m-dew point temperature was decreased from
3.10 K by 0.86 K in the experiment. The comparison of the model field with observations
(Fig. 9, bottom) shows that a better capture of 2 m-dew point temperature in the range of
270 K to 280 K in the experiment is responsible for this improvement.
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Figure 9: Comparison of 2m-dew point temperature observations at 2011041012 and 36 hours
forecast from 2011040900 of COSMO-EU routine (a) and experiment 8474 (b).

4.4 Long-term results

A long-term comparison of the behavior of TERRA in the operational setup and with the new
configuration in the soil-moisture analysis environment is available for the global model GME.
Based on 24 hours forecasts Fig. 10 shows that the 2 m-temperature bias of GME in Europe
(operational and experiment) changes its sign during April to the warm side for summer.
Whereas the GME experiment 109/1009 shows similar RMSE values of 2 m-temperature
as the operational simulations, the temperature bias in summer, when evapotranspiration
of plants is most active in Europe is significantly reduced. Since the SMA diminishes their
activity for the experiment by reduced soil water increments in top and bottom SMA layers it
could be assumed that this is due to a more realistic behavior of TERRA in the experimental
configuration. This assumption is further supported by the comparison of the soil moisture
evolution in operational GME and experiment. The unrealistic nearly constant soil moisture
in bottom SMA layer is improved by the experiment, which shows a decrease of soil moisture
during summer that is confirmed by observations.

For the COSMO simulations an objective verification of the forecasts up to 72 hours against
SYNOP stations in the COSMO-EU domain between 1st April 2011 and 30th June 2011
(Fig. 11 and 12) shows as expected largest changes in model bias of 2 m-temperature (TT)
and 2 m-dew point temperature difference (TD) and surface pressure (P). However, ver-
ification shows a mixed picture. The bias and RMSE of 2 m-temperature and 2 m-dew
point temperature difference increased but for surface pressure and 2-m minimum temper-
ature (Tmin) an improvement was observed. In the global skill the experimental setup of
COSMO-EU increased by 0.55 % compared to the operational setup.
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Figure 10: Comparison of operational GME (blue) and GME experiment 109/1009 (red) from
soil-moisture analysis monitoring for Europe between 12th March 2011 and 1st July 2011.
Shown are RMSE and bias of 2 m temperature (top), soil moisture analysis increments in top
and bottom layers (center), and soil moisture evolution for top and bottom layers (bottom).
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Figure 11: Objective verification up to 72 hours forecast between 1st April 2011 00 UTC
and 30th June 2011 00 UTC in the model domain of operational COSMO-EU (blue) and
numerical experiment 8474 (red). The verification is based on 00 UTC forecasts and considers
FBI of cloud coverage (top row), bias of 2 m-temperature, 2 m-dew point temperature,
minimum and maximum temperature (second row), surface pressure, wind direction, wind
speed, and vector wind (center row), FBI for wind gusts of different threshold (fourth row),
FBI for precipitation of different threshold (bottom row).
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Figure 12: Objective verification up to 72 hours forecast between 1st April 2011 00 UTC
and 30th June 2011 00 UTC in the model domain of operational COSMO-EU (blue) and
numerical experiment 8474 (red). The verification is based on 00 UTC forecasts and considers
PEC of cloud coverage (top row), RMSE of 2 m-temperature, 2 m-dew point temperature,
minimum and maximum temperature (second row), surface pressure, wind direction, wind
speed, and vector wind (center row), ETS for wind gusts of different threshold (fourth row),
ETS for precipitation of different threshold (bottom row).
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Figure 13: Comparison of the daily averaged solar incoming radiation at surface from the
satellite retrieval of CMSAF with GME (left) and COSMO-EU (right) for the 1st June 2013.

4.5 Conclusions

The long-term objective verification over 3 months indicates that considering the global
skill the experimental setup improves the operational COSMO-EU in various parameters.
However, the question of the increased 2 m-temperature bias and RMSE of the experiment
compared to the operational setup remains.

A recent comparison of the satellite retrieval of daily averaged short-wave incoming radiation
at surface with COSMO-EU (Fig. 13, right) showed for the operational setup the expected
underestimation of incoming solar radiation for cloud-free conditions, i.e. high values of solar
radiation, and confirms the conclusions from results of the case study for the 10th April
2011 (Fig. 2, bottom). The comparison with GME supports the application of the aerosol
climatology since GME’s incoming surface fits better to the satellite retrieval in cloud-free
conditions. However an overestimation of solar radiation by COSMO-EU occurs in the
intermediate range of incoming solar radiation, corresponding to cloudy conditions. The
application of the aerosol climatology with decreased aerosol optical depth in that radiation
regime is counterproductive, since it enforces the solar radiation at surface and results in
increased 2 m-temperature bias in the experimental setup. Therefore, further investigations
are needed to improve the model solar radiation at surface in cloudy conditions.

4.6 Summary and Outlook

This study investigated current uncertainties in the description and simulation of surface
characteristics that exist for global and limited area models. The critical issue of the limited
knowledge of the external parameters and differences in the soil-vegetation atmosphere trans-
fer model TERRA was considered in numerical experiments with GME and COSMO-EU.
These experiments at global and regional scale employed a unified configuration of TERRA.
A case study of 36 hours forecasts at 10th April 2011, 12 UTC was used to show the in-
terrelationship between external parameters (e.g. vegetation, aerosol optical depth), surface



COSMO Technical Report No. 27 26

radiation budget, fluxes of sensible and latent heat, soil moisture, and screen level (dew
point) temperature. For clear-sky conditions it was shown that COSMO-EU with the new
configuration improves the agreement with SYNOP measurements compared to the opera-
tional setup. Based on 24 hours forecasts of soil-moisture analysis monitoring in Europe a
long-term comparison of the behavior of TERRA in spring and summer with the new con-
figuration was performed for the global model GME. It was shown that in connection with a
decreased warm 2 m-temperature bias in summer, the SMA diminishes their activity for the
experiment by reducing the soil water increments in top and bottom SMA layers, while the
soil moisture shows the expected decrease in summer. This improvement on the global scale
was traced back to a more realistic behavior of TERRA in the experimental configuration
and it is expected that this remains valid in the COSMO-EU. The long-term verification of
the COSMO experiment showed an improved global skill compared to the operational setup
but further progress is expected after improvement of the surface solar radiation forcing in
COSMO for cloudy conditions.
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4.7 Appendix

Figure 14: Surface albedo (%) at 10th April 2011 12 UTC for 36 hours forecast of the GME
experiment 109/1009 (top) and difference between COSMO-EU routine and experiment 8474
(bottom).
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Figure 15: Vegetation coverage (%) at 9th April 2011 00 UTC of the GME experiment
109/1009 (top) and difference between COSMO-EU routine and experiment 8474 (bottom).
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Figure 16: Leaf area index at 9th April 2011 00 UTC of the GME experiment 109/1009
(top) and difference between COSMO-EU routine and experiment 8474 (bottom).
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Figure 17: Minimum stomatal resistance (sm−1) of the GME experiment 109/1009 (top)
and difference at 9th April 2011 00 UTC between COSMO-EU routine and experiment 8474
(bottom).
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5 Documentation of a new multi-layers snow module (E. Machul-

skaya)

The snow model that is presented here is a one-dimensional parameterization scheme for the
heat and moisture transfer through the snowpack. Two main features of the scheme distin-
guish it from the snow parameterization scheme that is currently operational in COSMO.
First, it allows the water to be in the liquid state within snowpack. Second, the new scheme
is multi-layered, i.e. the vertical profiles of temperature, total and liquid water content, and
density are explicitly resolved.

The heat and moisture transport through the snowpack is governed by the following set of
equations

ρsnCsn
∂Tsn
∂t

=
∂

∂z
λsn

∂Tsn
∂z

+ Lf (F −M)− ∂R

∂z
∂Wliq

∂t
= M − F − ∂q

∂z
∂Wtot

∂t
= −∂q

∂z
∂ρsn
∂t

=
ρsn
Wtot

(

−∂q
∂z

(

1− ρsn
ρw

)

+ ρsn
ρw − ρi
ρwρi

(M − F )

)

+ σ(t), (1)

where Tsn is snow temperature, Wliq is specific liquid water content, Wtot is specific total
water (liquid + solid) content, Csn is specific heat capacity of snow, ρsn, ρw and ρi are
densities of snow, water and ice, respectively, λsn is snow heat conductivity, Lf is latent heat
of freezing, M and F are melting and refreezing rates, respectively, q is the liquid water flux,
R is radiative heat flux, and σ(t) characterizes the impact of gravitational compaction and
metamorphism on snow density.

The first equation is an expression for the energy conservation law. As can be seen, snow
temperature changes may be caused by the heat diffusion, latent heat release due to water
phase changes (melting of solid part and refreezing of liquid part), and solar radiative heating
that can occur not only at the upper snow surface, but also below it. The second equation
is the expession for the liquid water balance; the liquid water content may change because
of phase changes and percolation of water. The third equation is the total snow water-
equivalent balance equation. The fourth equation describes the changes in the snow density.
The first and the second terms on the right-hand side of this equation describe the change
in snow density due to the changes of the ratio of the solid part (of the ice density) to the
liquid part (of the water density). It may occur either because some amount of water is
percolated from above (the first term) or because of phase changes (second term). The third
term describes the densification of the snowpack due to the weight of the overlying layers
and due to internal metamorphism.

