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1 Introduction

In 2008, the COSMO steering committee (STC) established a new Priority Project named
’Conservative Dynamical Core’ (CDC). The motivation for such a project stems from the
fact that the three currently available dynamical cores of COSMO (called ’leapfrog’, ’Runge-
Kutta’ and ’semi-implicit’) don’t have any conservation properties concerning the dynamical
variables mass, energy or momentum. However, conservation of these variables is one of
the fundamental guiding principles in the development of dynamical cores in many branches
of fluid dynamics. The aim of the project was to investigate possible candidates for a new
dynamical core with conservation properties (at least mass conservation) and to deliver
prototypes that are already implemented into the COSMO model.

Considering the different proposed dynamical core formulations of the first draft project
plan, the STC decided to concentrate the project on two branches: on the one hand to the
EULAG model (’anelastic branch’), which is already well established in the fluid dynamics
community, and on the other hand to the CONSOL solver (’compressible branch’), which
stems from the aerodynamics community. EULAG is based on an anelastic approximation
of the Euler equations. It uses a finite volume approach, which per se guarantees certain
conservation properties. CONSOL is based on the compressible Euler equations and also uses
a finite volume approach. Both solvers use implicit time integration methods: CONSOL for
the whole dynamical core, EULAG at least for the fast, quasi-linear processes. This solution
strategy in general helps in solving another issue which should be tackled by the project,
namely to improve the ability of the dynamical core to be stable in steep terrain. This
requirement is caused by the future applications of COSMO which will cover more and more
horizontal resolutions of 1 km and less, where one can expect increasingly steeper slopes.

During the project, the properties of the two proposed solvers should be inspected. For this
purpose, a ’decision tree’ was defined at the beginning starting from a set of well accepted
idealized tests until more complex semi-realistic tests which should be simulated by the
prototypes.

Therefore, the first 2 papers (sections 2 and 3) deal with idealized tests consisting of sta-
tionary flow over mountains, expansion of linear gravity waves, strongly nonlinear and un-
stationary falling bubbles, and convection containing cloud microphysics, simulated with the
EULAG model. The ability of the EULAG dynamical core to simulate meteorologically
relevant flow fields is demonstrated in section 4. Finally the functionality of the COSMO-
prototype with the implemented EULAG dynamical core is demonstrated with semi-realistic
model setups in section 5.

Whereas the EULAG model has been used for some meteorological simulations before, this
was not the case for CONSOL, for which a great challenge was the introduction of the
buoyancy term into the existing pure hydrodynamical solver. Therefore, only a reduced test
set could be inspected with this solver. Section 8 describes the solver and the idealized tests
performed with it.

Apart from the pure dynamical core (the solver of the EULER equations), tracer advection
is an important aspect of the numerics of a model, too. Section 6 investigates the basic ad-
vection scheme of EULAG, the MPDATA, for its usability as an alternative tracer transport
scheme in COSMO.

The accompanying section 7 compares wave expansion properties of the several anelastic ap-
proximations with the compressible equations and the basic divergence damping mechanism
used in the current COSMO dynamical core.
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After a lifetime of about four years (end of 2012), the overall status of the project is an
available prototype of COSMO-EULAG, ready for further testing in real case applications.
Due to constraints in man power resources, the CONSOL solver couldn’t achieve a similar
stage. Therefore, the COSMO Science Management Committee and STC decided to finish
the CDC project and to establish a folluw-up project, which concentrates on the ’COSMO-
EULAG operationalization’ (CELO).

M. Baldauf
Deutscher Wetterdienst
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2 Dry benchmark experiments with the anelastic EULAG
model

Bogdan Rosa, Marcin J. Kurowski, Micha l Z. Ziemiański

Institute of Meteorology and Water Management - National Research Institute, Poland

2.1 Introduction

This chapter describes results from dry idealized benchmark experiments performed with the
anelastic model EULAG. The goal of the study is to test the feasibility of an anelastic ap-
proach for very high-resolution (kilometer and sub-kilometer) operational numerical weather
prediction. The choice of tests draws on experiences with analogous problems Skamarock
et al. (2004) and is based on widely accepted benchmark solutions. The experiments were
performed in the framework of the COSMO Priority Project Conservative Dynamical Core.

The first experiment concerns the evolution of a two-dimensional density current induced
by a large bubble of cold air descending to the ground Straka et al. (1993). The second
experiment considers two interacting bubbles with different temperatures Robert (1993).
Both problems are strongly non-linear and do not have analytical solutions. The third test
examines the propagation of inertia-gravity waves in a periodic channel (Skamarock and
Klemp, 1994) of different length. The last problem regards the evolution of gravity waves
generated by a flow over a single Agnesi mountain (Bonaventura, 2000). Several flow regimes
(linear / nonlinear hydrostatic and linear / nonlinear non-hydrostatic), are examined. The
results are validated against the reference solutions obtained using compressible models.

2.2 Cold density current test

The simulations of a cold density current are based on a setup described in Straka et al.
(1993). This experiment is one of the well-known benchmarks often employed for testing
numerical models.

2.2.1 Experiment setup

As defined in Straka et al. (1993), the two-dimensional density current is initiated as a cold
bubble of air that subsequently descends to the ground in a homogenous and isentropic
atmosphere. After reaching the ground, the bubble spreads laterally and rotors induced by
a Kelvin-Helmholtz instability form on its upper boundary. The basic set of parameters and
configuration of the model are as in Straka et al. (1993). This involves constant potential
temperature of the basic hydrostatic state θ0 = 300 K and diffusion coefficient K = 75 m2s−1.
The appropriate environmental density profile is given by the Ogura-Philips formula Ogura
and Phillips (1962). The bubble is located at the center of the model domain which extends
from x = −25.6 km to x = 25.6 km. The vertical domain size is z = 6.4 km. In the original
experiment Straka et al. (1993) the lateral boundary conditions were set as u = wx = px =
θx = 0 and similarly the vertical ones, namely w = uz = pz = θz = 0 Here, the lateral
boundary conditions are periodic. A free-slip and rigid boundary conditions are imposed
at the ground and at the top of the computational domain, respectively. The numerical
calculations in Straka et al. (1993) exploit the symmetry of the problem about the vertical
line x = 0, which is not the case for the current simulations.
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2.2.2 Results

The study, following Straka et al. (1993), is focused on the first 15 minutes of the evolution of
the density current. Time evolution of potential temperature field and a process of formation
of the vortical structures is presented in Rosa et al. (2011). Because the problem is symmetric
with respect to the vertical axis it is sufficient to visualize and analyze evolution in only half
of the domain. The symmetry of the solution was monitored during the experiment but
no significant deviations have been observed. In order to verify the grid-convergence of the
EULAG solution, a set of experiments employing various spatial resolutions was performed.
Four different spatial resolutions were used, with the grid distances of 200, 100, 50 and 25 m,
the same in horizontal and vertical directions. The snapshots of the potential temperature
field after 15 minutes of evolution, obtained with different grid resolutions are presented in
Fig. 1.

a)
200 m

[k
m
]

b)
100 m

[k
m
]

c)
50 m

[k
m
]

d)
25 m

[k
m
]

[km]

Figure 1: Plots of the potential temperature θ at 15 min for four different grid resolutions
a) 200 m, b) 100 m, c) 50 m, d) 25 m computed using the EULAG model. Contour interval
of the isentropes is 1 K.

It is seen, that there are no significant differences between potential temperature distribution
obtained at resolutions between 25 m and 100 m. They all allow to identify the basic three-
rotor structure of the flow, with a very small differences between the solutions obtained
with 25 and 50 m resolutions. It shows that the EULAG simulation is grid-convergent and
the simulation with the spatial resolution of 25 m can be regarded as the reference one,
sufficiently resolving all scales of the flow, as is the case for the reference solution of Straka
et al. (1993) employing also the grid size of 25 m.

Apparently, for the lowest grid resolution, applied (200 m), the flow is underresolved as
after 15 minutes of the evolution only two well developed rotors are visible. This is similar
to Straka et al. (1993) where 100 m spatial resolution was necessary to start capturing
the three-rotor structure. On the other hand, solution provided by EULAG at 200 m has
no numerical noise on the contrary to respective solution from Straka et al. (1993). Such
robustness of the model is advantageous in NWP applications, where underresolved flow
structures are unavoidable.

The quantitative comparison of the results of the EULAG simulation with the reference re-
sults from Straka et al. (1993) are presented in Table 1. They concern extreme values of
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Table 1: Comparison of maxima and minima of p′-pressure perturbation, θ′-potential tem-
perature perturbation, u-horizontal component of velocity and w-vertical component of ve-
locity at 900 s for EULAG and Straka et al. (1993): REFC - the compressible model using
unstaggered grid (resolution 25 m), REFS - the compressible model using a staggered grid
(resolution 25 m), REFQ - the quasi-compressible model with unstaggered grid (resolution
25 m), for EULAG the grid size employed is shown. In the last row, location of the den-
sity current front (the θ′ = −1oC contour) from the EULAG simulations performed at four
different grid resolution is given. REFC, REFS and REFQ values taken from Straka et al.
(1993).

EULAG
Variable REFC REFS REFQ 25 [m] 50 [m] 100 [m] 200 [m]
p′max(mb) 2.87 2.49 1.74 1.67 1.66 1.47 1.49
p′min(mb) -5.14 -5.55 -5.21 -5.40 -5.34 -5.18 -5.04
θ′max(K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
θ′min(K) -9.77 -9.77 -10.00 -9.96 -9.52 -9.24 -8.26
umax(m/s) 36.46 35.02 34.72 35.06 35.26 35.26 33.48
umin(m/s) -15.19 -16.32 -15.31 -15.29 -15.11 -14.60 -13.68
wmax(m/s) 12.93 13.28 13.04 13.07 12.96 12.56 14.04
wmin(m/s) -15.95 -16.11 -16.89 -15.94 -15.78 -15.41 -15.14
Front location (km) - - - 15.16 15.17 15.26 15.55
after 15 min

pressure perturbation, potential temperature perturbation and both components of velocity,
after 15 minutes of the flow evolution. The names of the reference models presented in the
current paper are consistent with the original notation used in Straka et al. (1993). The
reference model simulations from Straka et al. (1993) are: compressible with unstaggered
grid (REFC), compressible with staggered C-grid (REFS) and quasi-compressible with un-
staggered grid (REFQ), each operating at 25 m resolution. EULAG results are presented
for grid size ranging from 200 m to 25 m.

For most of the parameters, the EULAG simulation with 25 m resolution gives their values
inside the interval defined by the values obtained with the reference compressible simula-
tions employing staggered or unstaggered grid (it concerns minimum pressure perturbation
(p), minimum and maximum wind (u), maximum vertical velocity (w); minimum (w) differs
from the reference value from Straka by 0.01 m/s). The difference of the maximum poten-
tial temperature perturbation between EULAG and the reference compressible model from
Straka et al. (1993) Straka is very small (in the range of 2%). The largest difference between
compressible and EULAG solution concerns the maximum pressure perturbation being in
the range of 1.2 hPa. To some degree it can result from the anelastic approximation of EU-
LAG. On the other hand, the difference between the staggered and unstaggered compressible
simulation reaches about 0.4 hPa.

Another quantitative analysis of model accuracy is based on comparison of the location of
a cold front perturbation (after 15 minutes evolution of the current). A front location is
defined as the place near the edge of the current where the perturbation potential temper-
ature at the ground reaches 1 K. It is represented by the value of the x-coordinate at the
location. In Fig. 2a, a front location from EULAG simulations are compared with the re-
sults of Straka et al. Straka et al. (1993). The reference data are taken from Table IV of
Straka et al. (1993) and concern the simulations performed with the resolution of 200 m,
except the results of fully compressible and quasi-compressible models REFC25, REFQ25,
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computed with the grid size of 25 m. The EULAG results are presented for four different
grid resolutions and are labeled as follows: 200 m − EULAG200, 100 m − EULAG100,
50 m − EULAG50 and 25 m − EULAG25. Additionally, the extreme values of potential tem-
perature perturbation are plotted in Figs. 2b and 2c, for its minimum and maximum values,
respectively. The differences between the solutions of different models, illustrated in Fig. 2,

a)

Front
location
[km]

Model
b)

θ′min [K]

Model
c)

θ′max [K]

Model

Figure 2: Quantitative comparison of front location and extreme values of potential tem-
perature perturbation at t =15 min. Names of the models corresponds to acronyms used by
Straka et al. (1993).

result both from differences in their analytical formulations and in their numerical design.
However, analysis of Fig. 2a, showing the cold front location, leads to a general conclu-
sion, that the differences resulting from analytical formulations of the models (compressible,
anelastic, quasi-compressible) influence the solutions much less than the differences in the
numerical schemes, employed. Note, that the majority of the models calculated with 200 m
resolution (of all three analytical types, considered, including EULAG) give similar results
in the range 14.5 km to 15.5 km, while the two outliers (giving very similar results of about
17.0 km) result from analytically differing compressible and quasi-compressible models. The
detailed comparison of the simulations employing 200 m resolution with the reference, grid-
convergent solution REFC25 (employing 25 m resolution and representing the ’true’ value
of about 15.5 km), confirms the above. Front positions similar to the reference one were
achieved by both compressible (FCT) and anelastic models (both SPEC and EULAG). On
the other hand, the results of the compressible model REFC and of the quasi-compressible
model REFQ, calculated with 200 m resolution, differ significantly from the reference result.
For both models, a relatively large error was a result of the under-resolving setup. This is not
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the case for EULAG, as the difference between the solutions obtained with the 200 m and
25 m resolutions is relatively small. It shows reliable numerical properties of the model and
confirms a grid-convergence of the solution that is very close to the reference compressible
result.

The analysis of Fig. 2b, showing the minimum potential temperature perturbation after 15
minutes of evolution, leads to a similar conclusion. The majority of models using different
analytical formulations give similar results being in the range of -14 K to -8 K (in a general
agreement with the reference solution of -9.77 K). There are also outliers, resulting from
quasi-compressible models, with much smaller values of the parameter. However, as not all
quasi-compressible models are outliers, such a difference is a consequence of the numerics
rather than of the analytical formulation. It is worth noting, also, that the outliers give
reasonably good solutions for the front locations. This shows that the model comparison
should not be limited to a single parameter only. Concerning EULAG simulations we observe
both a good agreement with the reference solution from Straka et al. (1993) (-9.96 K for
EULAG) and a grid-convergence to the EULAG reference solution employing 25 m grid size
(see Tab. 1).

The analysis of Fig. 2c, showing the maximum potential temperature perturbation, allows
for another quantitative comparison of the models. For this parameter the correct solution
is known, as due to the adiabaticity of the process the actual value of the parameter is
zero. Note, that the majority of the simulations performed with 200 m resolution gives
incorrect results, including the compressible REFC model. However, as discussed above,
these models give basically credible results for the front location and minimum θ′. The
maximum potential temperature perturbation was correctly reproduced only by EULAG
(anelastic), FCT (compressible), MUPL (quasi-compressible high-order accurate) and PPM
(compressible high-order accurate).

The above analysis leads to the conclusion that for the problem at hand, the analytical
formulation of the model equations does not have a significant impact on the simulation
results, on the contrary to the numerics. The anelastic approximation allows for a correct
representation of the dynamics of the system, provided the appropriate numerical design of
the model, as is the case for EULAG. This result is in a general agreement with the analysis
by Cullen et al. (2000) of the simulations of realistic mesoscale flow over the Scandinavian
topography.

Optimal size of a time step for model integration is of great importance as it may signifi-
cantly affect computational efficiency. The EULAG solutions presented above were obtained
employing the same time step size as in Straka et al. (1993), i.e. 0.125 s. Additionally, several
experiments with time steps increased by a factor of 2 up to 8 were performed. The tests
were conducted at 100 m resolution and the results are presented in Rosa et al. (2011) Qual-
itative comparison of potential temperature field between solutions obtained for the original
time step and the one being 8 times greater does not reveal any significant differences Rosa
et al. (2011). A quantitative comparison in terms of a cold front location is presented in
Table 2. The differences between the simulations for Courant numbers ranging from 0.045
to 0.36 are smaller than the grid spacing and the maximum relative difference between the
solutions does not exceed 0.2 %. The presented results confirm that EULAG is not sensitive
to such an increase of the Courant number.
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Table 2: Front location at t=15 min and Courant number (CFL) for different time steps.
Resolution is fixed at 100 m.

Time step size CFL (Vmax = 36m/s) Front location [m]
dtStraka = 0.125 s 0.045 15279
2dtStraka = 0.25 s 0.09 15276
4dtStraka = 0.5 s 0.18 15269
8dtStraka = 1 s 0.36 15260

2.3 Bubble convection test

The goal of the second experiment is to test the feasibility of the anelastic approach for
modeling a system of two interacting density currents (warm and cold). Configuration of the
experiment follows the setup proposed originally by Robert (1993). The original experiment
was performed employing fully compressible model, defining a suitable benchmark for the
EULAG anelastic solution.

In the experiment the atmosphere is isentropic, thus the potential temperature of the refer-
ence state is θ = 300 K. The reference profile of density for the EULAG simulations is the
same as used for the cold density current (Straka test). Moist processes such as condensation,
evaporation or rain formation are not considered. The initial conditions are set similarly to
the Robert’s experiment Robert (1993). The two bubbles are defined as perturbations of
potential temperature with a Gaussian profile. The maximum values of temperature pertur-
bation are 0.5 K for the warm bubble and −0.15 K for the cold one. Domain covers an area
of 1 km × 1 km. Simulations are performed at three different resolutions 16 × 16, 8 × 8 and
4× 4 m2. Free-slip, rigid boundary condition are imposed on each side of the computational
domain. The time step is set to ∆t = 1 s. Pure Eulerian set of governing equations is used
without any sub-grid scale model for viscosity. There is no external flow so that dynamics
is governed only by density currents.

Figure 3 presents results of the EULAG simulation performed at the resolution 8 × 8 m2,
as results employing two other resolutions do not reveal substantial differences, during the
10 minutes of simulations. Robert (1993) performed the original experiment at the resolu-
tions of 10 × 10 and 5 × 5 m2. Comparing Fig. 3 with the benchmark results from Robert
(1993) (Figs. 8 and 9 therein) we conclude that the differences between fully compressible
and anelastic models are visually hardly to notice, which confirms the EULAG abilities to
correctly represent the complicated and highly nonlinear processes.

2.4 Numerical modeling of inertia-gravity waves

In this section we demonstrate EULAG capabilities for simulating two-dimensional inertia-
gravity waves. The waves are excited in air flowing through a long, periodic channel via an
initial perturbation of potential temperature. The experiment was proposed by Skamarock
and Klemp (1994) and is widely used for testing numerical schemes of the meteorological
models.
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a) b)

c) d)

Figure 3: Time evolution of potential temperature perturbation θ′ at t = 0, 240, 420 and
600 s. The initial distribution is depicted in panel a. The flow is induced by a rising
large warm bubble and a descending small cold bubble. The asymmetry results from initial
horizontal displacement between centers of the two bubbles.

2.4.1 Experiment setup

The computational domain is a periodic flat channel with solid, free-slip upper and lower
boundaries. The simulations are performed for two different lengths of the channel, namely
300 km and 6000 km, and the same domain height of 10 km. The atmosphere inside the
channel is uniformly stratified with a Brunt-Väisälä frequency equal to 0.01 s−1. Constant
horizontal ambient flow at an inlet is set to 20 m/s. The spatial distribution of the potential
temperature perturbation, which leads to excitation of the gravity waves is defined as

θ′(x, z, t = 0) = ∆θ0
sin(πz/H)

1 + (x − xc)2 /a2
, (1)

where H = 10 km is a domain height and ∆θ0 = 10−2 K is small amplitude of initial
perturbation. The center of the initial perturbation xc depends on the length of the channel
and is 100 km for the short (300 km) and 2000 km for the long (6000 km) one.The half-width
of the initial perturbation a also depends on the domain length and is a = 5 km and 100 km
for the short and the long channel respectively. For the short channel, the resolution of
computational grid in horizontal and vertical direction is the same. Simulation in a long
channel is performed on a grid with an aspect ratio ∆x/∆z = 20. Coriolis force is considered
in both simulations, but its significant contribution to the flow dynamics is observed only
for the long channel. Similarly to the previous experiments, there is no surface friction nor
viscosity. More details about the experiment setup can be found in Skamarock and Klemp
(1994).
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2.4.2 Short channel

First, we analyze EULAG results for simulations performed for the short channel and the
Boussinesq set of governing equations. In order to test the grid convergence of the solution,
three different grid resolutions, namely ∆x = ∆z = 1 km, 0.5 km and 0.25 km are used.
Figure 4 compares the perturbation of potential temperature at t = 50 min for the analytical
solution (a) with numerical results (b− d), computed at the three grid resolutions. It is seen,
that the numerical solutions converge to the analytical one with decreasing grid sizes.

a)

[km]

b)

[km]

c)

[km]

d)

[km]

[km]

Figure 4: Spatial distribution of the potential temperature perturbation θ′ after t = 50 min
plotted (using contour values between −0.0015 K and 0.003 K) with a contour interval of
0.0005 K. Comparison of analytical solution a), with numerical solutions based on Boussinesq
approximation computed using three different grid resolutions b) ∆x = ∆z = 1 km, c) ∆x =
∆z = 0.5 km, d) ∆x = ∆z = 0.25 km; negative values dashed.

In the original numerical experiment by Skamarock and Klemp (1994), the grid size was fixed
to ∆x = ∆z = 1 km. Our result at this resolution (Fig. 4c) is very similar to that benchmark
(see their Fig. 1c). Nevertheless, such grid size still does not allow to fully resolve the flow,
which motivated us to apply higher resolutions, as described above.

Additionally, Fig. 5 compares the analytical solution for the potential temperature pertur-
bation at constant height of 5 km above the surface (red line), with the EULAG results at
three grid sizes, employed (black lines). Although small differences between numerical and
analytical solutions are noticeable, the convergence to the analytical one is clearly visible.
As the resolution of computational grid increases, the differences between numerical and
analytical solutions diminish quickly, except the most central part of the wave-train, where
0.25 km grid size still underresolves the flow.
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Figure 5: Profiles of potential temperature perturbation θ′ along 5000 m height for the
analytical solution and three different grid resolutions presented in Fig. 4.

2.4.3 Long channel

For the experiment involving 6000 km domain we used longer time step t = 200 s (previously
1 s), longer simulation time equal 1000 min, and different initial location of temperature
perturbation (xc = 2000 km). The computational grid has the same number of nodes in
every direction, what implies a relatively large aspect ratio ∆x/∆z = 20. As discussed in
Skamarock and Klemp (1994), simulating atmospheric flows on grids with such high aspect
ratio could be challenging for compressible models based on explicit numerical schemes. For
such models, vertically propagating acoustic modes are disruptive for the slower modes of
physical interest. Here, we intend to show that the numerics of EULAG provide a stable
and accurate solution.

Figure 6 presents a comparison between the analytical and EULAG’s numerical solutions
for the potential temperature perturbation at 1000 min computed on grids with sizes of
(20 km × 1 km, 10 km × 0.5 km and 5 km × 0.25 km), in horizontal and vertical directions,
respectively. For different resolutions, the general pattern is similar but some differences
in temperature gradients on the lateral sides of the perturbation are noticeable. With in-
creasing resolution, the differences between the analytical and numerical solutions diminish
significantly and we can conclude that the EULAG numerical solution is grid-convergent
to the analytical formula. Similar to the short channel experiment, the highest resolution
employed locally underresolves the potential temperature distribution, this time at the sides
of the wave-train.

It is also interesting to analyze the grid convergence more quantitatively. Figure 7 presents
the distribution of the potential temperature perturbation along the horizontal line at 5 km
height. It confirms the grid-convergence of the numerical solutions, showing also that the
largest differences between the analytic and numerical solutions can be found in the regions
of high horizontal gradients of θ′.

Additional results from EULAG simulations performed using linearized version of the gov-
erning equations and pseudo-incompressible system of Durran (1989) one can find in Rosa
et al. (2011).

2.5 Modeling of mountain gravity waves

The aim of that class of experiments is a comparison of the anelastic EULAG simulations of
mountain flows with results of compressible models by Bonaventura (2000) and Pinty et al.
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Figure 6: Spatial distribution of the perturbation of potential temperature θ′ after t =
1000 min plotted with a contour interval of 0.0005 K. Comparison of analytical solution
a) with the numerical solution based on Boussinesq approximation computed with three
different grid resolutions b) ∆x = 20 km, ∆z = 1 km, c) ∆x = 10 km ∆z = 0.5 km, d) ∆x = 5 km
∆z = 0.25 km; negative values dashed.

θ′ × 103

[K]

[km]

Figure 7: Profiles of potential temperature perturbation θ′ along 5000 m height for the
analytical solution and three different grid resolutions presented in Fig. 6.

(1995). The experiments are performed for different flow regimes, such as linear hydrostatic,
linear nonhydrostatic, nonlinear hydrostatic and nonlinear nonhydrostatic.
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2.5.1 Experiment setup

The flow configurations are based on Bonaventura (2000) and Pinty et al. (1995). The shape
of the hill is defined by the Agnesi formula:

h(x) = h0
1 + [(x − x0)/a]2 , 0 ≤ x ≤ L, (2)

where h0, x0 and a are height, center location and half width of the hill, correspondingly.
The parameters defining shape of the hill define also a flow regime, so they differ between
the simulations.

For all simulations, the reference potential temperature is given by the Clark-Farley formula.
Height of the computational domain is 25 km, while its length depends on the particular
flow regime. In order to avoid reflections of the gravity waves from the upper and lateral
boundaries, absorbing layers are applied. Thickness and strength of the lateral damping
layer depends on the flow regime. In vertical direction, the absorbing layer is the same for
each experiment and covers the whole domain above 10 km height. There is no Coriolis
force, nor explicit viscosity nor surface friction in the simulations.

2.5.2 Linear hydrostatic regime

The linear hydrostatic regime is characterized by the nondimensional parameter aN/U ≈ 10
and a very small aspect ratio of h0/a. An initial horizontal velocity U is 32 m/s. Height and
half width of the hill are h0 = 1 m and a = 16 km, correspondingly. Computational grid has
significant anisotropy. Its size in the horizontal direction is ∆x = 3 km while in the vertical
direction it is ∆z = 250 m. While the grid size in the vertical direction is much larger then
the height of the hill, its presence is defined via terrain following coordinates. Brunt-Vaisala
frequency is set to N = 0.0187 s−1 and the time step ∆t = 40 s.

An analytical stationary solution for the wind perturbation for linear hydrostatic wave regime
was developed by Klemp and Lilly (1978), for compressible atmosphere. Therefore, accuracy
of the numerical solution can be directly verified against this result. Figure 8 shows a
comparison of EULAG horizontal wind after 11.11 hours integration with that analytical
solution. The general agreement between the solutions is apparent and is seen especially in
the velocity pattern. The small differences concern mainly wave amplitudes, which are about
5% smaller for EULAG, in the areas outside the absorber. While Pinty and Bonaventura
did not present a direct comparison of their simulation results with the analytical solution,
we can conclude that the EULAG velocity distribution is in a close agreement with their
compressible solutions.

2.5.3 Linear nonhydrostatic regime

For the linear nonhydrostatic flow regime we chose the nondimensional parameter aN/U to
be of the order of 1, and the hill aspect ratio slightly smaller than 1. Thus, the hill shape
parameters are a = 500 m and h0 = 100 m for N = 0.0187 s−1 and U = 14 m/s. Resolution
of computational grid is ∆x = 100 m in horizontal and ∆z = 250 m in vertical direction,
to follow possibly closely a configuration applied by Bonaventura (2000). Time step used
for the integration is ∆t = 4 s. Distribution of the velocity and vertical momentum flux is
analyzed after 1.2 h. In normalized time scale it corresponds to t∗ = Ut/a = 120 and we can
expect that they are close to the stationary solutions.
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Figure 8: Perturbation of horizontal component of velocity after 11.11 hours. Comparison
of numerical EULAG’s solution (solid lines) with analytical solutions (dashed lines).

Vertical and horizontal components of velocity from EULAG are plotted in Figs. 9a and 9b.
Their comparison with the compressible results from Bonaventura (2000) (Fig. 5 therein)
shows that the characteristic features of the flow are properly reproduced and this concerns
especially the pattern amplitude of the vertical velocity distribution. The small difference
between the anelastic and compressible solution by Bonaventura is noticeable in the direction
of the wave propagation, as in the EULAG solution, the waves propagate more steeply.
Precise determination of this difference is somehow problematic due to limited resolution of
Bonaventura’s figure. Nevertheless, it can be said that the difference in the direction of the
wave propagation does not exceed 5 degrees.

a) b)

Figure 9: Velocity flow field in linear nonhydrostatic regime. Vertical a) and horizontal b)
component of velocity (after 1.2 hour) computed using EULAG code, contours every 0.1 m/s.

2.5.4 Nonlinear hydrostatic regime

Nondimensional parameter aN/U for this test is equal 10. The mountain shape parameters
are a = 16 km and h0 = 800 m, while U = 32 m/s. Brunt-Vaisala frequency for this simulation
is slightly increased N = 0.02 s−1. Grid size is ∆x = 2.8 km in the horizontal and ∆z = 200 m
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in the vertical direction. The whole domain covers the area of 1728 × 25 km. The equations
are integrated over 23.9 h with the time step ∆t = 30 s.

Figure 10 presents EULAG results for vertical and horizontal components of velocity pertur-
bation. The comparison of the vertical velocity perturbation (Fig. 10b) with corresponding
results from Pinty et al. (1995) (see their Fig. 8b) shows that both solutions are character-
ized by similar velocity pattern, as well as positions and magnitudes of the velocity extrema.
This is also the case for the horizontal velocity perturbations, as both models place its first
maximum at 8 km height with maximum value of about −3.5 m/s and the first minimum at
∼ 9 km height with value −25 m/s for EULAG and ∼ −26 m/s for Pinty et al. (1995). Also,
the EULAG solution is more smooth in the upper part of the domain.

a) b)

Figure 10: Spatial distribution of velocity perturbation in the hydrostatic nonlinear regime
a) horizontal component with contour interval every 5 ms−1, b) vertical component with
contour intervals every 50 cms−1. The dashed line indicate negative values.

2.5.5 Nonlinear nonhydrostatic regime

The nonlinear, nonhydrostatic flow regime is characterized by nondimensional parameter
aN/U equal 1.5. Complexity of the flow results from the high steepness of the hill char-
acterized by a = 1000 m and h0 = 900 m giving a relatively high aspect ratio h0/a = 0.9.
Initial velocity at the inlet is set to U = 13.28 m/s. Brunt-Väisälä frequency is N = 0.02 s−1.
Resolution of the computational grid is ∆x = 200 m in horizontal and ∆z = 100 m in vertical
direction. Size of the domain is 127.8 × 25 km. The experiment is run for 2400 s with
the time step of 4 s. In EULAG simulations the hill is represented using the terrain follow-
ing coordinates, while the Bonaventura’s model uses Cartesian rectangular coordinates with
step-like representation of the orography.

Figure 11 shows the EULAG solutions for vertical and horizontal components of velocity after
2400 s of calculations and, similarly to Bonaventura, focuses the analysis on the lee-side of
the hill. The comparison with the compressible model of Bonaventura (2000) shows that even
for this highly complicated flow regime and differing representations of orography, the main
characteristic features of the flow are the same for both models. For horizontal velocity,
they show similar spatial perturbation structure, with the area of positive perturbation
elongated just above the lee-side slope. In EULAG solution, center-line of the area is closer
to the ground comparing with the Bonaventura’s solution and the difference may result from
different representations of orography pattern. Maximum value of the horizontal wind inside
the perturbation area and located close to the mountain peak is 25 m/s in EULAG and
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a)

b)

Figure 11: Velocity flow field in nonhydrostatic nonlinear regime a) EULAG - horizontal
wind perturbation with contour interval 1 m/s, b) EULAG - vertical velocity with contour
interval of 1 cm/s.

27.9 m/s in Bonaventura’s solution. Region of negative horizontal velocity is also similar in
location and shape with the corresponding region in the Bonaventura’s solution Bonaventura
(2000)( Fig. 15 therein). The minimum value of the horizontal velocity in EULAG is ∼
−3 m/s while in the Bonaventura’s solution is slightly smaller and equal ∼ −5 m/s.

Vertical velocity field on the lee side of the hill (Fig. 11) is organized into a quadrupole
structure. The flow pattern, as well as the position of minima and maxima are consistent
with results obtained with compressible model (see Fig. 16 in Bonaventura (2000)).

In summary, the results show that anelastic approximation does not impose any significant
limit for accurate modeling of the mountain gravity waves for tested flow regimes, including
the nonlinear nonhydrostatic one, featuring also a strong wave-breaking process.

2.6 Summary and conclusions

The paper presents results of the study aimed at testing the anelastic dynamical core of the
multiscale research flow model EULAG. The study is focused on the two-dimensional dry
flows, free of phase transitions of water vapor. All the tests show that the results obtained
using the anelastic EULAG core agree to a high degree with the benchmark compressible
solutions, for all analyzed classes of the flow. This is also the case for comparisons with the
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analytical solutions, where they are obtainable, that is for the inertia gravity waves, as well
as for the orographic waves in the linear and hydrostatic flow regime. Additionally, the tests
confirm the robustness of the EULAG numerical design.

The test of Straka et al. (1993) allows to thoroughly analyze the properties of EULAG via
comparison of its solutions with results of an ensemble of fluid models of different analytic
and numerical designs. The analysis confirms that the differences between the reference
compressible benchmark solution and results of other simulations depend rather on their
numerical designs and not significantly on their analytical formulations, with the anelastic
EULAG solutions being very close to the benchmarks ones. In this sense, the experiment
confirms findings by Cullen et al. (2000) concerning an influence of numerical model design
on realistic representations of mesoscale flows over Scandinavian Peninsula. Our analysis
shows also that EULAG solutions well represent the flow structure, even underresolved by
the model. That virtue characterizes a small minority of the tested models, not even the
benchmark one of Straka et al. (1993).

In summary, the analysis of EULAG results and its comparison with the benchmark solu-
tions confirms that the model has a number of characteristics desirable from the view point
of mesoscale NWP applications. They involve the high degree of conformity with the bench-
mark results, as well as consistent and smooth representation of subscale process, always
present in NWP applications.
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3 Moist benchmark experiments with the anelastic EULAG
model

Marcin J. Kurowski, Bogdan Rosa, Micha l Z. Ziemiański

Institute of Meteorology and Water Management - National Research Institute, Poland

3.1 Introduction

In this section, the results of two moist benchmark tests (Klemp and Wilhelmson 1978,
hereafter KW78; and Weisman and Klemp 1982, hereafter WK82) performed by the EULAG
model for convection-permitting scales are documented. The both experiments consider
development and evolution of a three-dimensional supercell over a flat terrain. Our strategy
follows the idea of Skamarock et al. (2004), in which supercell experiments define one of the
tests regarding standard verification of nonhydrostatic dynamical cores. Since the problem
is strongly nonlinear and moist processes are coupled with three-dimensional dynamics, the
supercell simulations are considered one of the most complex cases proposed in the test
set. This is also because supercell formation involves a variety of coupled microphysical and
dynamical aspects, including ice processes, gust fronts and cold pool dynamics, mesocyclone
formation, forward and rear downdrafts, storm splitting, surface inflow, and multi-phase
precipitation. However, a basic requirement of the test is to reduce relevant physics in order
to facilitate evaluation of the results. In consequence, a set of simplifications was imposed
on the experimental setup, e.g., moist physics is limited to bulk parameterization allowing
only for warm rain formation. Nonetheless, the simplified setup is suitable for studying
supercell development and to qualitatively reconstruct the most typical storm features, as
shown in KW78 and WK82. The results of severe convection simulations presented in this
report along with a set of additional sensitivity studies performed by EULAG were already
published in the scientific literature (Kurowski et al. 2011).