Snow heat capacity Csn is computed as

Csn =WliqρwCw + (Wtot −Wliq)ρdryCi,

accounting for liquid water content. Here, ρdry is the density of the solid part of a snow layer
and it is equal to

ρdry =
Wtot −Wliq
ρw
ρsn
Wtot −Wliq

ρw.



COSMO Technical Report No. 27 32

Snow heat conductivity λsn depends on snow density and varies therefore with height and
time. It is calculated by means of an empirical formula

λsn = 2.22

(

ρsn
ρi

)1.88

.

The liquid water flux q consists of precipitation flux at the upper boundary of snow which is
provided by the host atmospheric model as an upper boundary condition, and of the flux due
to the internal percolation of liquid water within the snowpack. Percolation flux is calculated
according to (Colbeck, 1978) as

q = ρwhmax

(

(

Wliq/ρw −Whc

Π−Whc

)3

, 0.0

)

,

where Whc = 0.04 m3/m3 is the volumetric water holding capacity of snow, h = 0.01 m/s is
snow hydraulic conductivity by maximal liquid water content Whc, and

Π = 1− Wliq

ρw
− Wtot −Wliq

ρi

is the snow porosity. The percolation flux through the lower boundary of the snowpack is
regarded as net snow melting rate and it is used as the upper boundary condition for soil
moisture by the soil model.

Radiative heat flux is calculated according to exponential extinction law

R(z) = R0e
−βz,

where R0 is the net solar radiation flux at the snow-air interface and β is the extinction coef-
ficient. The latter is assumed to be dependent on snow density. A simple linear dependence
was constructed based on the data reported in literature

β = b1ρsn + b2,

where b1 = 0.13 and b2 = 3.4, so that β = 10 m−1 if snow density is 50 kg/m3 and β = 70
m−1 if snow density is 500 kg/m3 (fresh snow is more penetrable to sunlight).

Gravitational compaction and compaction due to metamorphism are described by means of
the following semi-empirical law:

σ(z, t) =
ρsn(z, t)

η(z, t)
(σg(z, t) + σm(z, t)) .

Here, σg describes the effect of gravity and it is equal to the total weight of the overlying
layers

σg(z, t) =

z
∫

0

ρsn(z
′)gdz′.

The term σm describes the compaction due to metamorphism. It is set to a constant value
σm(z, t) = 75 Pa.

The factor η(z, t) is the compactive viscosity of snow that characterizes the proneness of the
snowpack to the deformations due to both abovementioned processes. It is equal to

η(z, t) = A1 exp

(

A2

ρsn(z, t)

ρi
− aWliq(z, t) +

E

RTsn(z, t)

)

,
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where A1 = 6.6 · 10−7 Pa · s, A2 = 19.3, a = 70.0, E = 67300 J/mol is the activation energy
and R = 8.31 J/(mol K) is the universal gas constant. As can be seen, three characteristics
of the snowpack determine its ability to densify: the snow density, liquid water content and
snow temperature. The incompacter, warmer, and moister the snowpack is, the easier it
shrinks.

Boundary conditions. Since the equation for temperature is of the second order and all
other equations of the first order, the first equation requires two boundary conditions, and all
other one boundary condition. The upper boundary condition for the temperature transport
equation is the heat flux at the snow-air interface, as in the single-layer snow model. The
total heat flux is the sum of net solar and infrared radiation, sensible and latent heat fluxes,
heat conduction flux into snowpack and the flux of heat which is released by the freezing
rain that falls onto the snow surface. Note that the latter flux is not present in the total
heat balance in the single-layer snow model.

The upper boundary condition for the total water content also appears in the flux form. It
is the precipitation flux, either in the form of snow or in the form of rain. The latter serves
also as the upper boundary condition for the equation for liquid water content.

The lower boundary condition for temperature is the conductive heat flux through the soil-
snow interface.

The density of the upper surface of the snowpack is determined by the falling snow density.
This fresh snow density is calculated as in the single-layer snow model, namely

ρfr = ρfrmin + (ρfrmax − ρfrmin)
Tair − Tmin
T0 − Tmin

,

where ρfrmin = 50 kg/m3, ρfrmax = 150 kg/m3, Tmin = 258.15 K = 273.15 - 15.0 K, T0 =
273.15K. It is an increasing function of temperature that emulates heavy ”moist snow” if
the air temperature is close to the melting point.

Numerical implementation. Time discretization. The equation system (1) is solved
by means of splitting up method. At the first half time step the heat diffusion is calculated
(implicitly), at the second half time step the adjustment is made due to the presence of
sources and sinks (explicitly).

The adjustment of the snow temperature and total and liquid water content profiles due to
phase changes is made in the one-iteration way. Specifically, if after the temperature diffusion
half-step snow temperature T ∗

sn becomes greater than the melting point T0 = 273.15K,
melting is detected (M > 0). In this case, if the heat storage excess that should be spent on
melting E = CiWtot(T

∗

sn−T0)ρw is enough to melt the entire solid part of the layerWtot−Wliq

(i.e. E ≥ Lfρw(Wtot−Wliq)), then the melting rate is M = (Wtot−Wliq)/dt, the whole layer
becomes liquid (Wliq =Wtot), and the rest of energy is transferred into the underlying layer.
Otherwise, if the heat stored in the layer is not enough to melt the entire solid part of the
layer, it is spent to melt a part of it, the melting rate is then M = CiWtot(T

∗

sn − T0)/(Lfdt)
and liquid water content increases by Wliq =Wliq +CiWtot(T

∗

sn−T0)/Lf . In both cases, the
temperature of the layer is set to T newsn = T0.

Refreezing rate F is calculated in a similar way. F > 0 if the temperature of a layer
T ∗

sn after the diffusion half-step becomes less than the melting point T0 but some amount
of liquid water is present. In this case, if T ∗

sn is low enough that the whole amount of
liquid water can refreeze (i.e. E = CiWtot(T0 − T ∗

sn)ρw ≥ LρwWliq), then the new liquid
water content is W new

liq = 0 and temperature of the layer increases by latent heat release as
T newsn = T ∗

sn+WliqLf/(WtotCi). Otherwise, if not all the liquid water can freeze, then a part
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of it freezes, namely, Wliq becomes W new
liq = Wliq − CiWtot(T0 − T ∗

sn)/Lf and temperature
T newsn is set to T0.

Space discretization. The vertical grid consists of a constant number of layers that is
fixed by user with setting the name-list variable ke snow. At each time step the thickness of
a layer can change:

1) due to changes in snow density of the layer whereas the total mass of the layer conserves
but phase changes occur;

2) due to mass flux as some amount of water percolates from the overlying layer and/or into
the underlying layer;

3) the thickness of the uppermost layer can increase if fresh snow has fallen.

Due to these processes the vertical grid becomes irregular even if it is regular at the initial
time step. Thus, at the end of the time step a regularization is performed in order to return
the grid to the regular one. This procedure sets new equidistant heights of layers and linearly
interpolates snow temperature, density, total water and liquid water content values from the
old grid to the new one.

To switch between the single-layer and multi-layer snow model the name-list logical variable
lmulti snow is used.
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6 Implementation of the Martilli Urban Surface Parametriza-
tion in COSMO (O. Fuhrer, C. Muller, G. Fontannaz)

6.1 Introduction

Meteorological information has become more and more important in our society, as many
activities and life being are largely influenced by the weather. For example, air and maritime
transport security, air quality control, global change study, natural disaster forecast, water
resources management or simply freetime activities require meteorological forecast and/or
analysis. Our capacity to forecast the weather has hence became a great issue. Today half
of the worlds’ population lives in urban areas, where a wide variety of human activities
takes place. Meteorological forecast needs are very important for urban area even if it
represents only 0.05 % of the Earth’s surface. In order to answer at best to these needs, the
numerical forecast models are used. The quality of the information delivered by such models
are strongly dependent on their resolution. During the last decade, computers performances
have strongly increased, making it possible to constantly improve the model resolution. Being
able to take into account finer scale and hence smaller geomorphological features, we could
expect an improvement of the model results accuracy. However, results are only improved
when different parametrizations, which take into account subgrid effects and the Earth’s
surface representation (landuse), are regularly updated to fit with the increasing resolution.

Concerning the Earth’s surface fluxes exchanged with the atmosphere, increase of the model
resolution have led to the adaptation of surface exchange parametrizations to take into
account urbanized areas reproduced in mesoscale models by high resolution landuse database.
Different solutions are available in order to parametrize the urban area in weather forecast
models. The most common is based on the Monin-Obukhov Similarity Theory (MOST),
which assumes that a stable surface layer develops above the ground and where turbulence
is constant in time and space. A more sophisticated solution is to use Urban Canopy Models
(UCM), where the surface fluxes are solved by taking into account buildings, different surfaces
of city (roof, road and wall) and their interactions with the atmosphere (Martilli et al., 2002;
Masson, 2000). In this study, we investigate the capacity of two parametrization (a MOST
based scheme and an UCM) to reproduce the urban area effects in a Numerical Weather
Prediction (NWP) model. We focus on the Urban Heat Island (UHI) which is a typically
phenomenon for urban areas and relatively easy to measure and quantify. For this purpose,
the model of the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) is used.
This mesoscale model called Local Model (LM) uses a traditional urban area parametrization
(dry soil and adapted surface roughness) based on MOST. It is used for operational numerical
weather prediction since 2001 with a horizontal resolution of 7 km on a domain covering most
of western Europe.