3.2 General model setup

The two experiments presented in this report (i.e., KW78 and WK82) use a highly consistent
numerical setup but different initial and boundary conditions. All simulations are carried
out in a horizontally homogeneous environment and in the absence of orography. The ref-
erence profiles are based on observations and represent realistic conditions for severe storm
development. The moist framework of EULAG is based on the Lipps and Hemler (1982)
approach. The EULAG’s reference (environmental) state is defined by the profiles of tem-
perature and potential temperature (what allows for a derivation of reference pressure used
in the moist thermodynamics), water vapor mixing ratio and both components of horizontal
velocity. The initial perturbation of the potential temperature has a form of bubble with
positive temperature excess in the center gradually decreasing to zero at its edge. It is placed
near the ground in order to initiate convection. The Coriolis effect is not taken into account.

The bulk moist thermodynamics is represented in the model by three prognostic variables:
water vapor (qv), cloud (qc) and rain (qr) mixing ratios (cf. eqs. 1b, 1c and 1d from
Grabowski and Smolarkiewicz, 2002). Condensation and evaporation processes are based
on an instantaneous saturation adjustment (i.e., no supersaturation) while rain development
is represented through a Kessler scheme. Respective mathematical formulas describing the
processes of autoconversion, accretion, evaporation and rain subsidence along with a set of
accompanying parameters follow KW78.
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The subgrid-scale (SGS) mixing scheme (Margolin et al., 1999) is based on the prognos-
tic equation of a volume averaged turbulent kinetic energy (TKE), which is subsequently
used to prescribe the subgrid-scale turbulent mixing coefficient for momentum: Km =
cmTKE1/2(∆x∆y∆z)1/3, where cm is a constant. As in KW78, the Prandtl number (i.e. Pr =
Km/Kh, where Kh is the subgrid-scale mixing coefficient for scalars) is 0.33. Because some of
the SGS parameters of the KW78 scheme are not given explicitly, the subgrid-scale model
used in KW78 may differ from the model employed in EULAG.

Rigid and free-slip boundary conditions are imposed at the top and bottom of the domain.
The model’s lateral boundaries are defined as follows: each explicit variable (i.e. the potential
temperature, momentum, mixing ratio, etc.) has an inflow boundary value which is defined
by a constant in time environmental profile; processes taking place within the domain do not
affect the inflow conditions; the actual state of the flow is a superposition of the reference
state and a perturbation; the perturbations are advected out of the domain at the outflow
boundary by a prescribed environmental flow. We will further refer to this type of boundary
condition as open. When absorber of the Davies type (Davies, 1976; Smolarkiewicz and
Margolin, 1997; see discussion after eq. 9 and eqs. 17a-17d) is applied then the perturbations
are attenuated to zero in this region. It helps to control an excess and propagation of gravity
waves in a stably stratified atmosphere. If not otherwise stated, the sponge layer is not
applied. This is because the effects of gravity wave propagation were found to be insignificant
for the short-term integration time. We also tested periodic boundary conditions, and, as
will be shown further, the choice between open and periodic b.c. is of negligible importance
to the EULAG’s solutions.

3.3 Klemp and Wilhelmson (1978) experiment

3.3.1 Setup details

The KW78 experiment represents a classic study on a supercell formation, however, it does
not provide the details of initial soundings applied in the model. The approximate profiles
subjectively reproduced from a skew-T diagram (cf. Fig. 1 in KW78) are given in Table 3. A
well-mixed boundary layer extends in the lowest part of the atmosphere (up to 1600 m), with
two layers of different stability aloft, having an interface at about 6 km. Convective available
potential energy (CAPE) is about 1400 J with the lifted condensation level located at 870
mb. It should be stressed that skew-T representation is a source of insufficient information
and a small modification of the initial conditions significantly affects CAPE. For instance, an
ensemble of a few profiles within an envelope not exceeding 0.3 K, with respect to the values
given in Table 3, changes CAPE by about 5%. The initial perturbation of the potential
temperature is defined in the same way as in KW78 (cf. eq. 4.1 and 4.2 therein) and is
placed near the ground in the center of the domain. Moist initial fields are not affected
by this perturbation and water vapor mixing ratio changes only according to the sounding.
Surface pressure is 965 hPa. The model timestep is 10 s and a total integration time is 24
min for a case with no external flow, 36 min for the simulation with a shear flow and 40
min for a case with a veering wind profile. Two sets of simulations are reported here. One
does not include any explicit turbulent diffusion (NSG). The other uses the SGS scheme.
Basic domain size is 24 km × 24 km × 10 km with a uniform grid spacing ∆x = ∆y = 1 km
and ∆z = 500m. Since the size of a developing supercell is relatively large compared to the
domain, we also performed sensitivity study for domains of 36 km × 36 km × 10 km and
256 km × 256 km × 10 km with the same spatial resolution as for the basic simulations. This
is to verify how convective development depends on the proximity of lateral boundaries and
on the volume of the surrounding where subsiding air may differently respond to the strong
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convective updraft.

Table 3: Initial profiles of height (z), pressure (p), potential temperature (θ), temperature
(T), dew point temperature (Td) and water vapor mixing ratio (qv) used in KW78 experi-
ment. Surface pressure is 965hPa.

z p θ Td qv
[m] [Pa] [K] [K] [g/kg]

0 965 300.19 290.15 1.32 · 101

137 950 300.22 289.45 1.28 · 101

600 900 300.25 287.05 1.14 · 101

1083 850 300.17 284.25 9.99 · 100

1587 800 300.83 281.05 8.48 · 100

2116 750 302.85 276.95 6.76 · 100

2675 700 305.44 271.25 4.77 · 100

3267 650 308.36 256.15 1.84 · 100

3897 600 311.44 244.85 6.26 · 10−1

4574 550 314.89 230.35 1.66 · 10−1

5303 500 318.83 215.95 3.73 · 10−2

6097 450 323.3 201.65 6.83 · 10−3

6968 400 328.52 187.25 9.47 · 10−4

7937 350 334.41 172.85 9.41 · 10−5

9029 300 341.43 158.35 5.99 · 10−6

10285 250 351.73 142.15 1.38 · 10−7

3.3.2 Atmosphere-at-rest case

Comparison of EULAG’s results for simulations with and without explicit subgrid-scale mix-
ing is presented in Fig. 12 and should be compared with Fig. 2 from KW78. Note that zero
isoline is not plotted for positive defined fields such as cloud and rain mixing ratios in con-
trast to the plots from KW78. The results of the simulations are in qualitative agreement
with KW78, that is, the dynamic and thermodynamic fields have similar patterns. A general
picture of the process compares well with the reference experiment, however, some differ-
ences can be found in details. SGS model reduces the strength of convection and leads to
suppressed cloud and rain development. This effect is physical and shows an influence of
enhanced subgrid-scale diffusion on water species. A better consistency with KW78 is ob-
tained when no sugbrid-scale diffusion is applied, however, the results still suggest a possible
deficiency in the initial sounding. The EULAG’s dynamical fields such as vertical velocity
are similar to KW78, except that maximum updraft velocity is 24 m/s in KW78, 21 m/s
and 18 m/s in NSG and SGS simulation, respectively. As for the moist fields, the vertical
extent of convection as seen by the cloud top level (defined by the height of qc = 0.5 g/kg
isoline) reaches 6.5 km (SGS) or 7.5 km (NSG). These are smaller than about 8 km in KW78.
Similarly to KW78, a vortical structure of cloud water is visible around the cloud base for
NSG. Such a pattern is also present in SGS simulation, but for a smaller isoline interval than
used in Fig. 12. The most significant differences regard maximum values of the rain field,
which are strongly reduced especially for SGS case. This is a straightforward consequence of
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NSG

SGS

Figure 12: Starting from left column: vertical cross section of u (m/s), w (m/s), qc (g/kg)
and qr (g/kg) at y = 0 for simulation in resting atmosphere. Results for NSG (upper row)
and SGS (right column) are plotted at t = 24 min. Intervals between the isolines exactly
correspond to those used in KW78. Negative values of velocity are dashed.

lower amount of cloud water converted into rain water, accordingly to the Kessler formula.
Maximum isoline of qr is 12 g/kg in KW78, 8 g/kg in NSG and 4 g/kg in SGS case.

A significant difference in the moist fields between SGS and NSG models illustrates an im-
portant role of diffusion in controlling the supercell formation. This is especially important
for the large-gradient fields as narrow convective updraft that impinges upon the dry envi-
ronment. The diffusion can reduce buoyancy of a rising thermal what in turn limits moisture
supply. On the other hand, our sensitivity study shows that at 24 min the cell undergoes a
vigorous development characterized by intensive growth of maximum updraft velocity and
maximum values of water species. Therefore, even relatively small differences in model speed-
up may lead to significant differences between models, at this moment. The comparison of
the results at a more mature stage of the cloud development would be more illuminating, but
KW78 does not offer such results for the atmosphere-at-rest case. Nonetheless, this example
illustrates the complexity of a seemingly simple problem, where the coupling between dynam-
ics and moist thermodynamics with precipitation may result in noticeable model-to-model
differences in physically important fields such as cloud and rain water.

3.3.3 Shear flow case

A low-level shear is an essential component of a supercell formation as it is responsible for
the storm splitting with subsequent separation of updraft and downdraft structures. This
process is initiated when a vorticity tube associated with the low-level vertical shear flow is
tilted up by a convective current and subsequently deformed into two separate horizontally
counter-rotating branches of the air (e.g. Klemp, 1987). A low-level shear is a necessary
prerequisite of the process but it also affects the vertical structure of the supercell, which
may be torn apart when the shear is too strong (Weisman and Klemp, 1982). In the current
simulations, a horizontal velocity in x-direction changes linearly from -5 m/s at z = 0 km to
5 m/s at 3.25 km and remains constant (5 m/s) above.

Horizontal cross sections of vertical and horizontal velocites, and cloud and rain water mixing
ratios at 24 min and 36 min are presented in Fig. 13 and Fig. 14, respectively, and should
be compared to Fig. 4 and 5 from KW78. Cloud water shown in Fig. 13 is replaced with the
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Figure 13: As in Fig. 12 but for sheared environment at 24 min.

NSG

SGS

Figure 14: As in Fig. 13 except at 36 min and the third column is potential temperature
perturbation (θ′) in (K).
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SGS

Figure 15: Horizontal cross sections at z = 2.75 km for one-directional shear simulations at
36 min. From left to right: vertical velocity, potential temperature perturbation, cloudy and
rain water are presented for NSG (top row) and SGS (bottom row) model.

potential temperature fluctuation in Fig. 14, in agreement with Fig. 5 from KW78. Again,
all the fields are in qualitative agreement with KW78 and a general picture of supercell
formation in sheared environment is similar in both cases. The main differences regard
the amount of rain water that is lower in the EULAG simulations. The rain water mixing
ratio is especially reduced at 24 min for SGS case. This is associated with approximately
40% lower intensity of a convective updraft and thus lower moisture supply. At later times,
the EULAG results compare better with KW78. For instance, after 36 min cloud and rain
fields are very close to KW78. NSG model produces slightly more rain than is seen in the
reference experiment as a small region of high rain water amount (qr > 12 g/kg) is present
in between 6 and 7 km. Rain water advected into upper parts of the supercell by a strong
updraft overshoots the cloud top height (not shown) by about 2.5 km. Maximum potential
temperature excess resulting from the latent heat release ( 4 K in EULAG simulations)
compares well with KW78. As shown in Fig. 14, results of SGS model at 36 min are more
consistent with KW78 than at 24 min, and only a slight delay of rain fallout is present (note
that isoline of 4 g/kg have not yet reached the ground).

Horizontal cross sections of vertical velocity, potential temperature perturbation and cloud
and rain mixing ratios at z = 2.75 km and at 36 min are depicted in Fig. 15 using the same
intervals as in Fig. 6 from KW78. A characteristic horse-shoe-shaped deformation of an
updraft region with the two nearly separate convective branches marks the beginning of the
storm splitting. Rain water and potential temperature fields still have only one maximum,
similarly to KW78. The rain water at 2.75 km, falling out between convective updrafts,
covers larger horizontal area than the cloud water. As discussed above, the difference between
EULAG and KW78 at 24 min can be due to different model spin-up. A longer integration
time removes transient differences in moisture supply. In consequence, similar intensity of
an updraft is achieved at later times and thus the cumulative total water amount is more
consistent in both cases.
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z u v
[m] [m/s] [m/s]

0 -6.0 2.0
500 -3.5 1.7

1000 -1.3 1.0
1500 0.5 -0.5
2000 2.25 -2.4
2500 3.1 -4.2
3000 4.0 -6.0
3500 5.3 -5.1
4000 6.7 -2.5
4500 8.5 1.0
5000 10.3 4.8
5500 12.1 8.8
6000 13.8 12.5
6500 14.3 13.8
7000 14.8 15.0
7500 14.8 15.0
8000 14.8 15.0
8500 14.8 15.0
9000 14.8 15.0
9500 14.8 15.0
10000 14.8 15.0

Table 4: Numerical values of both components of horizontal velocity (u, v) as used in EU-
LAG’s simulation of the flow with a veering wind.

Figure 16: Hodograph of the horizontal velocity as used in EULAG’s simulations (left panel)
and that from the original KW78’s setup (right panel). Empty circles on the left panel
indicate the values exactly at model’s vertical levels, i.e. the distance between adjacent
points is ∆z = 0.5 km.
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z = 0.5km z = 2km z = 3.5kmNSG

SGS

Figure 17: Horizontal cross sections of the vertical velocity w for veering wind simulation
at three different levels: 0.5 km (left column), 2 km (middle) and 3.5 km (right) and after
40 min of simulation. Thick line denotes rain water contour of qr = 1 g/kg.

3.3.4 Veering wind case

A case with a veering wind is the most complex out of the three presented in this study
and most typical for severe storm formation (KW78). For a straight hodograph used in the
previous case along with the Coriolis force omitted, supercell development is symmetric to
the XZ plane at y = 0 and none of the branches is favored (cf. Fig. 15 ). Presence of veering
wind, however, causes asymmetry in the supercell propagation and strongly affects evolution
of its internal structure. This allows for a development of new characteristics that resemble
supercell features observed in nature.

The environmental profile of horizontal velocity shown in Fig. 16 was reproduced from Fig.
12 in KW78 and appropriate numerical values used for the study are given in Table 3.3.4.
Figure 17 presents horizontal cross sections of the vertical velocity and rain water fields after
40 minutes of simulation at three different levels: 0.5 km, 2 km and 3.5 km (using the same
contour intervals as in KW78) for NSG and SGS simulations. The results were obtained for
slightly larger horizontal domain size (i.e. 32 km × 32 km) in order to minimize boundary
effects.

The structure at z = 0.5 km consists of two updrafts separated by rain-laden downdraft. The
convective branches merge at upper levels where asymmetry of the structure is evident. The
branch of stronger updraft borders upon the downdraft and the convection is more vigorous
than at lower levels. The rain water contour of 1 g/kg at z = 0.5 km encloses only a region
of the descending air. At upper levels, the region expands into an area where the updrafts
are also present. Maximum value of the vertical velocity is similar to that from KW78, but
about 25% lower for SGS model. YZ vertical cross sections of cloud and rain water as well
as vertical velocity and potential temperature perturbation at x = -2 km are depicted in
Fig. 18. The vertical velocity field has two updrafts in the lower part of the supercell which
are merged together in the upper part. There is a region of negative velocity in between the
convective branches, close to the ground, which is associated with a cold pool formation.

The potential temperature field is separated into three regions, as in KW78. The amplitude
of its perturbation near the cloud top reaches -6 K in KW78 and -4 K in both EULAG
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Figure 18: Vertical cross section along yz direction at x = −2 km after 40 min: w field (m/s)
(left) with bold solid line enclosing the region of qr > 1 g/kg, θ′ (K) (middle), and water
fields (g/kg) (right) where dashed line refers to qc and the solid line to qr.

simulations. The maximum positive temperature excess is 3 K in all cases. The cold pool at
the bottom of supercell is characterized with temperature decrease to -4 K in KW78, -4 K
for NSG and -3 K for the SGS model. The cloud and rain patterns have similar structure
as in KW78 except that the maximum values of qr are 8 g/kg in both EULAG simulations
and 4 g/kg in KW78. The cloud top level reaches about 8.5 km in NSG, 8 km in SGS and
7 km in KW78 simulations.

3.3.5 Sensitivity tests

The influence of horizontal domain extent, the type of lateral boundary condition and spatial
resolution were investigated in a series of sensitivity tests. As for the horizontal extend
of the domain, the proximity of lateral boundaries noticeably suppresses vertical supercell
development. This is evident for the maxima of rain water and updraft velocity, which are
about 20% and 40% larger for 256 km × 256 km domain than for 24 km × 24 km one, at 24
and 36 minutes, respectively. The spread of the results for different domain sizes depends on
the environmental flow and is generally the smallest for the veering wind where at 40 min of
evolution the spread is about 20% for qr and qc and about 40% for maximum updraft velocity.
The largest differences concern maximum updraft velocity for the atmosphere at rest, where
w varies between 6 and 16 m/s at 40 min. The comparison suggests that in general terms
the presence of external flow, allowing for convection organization, makes representation of
convection less dependent on the model setup.

Changes in horizontal and vertical gridlength turned out to have a dominant impact on the
supercell dynamics. According to the results, larger values of the extrema are generally
obtained for a finer grid resolution. The strongest sensitivity is observed for maximum
vertical velocity which increases from about 26 m/s for ∆x = 1 km and ∆z = 500 m to
about 34 m/s for ∆x = 500m and ∆z = 170m. Changes in resolution also affect the moist
fields. Notice however, that doubling horizontal resolution (i.e. using ∆x = 500m instead of
∆x = 1 km) leads to relatively small changes in the evolution of qc and qr extrema, whereas
modification of the vertical grid has a significant impact on the fields. Another observed
effect is earlier development of convection for finer grid resolution. This indicates that a
simple comparison of instantaneous fields may lead to misleading conclusions, especially
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when similarly evolving supercells are only shifted in time for different model setups.

The experiments with different types of boundary conditions show that the choice between
open and periodic b.c. is of negligible importance to the EULAG results. The spread
of results for the updraft velocity, cloud and rain mixing ratio for the most complex case
(with a veering wind) is at least an order of magnitude smaller than that introduced by
other modifications (i.e., resolution and domain size). For the atmosphere-at-rest case the
differences between the two types of boundary conditions in terms of vertical velocity and
water condensate did not exceed 0.1%.

3.4 Weisman and Klemp (1982) experiment

3.4.1 Setup details

Setup of the experiment is based on the analytic profiles of the potential temperature, relative
humidity and uni-directional horizontal wind (cf. eq. 1, 2 and 4 from WK82) extending
vertically up to 17.5 km. Horizontal and vertical gridlength is 2 km and 350 m, respectively.
WK82 employs vertical stretching from 350 m near the ground to about 1 km at the top of
the domain. This is the main difference from the EULAG’s setup which employs a uniform
grid. Based on the symmetry of the problem, WK82’s horizontal domain was limited to
one-half, in order to reduce computational cost. In contrary, we use a full domain with a
horizontal size of 128 km × 128 km. This size was found to be optimal for representing
propagation of supercell during the storm splitting without any noticeable interference with
the lateral boundary effects. Initial perturbation of the potential temperature is similar to
KW78 experiment, but the temperature excess is now 2 K. Open boundary conditions, a
Kessler-type warm rain parametrization and a TKE-based subgrid-scale mixing scheme are
employed in the experiment. EULAG’s physics and numerics are the same as in the previous
experiment. This is in contrast to WK82, where a modified version of KW78 model was
used (cf. section 2 in WK82). Again, neither ice processes nor Coriolis effects are included.
Total integration time is 120 min. It is worth mentioning that a SGS model is a necessary
prerequisite for the simulations as the lack of subgrid-scale transport leads to disintegration
of a well-organized internal supercell structure.

3.4.2 Shear flow case

The environmental horizontal shear flow employed in the simulations is defined as follows:
U(z) = Ustanh(z/zs), where zs = 3 km, and Us is a free parameter which changes in the range
from 5 m/s to 45 m/s (see Fig. 2 in WK82 and its explanation in the text). We consider
five cases, namely Us = 5 m/s, 15 m/s, 25 m/s, 35 m/s and 45 m/s. A constant wind U
of a different strength for different simulations is added as Galilean transformation to keep
the supercell in the middle of the domain during the simulation. Its magnitude is chosen
experimentally and depends on Us. Using a constant U does not affect the solution since
free-slip bottom boundary condition is imposed and no surface fluxes are applied.

Results of the simulations for this setup are presented in Figs. 19, 20 and 21 in a similar
manner to WK82. Each figure shows the time evolution of the following fields: horizontal flow
at 175 m height (black vectors), vertical velocity at 4900 m (black lines, dashed for negative
values), surface precipitation (light blue lines) and a cold front defined as the edge of a cold
pool (∆θ = -1K) at the surface (bold blue line). Dotted area marks region of qr >2 g/kg at
the ground. In addition, results from WK82 are plotted in the figures. Such representation of
the storm development gives an insight into the supercell dynamics, however, WK82 does not
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show any vertical cross sections of the storm structure, what precludes more comprehensive
comparison of the results. Note that a mean horizontal flow (Ū) of different magnitude was
subtracted from EULAG and WK82 solutions, what affects representation of storm-relative
low level flow (e.g. to keep the solution for Us =15 m/s in the domain center, Ū=9.15 and
12m/s were used in EULAG and WK82, respectively).

The storm system evolves in a similar way for three different values of Us (Figs. 19, 20
and 21). After 40 min of simulations the storm splitting is already underway, but only
one maximum of the surface precipitation is being formed. Apparently, horizontal extent
of convective perturbations depends on the shear strength. For larger Us the fields become
more asymmetric in x and y directions. This reduces the maximum updraft velocity due
to lower moisture supply. This in turn suppresses precipitation-laden downdraft and delays
formation of a cold pool, as compared to the other cases. After 80 min, each supercell
consists of two clearly separated convective cores with a precipitation area between them.
Again, intensity and horizontal extent of the vertical velocity and rain water fields decreases
with increasing Us. After 120 min, the splitting of the surface precipitation is completed for
Us = 25 m/s and Us = 35 m/s as the rain pattern no longer extends over a single area. A
local circulation within each core induces a downdraft in its rear part which diverges near
the ground away from the supercell center. The largest velocity of diverging flow is for Us =
15 m/s. These velocity perturbations are superimposed on the external flow that results in
larger western component of horizontal velocity for greater Us. A cold pool develops on the
rear side of the supercell with a cold front located near the leading edge of the convective
structure during the whole simulation. One of the most characteristic features is that the
distance between the two convective branches almost does not depend on the shear-strength.
It differs less than a few percent for Us ranging from 15 to 35 m/s. The shear mostly affects
the supercell evolution through the intensity of convection.
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EULAG WK82

Figure 19: Time evolution of horizontal flow at 175 m (black vectors), vertical velocity at
4900 m (black lines, dashed for negative values), surface precipitation (light blue lines) and
a cold front defined as the edge of a cold pool (∆θ = -1K) at the surface (bold blue line).
Dotted area marks region of qr ¿ 2 g/kg at the ground. Vertical velocity is contoured every
5 m/s for positive values and 2 m/s for negative values. Surface precipitation is contoured
every 1 g/kg. The results are plotted for Us = 15 m/s. Right column represents the results
from WK82 experiment).
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EULAG WK82

Figure 20: Same as in Fig.19 but for Us = 25 m/s
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EULAG WK82

Figure 21: Same as in Fig.19 but for Us = 35 m/s
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Figure 22: Comparison of the time series of maximum vertical velocity for simulations with
different Us. The results from WK82 (left) and EULAG (right) are shown.

Comparison of the results with WK82 shows that EULAG correctly reconstructs the con-
vective process leading to formation of storm splitting and a cold pool. The main difference
concerns buoyancy production that is lower in EULAG simulations. With lower strength
of maximum updraft the EULAG simulations yield lower amount of surface precipitation.
Additional sensitivity study indicates, however, relatively high sensitivity of convection char-
acteristics to horizontal and vertical resolution. Reducing model’s grid box size by a factor
of 2 leads to about 40% increase in updraft intensity and about 50% and 10% enhancement
for maximum amount of cloud and rain water, respectively. It should be underlined that, for
this particular case, the improvement is stronger when horizontal resolution is refined rather
than vertical one. The spread of the results is larger than for KW78 experiment, especially
for water species. This suggests that we are in a flow regime where the problem is strongly
underresolved. Thus a comparison between the models is somewhat burdened with possible
susceptibility of the results to the details of numerics (see e.g. discussion in Rosa et al., 2011,
on cold density current experiment according to Straka et al., 1998).

Detailed comparison of the storm splitting shows that the EULAG’s representation of the
process is similar to WK82 in terms of horizontal extent of the cells and the relative distance
between them during the storm development. In both cases, formation of rear precipitation
is observed in similar regions. The area of the cold pool depends directly on the distance
between the cores and is larger for more mature supercells. The main difference between the
models is that the storm splitting starts at lower shear strength for EULAG simulation and
is already observed for Us = 15 m/s, in contrary to Us = 25 m/s for WK82.

Time evolution of maximum updraft velocity for different values of Us is shown in Fig. 22. A
supercell developing in a resting atmosphere (Us = 0) decays quickly in WK82 but it is able
to restore secondary circulations in EULAG simulation. Convection is also less vigorous in
EULAG simulations since wmax reaches about 30 m/s in contrary to about 40 m/s in WK82.
This parameter, however, is especially sensitive to the simulation details, as shown through
sensitivity experiment for KW78 and WK82. Generally, the spin-up time is shorter in WK82
than in EULAG. The EULAG’s spin-up time depends on the resolution in such a way that
for smaller grid box sizes the convection starts earlier. The differences are relatively large as
the model reaches first maximum of rain water mixing ratio after 38 min for basic resolution
and at about 30 min for a doubled one. Such a time shift is also observed for maxima of
cloud and rain water mixing ratios.
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3.5 Summary and further development

This section documents the results of two moist benchmark experiments (KW78 and WK82)
carried out by the EULAG model in order to verify its performance as a potential candi-
date for the future dynamical core of weather forecasting model. Both experiments concern
formation of supercell in a deep atmosphere, which is unstable to moist convective motions.
The results of EULAG simulations show that the model is capable to reconstruct main fea-
tures of the supercell development, such as storm splitting and a cold pool formation. The
EULAG solutions are realistic and compare well qualitatively with the reference solutions
from KW78 and WK82 for a wide set of initial conditions (i.e., atmosphere at rest, uni-
directional shear flow of different strength, veering wind). In general, the EULAG model
yields less intense storm development, however, it is difficult to find the factors controling
the results. Sensitivity studies indicate that convection-permitting NWP models operating
at resolution of O(1km) are in a strongly underresolved regime where relatively small modifi-
cations in resolution can significantly change the result (e.g., about 40% enhancement of the
updraft strength for doubled vertical resolution). Moreover, the comparison between differ-
ent numerical models does not allow for credible estimation/separation of the numerical and
mathematical effects in the solution.

More recently, a compressible version of the EULAG model has been developed (see e.g.,
Kurowski et al., 2013). This created a new opportunity to compare the anelastic and com-
pressible solutions using a highly unified numerical framework, and thus to limit the effects
associated with different numerical design of the models. Currently, the model has been ver-
ified in a set of moist experiments regarding various scales of the atmosphere. First results of
these experiments were already published (Kurowski et al., 2013). As for moist deep convec-
tion, the results obtained for Weisman and Klemp (1982) experiment have confirmed high
consistency of anelastic and compressible solutions. It was also found that non-hydrostatic
pressure perturbations are of negligible importance to the storm development. Concomi-
tantly, sensitivity of the solutions to the numerical details (e.g., resolution) and/or physical
parameterizations (e.g., subgrid-scale mixing) turned out to be at least one order of mag-
nitude larger than for mathematical differences. Detailed results of these experiments are
expected to be published soon.
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4.1 The experiment setup

The aim of the experiment was to test the EULAG dynamical core over realistic high-
mountain orography for its robustness and for general physical viability of the solutions
and their consistency for varying but very high horizontal resolutions (grid sizes of 2.2,
1.1 and 0.55 km). For such resolutions, the approximation of quasi-horizontal flows is no
longer valid, as the models begin to resolve explicitly convective processes. Also, the model-
represented inclinations of high-mountain slopes begin to resemble their actual steep values.
In consequence, the dynamical cores for very-high-resolution NWP require reliable and robust
solvers, which do not compromise the advantages of very high horizontal resolutions via, e.g.,
the introduction of a strong artificial smoothing of the orography or the simulated flow. The
experiment allows also to investigate how increasing horizontal resolutions influence model-
represented flow over high and diversified orographies, for horizontal grid sizes that allow
a realistic representation of mountain slopes and heights. The detailed description of the
experiment and its results can be found in Ziemiaski et al (2011).

The experiment employs the frictionless and adiabatic flow, which allows direct focus on the
dynamical aspects of the flow, influenced only by the model-represented orography, inde-
pendent of the impacts of the parameterized boundary layer physics or moist processes. An
additional argument is that knowledge of mountain boundary layer physics is limited, which
also concerns its parameterizations (see e.g., Rotach et al., 2008 and references therein).
It was important also to employ relatively simple and easy-to-reproduce initial and bound-
ary conditions. The idea of the experiment follows previous studies, where the numerical
simulations of mountain flows were used to study varying spatial resolutions on mountain
drag, e.g., Clark and Miller (1991), Hoinka and Clark (1991), Salvador et al., (1999), Rontu
(2006) and Smith et al., (2006), or to study the influence of varying numerical schemes on
the properties of the simulated flows, as in Cullen et al., (2000).

a. Domain

The experimental setup is based on the operational NWP COSMO model employing hori-
zontal grid length of 2.2 km, used by MeteoSwiss (the COSMO-2 model, see description in
Leuenberger et al., 2010). It concerns the experimental domain (see Fig. 23) which for 2.2
km horizontal grid spacing involves 520 by 350 grid points, so that the horizontal size of the
domain is 1144 by 770 km, respectively. The locations (geographical coordinates) of the grid
points for the experiment are the same as for the grid points of operational COSMO-2. For
the experiment involving 1.1 km horizontal grid spacing, the locations of the grid points col-
locate with the grid points of COSMO-2, where possible, while the locations of the additional
points are defined via halving the distances between the COSMO-2 grid points. Similarly,
the additional grid points for the simulations with 0.55 km grid spacing are calculated by
halving the distances between the grid points used for simulations employing the 1.1 km
grid. As a consequence, the simulations at 1.1 km grid size employ a 1040 by 700 grid point
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Figure 23: Model orography for 1.1 km grid size (in km, colors), illustrating the orienta-
tion of the model domain relative to the main geographic features of the area and political
boundaries (thin lines). The thick dashed lines show positions of the cross sections discussed
in the paper.

domain, and simulations at 0.55 km grid size employ a 2080 by 1400 grid point domain.
The time steps used are 20, 12 and 6 s, for horizontal resolutions of 2.2, 1.1 and 0.55 km,
respectively.

The orography for the 2.2 km grid length experiment is the same as the orography employed
by COSMO-2. The orography for higher horizontal resolutions was calculated using the
satellite SRTM data (Rabus et al., 2003) of approximately 90 m grid size, separate for
experiments employing 1.1 and 0.55 km grid length. The satellite data were averaged over the
target model grid cells, resulting in a model orography with increasing detail for decreasing
grid spacing. No additional smoothing was applied for the data.

In the vertical, the model domain spans from the surface to a height of 23.5 km and employs
terrain-following Gal-Chen coordinates (Gal-Chen and Somerville 1975) for the whole vertical
extent of the domain using 61 grid levels. The definitions of the grid levels, except the lowest
one, are as in the COSMO-2 model, with the vertical grid spacing ranging from about 10 m
near the surface to about 500 m in the stratosphere, as is typical for NWP models having
relatively high vertical resolution in the near-surface area of the boundary layer. The number
and configuration of the vertical grid levels is the same for all the resolutions, employed.

b. The flow configuration

The model employs a free-slip boundary condition on its bottom and top levels, and there are
no parameterizations of physical, subgrid-scale processes. The Coriolis force is incorporated
into the simulation setup. To avoid the effects of gravity wave reflections from the top of the
domain, an absorber was applied above 16 km altitude.

The ambient flow configuration of potential temperature and wind is possibly simple and
defined as horizontally uniform. It is imposed by appropriate initial and constant in time
boundary conditions. Such a flow configuration is commonly used for idealized simulations
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Figure 24: Profiles of the parameters of the ambient flow: potential temperature (left), wind
velocity (middle), and wind direction (right).

of deep convective flows (e.g., Klemp and Wilhelmson 1978, Weisman and Klemp 1982,
Rotunno and Klemp 1985, Bryan and Fritsch 2002) even though it does not formally preserve
the thermal wind balance. It allows for a simple definition of the initial conditions for
resolution-dependent configurations of orography.

To ensure that the wind and potential temperature profiles take typical atmospheric values,
they are based on an actual meteorological situation in Central Europe on 12 November
2009 at 00.00 UTC. The profiles were calculated as horizontally-averaged wind and potential
temperature coming from the operational COSMO-2 analysis of MeteoSwiss. The profiles
(Fig. 24) indicate typical moderate north-westerly atmospheric flow of moderate stratification
(the Brunt-Väisälä frequency for the lower half of the troposphere equals 0.013 s−1), with a
presence of a moderate jet stream characterized by maximum wind reaching 27.6 ms−1 at
10450 m above the sea level.

4.2 Results

The aim of the experiment is to analyze and compare the EULAG results for different
horizontal resolutions when a quasi-stationary state of the flow is established. The analysis
of time-dependent flow diagnostics (not shown) indicates that the flow fields of all simulations
have reached a quasi steady-state after 24h of integration time.

a. Surface wind

Figure 25 compares the distribution of the horizontal wind on the second computational level
(counting from the Earths surface) of EULAG (located about 10 m above the ground) for
the tests using horizontal grids of 2.2, 1.1 and 0.55 km.

For all resolutions used, results have a very high level of consistency and realism. The large-
scale flow pattern is practically the same for all resolutions, showing a westerly inflow on
the Alpine ridge that divides the flow into two branches around the Alps from north and
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Figure 25: Distribution of the surface (10 m above the ground) wind (arrows) and its speed
in m/s (colors) after 24-hours for grid sizes of 2.2 km (upper panel), 1.1 km (middle panel),
and 0.55 km (lower panel).
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south. The scenario agrees with a blocking condition, characterized by low Froude number
(see e.g., Brighton (1978) for laboratory or Smolarkiewicz and Rotunno (1990) for numerical
experiments). The Froude number is defined as F = U/(NH), where U is the characteris-
tic horizontal wind velocity, N is the Brunt-Väisälä frequency, and H is the characteristic
mountain height. For the characteristic wind speed and stability defined by the ambient
temperature profile, it is about 0.2. There is also a signature of an easterly circulation,
opposite to the ambient wind, that turns into a southerly flow west of the windward slopes
of the western Alps, consistent with the blocking condition. On the lee, southeastern side
of the Alps (Po Valley), a weak-to-moderate easterly and northeasterly flow is also present.
The Rossby number, assuming a half-width of the Alpine ridge ranging between 100 to 400
km and the wind speed in the lower troposphere in the range of 5 to 10 ms−1, is less than 1
(for average values of the above parameters, its value is 0.3), indicating that Coriolis effects
limit the spatial extent and strength of the return upstream circulation (Pierrehumbert and
Wyman, 1985), in agreement with the simulation results.