In order to see if LM is able to reproduce the urban effect, it is applied to the City of Basel,
a mid-size city situated in Switzerland, where an extensive meteorological measurement
campaign has been conducted in the city of Basel under the BUBBLE project (Basel UrBan
Boundary Layer Experiment) (Rotach et al., 2005) from summer 2001 to summer 2002. This
experiment investigates in detail the boundary layer structure over a city. Different modeling
studies have been conducted in relation with this experiment (Roulet, 2004; Hamdi, 2005),
but none of them with an operational model able to take into account numerous phenomenon,
i.e. clouds, rain, snow, etc. In this report, the ability of LM to reproduce urban effects, and
more particularly the UHI, is evaluated using BUBBLE measurement data as reference, first
with the operational configuration of the model, and then with a finer horizontal and vertical
resolution. In a second step, we focus on an urban canopy model developed by Martilli et
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Figure 18: Map of the greater area of the city of Basel with an overview of all sites operated
during the BUBBLE IOP in June/July 2002. The thick black line denotes the river Rhine.
A complete list of the measuring stations can be found in Appendix 6.9.1

al. (2002). This Urban Effects Parametrization (BEP) is presented and implemented into
LM. This implementation and its ability to reproduce the urban effects in LM for the case
of Basel city are then evaluated and discussed.

6.2 Bubble

6.2.1 The Experiment

The City of Basel is located in the North-Western part of Switzerland and borders both
France and Germany. It is the Switzerland’s third most populous city with 190,000 inhab-
itants. It is situated on the Rhine river, at an altitude of about 260 m and surrounded by
gentle but non-negligible topography (750m).

The Basel UrBan Boundary Layer Experiment (BUBBLE) took place from August 2001 to
July 2002. Its main goal is to study boundary-layer and surface-exchange processes over
different types of surfaces (i.e. urban, sub-urban and rural) and their role in the transport
and diffusion of air pollution. A more complete description of BUBBLE can be found in
Rotach et al. (2005) and on the BUBBLE website. For that purpose, two meteorological
towers for turbulence measurements, a Lidar and wind profiler were operated. An Intensive
Observation Period (IOP) took place from 15 June and 12 July 2002, with additional surface
towers, sodars and tethered balloons (Fig. 18).

6.2.2 Measurements of the UHI

In contrast to rural area, a city represents a dry surface with obstacle (buildings) and a
source of anthropogenic heat. The urban area modifies the energy budget, thus creating
meteorological differences between urban and rural area. These dissimilarities can be for-
mulated as the differences between urban and rural air temperatures, the first one being
usually higher. This phenomenon is called the Urban Heat Island (UHI). As a UHI indi-
cator, averaged and height corrected surface temperature observations within the city are
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Figure 19: The UHI measured for the city of Basel at 2mAGL during the BUBBLE IOP in
June/July 2002

compared with measurements from surroundings rural areas. The BUBBLE campaign pro-
vide temperature measurements at 2 m height on several representative sites for urban or
rural conditions. Averaging temperature in both areas (urban and rural) allow to obtain
a temperature difference between the city and its surroundings, which can be assimilated
to the UHI. Figure 19 shows this averaged temperature difference between urban and rural
area measured during the IOP. It is always positive and varies from 0.7 to 6.9 ◦C with an
average of 2.8 ◦C. If we look at the weather bulletin (Appendix 6.9.2) during the IOP, the
period from 25 to 27 June is characterized by a very constant meteorological situation and
strong daily cycle. The mean UHI over this episode is representative for the IOP with an
average of 3.0 ◦C. This episode is used to study UHI formation over Basel. Furthermore, it
corresponds to the period studied by Roulet (2004).

In the following, an in-depth analysis of this UHI episode using measurements and numerical
simulations is presented.

6.3 The COSMO Model

6.3.1 Model Description

The LM (Lokal-Modell1) is developed within the framework of the COnsortium for Small-
Scale MOdeling (COSMO) bringing together the National Weather Services from Switzer-
land, Italy, Poland and Greece under the lead of the National Weather Service of Germany
(DWD). LM is a nonhydrostatic fully compressible limited-area atmospheric model. It has
been designed for both operational Numerical Weather Prediction (NWP) and various sci-
entific applications on the meso-β and meso-γ scales (scales from which the nonhydrostatic
effects begin to play an important role on the behavior of the atmospheric fluxes (Orlan-
ski, 1975). The LM prognostic variables are horizontal and vertical cartesian wind compo-

1A more detailed description of the LM can be found on the COSMO website.
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Figure 20: A grid box volume ∆V = ∆λ∆φ∆ζ showing the Arakawa-C/Lorenz staggering
of the dependent model variables. The scalar variables T , P and q are defined at the centre
(i, j, k) of the box, whereas the normal velocity components are defined on the corresponding
box faces (i± 1/2, j ± 1/2, k ± 1/2).

nents, temperature, pressure perturbations, specific humidity, as well as different cloud water
species and turbulence quantities according to the parametrizations chosen for the phenom-
ena. The model is based on the primitive thermo-hydrodynamical equations describing a
compressible flow in a moist atmosphere. The model equations are formulated horizontally
in rotated geographical coordinates (λ, φ) and vertically in a generalized terrain following
height coordinate (ζ). These equations are solved numerically using finite difference methods
in an Arakawa-C/Lorenz grid (Figure 20 shows a grid box volume). Constant increments
∆λ,∆φ,∆ζ are used to set up the computational grid and the domain is represented by a
finite number of grid points (i, j, k). Each of these points is the center of a rectangular grid
box volume ∆V = ∆λ∆φ∆ζ.

NUMERICAL INTEGRATION

(a) The Time Integration Scheme

To illustrate the integration used in LM, let consider the model equations in the generic form

∂ψ

∂t
= sψ + fψ, (2)

where ψ denotes a prognostic model variable (u, v, w, T , p
′

or q), fψ the forcing terms due
to the slow modes and sψ the source terms related to the acoustic and gravity wave modes.
Equation 2 is solved using a Kemp-Wilhelmson time-splitting algorithm, where terms related
to the slow modes are solved using a large time step dt, whereas the acoustic and gravity
waves modes are solved using a small time step dτ . The slow-mode forcing fψ is evaluated
only once every large time step and kept constant throughout the small time steps, whereas
the fast-mode terms contained in sψ are calculated for each small time step.

We focus on the turbulent fluxes of heat and momentum which are contained in the slow
mode term fψ. Horizontal advection is treated explicitly and evaluated at mid-time level n,
whereas diffusion evaluated at time level n would be unstable with respect to explicit Leapfrog
integration scheme. Thus, the computational mixing terms are formulated following a simple
forward scheme, i.e. they are evaluated at the time level n−1. Vertical advection and vertical
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turbulent diffusion are treated implicitly using the Crank-Nicolson scheme involving the time
levels n− 1 and n+ 1. This results in a vertically coupled set of equations, abbreviated by

ψn+1 − ψn−1

2∆t
= fnψ = fψ(ψ

n−1, ψn, ψn+1) (3)

Finally for the slow mode tendency ψ̃n+1, evaluating the finite difference equations for u, v,
w, T , p

′

and q from (3) enables to obtain a linear tridiagonal equations system, which may
be written in the general form

Akψ̃
n+1

k−1
+Bkψ̃

n+1

k + Ckψ̃
n+1

k+1
= Dk(ψ

n, ...), (4)

for variables defined on main levels by k (k = 1, ..., Nζ ). Boundary conditions are included
in the inhomogeneous term Dk. Thus, we end up with a tridiagonal matrix of dimension
(Nζ)× (Nζ), which can be solved by Gaussian elimination in LM.2

(b) Land-Surface Scheme

The turbulent mixing terms for temperature, moisture variables and horizontal momentum
(in both directions u and v) are related respectively to the turbulent fluxes of sensible heat
(Ĥ3), moisture (F 3

q ) and momentum (τ13 and τ23) respectively. These fluxes are defined at
model half levels and at the horizontal position corresponding to the transported quantity.
The calculation of the mixing terms requires boundary conditions for turbulent fluxes at the
top (ζ = 1/2) and at the bottom (ζ = Nζ + 1/2) half level of the model , where Nζ is the
number of vertical levels. At the upper boundary, zero flux conditions are specified:

(τ13)ζ=1/2 = (τ23)ζ=1/2 = 0,

(Ĥ3)ζ=1/2 = (F 3
q )ζ=1/2 = 0 (5)

At the lower boundary, the turbulent fluxes are specified which a standard bulk-transfer
scheme using a drag-law formulation 3:

(τ13)ζ=Nζ+1/2 = τ13sfc = −ρCdm|~vh|u,
(τ23)ζ=Nζ+1/2 = τ23sfc = −ρCdm|~vh|v,
(Ĥ3)ζ=Nζ+1/2 = Ĥ3

sfc = −ρCdh|~vh|(θπsfc − Tsfc), (6)

(F 3
qv )ζ=Nζ+1/2 = (F 3

qv )sfc = −ρCdh|~vh|(qv − qvsfc),

where u, v, θ and qv are the horizontal velocity components, the potential temperature and
the specific humidity at the lowest grid level above the surface (ζ = Nζ). |~vh| is the absolute
horizontal wind speed at the same level. Cdm denotes the drag coefficient for momentum
exchanges at the ground and Cdh is the bulk-aerodynamical transfer coefficient for turbulent
heat. The transfer coefficient for moisture is assumed to be equal to the one for heat in LM.
The air density ρ is evaluated from the surface values for temperature, pressure and humidity.
Temperature and specific humidity at the ground are either provided by the soil model or
externally specified, whereas the surface pressure is determined by hydrostatic extrapolation
of the total pressure p = p0+ p

′

at the first layer above the ground. The transfer coefficients
Cdm and Cdh are calculated diagnostically and derived from the Monin-Obukhov Similarity
Theory (MOST). Similarity theories are empirical relationships for variables of interest when
our knowledge of the governing physics is insufficient to derive laws based on first principles
(Stull, 1988). MOST is a first order approximation usually applied to the surface layer and
assumes constant fluxes. Thus, in order to apply MOST for surface fluxes parametrization,

2The matrix diagonal terms Ak, Bk and Ck, as well as the Dk-term are derived in Doms et al. (2002a).
3As described in the Part II of the LM documentation (Doms et al., 2002b).
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Table 2: Characteristic parameters for urban and built up areas in TERRA LM: z0 is the
surface roughness.