All the experiments show the presence of many mesoscale (size of about 100 km) features
of the wind distribution. They show the flow response to the topography and especially
to its mesoscale features of sizes and elevations smaller than that of the Alps. Areas of
enhanced flow are mainly located over and north-northwest of major terrain obstacles. This
effect is particularly evident in the Massif Central, the western Alps and Jura, Vosges, and
Schwarzwald. South of the Alps, such areas are located over the Ligurean Sea, south of the
Gulf of Genoa, on the lee side of the Appenines, and on the lee side of the Dinaric Alps on
the Balkan Peninsula. Areas of pronounced deceleration of the flow are the upper parts of
the Saône and Rhine Valleys, and the area west of the Sumava Mountains. South of the
Alps, two pronounced areas of relative deceleration are parts of the Gulf of Genoa and of
the Adriatic Sea south of the Gulf of Venice.

The prominent difference between the simulations at different horizontal resolutions involves
the flow magnitude. While the domain-averaged wind velocity on that level equals 9.09 ms−1

for 2.2 km grid size, it is 8.16 and 7.25 ms−1 for grid sizes of 1.1 and 0.55 km, respectively.
As the simulations do not employ an explicit drag, the results show the influence of terrain-
induced form drag of the explicitly represented orography (see e.g., Welch et al., 2001), which
increases significantly at higher resolutions. This extends the findings of Clark and Miller
(1991) and Smith et al., (2006) to higher resolutions.

Figure 26 shows that the patterns of wind speed differences between the simulations employ-
ing different resolutions span a range of scales from the smallest to hundreds of kilometers.
The amplitudes of the differences are relatively high and reach -19 to 17 m/s for the dif-
ference between 1.1 and 2.2 km grid lengths, -20 to 19 m/s for the difference between 0.55
and 1.1 km grid lengths, and -24 to 17 m/s for the difference between 0.55 and 2.2 km grid
lengths. Horizontally, the most extended difference patterns are located over the outskirts
of the Alps and form elongated areas aligned with the wind direction (see Figure 3). The
narrow streaks of extremum wind speed differences in such structures can be identified with
differences in spatial extent of main mesoscale features of wind distribution, discussed above.
There are also many features on a scale of about 100 kilometers, where the amplitudes of
wind speed differences exceed 10 ms−1 and have both signs. They primarily occur in areas
between or on the lee sides of main orographic features. Frequently, these flow features are
systematic enough to be recognized on all the figures by their similar location and size, and
they frequently have the same sign. Therefore, increasing the resolution to grid sizes of 1.1
and 0.55 km tends to have a similar effect on the mesoscale differences of the simulated flow.
On the other hand, the differences between simulations with 0.55 and 1.1 km grid lengths
tend to be smaller in terms of horizontal sizes and magnitudes. There is also an abundance
of very small-scale differences in the wind speed pattern - of an amplitude of a few m/s -
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Figure 26: Distribution of the differences for surface (10 m above the ground) wind speeds
in m/s (colors) after 24 hours. These difference plots compare the experiment using 1.1 km
grid size (averaged to 2.2 km grid box) with the one using 2.2 km grid size (upper panel),
the experiment using 0.55 km grid size (averaged to 1.1 km grid box) with the one using 1.1
km grid size (middle panel), and the experiment using 0.55 km grid size (averaged to 2.2 km
grid box) with the one using 2.2 km grid size (lower panel).
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Figure 27: Vertical cross section through the u-component of wind (in ms−1) after 24-hour
simulations, for grid sizes of 2.2 km (upper panel), 1.1 km (middle panel), and 0.55 km (lower
panel).

both over the relatively flat terrain (including sea surface) and over orographic features.

b. Vertical wind structure

Figure 27 shows west-east vertical cross sections of the u-component of wind velocity, along a
line crossing the highest surface elevation represented by the model (Mt. Rosa). The general
pattern of the flow is very similar for all the horizontal resolutions in the study. Its main
feature is a moderate jet stream, and there are a number of mesoscale flow features over
the whole domain. In the jet stream area, the locations and overall shapes of the mesoscale
features are similar for all the simulations, which include e.g., pronounced acceleration areas
above and in the lee of the Massif Central (left), over the Mt. Rosa area, and in the lee of the
Dinaric Alps (right). Small-scale details differ between the simulations: very sharp horizontal
wind gradients above the Massif Central and the Cevennes are especially pronounced, and
they are reproduced with more detail and sharper gradients as the resolution increases.

The flow variability is closely related to mountain wave activity, which is abundant in the
whole model domain and occurs on scales of about 50 km and smaller. All the simulations
show similar flow features on the horizontal scales between 20 and 50 km (e.g., the structures
over the Massif Central and the Cevennes, or over the Dinaric Alps). But there are also many
smaller-scale features that differ significantly between the simulations.

Figures 28 shows the u-components of wind for a magnified part of the domain shown in
Figure 27 located in the vicinity of the highest Alpine peaks (the x-coordinate is the same for
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Figure 28: Closer view of the wind u-component (in m/s) over the highest Alpine peaks
shown in Fig. 27 for a more detailed comparison as model resolution increases. Upper panel
shows model output at 2.2 km grid size, middle shows 1.1 km grid size, and lower shows 0.55
km grid size.

all three figures). It confirms that the overall flow pattern is similar for all three resolutions.
The differences are especially evident in many small-scale details of about 1 to 20 km in
horizontal size for the u-component of the wind. They are seen in the jet stream area,
particularly in the spatial structure of the maximum wind pattern. The largest differences
appear, as expected, in the near-surface flows. Some of the differences represent circulations
related to valleys, peaks, or ridges, represented only with very-high-resolution orography.

Qualitatively similar results are found for the v-component of the horizontal velocity (not
shown).

Table 5 compares the RMS wind speed differences between simulations of different horizontal
resolutions. It uses the 0.55 km simulation as the reference and compares data interpolated
to a fixed height above ground (or above mean sea level). The comparison is done using
grid point values and only grid points present in coarser resolution are used. To focus on
the mountain regions, the comparison concerns areas of surface elevations exceeding 800 m
above the mean sea level, for orography employing 0.55 km horizontal grid length. The table
shows the wind differences on a few near-surface levels (at 20, 100, 500 and 2000 m above the
ground) and on a few levels representing middle and upper troposphere (5, 6, 7 and 10 km
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Altitude (m)
above surface

RMS wind speed difference (m/s)
between models of grid sizes (km):

0.55-2.2 0.55-1.1

20 3.92 1.83
100 3.80 1.64
500 2.87 1.10
2000 1.65 0.72

Altitude (m)
above mean
sea level

RMS wind speed difference (m/s)
between models of grid sizes (km):

0.55-2.2 0.55-1.1

5 000 1.12 0.39
6 000 0.73 0.28
7 000 0.57 0.28
10 000 0.91 0.32

Table 5: RMS wind speed difference between simulations with 0.55 and 2.2 km grid sizes and
between simulations with 0.55 and 1.1 km grid sizes, at selected altitudes above the surface
and above mean sea levels. The differences are calculated only over the areas of surface
elevation exceeding 800 m above mean sea level.

above the mean sea level). The table demonstrates larger differences between experiments
with 0.55 km and 2.2 km grid sizes as compared to the differences between the experiments
with 0.55 km and 1.1 km grid sizes. The largest differences between the experiments are
located just above the surface, with values reaching almost 4 m/s for comparison between
experiments with 0.55 and 2.2 km grid sizes. The differences diminish rapidly above 100
m height. The differences still decrease with height in the middle troposphere, but tend to
increase near the tropopause.

c. Potential temperature

The general pattern of the potential temperature field is very similar for all three resolutions,
and only small-scale details differ between the simulations (not shown). The differences
are largest in the near-surface layer. They are due to both the ambient relation between
the temperature and height, and the differences in the orographically induced flows. Also,
the undulations of the isentropes in the near-surface layer of about 2 km depth above the
Alpine ridge tend to have larger amplitudes for higher-resolution simulations. The differences
between the simulations are hardly noticeable in the middle and upper troposphere.

Table 6, calculated analogously to Table 5, shows the RMS differences in the potential
temperature between the simulations using interpolated values at the selected height levels.
The table shows that the differences between simulations with 0.55 km and 2.2 km grid
lengths are larger than the differences between experiments with 0.55 km and 1.1 km grid
lengths. The largest differences are located in the near surface layer, and are in the range
of 1 and 0.6 K for comparison with 2.2 km and 1.1 km grid simulations, respectively. In the
middle troposphere the differences reach about one third of the surface values and increase
in the tropopause area.
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Altitude (m)
above surface

RMS potential temperature difference
(K) between models of grid sizes (km):

0.55-2.2 0.55-1.1

20 0.97 0.56
100 0.83 0.47
500 0.71 0.36
2000 0.52 0.25

Altitude (m)
above mean
sea level

RMS potential temperature difference
(K) between models of grid sizes (km):

0.55-2.2 0.55-1.1

5 000 0.37 0.18
6 000 0.37 0.17
7 000 0.22 0.09
10 000 0.33 0.15

Table 6: RMS potential temperature difference between simulations with 0.55 and 2.2 km
grid sizes and between simulations with 0.55 and 1.1 km grid sizes at selected altitudes above
the surface and above mean sea levels. The differences are calculated only over the areas of
surface elevation exceeding 800 m above mean sea level.

d. Vertical velocity

Figure 29 shows the horizontal distribution of the vertical velocity at level 40, located in the
free atmosphere at a height of about 10400 m for all simulations. While the general pattern
of the main features of the vertical velocity distribution is basically similar for all three
resolutions, and while the regions of gravity wave activity do not change, significant small-
scale differences are also present. In all simulations, it is common for the main patterns
of the vertical velocity to be located in the vicinity of orographic features with the wave
crests typically oriented perpendicular to the mean flow direction. This description generally
applies to the Massif Central and the Cevennes, the Vosges Mountains and Schwarzwald,
and the Sumava Mountains and the Alps. The amplitudes of the vertical velocity are in the
range of 0.5 m/s, which is a realistic value.

For the area above the Alps, the pattern of the vertical velocity structure is generally similar
for all the simulations in the sense that the main activity is located over the eastern slopes
of the southwestern Alps and over the central crests of the eastern Alps. There are, however,
clear differences. As the horizontal grid size of the model diminishes, the wave activity over
the main Alpine body seems less pronounced as its spatial extent is also smaller and the
wave amplitudes tend to be smaller in the area. In contrast, the wave activity over the areas
south of the southwestern (Maritime) Alps and southeast of the eastern Alps seems to be at
least as vigorous as for the coarser resolution simulation, but with a more complicated wave
structure and many additional small-scale details.

Figure 30 presents vertical cross sections of vertical velocity, crossing the highest surface
elevation of the model (Mt. Rosa), along the wind direction in the middle and upper tro-
posphere and spanning the full model domain (see Figure 23 for the exact location of the
cross-section). It shows similarity of the high-amplitude component of the wave distribution
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Figure 29: Horizontal distribution of wind (arrows) and the vertical velocity in ms−1 (colors)
at 10400 m height after 24-hour simulations for grid sizes of 2.2 km (upper panel), 1.1 km
(middle panel), and 0.55 km (lower panel).
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Figure 30: Vertical velocity distribution (colors in m/s) after 24 hours for simulations with
grid sizes of 2.2 km (upper panel), 1.1 km (middle panel), and 0.55 km (lower panel). The
cross section is oriented along the prevailing wind in the middle and upper atmosphere.

for different resolutions, but it confirms also the significant influence of horizontal model
resolution on the simulated structure of vertical velocity. The differences appear in both
the relatively low highlands, like the Plateau de Langres, where the 2.2 km grid shows the
presence of only a single wave pattern in the middle and upper troposphere. In contrast, the
higher resolution simulations show rich wave structures of slightly larger amplitudes in the
middle troposphere and significantly higher amplitudes near the surface. The differences are
also clearly seen above the higher mountains, especially in the area between the Jura and
Mt. Rosa, where the higher-resolution simulations have significantly richer wave structures
characterized by larger amplitudes.

Figure 30 shows a detail of Figure 29 over the Alps. The significant influence of the hori-
zontal model resolution on the vertical velocity distribution is seen by the presence of the
complicated wave pattern in the area west of the Rhone Valley (left), obtained with the
highest-resolution simulation. For the common features, the 0.55 km grid size gives signif-
icantly higher amplitudes and more realistic wave structures for the wave triggered by the
Jura (the western part of the figure) and the eastern parts of the Bernese Alps. The wave
pattern and magnitudes of extremes triggered by the Pennine Alps, including Mt. Rosa,
are similar at all three resolutions. However, the higher-resolution simulations show many
small-scale details of the structure, especially in the near-surface layer, where small-scale ter-
rain features play an important role in forming the shape of the wave pattern. For the area
roughly 2 km above the surface, the influence of the larger scales prevails and the differences
between the simulations become smaller.

The realism of the simulations can be further confirmed by noticing that the wave crests
tend to change to a horizontal orientation in the upper part of the domain. This is a typical
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Figure 31: Enlarged picture of the flow over the Alps.

behavior for a gravity wave in the presence of the critical layer, where the phase velocity of
the wave equals the flow velocity. For the Brunt-Väisälä frequency on the order of 0.013 s−1,
and the wavelength in the horizontal and vertical directions on the order of 10 km, estimates
place the critical velocity in the range of 20 m/s which corresponds well to the typical wind
speeds found in the upper troposphere. This suggests the presence of the critical layer in
our simulations and confirms the physical consistency of the simulated gravity waves.

Table 7 shows the RMS differences of the vertical velocity between the simulations at selected
levels, for the areas with surface elevations above 800 m and not averaged to the coarser
grid. It shows that the differences between experiments with 0.55 km and 2.2 km grid
lengths are larger than the differences between simulations with 0.55 km and 1.1 km grid
lengths. While the differences between analyses of velocities and potential temperature
presented in Figure 30 and Tables 5 and 6 are relatively small, they are larger for the vertical
wind. Table 7 shows that the vertical velocity differences between the solutions over higher
elevations are almost three times larger than average. This is confirmed by a qualitative
analysis of Figures 29 to 30, suggesting that vertical velocity perturbations are spatially
related to the areas of highest elevations, and that the horizontal resolutions significantly
affect the vertical velocity pattern. Over the mountains, the RMS differences are highest in
the near-surface layer, reaching almost 0.9 m/s for the comparison between the experiments
with 0.55 and 2.2 km grid lengths. They decrease with height by about one third at 2000
m altitude. In the middle and upper troposphere the difference still diminishes with height,
consistent with Figure 30a.

4.3 Summary and conclusions

The tests show the numerical robustness of the EULAG dynamical core, as no numerical
problems were encountered during the simulations and no artificial measures, like flow or
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Altitude (m)
above surface

RMS vertical velocity difference (m/s)
between models of grid sizes (km):

0.55-2.2 0.55-1.1

20 0.87 0.54
100 0.80 0.47
500 0.69 0.38
2000 0.59 0.35

Altitude (m)
above mean
sea level

RMS vertical velocity difference (m/s)
between models of grid sizes (km):

0.55-2.2 0.55-1.1

5 000 0.49 0.29
6 000 0.42 0.24
7 000 0.33 0.28
10 000 0.20 0.11

Table 7: RMS of vertical velocity difference between simulations with 0.55 and 2.2 km
grid sizes and between simulations with 0.55 and 1.1 km grid sizes, over areas of elevation
exceeding 800 m above mean sea level, at selected altitudes.

orography smoothing, were applied to achieve the results. The scales of the values of the
flows physical parameters are represented correctly. This concerns especially vertical velocity,
magnitude of which is sensitive to possible problems in the model setups. This suggests that
an anelastic dynamical core like EULAG has numerical robustness appropriate for NWP
purposes at horizontal grid sizes of at least O(1km).

The analysis of the results, especially of the spatial distribution of different parameters
characterizing the flow and their comparison for varying horizontal resolutions, shows that
the results are realistic and highly consistent. Results indicate a realistic low-level flow
pattern characteristic of mountain blocking, and the presence of characteristic mesoscale
features related to the flow over specific terrain features like large valleys, highlands, and
mountains. The vertical flow structure shows that the orography significantly influences
regional and local circulations, including low-level circulations like valley flows, but especially
mountain waves, and the whole troposphere including the structure of the jet stream.

The flow structures are consistent between the three model resolutions, especially for flow
features having characteristic sizes of 20 km and more. However, the differences between
simulations involve a wide range of scales and are not limited solely to the barely resolved
scales. The differences are seen especially clearly and abundantly in the near-surface tro-
pospheric layer at a depth of about 1.5 to 3 km. For surface wind, differences between the
three solutions have characteristic structures of horizontal sizes varying from hundreds of
kilometers to the smallest resolved by the model, the amplitudes of the differences reach
up to 20 m/s, and the RMS difference reaches 4 m/s. From the viewpoint of NWP, the
near-surface area is highly important for a majority of the forecast users, including aviation.
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5 Semi-realistic flow over the Alps with the COSMO-EULAG
model
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Damian Wójcik
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5.1 Introduction

This section reports on semi-realistic simulations of weather for the Alpine region using
a prototype COSMO model equipped with the anelastic dynamical core. The prototype
couples the dynamical core of the EULAG model with a limited set of standard COSMO
parameterizations. The report begins with a brief description of the implementation of the
EULAG dynamic core into the operational software environment of the COSMO model.
Next, it shows the results of testing the COSMO-EULAG prototype (CE) for a simulation
of mesoscale weather for 24 hours forecast at three different horizontal resolutions i.e. with
2.2, 1.1 and 0.55 km horizontal grid size. The CE results for 2.2 km grid are compared
with analogous results obtained using the COSMO model employing standard Runge-Kutta
dynamical core and the same limited set of physical parameterizations (RK) to evaluate the
viability, consistency and correctness of the CE results. The goal of the comparison is to
assess whether the anelasticity of the CE dynamical core has noticeable detrimental effect
on the simulation results. Also, the CE results for various resolutions are inter-compared
and analyzed to assess whether they are consistent, realistic and robust.

Both model setups involve physical parameterizations of boundary layer effects with surface
fluxes, radiation and moist processes. The experiment employs also realistic initial and
changing in time boundary conditions for a selected actual weather situation, provided by
MeteoSwiss and taken from its operational data. The experiment has, therefore, a higher
degree of realism comparing with the one described in the previous section, but the model
prototype is still not in a full and consistent NWP setup.

5.2 The COSMO-EULAG prototype

The implementation of the EULAG dynamical core into the COSMO operational environ-
ment required addressing a number of technical issues. First, the EULAG dynamical core
has been translated from Fortran 77 to Fortran 90/95 which allowed the implementation of
alternative programming structures required by the COSMO programming standards. Com-
mon blocks were replaced by modules, and the data structure in the translated code is based
on explicit dynamic memory allocation. The MPI communication of the CE model was or-
ganized in a consistent way with COSMO framework. The key steps of the implementation
and the relevant technical details regarding translation have been reported by Wojcik et al.
(2012).

The coupling of the two codes (COSMO and EULAG) required a development of specially
designed interface. Its main purpose was to allow a data communication between dynamical
core and physical parameterizations applying different types of computational grids. The
nodal points of the EULAG grids are non-staggered (A-grid) whereas algorithms of COSMO
parameterizations have been developed for the staggered C-grid.

The interface is designed according to the rule that the COSMO mass levels and mass
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Figure 32: Surface synoptic chart of Europe for 12 November 2009, 00:00 UTC.

points collocate with the EULAG computational points and levels in order to avoid spatial
interpolation of the mass-related flow parameters. In order to provide the bottom boundary
conditions for the vertical component of velocity (w), an additional EULAG level is provided
just at the ground. Its physical flow parameters are the same as the parameters on the
next EULAG level collocated with the first COSMO mass level (counting from the surface)
in order to ensure consistent values of the flow parameters from the finite-volume-wise view
point (alteration of the physical parameters within the surface level would result in alteration
of volume averaged values in the COSMO finite volumes around its lowest-lying mass points).

With such an approach, the interface requires interpolation of velocity values between grid
A and C while providing information from the dynamical core to the parameterizations, and
interpolation of their forcings, diagnosed by COSMO parameterizations, between grid C and
A. It transforms also potential temperature of EULAG to temperature of COSMO, as well
as temperature forcing from COSMO parameterizations to potential temperature forcing to
be used by the dynamical core.

5.3 The experiment setup

The tests are based on 24-hour simulation of an Alpine flow using the COSMO model with
the RK and CE setups, both using the same limited set of physical parameterizations. The
employed parameterizations are:

• Vertical Turbulent Diffusion

• Surface Fluxes Louis (1979)

• Radiative Transfer Scheme Ritter, Geleyn (1992)

• Multilayer Soil Model

• Moist Microphysics with prognostic variables including rain, snow, ice and graupel.
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Figure 33: Wind velocity (color scale and wind arrow length) and direction (wind arrow
direction) on the 10 m model level for 12 hour (left panels) and 24 hour (right panel) forecast
for the CE (upper panels) and RK (lower panels) model versions.

There was no special tuning of the physical parameterizations for the CE setup and their
parameters took values tuned for the operational COSMO model using the RK dynamical
core.

a. Domain

Similarly to the semi-realistic tests described in the previous section, the experiment setup
is based on the COSMO-2 model of MeteoSwiss. Its domain (see Fig. 23 of the previous
section), orography, vertical Gal-Chen coordinates and computational layers are configured
as for the experiment described in the previous section. Only the size of the computational
domain for the experiment employing 0.55 km resolution was limited and covers only a part
of the full COSMO-2 domain (see Fig. 41) due to computational reasons.

b. The flow configuration

The experiment follows the actual operational COSMO forecast for 12 November 2009 and
involves a 24-hour simulation starting at 00:00 UTC. The initial conditions are the same for
RK and CE runs and are taken from operational data of MeteoSwiss. It concerns also the
boundary conditions, which are interpolated linearly in time from the hourly data sets.

The synoptic situation, chosen, involves a moderately stratified westerly flow with a moderate
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Figure 34: As in Figure 33 but for the 10th model level (approximately 500 m above the
ground level).

jest stream. It features a relatively shallow low-pressure system with atmospheric fronts
traversing the simulation domain (Fig. 32).

5.4 Results

An analysis of the simulation results is presented below. It compares the wind velocity
distribution, cloud water and cumulative surface precipitation for the RK and CE models.
Both models use 2.2 km grid size and their results are compared for 12 and 24 hour forecast.
Also, the CE results after 12 and 24-hour forecasts are inter-compared for varying resolutions
of 2.2, 1.1 and 0.55 km and analyzed.

RK and CE comparison

Figure 33 presents the wind velocity at 10 m above the ground (the first COSMO computa-
tional level) for 12 and 24 hour forecast for the CE (upper panels) and RK (lower panels)
versions of the model. For both realizations, the general pattern of the flow is practically the
same and follows the synoptic situation with weak to moderate south-westerly flow in the
western part of the domain and relatively weak variable flow in the rest of the domain which
is influenced by the anticyclonic pressure system. Moreover, both simulations very similarly
represent the mesoscale structure of the flow with the same patterns of flow acceleration and
deceleration(see for instance the pronounced flow patters over the Genoa Bay and Adriatic
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Figure 35: As in Figure 33 but for the 26th model level (approximately 4600 m above the
ground level).

Sea). Also the wind velocities are very similar for both model versions, with a tendency
of the CE solution for slightly higher wind speeds. The effect is especially seen over the
Alps. That may result from the lack of tuning of the parameterizations for the CE setup
(note the diminishing surface wind velocities of the CE simulations for increasing resolutions,
described below). The pattern of the flow areas with nearly zero wind velocities suggests
also more patchy (spatially variable) structure of the CE velocity field within the smallest
resolvable scales.

Figures 34, 35 and 36 present, respectively, the wind velocity on different computational
model levels ranging from level 10 (approximately 500m above the ground), to 26 (approx-
imately 4600 m above the ground) and 40 (approximately 10 km above the ground). Note
that the levels are counted from the ground level up (that is opposite to standard COSMO
level counting) and the approximate heights of the computational levels concern areas where
the ground surface is located at the mean sea level. The results are for 12 (left panels) and
24 hour (right panels) forecast for the CE (upper panels) and RK (lower panels) versions of
the model.

The figures show that both the synoptic and mesoscale patterns of the flow as well as wind
velocities are to very high degree the same for both simulations and the similarity is even
greater, comparing with the surface wind field, for the flow less or not affected by the friction.
Only some differences are noticeable for wind velocities. For 10 and 26 model levels (lower
and middle troposphere) CE gives slightly higher wind velocities in constrained, localized
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Figure 36: As in Figure 33 but for the 40th model level (approximately 10 km above the
ground level).

areas, especially immediately north of the Alpine ridge (see the 12 hour forecast at 10 level
and 24 hour forecast at 26 level). For level 40 (near the tropopause) the situation is different:
the CE solution brings slightly lower wind velocity at areas just over the Alpine ridge (for 12
and 24 hour forecast) and on the lee side of the Alps (for 24 hour forecast). That suggests
generally stronger effects of the explicitly resolved orographically induced gravity wave drag
in the CE representation of the flow.

Figure 37 presents the vertical cross section through the fragment of wind velocity field in
the vicinity of Mt. Rosa. The orientation of the section line is from north-west to south-east
(similar to Figure 27 of the previous section), for 12 hour (left panels) and 24 hour (right
panel) forecast for the CE (upper panels) and RK (lower panels) model versions. The figure
shows clear similarity of the general pattern of the flow but also some differences. The differ-
ences are located in the near surface layer where numerous differing very-small-scale details
are superimposed within the same large-scale flow pattern. The localized differences are also
present in the middle troposphere and have generally a signature of gravity wave structures.
For the jet stream area larger-scale differences are seen especially over the mountains (12
hour forecast) and over their lee side (24 hour forecast) where CE wind velocities are smaller
suggesting stronger gravity wave drag, in agreement with analysis of Fig. 36.

Figure 38 presents the vertical cross section through vertical velocity distribution in the
vicinity of Mt. Rosa, in the area shown by Fig. 37. Also for the vertical velocity distribu-
tion the general pattern of the flow is similar for both realizations and for both instances.
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Figure 37: Vertical cross section through wind velocity in the vicinity of Mt. Rosa, the
north-west to south-east orientation of the section line for 12 hour (left panels) and 24 hour
(right panel) forecast for the CE (upper panels) and RK (lower panels) model versions

It concerns especially the magnitudes of the amplitudes and general pattern of the most
pronounced features. There are also noticeable differences between CE and RE simulations,
which concern details of shape and extension as well as magnitudes of weaker flow features,
but they are generally common for both representations.

Figure 38: Like in Figure 37 but for vertical cross section through vertical velocity field

The experiment involved also a simulation of moist processes. The results for CE and
RK realizations are very similar. It is seen e.g. analyzing a 3-dimensional distribution
of iso-surfaces of constant cloud condensate mixing ratio for which there are no significant
differences between the realizations (not shown). A comparison of distribution of cloud water
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mixing ratio is shown in Figure 39 presenting a vertical cross section through the field along
the north to south oriented cutting line crossing the Western Alps for 6, 12 and 24 hour
forecast. The figure demonstrates very similar cloud pattern for CE and RK simulations,
especially for relatively dense cloud structures, with some differences concerning smaller
scale details and the parameter’s amplitudes. For less dense clouds the differences are more
significant and in places concern also more general cloud patter. Nevertheless, the similarity
of the solutions is significant.

Figure 39: Vertical cross section through the cloud water mixing ratio along the north to
south oriented cutting line crossing the Western Alps for 6 (upper panel), 12 (middle panel)
and 24 hour forecast; RK results on the left panel, CE on the right.

A good general indication of the consistency of simulations involving representation of moist
processes comes from analysis of the resulting precipitation distribution. Figure 40 shows
the precipitation accumulated within 12 (left panel) and 24 hours (right panel) periods.
The figure confirms a very high degree of similarity of the precipitation pattern for the RK
and CE realizations, for both instants. Also the precipitation amounts are similar, especially
during the first 12 hours of forecast. Later, for the 24 hour accumulation of precipitation, the
locations of maxima are still very similar for both model versions but CE tends to generally
produce higher precipitation maxima.

Overall, the consistency of the RK and CE results involving the parameterizations tuned
for the RK operational setup and simply implemented to the CE setup can be regarded as
significant

CE inter-comparison for increasing horizontal resolution
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Figure 40: Accumulated precipitation (color scale) and direction on the surface for 12 hour
(left panels) and 24 hour (right panel) forecast for the CE (upper panels) and RK (lower
panels) model versions.

Figure 41 presents an inter-comparison of surface wind (on the computational level 10m
above the surface) obtained with the CE model for 2.2, 1.1 and 0.55 km horizontal grid size.
The figures show consistently the same synoptic and mesoscale velocity pattern, discussed
above, for all the resolutions. The differences concern mainly small scale details of the flow
field and a general tendency for lower wind velocities for increasing horizontal resolution
of the simulation, especially over the Alps, suggesting an influence of explicitly resolved
orography drag, increasing with increasing model and orography resolutions.

Similarly, Figure 42 compares the wind on 10-th computational level (about 500 m above
the surface) for the CE forecast with 2.2, 1.1 and 0.55 km horizontal grid size. The figures
show very high consistency of the flow pattern, for all the resolutions. The differences
concern mainly small-scale details of the flow field, especially in the immediate vicinity of
high mountains. A general tendency for lower wind velocities for higher horizontal resolution
is also seen over the Alps, especially while comparing the results for 2.2 and 0.55 km grid
size.

Figure 43 (left panels) compares the vertical cross sections through a fragment of the wind
velocity field obtained with horizontal grid sizes of 2.2, 1.1 and 0.55 km for the Mt. Rosa
vicinity in location close to the one in Fig. 37. The figure allows analyzing in more details
the differences in the forecasted velocity field as well as in the orography pattern for different
resolutions. It shows that while the results keep consistency of the general flow pattern,
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Figure 41: Wind velocity (color scale and wind arrow length) and direction (wind arrow
direction) on the 10m model level for 24 hour forecast with the CE model version using
horizontal grid size of 2.2 km (left, upper panel), 1.1 km (right panel) and 0.55 km (left
lower panel).

the differences concern whole depth of the troposphere and are pronounced especially in
the near-surface and the jet stream area. For increasing resolution, in the near-surface area
there is more variability in the flow for the smallest scales, which results both from the
increased variability of the resolved orographic forcing and of the model resolved scales. In
the jet stream area, the differences concern mainly mesoscale patterns of the sizes of tens of
kilometers. The general tendency is diminishing strength of the jet stream with increasing
resolution, suggesting an increasing drag of explicitly resolved mountain waves. There is no
grid-convergence of the simulated flow due to the resolution dependent orography pattern.

Figure 43 (right panels) compares also the vertical cross sections through the CE vertical
velocity field obtained with grid sizes of 2.2, 1.1 and 0.55 km for the Mt. Rosa vicinity in
the location shown in Figure 42. The wave features forecasted with the 2.2 km resolution
and especially the most pronounced wave patterns are also clearly present in simulations
with higher resolutions. The features have also similar amplitudes. On the other hand, the
simulations with higher resolutions show a presence of increasingly complicated wave patterns
with additional or significantly amplified features comparing with 2.2 km grid simulations.
Such features are present not only in the vicinity of the surface but also in the middle and
upper troposphere and in places reach magnitudes of the main wave features obtained with
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Figure 42: As in Figure 41 but for 10th model level above the ground.

2.2 km grid.

Finally, Fig. 44 compares vertically integrated cloud water for the CE forecast for 12 hours
for 2.2 km (left panel) and 0.55 km (right panel) grid sizes. It presents high similarity of the
obtained cloud fields, concerning both the cloud pattern and the amount of the condensate.
The high-resolution simulation shows, however, a general presence of many very small-scale
details absent in the lower-resolution simulations.

5.5 Summary and conclusions

The COSMO-EULAG prototype with EULAG dynamical core implemented into the software
structure of the COSMOmodel and linked with basic physical parameterizations was success-
fully developed. The prototype was tested comparing its results with analogous COSMO
model based on the compressible Runge-Kutta dynamical core for high-resolution 2.2 km
horizontal grid sizes, for semi-realistic 24 hour forecast of the flow over Alps and its vicinity.

The tests have shown that the realistic CE results are similar to and consistent with the
results of COSMO with RK dynamical core. It concerns not only basic parameters of the
flow like wind and potential temperature distribution (the latter not shown) but also moist
parameters like cloud condensate distribution and cumulative surface precipitation. Interest-
ing differences between the models concern mountain gravity waves. While their distribution



COSMO Technical Report No. 23 67

Figure 43: Vertical cross section through wind velocity (left panels) and vertical velocity
(right panels) for 24 hour forecast in the vicinity of Mt. Rosa with the CE model using
horizontal grid size of 2.2 km (left, upper panel), 1.1 km (right panel) and 0.55 km (left
lower panel).

Figure 44: Vertically integrated cloud water (g/kg) for the CE forecast for 12 hours using
2.2 km (left panel) and 0.55 km (right panel) grid size.
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is generally similar for both models, they differently influence the upper flow pattern leading
to noticeable differences of the wind velocity in the jet stream area, while preserving similar
general flow pattern. In general, no discrepancies of the CE simulations were found which
would prove unsuitability of the EULAG dynamical core as well as of the anelastic approach
for the very-high resolution regional NWP applications.

Finally, the CE prototype was tested for the varying horizontal resolutions with grid sizes of
2.2, 1.1 and 0.55 km. The simulations show a high degree of consistency of the results as well
as the desirable robustness of the CE prototype. It was shown that with the increasing grid
resolution the small scale variability of the flow increases with appearance of many small
scale details especially in the near surface layer and gravity wave pattern. There are also
resolution dependent differences in the jet stream velocity distribution suggesting effects of
explicitly resolved gravity wave drag. There is no grid convergence of the solution for the
orography significantly varying between the simulations.
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6 MPDATA as an alternative tracer advection scheme

Guy de Morsier and Marie Müllner

MeteoSwiss, Krähbühlstrasse 58, 8044 Zürich, Switzerland

6.1 Introduction

The results shown here were achieved during a 6 month diploma work done by Marie Müllner
at MeteoSwiss in 2010 and for the full details see the original work by Muellner (2010) (in
German).
In the current COSMO model the advection of the prognostic variables is done with an
upwind scheme1. This scheme is efficient and therefore well adapted for a fast operational
model but it is not monotone and not conservative. For the advection of positive definite
variables such as scalar tracer fields, i.e. all water constituents, possible aerosol particles and
gaseous substances or turbulent kinetic energy, finite volume schemes are more appropriate.
For the tracer transport the model provides already different formulations but all of them
have some drawbacks.
The aim of this work is to implement, evaluate and test a fully three dimensional advection
scheme for the COSMO model. The proposed advection scheme is MPDATA (multidi-
mensional positive definite advection transport algorithm, see Smolarkiewicz and Margolin
(1998)) which is used in the EULAG (Eulerian/Semi-Lagrangian fluid solver, see Prusa
et al. (2008)) numerical model. The code used for the implementation is from Piotr K.
Smolarkiewicz and it can be found in the appendix of Muellner (2010).