Land use class z0 root depth plant cover leaf area index
[m] [m] Max Min Max [-] Min [-]

urban and built up land 1.00 0.60 10% 5% 4.70 0.10

the lowest grid layer of the model must be within the constant-flux layer. Usually, the top
of the surface layer in rural areas is in the range of 10m to 30m.

THE SOIL AND VEGETATION MODEL

Surface fluxes represent the lower boundary conditions for the atmospheric part of the model.
Their calculation requires temperature and specific humidity as input in the first soil layer
predicted by the soil model. For land surfaces, the multi-layer soil model TERRA LM (Doms
et al., 2002b) provides surface temperature and specific humidity at the ground to the LM
model. Most parameters of the soil model (heat capacity, water storage capacity, volume of
voids, etc.) strongly depend on soil texture. Five different types are distinguished: sand,
sandy loam, loam, loamy clay and clay. Three special soil types are considered addition-
ally: ice, rock and peat. The ground temperature is calculated by the equation of heat
conduction which is solved in an optimized two-layer model, to which a third layer called
the climatological layer, characterized by constant temperature, is added. The urban and
built-up land are described as a loam-clay soil with specific parameters described in Table
2. The temperature at 2 m Above Ground Level (AGL) is computed diagnostically from the
ground surface temperature and the temperature in the first model layer according to the
land-surface scheme i.e., the Monin-Obukhov Similarity Theory.

6.3.2 MeteoSwiss Operational Implementation

Since April 2001, a nonhydrostatic mesoscale model (COSMO), is used at MeteoSwiss for
operational Numerical Weather Prediction (NWP). The current (fall 2006) Swiss version of
the model has a horizontal resolution of about 7 km. The domain covers most of western
Europe. A terrain following vertical coordinate system is used, with 45 vertical layers and
about 50 to 100 m vertical resolution in the lowest 2 km of the atmosphere, and an upper
level at a geopotential height of 20 hPa. The 2 mAGL temperature is computed according
to MOST using the temperature of the first layer and the surface temperature in the model.
The operational run of COSMO at MeteoSwiss is performed twice daily, at 1:30 am and 1:30
pm GMT. Calculations are performed on a NEC-SX/5 supercomputer at the Swiss National
Supercomputing Center (CSCS) in Manno (TI). A 72 hour forecast takes roughly 70 minutes
real-time. Accurate initial conditions are generated with an additional assimilation system,
using observations within the model domain (e.g. wind profiler). Boundary conditions are
taken from the global model of the European Center for Medium-Range Weather Forecasts
(ECMWF) in Reading (UK). A new version, called COSMO2, is currently being developed
and tested at MeteoSwiss. It will use a horizontal grid-size of roughly 2 km, a more accurate
vertical resolution and is planned to become operational at the beginning of 2008.



COSMO Technical Report No. 27 41

Table 3: The main model input parameters are: nx and ny the number of urban grid point
in each horizontal direction, ny the number of layer on the grid, dx and dy the horizontal
grid resolution, dzground the lowest layer depth and dt the slow modes time step

The main model input parameters

nx 13

ny 13

nz 45

dx dy 7 km

dzgroud 60 m

dt 12 min

episode 25 to 27 June 2002 (72h)

6.3.3 Model Setup

For this study, the operational COSMO configuration is used, with a domain size limited to
the Basel area. The computed domain centered on the city of Basel is 13 by 13 grid point
for a total surface of 8281 km2 with a 7 km horizontal resolution. The vertical resolution
is 60 m for the lowest model layer. Boundary conditions are taken from the hourly analysis
of COSMO computed by MeteoSwiss and are interpolated to our domain. The run lasts 72
hours and covers the 3 days described above, i.e. 25 to 27 June, 2002. The main model
configuration parameters are summarized in Table 3.

6.4 COSMO vs. Measurements

A general overview of the model performance for the selected episode is presented in this
section. In general, the model shows good agreement with the observed meteorological
conditions. As the model is driven using analysis for boundary conditions, this is to be
expected. In the following, the computed surface fields over the target area, i.e. the city of
Basel and its immediate rural surroundings, are analyzed and compared to observations. The
computed temperature is generally in good agreement with the measurements in rural area.
Figure 21 shows the measured temperature averaged over several rural measuring sites (cf.
map in Fig. 18) and the computed temperature averaged over the corresponding grid points.
The computed maximum temperature at 2 mAGL in rural area occurs one hour earlier and
is 0.5◦C lower compared to the measurements for the first two days. During nighttime the
simulated temperature fits very well to the measurements. However simulated temperature
in urban area are too low by 1.5 to 3.0 ◦C (Fig. 22). The difference between the urban and
rural temperature corresponds to the UHI. Figure 23 shows the measured and computed
UHI over the city. The averaged computed UHI is 0.14 ◦C, hence showing no significant
temperature difference between urban and rural areas. The temperature in the city is even
regularly lower than the temperature in the rural area, particularly during nighttime. As
a conclusion, COSMO with the operational configuration is not able to reproduce the UHI
and underestimates the magnitude of the urban-rural temperature difference. One possible
reason is a too low horizontal and vertical resolution:

• With a 7 km horizontal resolution, the city of Basel fills only one grid point; a finer
horizontal resolution would allow to represent the city more accurately.

• The COSMO vertical resolution used is too low. An accurate representation of
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Figure 21: temperature at 2mAGL in rural areas for the period June 25 to 27, measured
(crosses) and computed by COSMO (solid line) with the operational configuration.

Figure 22: Temperature at 2mAGL in urban areas for a the period June 25 to 27, measured
(crosses) and computed by COSMO (solid line) with the operational configuration.
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Figure 23: The Urban Heat Island (UHI) at 2mAGL for a three day period (June 25 to 27)
measured (crosses) and computed by COSMO (solid line) with the operational configuration.

the boundary layer structure is of crucial importance in order to capture the physics
leading to the UHI development.

6.4.1 Increasing The Horizontal Resolution

In order to investigate if the model is able to reproduce the UHI with an increased horizontal
resolution, a simulation with the same model setup, and a finer horizontal grid spacing
of 2.2 km is performed. This corresponds to the horizontal resolution of the COSMO2
configuration. As with the 7 km resolution, the 2 mAGL temperature in rural area is in
good agreement with the measurements (not shown). For urban areas, the temperature is
still too low and the UHI is not reproduced (Fig. 24). The average UHI is with 0.1 ◦C
even lower than with a 7 km horizontal resolution. In this case, increasing the horizontal
resolution of COSMO has no positive influence on the UHI simulation.

6.4.2 Increasing The Vertical Resolution

In this section, the vertical resolution is increased, applying heights of 20, 26 and 31 m
respectively to the first three model layers. The horizontal resolution is kept at 2.2 km,
this configuration corresponding to the model setups of COSMO2. As for the simulations
with a lower vertical and horizontal resolution, COSMO is not able to reproduce an UHI
(Fig. 25). As a conclusion, the ground surface temperature computed by the soil model
TERRA LM and use of the MOST land-surface scheme does not allow to take into account
the modifications of the Planetary Boundary Layer (PBL) flow fields induced by the presence
of a city. The street canyon geometry reduces sky view factor and wind speed and increases
surface area and multiple reflection. Moreover, buildings characteristics modify the energy
budget in the city. These factors affect the exchange surfaces-atmosphere from sensible heat
and trapping radiation, and cannot be neglected (Oke, 1987). It is necessary to use an
adapted parametrization in order to take into account the presence and the effect of a city
in the model. For that purpose, the Building Effects Parametrization (BEP), developed by
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Figure 24: The Urban Heat Island (UHI) at 2m for a three day period (June 25 to 27)
measured (crosses) and computed by COSMO (solid line) with an increasing horizontal
resolution of 2.2 km.

Figure 25: Urban Heat Island (UHI) at 2mAGL for 25 to 27 June, measured (crosses) and
computed by COSMO (solid line) with the COSMO2 configuration.
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Figure 26: Schematic representation of the city in the urban grid of BEP and the buildings
vertical distribution of density Γ(z) and probability γ(z) (Martilli, 2001).

Martilli et al. (2002) is implemented into the COSMO model.