6.2 Advection of prognostic fields

In COSMO the advection of the wind components, the temperature and the pressure is
operated with an upwind scheme of the 5th order. The upwind scheme is a numerical
discretization for hyperbolic partial differential equations.
We take the following advection equation

∂u
∂t
+ a∂u
∂x
= 0 (3)

A solution of this equation is a wave that travels along the x-direction with the speed a. For
a numerical approximation of ∂u/∂t we use

∂u
∂t
=

un+1
i − un

i
∆t

and for the approximation of ∂u/∂x we use the backward difference if a > 0

∂u
∂x
=

un
i − un

i−1
∆x

(4)

and the forward difference if a < 0

∂u
∂x
=

un
i+1 − un

i
∆x

(5)

1upwind scheme of 5th order is used (Wicker and Skamarock, 2002); more general operators are described
in (Doms et al., 2011, section 8.1.2) .
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After replacement in (3) and depending on a we obtain

un+1
i − un

i
∆t

+ a
un

i − un
i−1

∆x
= 0

or
un+1

i − un
i

∆t
+ a

un
i+1 − un

i
∆x

= 0

By defining a+ = max(a,0), a− = min(a,0), u−x =
un

i −un
i−1

∆x and u+x =
un

i+1−un
i

∆x we can put the
2 cases together to

un+1
i = un

i − ∆t(a+u−x + a−u+x )

or
un+1

i = un
i − C(un

i − un
i−1)

where C is the Courant-Friedrichs-Lewy number (CFL) which is defined by

C =
∣∣∣∣∣a∆t
∆x

∣∣∣∣∣
This upstream scheme is of the first order and is only stable if C ≤ 1.

6.3 Positive definite advection

For the advection of tracers the model provides a semi-Lagrangian scheme (SL) and direction
splitted finite volume schemes. For the latter, several flux formulations exist under which the
flux calculation by Bott (1989) is the standard one and the others are the vanLeer-scheme
and a piecewise parabolic method (PPM). The different methods should satisfy the following
conditions so that the physical properties are fulfilled:

• conservation of mass

• computation of the fluxes in upstream direction

• no production of new maxima or minima

• conservation of tracer relationships during the advection

• efficient computation in spherical coordinates

The Bott-scheme is a one-dimensional scheme which is used in split mode for the different
directions. The advection is done in 2 steps. After weighting the advective fluxes, corrections
are applied to make the scheme positive definite. These corrections gives the scheme a
precision of the second or forth order. The second order is usually used for operational
applications and is hereafter referred to as Bott 2. The SL-scheme is a fully 3-dimensional
but it does not conserve the mass. More details about these schemes can be found in the
chapter 8.3 of Doms et al. (2011).

6.4 MPDATA in 3-dimensions

MPDATA is a finite difference scheme which is positive definite, mass conserving and efficient.
Moreover through a flux correction it can be made monotonous. It is an iterative scheme. In
a first step a donor cell approximation (also called upstream method, positive definite but
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Figure 45: Grid structure in MPDATA.

only of first order accuracy) is made. In the second step which can be repeated, corrections
are applied to make the scheme more accurate (second order in time and space). In the first
step, the physical velocities are used but in the iterations, the velocities are computed from
the advection fields and we call them diffusive velocities.
The grid used in MPDATA is basically composed of two set of grids which are shifted by
half a grid length in all directions so that the center of the cells are whole numbers i (i.e.
the contribution of the first grid) and the grid summits (contribution of the second grid)
with half valued indexes i ± 1/2, see Figure 45. The X sign marks in the figure the position
of the quantity to be advected, CU(i − 1/2) and CU(i + 1/2) are the Courant numbers in the
x direction, CV(j − 1/2) and CV(j + 1/2) are the Courant numbers in the y direction and
CW(k − 1/2) and CW(k + 1/2) are the Courant numbers in the z direction.
The equation of advection in 3-dimensions is

∂Ψ
∂t
= − ∂
∂x

(uΨ) − ∂
∂y

(vΨ) − ∂
∂z

(wΨ) (6)

The equation for the donor cell approximation of (6) is then

Ψn+1
i, j,k = Ψn

i, j,k − [F(Ψn
i, j,k ,Ψ

n
i+1, j,k ,Ui+ 1

2 , j,k
) − F(Ψn

i−1, j,k ,Ψ
n
i, j,k ,Ui− 1

2 , j,k
)]

−[F(Ψn
i, j,k ,Ψ

n
i, j+1,k ,Vi, j+ 1

2 ,k
) − F(Ψn

i, j−1,k ,Ψ
n
i, j,k ,Vi, j− 1

2 ,k
)] (7)

−[F(Ψn
i, j,k ,Ψ

n
i, j,k+1,Wi, j,k+ 1

2
) − F(Ψn

i, j,k−1,Ψ
n
i, j,k ,Wi, j,k− 1

2
)]

where the whole indexes correspond to the center and the half indexes are on the boundaries
of the grid cells.
The Courant numbers U, V and W are U ≡ uδt/δx,V ≡ vδt/δy and W ≡ wδt/δz where the
time step is δt and the grid space in x, y and z direction are δx, δy and δz. The flux functions
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are defined as

F(ΨL,ΨR,U) ≡ [U]+ΨL + [U]−ΨR

F(ΨL,ΨR,V) ≡ [V]+ΨL + [V]−ΨR (8)

F(ΨL,ΨR,W) ≡ [W]+ΨL + [W]−ΨR

with the Courant numbers

[U]+ ≡ max(0,U), [U]− ≡ min(0,U) [V]+ ≡ max(0,V), [V]− ≡ min(0,V)

[W]+ ≡ max(0,W), [W]− ≡ min(0,W)

The [U]+, [V]+ and [W]+ are the nonnegative, and [U]−, [V]− and [W]− are the nonpositive
parts of the Courant numbers. With a Taylor expansion and under the assumption that u,
v and w are constant, we can again compute the donor cell approximation as:

Ψn+1
i, j,k = Ψn

i, j,k + δt
∂Ψ
∂t
+

(δt)2

2
∂2Ψ
∂t2 + O(δt3)

= Ψn
i, j,k + δt

∂Ψ
∂t
+

(δt)2

2 u2∂
2Ψ
δx2 +

(δt)2

2 v2∂
2Ψ
δy2 +

(δt)2

2 w2∂
2Ψ
δz2 +

(δt)2

2 2uv ∂
2Ψ
∂x∂y

+
(δt)2

2 2uw ∂
2Ψ
∂x∂z

+
(δt)2

2 2vw ∂
2Ψ
∂y∂z

+ O(δt3)

Ψn
i+1, j,k = Ψn

i, j,k + δx
∂Ψ
∂x
+

(δx)2

2
∂2Ψ
∂x2 + O(δx3)

Ψn
i−1, j,k = Ψn

i, j,k − δx
∂Ψ
∂x
+

(δx)2

2
∂2Ψ
∂x2 + O(δx3)

Ψn
i, j+1,k = Ψn
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∂Ψ
∂y
+

(δy)2

2
∂2Ψ
∂y2 + O(δy3)
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(δz)2

2
∂2Ψ
∂z2 + O(δz3)
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i, j,k−1 = Ψn

i, j,k − δz
∂Ψ
∂z
+

(δz)2

2
∂2Ψ
∂z2 + O(δz3)

After putting this in (7) we get the following advection diffusion equation

∂Ψ
∂t
= −u∂Ψ

∂x
− v∂Ψ
∂y
− w∂Ψ
∂z
+ (9)

(|U| −U2)
(δx)2

2δt
∂2Ψ
∂x2 + (|V| − V2)

(δy)2

2δt
∂2Ψ
∂y2 + (|W | −W2)

(δz)2

2δt
∂2Ψ
∂z2 −

UVδxδv
δt

∂2Ψ
∂x∂y

− UWδxδz
δt

∂2Ψ
∂x∂z

− VWδyδz
δt

∂2Ψ
∂y∂z

The error which arises from the diffusion term in (9) is estimated with a donor cell ap-
proximation and then subtracted from (7) to obtain a higher precision. The equation (9) is
written with the diffusive velocities ud, vd and wd as

∂Ψ
∂t
= − ∂
∂x

(uΨ) − ∂
∂y

(vΨ) − ∂
∂z

(wΨ) + ∂
∂x

(u(1)
d Ψ) + ∂

∂y
(v(1)

d Ψ) + ∂
∂z

(w(1)
d Ψ) (10)
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with the following definitions:

u(1)
d ≡ (|U| −U2)

(δx)2

2δt
1
Ψ
∂Ψ
∂x
− r

UVδxδy
δt

1
Ψ
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∂y
− sUWδxδz

δt
1
Ψ
∂Ψ
∂z

v(1)
d ≡ (|V| − V2)

(δy)2

2δt
1
Ψ
∂Ψ
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− (1 − r)

UVδxδy
δt

1
Ψ
∂Ψ
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− t

VWδyδz
δt

1
Ψ
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(11)

w(1)
d ≡ (|W | −W2)

(δz)2

2δt
1
Ψ
∂Ψ
∂z
− (1 − s)UWδxδz

δt
1
Ψ
∂Ψ
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− (1 − t)
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δt

1
Ψ
∂Ψ
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with r, s, t ∈ R can be chosen arbitrarily. The implementation is independent of the choice
for r, s, t ∈ [0, 1] and as default values we choose r, s, t = 0.5 The diffusive velocities must
be built at the grid cell boundaries. The explicit form depends if the boundary is horizontal
or vertical but they can be written in the following dimensionless form

U(1) ≡ u(1)δt
δx

= (|U| −U2)A(1) − 2rUVB(1) − 2sUWC(1)

V(1) ≡ v(1)δt
δy

= (|V| − V2)B(1) − 2(1 − r)UVA(1) − 2tVWC(1) (12)

W(1) ≡ w(1)δt
δz

= (|W | −W2)C(1) − 2(1 − s)UWA(1) − 2(1 − t)VWB(1)

with
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6.5 Non-oscillating option

The algorithm described in the previous paragraph is positive definite but not monotone. The
solution can show wrong extrema. The reasons for the oscillations in the numerical solution
are that on one side some fluxes are overestimated and on the other an underestimation
can arise from the first order accuracy of the fluxes. The flux-corrected transport (FCT)
methodology enforces appropriate limits to the fluxes and removes these oscillations. The
adopted method merges the FCT with the iterative formalism of MPDATA (Smolarkiewicz
and Grabowski, 1990). The numerical diffusion of the advection is reduced by limiting the
anti-diffusive fluxes so that no unphysical extrema occur in the solutions.

General form of the FCT methodology Starting with the conservation of a time
dependent fluid variable (e.g. mass, momentum) Ψ can be written as

∂Ψ
∂t
+ ∇ · (Ψu) = S

where u is the fluid velocity and S is a source term. First Ψ is advected. In the second
FCT step Ψ is numerically diffused so that the solution is positive everywhere if the starting
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profile Ψ0 was positive. The source term S is added to obtain the low order value Ψl. In the
next step the anti-diffusive fluxes are computed and we obtain a higher order approximation
Ψh. The anti-diffusive fluxes are limited to not generate any new extrema and not to reduce
any extrema of the start profile. Applying these fluxes to Ψl gives the new solution Ψn which
is positive and monotone.

Limiters in MPDATA First the extrema Ψmin and Ψmax are computed

Ψl,min
i, j,k = min(Ψl

i, j,k ,Ψ
l
i−1, j,k ,Ψ

l
i+1, j,k ,Ψ

l
i, j−1,k ,Ψ

l
i, j+1,k ,Ψ

l
i, j,k−1,Ψ

l
i, j,k+1)

Ψl,max
i, j,k = max(Ψl

i, j,k ,Ψ
l
i−1, j,k ,Ψ

l
i+1, j,k ,Ψ

l
i, j−1,k ,Ψ

l
i, j+1,k ,Ψ

l
i, j,k−1,Ψ

l
i, j,k+1)

Then Ψh is computed using (7) and the new extrema Ψmin and Ψmax are found

Ψh,min
i, j,k = min(Ψh

i, j,k ,Ψ
h
i−1, j,k ,Ψ

h
i+1, j,k ,Ψ

h
i, j−1,k ,Ψ

h
i, j+1,k ,Ψ

h
i, j,k−1,Ψ

h
i, j,k+1,Ψ

l,min
i, j,k )

Ψh,max
i, j,k = max(Ψh

i, j,k ,Ψ
h
i−1, j,k ,Ψ

h
i+1, j,k ,Ψ

h
i, j−1,k ,Ψ

h
i, j+1,k ,Ψ

h
i, j,k−1,Ψ

h
i, j,k+1,Ψ

l,max
i, j,k )

The flux terms in (8) are computed and in the next step the total in- and outgoing anti-
diffusive fluxes Fin and Fout of each cell can be computed as

Fin
i = max(Fi−1/2, 0) −min(Fi+1/2, 0) , Fout

i = max(Fi+1/2, 0) −min(Fi−1/2, 0)
Fin

j = max(F j−1/2, 0) −min(F j+1/2, 0) , Fout
j = max(F j+1/2, 0) −min(F j−1/2, 0)

Fin
k = max(Fk−1/2, 0) −min(Fk+1/2, 0) , Fout

k = max(Fk+1/2, 0) −min(Fk−1/2, 0)

The partial in- and outgoing fluxes f in and f out which have to be applied to each grid cell
are then

f in
i =

Ψh,max
i, j,k − Ψl

i, j,k

Fin
i

, f out
i =

Ψl
i, j,k − Ψh,min

i, j,k

Fout
i

f in
j =

Ψh,max
i, j,k − Ψl

i, j,k

Fin
j

, f out
j =

Ψl
i, j,k − Ψh,min

i, j,k

Fout
j

f in
k =

Ψh,max
i, j,k − Ψl

i, j,k

Fin
k

, f out
k =

Ψl
i, j,k − Ψh,min

i, j,k

Fout
k

Finally in the last step each of these partial anti-diffusive fluxes are limited so that no
undershooting is produced at the exit and no overshooting at the entry of the grid cell. For
the pseudo velocities u, v and w we use

ui+1/2, j,k = min(1, f out
i , f

in
i+1) max(0,ui+1/2, j,k) +min(1, f in

i , f
out
i+1 ) min(0,ui+1/2, j,k)

vi, j+1/2,k = min(1, f out
j , f

in
j+1) max(0, vi, j+1/2,k) +min(1, f in

j , f
out
j+1) min(0, vi, j+1/2,k)

wi, j,k+1/2 = min(1, f out
k , f

in
k+1) max(0,wi, j,k+1/2) +min(1, f in

k , f
out
k+1) min(0,wi, j,k+1/2)
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Figure 46: First example of MPDATA in one dimension, details see text.

6.6 Illustration in a one dimensional case

To show how MPDATA works a simple advection in one dimension is used here. The initial
distributions of the tracer (Qi) are a triangle and a rectangular function with maximum value
1 and minimum value 0.3 over 100 grid points. These are shown in red in the Figure 46. A
constant positive velocity (to the right) is applied to the tracer with a Courant number of
0.625 and periodic boundary conditions are used. After 800 time steps the distribution has
passed over all the 500 grid points and is back at the initial position (in green in Figure 46)
and the impact of the different advection options is visible. These options are the number of
iterations (iord) used in the MPDATA algorithm, the non-oscillating option described in the
previous section if nonos = 1 and a switch for non-divergent fields (idiv = 1 if the divergence
of the velocity field is different than zero). For iord = 1 only the donor cell advection is
operated and the scheme is very diffusive (not shown). With iord = 2 we have the basic
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MPDATA scheme with only one anti-diffusive flux computed. This step can be repeated
although for iord higher than 3 no significant improvement is obtained (not shown). On
the top left of Figure 46 iord is equal 2 and on the left of the rectangular tracer there is
a 4% overshooting and on the right an undershooting of 7%. This effect is totally absent
in the part (b) of the figure where nonos = 1. With an extra iteration (iord = 3, lower left
part c) the over- and undershooting are worse (respectively 7 and 20%) but the root mean
square error (RMSE) of the overall distribution is reduced. The best results are obtained
in the lower right corner in part (d) of the figure and one can also state that the triangular
distribution does not seem to change much for any of the shown options. In a more stringent

Figure 47: Second example of MPDATA in one dimension, details see text.

test the 2 previous distributions are compared after 3200 time steps which correspond to
4 complete rotations. In contrast to Figure 46 the starting distributions have a minimum
of 0 and only three options are shown in Figure 47. In the lower right part an upstream
non-oscillatory (UNO2+) solution from Li (2008) is displayed for comparison. The RMSE
with the best MPDATA options (iord=3, nonos=1) is shown in the upper left part (a) and
is similar to the UNO2+ method.
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6.7 Advection tests

In a first configuration MPDATA was tested by conducting synthetic experiments with the
module src artifdata. This module permits to construct artificial initial and boundary data
and all the usual settings of the model and then to do component testing while still using
the whole COSMO model in its version 4.12 for the dynamics of the flow. MPDATA could
therefore be easily compared to results obtained with Bott 2 or the semi-Lagrangian scheme
(SL).
These so-called solid body rotation tests were computed on a domain of 80x80 grid points
with an horizontal resolution of 2.2km. The time step used was 20s. There is no orography
and the vertical extension of the model has no impact but permits to conduct different
experiments on different model levels.

Figure 48: Rotating wind field in m/s over the whole computational domain with the starting
tracer concentration (cone with base radius of 5 grid points) in colours centered at position
(20,20).