6.5 BEP : Building Effects Parametrization

Results from the last section indicate that there is a clear need to better represent the
physical processes of typical urban environments in order to improve the representation of
these regions in mesoscale models. In this study we will use the parametrization developed
by Martilli (2001) called the Building Effects Parametrization (BEP). It has initially been
developed for the mesoscale model FVM and tested extensively on several situation (Martilli,
2002; Roulet et al., 2005) and applied to different cities (Athens (Martilli et al., 2003), Basel
(Roulet, 2004), Bogota (Zrate et al., 2006) and Mexico (present work)). This section contains
a description of BEP. The next two sections present the implementation of BEP in COSMO
and the tests over the city of Basel. BEP takes into account the main characteristics of the
urban environment: (i) vertical and horizontal surfaces (wall, canyon floor and roofs), (ii)
shadowing and radiative trapping effects of the buildings, (iii) anthropogenic heat fluxes
through the buildings wall and roof. In this parametrization the city is represented as a
combination of several urban classes. Each class is characterized by an array of buildings
(Fig. 26) of the same width B located at the same distance from each other W (canyon
width), but with different heights (with a probability γ(z) to have a building with height z
and a density function Γ(z) of buildings with height z or higher). To simplify the formulation
we assume that the length of the street canyons is equal to the horizontal grid size. BEP
computes urban effects on its own grid. The horizontal resolution is identical to the resolution
of the mesoscale grid, while the vertical resolution is generally finer than the mesoscale
resolution, and is usually set to 5 meters. Vertically the BEP grid extends up to one layer
above the highest buildings. In this parametrization, the fluxes contributions of every urban
surface type (canyon floor, roofs and walls) on the momentum, heat and turbulent kinetic
energy (TKE) equations are computed separately. Firstly, the contributions of the horizontal
surfaces (canyon floor and roofs) are calculated using the formulation of Louis (1979) based
on MOST. The roughness lengths used for this calculation are representative for the local
roughness of the specific surface types (roofs or canyon floor). Secondly, the exchange of
momentum and TKE on the vertical surfaces (walls) are parametrized as the effect of pressure
and drag forces induced by the buildings. The temperature fluxes from the walls are a
function of the difference between air and wall temperature. They are parametrized using
the formulation of Clark (1985) proposed by Arnfield and Grimmond (1998) in their urban
energy budget model. The energy budget is computed for every mentioned surface (canyon
floor, roofs and walls). Firstly, the direct and infrared radiation at the surfaces are calculated
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to take into account the shadowing and radiative trapping effects of the buildings. Then, the
surface temperatures for roofs, walls and canyon floor are solved by heat diffusion equation in
several layers within the material (concrete or asphalt). After their calculation in the urban
grid, the fluxes are vertically interpolated into the mesoscale grid. We will now consider the
input parameters that are needed by BEP for each urban class:

Thermal parameters The material thermal diffusivity Ks [m2s−1] and specific heat Cs
[Jm−3K−1] for each urban surface (roof, canyon floor and wall), as well as building
inside temperature Tint [K].

Radiation parameters The surface albedo α and emissivity ε for each urban surface (roof,
canyon floor and wall).

Roughness parameter The roughness length z0 [m] for the horizontal surfaces (roof and
canyon floor).

Geometrical parameters The street direction, length and width, the buildings height and
width, as well as the probability γ(h) to have buildings of height h.

Meteorological variables The wind components (u and v), temperature and solar radia-
tion (angle and intensity) from the mesoscale models.

Urban fraction parameter ufraction(i, j, iurb) ∈ [0 : 1] gives the urban fraction in each
cell covering the city.

BEP is then able to compute new surface temperature, momentum, heat and TKE fluxes
for each layer of the mesoscale grid influenced by the city.

6.5.1 Temperature at 2 mAGL

The temperatures available for model validation are generally measured at 2 m above the
ground. So the model needs to compute the temperature at this height. In COSMO, it
is computed as a prognostic variable using MOST, which is based on constant-flux layer
approximation in the surface layer. Rotach (1993a,b) shows that the turbulent fluxes are
not constant with height in the urban roughness sublayer (1-3 time mean building height) and
that similarity theory cannot therefore be applied. As BEP takes into account the presence
of a city, its computed fluxes can be used to specify the temperature at 2 m height. For
that purpose modifications are implemented in BEP, that will allow to compute diagnostic
variables (typically 2 m temperature, 10 m wind) consistent with the land-surface scheme
assumptions. The temperature at 2 mAGL corresponds to the temperature simulated in
the urban grid, in so far as the first layer near the ground remains thin enough for being
considered as the temperature at 2 m. The energy budget equations for sensible heat,
momentum and TKE are hence solved in the urban grid. With low horizontal resolution (here
2 km) compared to the high vertical resolution (5 m), vertical fluxes dominate the horizontal
fluxes and represent the main source term in the energy budget equation. Therefore the
horizontal fluxes can be neglected as shown by Masson et al. (2002) with measurements. The
vertical turbulent exchanges balance the fluxes coming from the buildings and the ground,
thus the equations for sensible heat, momentum and TKE are parametrized for each layer
in the urban grid as follows:

∂

∂z

(

Kz
∂θ

∂z

)

= aθθ + bθ (7)
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∂

∂z

(

Kz
∂Ui
∂z

)

= aUiUi + bUi (8)

∂

∂z

(

Kz
∂E

∂z

)

= aEE + bE + ρKz

[

(

∂Ux
∂z

)2

+

(

∂Uy
∂z

)2
]

− g

θ0
ρKz

∂θ

∂z
− ρCε

E3/2

lε
(9)

Equations 7 and 8 parametrize respectively the temperature θ and the wind speed Ui for each
direction in accordance with Pielke (1984). aψ and bψ are the flux source terms computed

by BEP and Kz [
m2

s ] are the vertical diffusion coefficients. Equation 9 [m
2

s2
] is the prognostic

equation for the turbulent kinetic energy E according to Bougeault and Lacarrere (1989)

with a k − 1 closure. In this equation, ρKz

[

(

∂Ux
∂z

)2
+
(

∂Uy

∂z

)2
]

and g
θ0
ρKz

∂θ
∂z are the pro-

duction terms representing the shear and the buoyancy respectively. The ρCε
E3/2

lε
term is

the dissipation rate where lε is a characteristic length of the energy-containing eddies, and
computed as the root square of lk multiplied by the street width. lk [m] is a characteristic
length for eddies determined as the minimum between street width and height where lk is
computed. Cε is a numerical coefficient set to 0.71 (Bougeault and Lacarrere, 1989). The
system of 4 equations is characterized by 5 unknowns (θ ,Ux, Uy, E and Kz) for each layer
of the urban grid. In order to close the system, Kz is defined as a function of E (Bougeault
and Lacarrere, 1989) and is written:

Kz = CklkE
1/2, (10)

where Ck is a numerical coefficient set to 0.4 (Bougeault and Lacarrere, 1989).

In BEP, this system is solved by iteration once the flux source terms aψ and bψ are computed.
Firstly TKE is estimated for computing Kz according to equation 10. Then temperature
and wind speed are computed with equations 7 and 8, and TKE can be computed with (9).
A new Kz is then calculated using the new TKE value, and iterations are made until TKE
converge. The energy profile in the urban grid is used to initialize Kz for the next time
step. It is necessary to determine the upper-boundary conditions in the urban grid. For
wind, they are directly given by the mesoscale models at the height of the urban grid top.
For TKE and temperature at the top of the urban grid (above the buildings), it is assumed
that a neutral surface layer is developing above the roughness layer (Roth, 2000), which is
virtually starting from the zero plane displacement (Oke, 1987) situated in the roughness
layer (Fig. 27). In the surface layer, the vertical turbulent fluxes of momentum and heat are
assumed to remain constant (Seinfeld and Pandis, 1998). In this case, only the production
(shear and buoyancy) and the dissipation terms remain in the prognostic equation for E, i.e.

ρCε
E3/2

lε
= ρKz

[

(

∂Ux
∂z

)2

+

(

∂Uy

∂z

)2
]

− g

θ0
ρKz

∂θ

∂z
(11)

In accordance with the assumed surface layer properties, shear is defined as:

ρ
U3
∗

κ(z − zd)
φ, (12)

Where κ is the von Karman constant set to 0.40, under neutral conditions and φ is equal
to 1 (Businger et al., 1971). U∗ is the friction velocity and zd the zero plan height define
as 0.67 ∗ building height (Grimmond and Oke, 1999). The buoyancy in the surface layer is
defined as:

g

θ0
ρU∗θ∗ (13)
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Figure 27: Schematic representation of a wind profile in the roughness layer and in the
surface layer. It assumes that a surface layer has developed above the urban canopy and
virtually starts at the zero plane displacement height Zd.

Where θ∗ is a potential temperature scale. U2
∗
is the total momentum flux and U∗θ∗ the

total heat flux:
U2
∗
=
√

(AuxUx +Bux)
2 + (AuyUy +Buy)

2 (14)

U∗θ∗ = Aθθ +Bθ (15)

Where Aψ and Bψ represent the total source term in the urban grid. Based on (11) and
using equations 12 to 15, TKE at the top of the urban grid is estimated as:

Etop =

[

1

Cε

(

U3
∗

κ
− g(z − zd)

θ0
U∗θ∗

)]2/3

(16)

The upper-boundary condition for temperature is parametrized with a logarithmic profile
(Pielke, 1984),

θ∗ =
κ(θz − θzd)

0.74[ln(z/z0)− ψH(z/L)]
(17)

As explained before, the flux θ∗ remains constant within the neutral surface layer. A further
assumption is to neglect perturbation terms ψH(z/L). Temperature θztop at the top of the
urban grid (ztop) can then be expressed as a function of the temperature at the first mesoscale
model layer above the urban grid θzmeso :

θztop = θzmeso − 0.74
θ∗
κ

ln

(

ztop − zd
zmeso − zd

)

(18)

The temperature at the urban grid top, θztop, is linked both to the mesoscale model, by
the value above the urban grid θzmeso and to the urban parametrization, by the potential
temperature scale θ∗. This method also solves wind speed and TKE in the urban grid.

6.6 Implementation of BEP in Cosmo

BEP outputs consist of a ground surface temperature and of momentum and heat fluxes
profiles calculated over the entire height of the urban grid. In the original version of COSMO,
surfaces fluxes are implicitly calculated by the soil module, using the formulations given in
equation 6. In the modified version, BEP is implemented in COSMO and runs after the soil
module. In the following, two implementation methods are presented.
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6.6.1 First Method

The first method is based on the re-computation of the transfer coefficients Cdm and Cdh in
order to impose surface variable tendencies corresponding to the ones computed in BEP.
It is then necessary to find a formulation for the coefficients depending on the tendencies
calculated by BEP, (i.e. uflux, vflux and tflux). Beginning with the first two equations of
system (6):

(τ13)ζ=Nζ+1/2 = τ13sfc = −ρCdm|~vh|u = −ρCdm
√

u2 + v2u, (19)

(τ23)ζ=Nζ+1/2 = τ23sfc = −ρCdm|~vh|v = −ρCdm
√

u2 + v2v, (20)

and introducing two new coefficients Cdm,u and C
d
m,v to take into account both wind directions

u and v:

τ13sfc = −ρCdm,u
√

u2 + v2u, (21)

τ23sfc = −ρCdm,v
√

u2 + v2v, (22)

with units [ kg
ms2

].

BEP module gives the tendencies uflux and vflux with units [m
s2
], coming from wind speed

temporal derivative, i.e. ∂
∂t [

m
s ]. Thus, it is possible to find a relation between the tendencies

of BEP and the surface fluxes of COSMO. In the following, this relation is derivated for the
u-direction:

τ13 = ∆zρuflux, (23)

where ∆z is the height of the first mesoscale layer and ρ is the density. Replacing τ13 by
(21) and simplifying the density terms, we have:

−Cdm,u
√

u2 + v2u = ∆zuflux, (24)

Finally, resolving for Cdm,u and similarly for the v-direction, we obtain the equations linking
the momentum transfer coefficients with the fluxes within BEP:

Cdm,u,BEP = −∆z
uflux

u
√
u2 + v2

,

Cdm,v,BEP = −∆z
vflux

v
√
u2 + v2

, (25)

Following a similar approach, we can find a relation between the transfer coefficient Cdh and
the heat flux tendency tflux, with units [Ks ]. The third equation of (6) becomes:

(Ĥ3)ζ=Nζ+1/2 = Ĥ3
sfc = −ρCdh|~vh|(θπsfc − Tsfc)

= ρCdh
√

u2 + v2(Tsfc − Tζ=Nζ
), (26)

with units [kgK
sm2 ]. We have then to divide Ĥ3

sfc by a density term ρ and a length term ∆z to

obtain [Ks ]. Thus:

tflux =
Ĥ3
sfc

ρ∆z
=
ρCdh

√
u2 + v2(Tsfc − Tζ=Nζ

)

ρ∆z
, (27)

Again, simplifying the density terms and resolving for Cdh, lead to an expression linking the
transfer coefficient for sensible heat with the tendency given by BEP:

Cdh,BEP = ∆z
tflux√

u2 + v2(Tsfc − Tζ=Nζ
)
, (28)
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These three coefficients calculated by BEP are then used to create the final coefficients for
input into COSMO, following a linear combination between BEP’s and COSMO’s coefficients:

Cdm,i,final = ufractionC
d
m,i,BEP + (1− ufraction)C

d
m,LM ,

Cdh,sensible,final = ufractionC
d
h,BEP + (1− ufraction)C

d
h,LM , (29)

where i = u, v and ufraction ∈ [0 : 1] defines the urban fraction in a mesoscale cell and
depends on the landuse type.

We have now to consider the fact that BEP consider urban areas as a set of totally dry
surfaces. Thus, the module does not calculate any tendencies for latent heat fluxes. A final
coefficient for the latent heat is nevertheless calculated, using the following combination:

Cdh,latent,final = (1− ufraction)C
d
h,LM , (30)

so that the moisture exchanges at the surface are characterized by the rural fraction (1 −
ufraction) affected to each urban cell.

As already mentioned, BEP also calculates a street surface temperature tgs u. The module
is defined with three soil layers, the deepest having a constant temperature. At time t = t0,
the constant temperature of COSMO is used to initialize the temperature in every soil layers
of BEP. Then, the module calculate a thermal gradient over all layers at each time step and
gives tgs u. As for (29) and (30), the final ground surface temperature is calculated with a
linear combination between tgs u from BEP and t s from COSMO:

t sfinal = ufractiontgs u+ (1− ufraction)t s (31)

This temperature finally replaces COSMO’s ground surface temperature t s at each time
step.

The advantage of this implementation method of BEP into COSMO is that it requires no
knowledge about the code solver and that the model code does not need to be modified.
Nevertheless, it is not optimal for several reasons. With such an implementation, only the
first mesoscale layer can be influenced by BEP. This means that it is not possible to consider
buildings higher than the first mesoscale level. Moreover, terms 25, 25 and 28 show that for
low wind speeds the recomputed exchange coefficient may numerically diverge. Thus, it is
necessary to control and to limit the transfer coefficients for the low wind speed situations.
This implementation method has some limits. Therefore a second method to implement
BEP and to take into account the source flux terms above the first layer of the mesoscale
model is presented in the next section.

6.6.2 Second Method

The first method is more complex but does not modify the LM code. This second method is
simpler and more powerful but modifications must be applied to the implicit LM solver. To
avoid the limitations of the first implementation method, a more direct method is presented
that needs less modifications in BEP and LM code and acts on each vertical mesoscale layer
influenced by urban areas. It relies on the use of tendencies ψflux and source terms aψ and
bψ, where ψ = u, v, t. BEP calculates the tendency uflux using the source terms, as follows

uflux = ρ∆z(auu+ bu), (32)

This can be generalized by:
ψflux = ρ∆z(aψψ + bψ), (33)
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where aψ and bψ are the implicit and explicit source terms respectively and ρ∆z a conversion
factor from BEP’s tendencies and COSMO’s fluxes. Now, if we look at equation (33) in term
of temporal derivative, we have:

ψn+1 − ψn

∆t
= ρ∆z(aψψ

n+1 + bψ), (34)

The step is now to implement the tendencies and the source terms in COSMO through
equation (4) for k-level only, which means:

Bkψ
n+1

k = Dk(ψ
n, ...), (35)

Finally, if we take the implicit and explicit terms of (34) and (35), it is possible, by analogy,
to connect BEP to COSMO through the source terms:

Bk −→ Bk − aψ,

Dk −→ Dk + bψ (36)

Two valuable methods to implement BEP in COSMO have been presented. The choice of
the implementation method depends on the user’s knowledge of the mesoscale code and on
the possibility to modify it. With some adaptations, but keeping the same implementation
philosophy, these two methods allow to implement BEP in numerous mesoscale models.
Having the possibility to change the implicit solver of LM, the second method is used in
this study, which allows to take into account the urban source terms in each layer of the
mesoscale grid influenced by the urban canopy.

6.7 Simulation of the Basel UHI

6.7.1 Model Setup

In this part, we keep the same simulation domain over Basel and its surroundings (cf. section
6.3.3) with the COSMO2 configuration i.e., a 2.2 km horizontal resolution, a first layer
thickness of 20 m and a 3 day simulation period from June 25 to 27. The characteristics and
the fraction of urban area in each cell is determined from the KABA data base (Fehrenbach,
1999). Two city categories are defined:

• City center: high density of buildings (15 m high), narrow street and 80% of urban
area4. Represented by 7 grid points.

• Sub-urban areas: smaller density of small buildings (7 m high) and 60% of urban area.
Represented by 17 grid points.

Figure 28 shows the simulated domain with cells considered as urban and sub-urban. The
properties for both urban and sub-urban categories are determined according to KABA and
Roulet (2004) and are presented in Appendix 6.9.3. For the cells containing urban area, the
parameters of the rural part have been changed in order to represent park and green area.
The main model input parameters are summarized in Table 4.

4It means that 80% of the area of the grid cell fluxes are computed by the urban parametrization (BEP)
and the rest is handled by the traditional LM parametrization with values for rural area.
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Figure 28: Topography [mASL] of the simulation domain (2.2 km horizontal resolution) over
the city of Basel and the urban (gray squares) and sub-urban cells (black shape).

Table 4: The main model input parameters are: nx and ny the number of model grid points
in each horizontal direction, nz the number of vertical layers, dx and dy the horizontal grid
spacing, dzground the lowest layer depth and dt the slow modes time step

The main model input parameters

nx 36

ny 36

nz 60

dx dy 2.2 km

dzgroud 20 m

dt 12 min

period 25 to 27 June 2002 (72h)
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6.7.2 Results

In this section, we compare results from the mesoscale model calculated both with and
without BEP, and give a general overview of the model performance with BEP for the
selected episode.

WIND

The wind pattern (Fig. 29 and Fig. 30) is very typical for Basel area with strong inflow
from the Rhine valley in the North and going up along the slopes of the terrain. The
comparison between simulations with and without BEP shows only slight differences in the
wind fields. A small decrease of wind speed over the city is observed with BEP. The air flow
simulated without BEP (Fig. 29) is not modified above the city. However, the simulation
with BEP (Fig. 30) shows a divergence-convergence system around the city. The simulation
shows a divergence and a decrease of the wind speed upstream the city due to drag effect
of the buildings. The wind accelerates around the city. Wind speed decreases drastically
downstream as a combined effects of drag force and buoyancy due to temperature increase
in the city. A convergence is observed south of the city. BEP impacts the air flow up to 7 km
upwind and downwind the urban area. Looking hour by hour, we observe that the effect on
wind flow increases with wind speed i.e, the impact of BEP increases with increasing wind
speed.

TEMPERATURE

The simulated temperature at 2 m shows warmer temperature in the urban area with BEP
than without. The computed UHI (Fig. 31) is always stronger in the simulations with BEP
by 0.7 to 4 ◦C. The averaged UHI simulated with BEP reaches 2.3 ◦C, which is in agreement
with the measurements (average UHI of 3 ◦C, Fig. 31). Furthermore, the simulated UHI
is late by around 3 hours during the morning and too weak from 18LT to 00LT. We also
observed a peak in the measurements at 18 LT on June 26 that the simulation is not able
to reproduce. It is instructive to look at absolute temperature values and not differences in
order to explain the observed inconsistencies. Figure 32 shows that the city is warmer with
BEP particularly during nighttime. The morning temperature increase simulated with BEP
comes with a delay, which explains the phase shift of the UHI observed above. Even if the
maximum of temperature is too low the first day, it is generally well reproduced with the BEP
simulation and the UHI during daytime is well reproduced. The temperature decrease in the
afternoon and evening occurs earlier with BEP than in the measurements and a maximum
difference between simulation and measurement is reached at sunset (20 LT). This explains
the strong UHI anomaly at the end of the day and beginning of the night (cf. Fig. 31).
The maximum of measured UHI reached at 18 LT on June 26 is not observed in the urban
temperature. This maximum is due to a decrease of the temperature in the rural area (not
shown).

Numerous tests have been conducted on the input parameters of BEP used to describe the
city. Using typical values found in the literature (Oke, 1987; Masson et al., 2002; Dupont et
al., 2004), the following parameters have been varied and sensitivity of the results studied:

• The Thermal Parameters of the materials, i.e. the thermal diffusivity and the specific
heat for roof, wall and ground.

• The Radiation Parameters of the surfaces, i.e. the albedo and the emissivity of roof,
wall and ground.

• The Roughness Length of horizontal surfaces (ground and roof).
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Figure 29: Simulated wind streamline (the size of the arrows indicates the wind speed
strength) with COSMO, June 25 at 14LT in the first layer (20 meters height) above and
around the city of Basel (black shape).

Figure 30: Simulated wind streamline with COSMO/BEP, June 25 at 14LT in the first layer
(20 meters height) above and around the city of Basel (black shape).
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Figure 31: The Urban Heat Island (UHI) at 2m for a three day period (June 25 to 27) mea-
sured (crosses) and computed by COSMO with BEP (solid line) and without BEP (dashed
line) with an horizontal resolution of 2.2 km

Figure 32: Average temperature at 2 m in the city of Basel, measured (crosses), simulated
in COSMO without BEP (dashed line) and with BEP (solid line).
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Figure 33: Temperature differences at 2 mAGL [◦C] between an COSMO simulation with
BEP and without BEP over the city of Basel (black shape) for 27 June, 2002 at midnight
(left) and 27 June, 2002 at noon (right)

• The Geometrical Parameters of the city, i.e. street direction and width, buildings
height and width and their repartition.

An impact on the average and on the amplitude of the temperature curve is observed when
these parameters are modified. However the shape of the curve is not modified, i.e. the
morning increase temperature is always late and the temperature decreases too early in the
afternoon. Furthermore, modifying the parameters in the range proposed by the literature
produces weak impacts (not shown) on the temperature, of around 0.6 ◦C on the amplitude
and 0.3 ◦C degrees on the average. The results presented above have been computed with
the set of parameters that provide the best fit between simulation and measurements. To
summarize, the results show that a parametrization of heat and momentum fluxes over
urban areas clearly improve mesoscale simulations using an horizontal resolution of 2.2 km.
Results with BEP show a much better representation of the UHI as well as the general
temperature evolution over an urban area such as Basel. Remaining differences between
measured and simulated urban temperatures are dominated by a phase shift in the morning
increase and evening decrease. This effect does not show any sensitivity to changes in BEP’s
input parameters. If measurements are considered representative of the urban environment,
this gives an indication that the processes considered in BEP are not complete and some
physical mechanisms determining the temperature are not or not well represented.

UHI DISPERSION

Figure 33 shows the difference of temperature at 2 mAGL between a simulation with and
without BEP. Two behaviors are observed:

• During nighttime (left panel of Figure 33), the simulation using BEP is clearly warmer
above the city by 3.0 to 3.8 ◦C for the city center and by 1.5 to 2.0 ◦C for the sub-urban
area. During this period, the wind is weak and temperature increase is observed only
in the urban cells.

• During daytime (right panel of Figure 33), temperature increase above the city with
BEP is weaker than during nighttime (1.5 to 2.5 ◦C in the city center), however a
maximum of 3.4 ◦C is reached in the east- and southeast-part of the sub-urban area.
The wind is stronger during daytime and blows to south east. It creates a displacement
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Figure 34: Urban temperature at 2m for a 14 days period (June 21 to July 4, 2002) measured
(crosses) and simulated by COSMO with BEP (solid line) with a horizontal resolution of 2.2
km. The horizontal lines are the average of the measured temperature (21.1 ◦C) and the
average of the computed temperature (20.3 ◦C).

of the maximum and a temperature ”plume” which is observed south-east of the city
and reaches 0.5 to 1.0 ◦C.

In both situations BEP increases the temperature in the city. The intensity and diffusion of
this temperature increase are strongly dependent on the wind speed, so that BEP modifies
not only the urban area but also the nearby area, up to 20 km downwind in the presented
case.

6.7.3 14 Days Simulation

Up to now, BEP has only been tested on 2 to 4 day episodes. The implementation of BEP
in an operational forecast model gives the opportunity to test it for longer periods (weeks or
months) and different kinds of meteorological situations (days with strong cloudiness and/or
precipitation). In this section we present a 14 days simulation during the BUBBLE IOP from
June 21 to July 4 2002. Figure 34 shows the temperature simulated with COSMO/BEP in
the urban area. No tendency being observed, BEP does not accumulate or lose heat during
this 14 days period. Thus, BEP is able to compute the urban heat and momentum fluxes for
longer period than 3 days. The mean temperature reaches 21.1 ◦C for measurements, 20.3
◦C for the simulation with BEP and 18.3 ◦C for the simulation without BEP (not shown).
The mean temperature is well reproduced with BEP as well as the general temperature
behavior. The same tendencies are observed than during the 3 day simulations, which
showed a warmer city by 2.4 ◦C with BEP. During nighttime of 23, 27 and 30 June, BEP
slightly overestimates the temperature. The average of the computed UHI (Fig. 35) is 1.6
◦C whereas it is around 2.8 ◦C in the measurements. The difference between measurements
and simulation for the UHI is larger than the difference in the urban area temperature
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Figure 35: Urban Heat Island (UHI) at 2m for a 14 days period (June 21 to July 4, 2002)
measured (crosses) and computed by COSMO with BEP (solid line) with a horizontal reso-
lution of 2.2 km. The horizontal line are the average of the measured and of the computed
UHI.

because, in the average, COSMO overestimates the temperature in rural area by 0.4 ◦C. If
we focus on the temperature at 2 mAGL on June 24 when an important rainfall episode
occurs form 01LT to 12 LT (Appendix 6.9.2), we observe that the simulation underestimates
the temperature during nighttime and overestimates it during daytime. This phenomenon
is also observed in the simulation without BEP (not shown), and is probably due to a too
weak cloud cover in the simulation. The ground loses too much energy during nighttime
by radiative effects and receives too much energy due to incoming solar radiation during
daytime. The same phenomenon is observed on July 2 while very weak rainfall is observed
during nighttime. However important rainfalls are observed during nighttime from 3 to 4
July and the simulation during this period fits very well to the measurement (Fig. 34). Even
if BEP does not take into account latent heat flux, water storage or urban rainfall runoff,
the rainfall episode does not deteriorate the results of temperature simulation. Nevertheless,
taking into account water budget and latent heat flux in BEP could improve the urban
energy balance and the temperature simulation which have shown a too fast cooling at the
end of the day (section 6.7.2).

6.8 Conclusion

The presence of a city modifies the fluxes between the atmosphere and the Earth’s surface.
From August 2001 to July 2002, a year-long measurement campaign (BUBBLE) has been
conducted in the city of Basel (Switzerland) and its surroundings with the aim of investigating
in details the boundary layer structure in an urban area. During the intensive observation
period (IOP), form June 15 to July 12 2002, an Urban Heat Island (UHI) has been underlined
by temperature measurements at 2 mAGL inside and outside the city (Table 5). In order
to investigate the ability of mesoscale models to take into account the effect of urban areas
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Table 5: Average Urban Heat Island (UHI) in ◦C for the period of June 25 at 00 LT to June
27 at 23LT, for the BUBBLE measurements (left column), an COSMO simulation with 2.2
km horizontal resolution and 20 m vertical resolution for the first layer (center column) and
an COSMO simulation and the urban parametrization BEP with the same configuration
(right column).

UHI average for June 25 to 27 2002

Measurement COSMO COSMO - BEP

3.0 ◦C -0.1 ◦C 2.3 ◦C

on atmospheric flow fields and to reproduce the UHI, we have selected a three day episode
during the IOP for simulation with the COSMOmesoscale model. COSMO is the operational
numerical weather prediction model of MeteoSwiss. It is used on a domain covering most of
western Europe with a horizontal resolution of 7 km and a vertical resolution with a 60 m
depth for the first layer above the ground. The results obtained with COSMO over the city
of Basel and its surroundings shows no UHI. With a 7 km horizontal resolution and a 60 m
vertical resolution, the city of Basel and the urban boundary layer are not represented with
enough accuracy. In order to investigate if a better resolution allows COSMO to reproduce
the measured UHI over Basel, the horizontal resolution has been increased to 2.2 km and
the vertical resolution to 20 m for the first layer. The results show that a finer resolution
has no impact on the UHI simulation by COSMO (Table 5). As a conclusion, the surface
scheme in COSMO based on the similarity theory is not adapted to the urban areas. In
order to take into account the presence of a city with a more accurate surface scheme, the
Buildings Effects Parametrization (BEP) has been implemented in COSMO. BEP has been
modified in order to compute the temperature at 2 mAGL inside the urban canopy. Results
show that the implementation is successful and works as expected. The results obtained
with BEP show that the urban parametrization modifies the wind flow above and around
the city. The wind speed decreases above the city and a system of divergence-convergence
is observed around it. Wind divergence-convergence systems are particularly important in
air pollution study as they generally lead to a pollution maximum. The temperature is
reproduced with a good accuracy in the urban area. Thus, COSMO with BEP is able to
reproduce an UHI in the city of Basel (Tab. 5). We have underlined that the temperature
increase does not stay confined in the urban area, but extends around the city up to 15 to 20
km. Nevertheless, the UHI computed with BEP is generally too weak (Tab. 5) and even with
tuning the urban parameters, BEP is not able to reach the measured values. Sometime, a
phase shift is also observed between the measured and simulated temperature. BEP is based
on a simplified representation of the urban area and several phenomenon are neglected. The
urban parametrization could be adapted in order to take into account different phenomenon,
which should modify the urban energy balance:

• The vertical surfaces in BEP are uniform and opaque. Take into account the windows
will modifying the radiative budget at wall surfaces and in the buildings.

• The temperature inside the buildings is maintained constant during the simula-
tion. It will be necessary to take into account its variations in order to represent the
buildings energy budget more realistically.

• The natural ventilation is the air exchange between inside and outside the buildings
(windows opened, ventilation, ...). Koutrakis et al. (1992) estimated that more than
50% of the buildings volume of air can directly be exchanged with the outdoor each
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hour.

• The air conditioning cools down the air inside and rejects heat in the urban at-
mosphere. It modifies the balance between inside and outside buildings, and is an
important source of heat due to its energy consumption.

• No urban water budget is computed in BEP. It doesn’t take into account precipi-
tation, pipped water supply of the city and water vapor released due to anthropogenic
activities, such as combustion.

A 14 days period has been simulated with COSMO/BEP. It is the first time that BEP is
applied for a such long period. That allows to verify that BEP does not accumulate or lose
energy and that it can be used for long term simulations. Rainfall episodes are included in
these 14 days. BEP does not take into account latent heat flux, water storage and urban
rainfall runoff. Nevertheless, the simulation with BEP are in good agreement with the
measurements. The results show the importance to have an adapted parametrization for
urban areas in order to take into account the modification of the atmospheric flow fields
induced by the presence of a city. The increase of horizontal and vertical resolution in
COSMO2 is not sufficient to take into account the presence of a city, the use of an adapted
parametrization is necessary. BEP implementation in COSMO is a distinct enhancement for
the simulation above urbanized region. We have focused our study on the 2 m observations
for temperature, 10 m observations for the wind and the horizontal dispersion of the UHI.
The urban effects are also present in the vertical direction. It is important to investigate the
impact of BEP on the vertical structure of the atmosphere and its capacity to be used with
a low resolution mesoscale model for operational forecast purposes.
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6.9 Appendices

6.9.1 Bubble Measuring Stations

List of the measuring stations available during the BUBBLE IOP. The first letter of the
station code correspond to the situation of the station (U for Urban area, S for Sub-Urban
area and R for Rural area).

Code on map Station Name Height
(Fig. 18) [mASL]

Rp6 Aesch Schlatthof 353
Se1 Allschwil 277
Rp7 Airport Basel-Mulhouse
Sp2 Basel - Bumlihof 289
Sp3 Basel - Binningen (ANETZ, NABEL) 316
Up6 Basel - Feldbergstrasse 255
Ue4 Basel - Horburg 254
Re3 Basel - Lange Erlen 275
Up7 Basel - Leonhard 273
Ue5 Basel - Kleinhningen 265
Up8 Basel - Novartis Klybeck 255
Ue3 Basel - Messe 255
Up9 Basel - Novartis St.Johann 257
Up10 Basel - Roche 255
Ue2 Basel - Spalenring 278
Ue1 Basel- Sperrstrasse 255
Up11 Basel- St. Johann 260
Rp11 St. Chrischonaturm 490
Sp4 Dornach 325
Re4 Gempen 710
Re1 Grenzach 265
Sp5 Liestal LHA 320
Rp8 Oetlingen 450
Rp9 Pratteln Hardwasser 272
Sp6 Rheinfelden 285
Rp10 Schnenbuch 400
Sp7 Schweizerhalle 270
Re5 St. Louis 250
Re2 Village Neuf 240
Sp8 Weil am Rhein 250
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6.9.2 Meteorological Situation during the IOP
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6.9.3 The Definition of Urban Categories for BEP

The urban properties as they are described in COSMO for the city of Basel

URBAN CATEGORY

! Building parameters

! Ground thermal diffusivity [m^[m^2 s^-1]

alag_u(1)=0.3e-06,

! Wall thermal diffusivity [m^2 s^-1]

alaw_u(1)=0.2e-06,

! Roof thermal diffusivity [m^2 s^-1]

alar_u(1)=0.2e-06,

! Specific heat of the ground material [J m^3 K^-1]

csg_u(1)=1.4e+6,

! Specific heat of the wall material [J m^3 K^-1]

csw_u(1)=0.2e+6,

! Specific heat of the roof material [J m^3 K^-1]

csr_u(1)=0.2e+6,

! Temperature inside the buildings behind the wall [K]

twini_u(1)=295.,

! Temperature inside the buildings behind the roof [K]

trini_u(1)=295.,

! Radiation parameters

! Albedo of the ground

albg_u(1)=0.2,

! Albedo of the wall

albw_u(1)=0.2,

! Albedo of the roof

albr_u(1)=0.2,

! Emissivity of ground

emg_u(1)=0.95,

! Emissivity of wall
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emw_u(1)=0.9,

! Emissivity of roof

emr_u(1)=0.9,

! Roughness parameters

! The ground’s roughness length

z0g_u(1)=0.0005,

! The roof’s roughness length

z0r_u(1)=0.0005,

! Street configuration parameters

! Number of street direction

for each urban class

nd_u(1)=2,

! Street direction [radian]

drst_u(1,1)=0.7854, !45.*pi/180.

drst_u(2,1)=2.3562, !135.*pi/180.

! Street width [m]

ws_u(1,1)=15.,

ws_u(2,1)=15.,

! Building width [m]

bs_u(1,1)=22.,

bs_u(2,1)=22.,

! Bulding’s heights [m]

h_b(1,1)=10.,

h_b(2,1)=15.,

h_b(3,1)=17.,

! The probability that a building has an height h_b

d_b(1,1)=20.,

d_b(2,1)=55.,

d_b(3,1)=25.,

----------------------------------------------------------------------------

----------------------------------------------------------------------------
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SUB-URBAN CATEGORY

! Building parameters

! Ground thermal diffusivity [m^2 s^-1]

alag_u(2)=0.47e-6,

! Wall thermal diffusivity [m^2 s^-1]

alaw_u(2)=0.37e-06,

! Roof thermal diffusivity [m^2 s^-1]

alar_u(2)=0.42e-06,

! Specific heat of the ground material [J m^3 K^-1]

csg_u(2)=1.75e+6,

! Specific heat of the wall material [J m^3 K^-1]

csw_u(2)=0.5e+6,

! Specific heat of the roof material [J m^3 K^-1]

csr_u(2)=0.5e+6,

! Temperature inside the buildings behind the wall [K]

twini_u(2)=293.,

! Temperature inside the buildings behind the roof [K]

trini_u(2)=293.,

! Radiation parameters

! Albedo of the ground

albg_u(2)=0.2,

! Albedo of the wall

albw_u(2)=0.2,

! Albedo of the roof

albr_u(2)=0.2,

! Emissivity of ground

emg_u(2)=0.95,

! Emissivity of wall

emw_u(2)=0.9,

! Emissivity of roof

emr_u(2)=0.9,
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! Roughness parameters

! The ground’s roughness length

z0g_u(2)=0.005,

! The roof’s roughness length

z0r_u(2)=0.005,

! Street configuration parameters

! Number of street direction

for each urban class

nd_u(2)=2,

! Street direction [radian]

drst_u(1,2)=0.7854, !.45.*pi/180.

drst_u(2,2)=2.3562, !135.*pi/180.

! Street width [m]

ws_u(1,2)=25.,

ws_u(2,2)=25.,

! Building width [m]

bs_u(1,2)=17.,

bs_u(2,2)=17.,

! Building’s heights [m]

h_b(2,2)=6.,

h_b(3,2)=9.,

! The probability that a building has an height h_b

d_b(1,2)=75.,

d_b(2,2)=25.,
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