Rotating cone test with 0 background As in the previous paragraph the specific cloud
ice content qi (in units of kg/kg) was used as a tracer and initialized to zero everywhere except
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for a cone centered over the position (i, j) = (20, 20) and with radius of 5 grid points and
placed on the 10th level of the model so that we can write

qi(i, j, 10) = max(0.0, 1.0 −
√

((i − imax)/5)2 + (( j − jmax)/5)2)

where the maximum of qi is 1 and is positioned on the grid point (imax, jmax = (20, 20). The
rotating wind field is defined as

u(i, j, k) = −ω( j − j0) v(i, j, k) = ω(i − i0) w(i, j, k) = 0.0

where ω = 0.97m/s, u(i, j, k), v(i, j, k) and w(i, j, k) are the wind velocities in the i-, j- and
k-direction and (i0, j0) is the mid point of the horizontal layer. The stationary winds and the
distribution of the tracer at time 0 are shown in Figure 48.
The rotation period is 4h and the Courant number at the location of the tracer is about 0.3
but the maximum values are close to 0.5 in the corners of the domain.
The tracer should theoretically be transported without changing its shape and after 4h of
computation it should be back in its starting position. To show the characteristics of the dif-
ferent schemes, the isolines of the tracer concentrations of the MPDATA method are drawn
on top of the colored results of the Bott 2 scheme. Figure 49 displays 2 different settings
of the MPDATA scheme. For MPDATA one can see that the maximum values have been
reduced by 78% and 66% whereas Bott 2 has only been reduced by 50%. The results of the
SL scheme are not shown but are very similar to the Bott 2 with a slightly better maximum
value of 0.510. There is not only a reduction of the maximum but there is also a phase shift
in the position of this value.
We compute the following statistical measures to quantify the results:

Figure 49: Zoom of the lower left domain with the tracer concentrations after one complete
rotation of a cone with maximum of 1 and horizontal radius of 5 grid points centered at the
position (20,20).
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• the phase error Ephase is defined as the distance between the exact maximum position

(istart, jstart) and the computed one (iend, jend):

Ephase =

√
(istart − iend)2 + ( jstart − jend)2 (13)

• the diffusion error is
Edi f f usion = max(qstart

i ) −max(qend
i ) (14)

• the L2-norm is

EL2 =

√√√ N∑
i=1

Ai · (qstart
i − qend

i )2 (15)

where N is the number of grid cells and Ai is the area of the grid cell.

Advection scheme L2-norm Maximum
after one rotation EL2 value Ephase Edi f f usion

Bott 2 3.068 0.501 1.414 0.499
Semi-Lagrange 3.147 0.510 1.414 0.490

MPDATA
iord=2, nonos=0 5.798 0.219 2.000 0.781
iord=3, nonos=0 4.925 0.348 2.236 0.652
iord=2, nonos=1 5.795 0.217 2.000 0.783
iord=3, nonos=1 4.906 0.344 2.000 0.656

Table 8: Overview of the different schemes for the rotating cone test with 0 background.

All the results of the different experiments with the rotating cone are shown in Table 8. The
smallest MPDATA diffusion error is given by the experiment with iord = 3 and nonos = 0
but its phase error is the largest and the overall smallest L2-norm is given by the Bott 2
scheme although its diffusion error is larger than the SL experiment.

Rotating cylinder test with non-zero background
In this test the tracer has a value of 0.3 over the whole domain and only in a radius of 5
grid points around the center position (i, j) = (20, 20) does the tracer have a value of 1.0.
The rotating wind field is the same as in the previous cone test. Figure 50 shows the same 2
settings of the MPDATA scheme on top of the Bott 2 solution as for the rotating cone test.
Although we use the non-oscillating option for MPDATA local minima and maxima appear
in the vicinity of the main tracer concentration. This is also the case for the Bott 2 but
the trail behind the main concentration is much smaller than with MPDATA. For MPDATA
one can see that the maximum values have been reduced by 37% and 26% whereas Bott 2
has only been reduced by 16%. This is much better than in the previous test but because
of the local extrema the overall L2-norm is much larger in this experiment (see Table 9).
The results of the SL scheme are not shown here because there is a boundary undershooting
problem for this experiment.
All the results of the different experiments with the rotating cylinder are shown in Table 9.
The smallest MPDATA diffusion error is again given by the experiment with iord = 3 and
nonos = 0 with a maximum reduction of only 21% but its phase error is again the largest
and the overall smallest L2-norm is again given by the Bott 2 scheme and its diffusion error
is also the overall smallest.
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Figure 50: Tracer concentrations after one complete rotation (4h) of a cylinder of maximum 1
and horizontal radius of 5 grid points centered at the position (20,20) on top of a background
value of 0.3.

Advection scheme L2-norm Minimum Maximum Phase Diffusion
after one rotation EL2 value value error error

Bott 2 5.233 0.273 0.844 1.414 0.156
Semi-Lagrange 12.574 0.125 0.843 1.414 0.157

MPDATA
iord=2, nonos=0 6.907 0.261 0.633 2.000 0.367
iord=3, nonos=0 6.771 0.199 0.785 3.162 0.215
iord=2, nonos=1 6.882 0.281 0.625 2.000 0.375
iord=3, nonos=1 6.402 0.281 0.739 2.000 0.261

Table 9: Overview of the different schemes for the rotating cylinder test with non-zero
background.
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Figure 51: Wind field in m/s for the deformational flow test with the starting tracer concen-
tration (cone with base radius of 5 grid points) in colours centered at position (40,40).

6.8 Deformation flow tests

The stability and the qualitative value of the different advection schemes can be best tested
in this set-up because the splitting schemes have here the potential to fail. The wind field
is now composed of series of symmetrical vortices with all neighbors rotating in opposite
directions and the divergence is non-zero. Therefore the MPDATA switch idiv = 1 needs
to be used for this test. The purely horizontal wind speed components (w(i, j, 10) = 0) are
defined as follows

u(i, j, 10) = 120.0 · π
80.0 sin(4.0 · π

80.0 i) sin(4.0 · π
80.0 j)

v(i, j, 10) = 120.0 · π
80.0 cos(4.0 · π

80.0 i) cos(4.0 · π
80.0 j)

Similar to the first advection test, a cone tracer qi of 5 grid point radius is placed on the
10th level at the centre of the domain (imax, jmax) = (40, 40) and every where else set to zero

qi(i, j, 10) = max(0.0, 1.0 −
√

((i − imax)/5)2 + (( j − jmax)/5)2)
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The shear flow generated by the equations above is shown in Figure 51 where the initial
distribution of the tracer at time 0 is exactly split in the middle by a counterclockwise and
a clockwise rotating vortex. The tracer will therefore be transported first to the North
reaching a strongly divergent zone (with a saddle point at the center of the top 4 complete
vortices) where the tracer will be split in two parts, one going West and another going
East. Near the tracer maximum the Courant number is 0.04. The time for the tracer to
go round once depends on the starting position and as the fluid trajectories are not circles
for a position close to the center of the domain the period can be analytically computed by
Pc = 2π/(k2|A|) = L2/(8π|A|) where L is the computational domain and A is the amplitude
of the stream function which describes the wind field (see formula (12) in Staniforth et al.
(1987)). This corresponds here to about 1500 time steps so that after 10 hours of simulation
the tracer has gone round about 1.2 times.

Advection Maximum Maximum
scheme after 5h after 10h

Bott 2 0.297 0.148
Semi-Lagrange 0.334 0.164

MPDATA
iord=2, nonos=0 0.278 0.126
iord=3, nonos=0 0.299 0.149
iord=2, nonos=1 0.267 0.128
iord=3, nonos=1 0.287 0.146

Table 10: Maximum values of the cone tracer in a deformational flow field.

Figure 52 displays the tracer concentration with the Bott 2 and the SL scheme and they can
be compared with 2 different settings of the MPDATA scheme in Figure 53. Although the
setup is completely symmetric the results show some small asymmetry which can be perhaps
explained by the Coriolis force which was not excluded. The maximum tracer values of
the experiments are summarized in Table 10 and for the iord = 3 and nonos = 0 configura-
tion of MPDATA the values are higher than for Bott 2 but the results for SL are overall best.

The test referred to in Smolarkiewicz (1982) and in Staniforth et al. (1987) is laid out in
a larger domain with a square side of 100 grid points and starts with a cone with a radius
of 15 grid points which interacts with six vortices. The amplitude of the stream function
is also reduced from 30 to 8 so that the time needed to reach 3T/200 (T = 2637.6) is of 32
hours. Three different advection schemes are shown in Figure 54 and can be compared to
the analytical solution shown in Figure 4a of Staniforth et al. (1987). The overall symmetry
of this setup is much higher than with the previous deformation flow test. The solution with
the highest wall on the North side of the two central vortices and between these two vortices
is the SL configuration. The MPDATA configuration maintains higher maximum values than
the Bott 2 scheme and the advection of the tracer near the North saddle point produces far
reaching ’horns’ which are also in the analytical solution, but the southern tracer extension
from the South saddle point is the smallest with MPDATA.

6.9 Conclusions

MPDATA is a 3-dimensional advection scheme which was introduced by Piotr Smolarkiewicz.
It is based on the upstream scheme. The strong diffusion of the upstream scheme is reduced
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Figure 52: Tracer concentrations after more than a complete rotation of a cone with max-
imum of 1 and horizontal radius of 5 grid points centered in the middle of the domain for
the Bott 2 (left) and semi-Lagrangian (right) advection scheme.

Figure 53: Same as Figure 52 but for 2 different settings of the MPDATA scheme.
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Figure 54: Tracer concentrations after 32 hours for (a) the Bott 2 scheme, (b) the SL scheme,
(c) MPDATA scheme with iord = 3 and nonos = 1. (d) is the Fig. 4a of Staniforth et al.
(1987) for T/50 with (T = 2637.6). All the isolines are 0.8 (not present in (a), (b) or (c)),
0.6, 0.4, 0.2, 0.02. Except for (d) the divergent flow field of the internal six vortices where
the tracer is confined is also shown.
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by iterating anti-diffusive steps.
Compared to splitted schemes, as the Bott-scheme, MPDATA has the advantage not to have
the tendency to oscillate and is therefore more precise and as a fully 3-dimensional scheme
it therefore can not empty a grid box in a single step. But MPDATA is more diffusive as
the Bott 2 scheme or the 3-dimensional semi-Lagrangian scheme (SL). This was particularly
the case in the solid body rotation tests because in the deformation flow tests the maximum
values of MPDATA were better than for the Bott 2 scheme. To be fair a fully 3-dimensional
test was not conducted so that the full advantage of MPDATA as a non-splitted scheme
could not be completely compared to the Bott-scheme.
The computing time for MPDATA as used in this work is considerably larger than for Bott 2
or for the Semi-Lagrange scheme but no effort was undertaken to optimize the scheme as it
is already done for the two other schemes which can be used for operations. For the moment
MPDATA runs only on one processor and to operate weather forecasts one should consider
to use a parallelised and optimized version of MPDATA and then to compare the results of
the different advection schemes.
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7 Normal mode analysis of anelastic and compressible equa-
tion sets

Michael Baldauf

Deutscher Wetterdienst, Germany

7.1 Introduction

Inspection of linear wave expansion properties is often one of the starting points in the
investigation of a hyperbolic equation set. Such an analysis gives also a first impression about
the accuracy of possible approximations made in an equation set. Here we will investigate
the wave expansion properties of several anelastic approximations of the Euler equations.
Such a study has already been done by Davies et al. (2003) and some of their results will be
reproduced here. Contrariwise, the current COSMO model uses the fully compressible Euler
equations with a split-explicit solver by Wicker and Skamarock (2002). This time-splitting
approach needs a so-called divergence damping to be stable (Baldauf, 2010), which can be
considered as an artificial additional term in the compressible Euler equations. It will be of
interest in which manner such a term will change the wave expansion properties, too. In
the frame of the CDC priority project, it is of particular interest to compare the divergence
damping with the anelastic equations. This comparison is done here on the level of the
analytic equations.

Such an investigation has been already performed by Baldauf (2011), where the anelastic
approximation sets of Ogura and Phillips (1962), here denoted as ’OP62’, Wilhelmson and
Ogura (1972) (’WO72’), and Lipps and Hemler (1982) (’LH82’) have been compared with
a compressible equation set with the artificial 3-dimensional (3D) divergence damping. The
equation set ’LH82’ is used in the EULAG model (e.g. Smolarkiewicz and Prusa, 2005). This
study extends those of Baldauf (2011) by considering additionally the anelastic equation set
of Durran (1989) (’D89’) and by comparing different versions (3D, 2D) of the divergence
damping, too. The basic methodology again follows the normal mode analysis of Davies
et al. (2003).

7.2 Derivation of the dispersion relations

In the following a steady atmosphere (no base flow u0 = 0) is assumed for the base state. It
is further hydrostatic (∂p0/∂z = −gρ0) and fulfills the ideal gas law p0 = ρ0RT0. The sound

velocity of the base state is cs =
√

cp
cv

RT0.

We will use an equation for the pressure perturbation p′ as in the COSMO-model, but a
continuity equation to have a direct control about the anelastic approximations. The different
anelastic equation sets are summarized e.g. in Nance and Durran (1994) and are therefore
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not repeated here The linearization around the base state delivers

∂u′

∂t
= − 1

ρ0

∂p′

∂x
+ f v′ + αD

∂D′

∂x
, (16)

∂v′

∂t
= − 1

ρ0

∂p′

∂y
− f u′ + αD

∂D′

∂y
, (17)

∂w′

∂t
= − 1

ρ0

∂p′

∂z
− σLH

1
ρ0

N2

g
p′ − g

ρ′

ρ0
+ αD,v

∂D′

∂z
+ σdd2αD,vD′ 1

ρ0

∂ρ0

∂z
, (18)

σ2
∂ρ′

∂t
+ w′

∂ρ0

∂z
= −ρ0 D′ − σD89

ρ0

Θ0

∂Θ0
∂z

w′, (19)

∂p′

∂t
+ w′

∂p0

∂z︸︷︷︸
=−gρ0w′

= c2
s

(
∂ρ′

∂t
+ w′

∂ρ0

∂z

)
, (20)

D′ = ∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
. (21)

Some switches σ... have been introduced whose values (0 or 1) are summarized in table 11.
σdd2 distinguishes two types of the artificial divergence damping in the 3D case: either the
term αD∂D′/∂z (’type 1’, σdd2 = 0) or the term αD/ρ0∂(ρ0D′)/∂z (’type 2’, σdd2 = 1). Type 2
is used in COSMO and MM5 because it can be coded more efficiently than type 1.
σ2 is the main switch of the anelastic approximation. The additional term ∼ σLH only
arises in the equation system of LH82. For its derivation one has to consider that LH82
are using −cp∇Θ0π′ + gΘ′/Θ0 for the pressure gradient and the buoyancy term instead of
the correct term −cpΘ∇π′ + gΘ′/Θ0 (Nance and Durran, 1994). In linear approximation the
difference between these two terms is −cpπ′∇Θ0. Expressed by the variables used in the

equation system above this can be approximated linearly by − 1
ρ0

N2

g p′. Alternatively, the

D89 equation set uses ∇ · ρ0Θ0v = 0 (for adiabatic processes) instead of ∇ · ρ0v = 0 (used in
OP62, WO72 and LH82). In linear approximation this delivers an additional term ∼ σD89.
The pressure equation is just the linearized adiabatic state equation dΘ/dt = 0 which is used
by all equation sets considered here. Furthermore, it should be mentioned that in this linear
analysis there is no difference between the equation systems of OP62 and WO72.

equation system σ2 σLH σD89 αD αD,v σdd2
compressible 1 0 0 0 0 0
compressible, with 3D-div. damping, type 1 1 0 0 ̸= 0 = αD 0
compressible, with 3D-div. damping, type 2 1 0 0 ̸= 0 = αD 1
compressible, with 2D-div. damping 1 0 0 ̸= 0 0 0
anelastic (OP62, WO72) 0 0 0 0 0 0
anelastic (LH82) 0 1 0 0 0 0
anelastic (D89) 0 0 1 0 0 0

Table 11: Switches for the different equation sets inspected in the normal mode analysis.

The coefficient functions of the linearized equations (16)-(21) are dependent on z. To reduce
this z-dependency (the following Fourier transformation requires even constant coefficients)
we perform a variable transformation by a function of the density according to Bretherton
(1966, section 5):

ϕ′ =

(
ρ0

ρs

)α
· ϕb. (22)
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where ρs is a constant reference value (e.g. at the bottom). The exponent is α = −1/2 for the
variables ϕ′ = u, v, w, T′ and α = +1/2 for ϕ′ = p′, ρ′. Insertion into eqns. (16)-(21) results
in a quite similar system with additional terms proportional to the (inverse) scale height

δ = − ∂
∂z

(
log
ρ0

ρs

)
. (23)

In the special case of an isothermal atmosphere (T0 = const.) the density is purely exponential
and therefore δ = g/(RT0) = const. The result of this Bretherton transformation is that some
coefficients (namely those ∼ 1/ρs) become constant, whereas others like ∼ c2

s , ∼ T0, ∼ δ
remain dependent on z (they are only constant for an isothermal atmosphere). But this
z-dependency is quite weak, therefore they can also be considered nearly as constant. This
allows to extent the analysis to more realistic stratifications (see ’second stratification case’
below).

It is convenient to introduce the acoustic cutoff frequency

ω2
a = −

g
ρ0

∂ρ0

∂z
(24)

and therefore δ = ω2
a/g, and the Brunt-Väisälä-frequency

N2 =
g

Θ0

∂Θ0
∂z
=

g
T0

(
∂T0
∂z
+

g
cp

)
. (25)

With the aid of the sound velocity, the ideal gas equation and the hydrostatic equation one
can derive

ω2
a = N2 +

g2

c2
s
. (26)

Now we can Fourier transform the equations by

ϕ′b(x, y, z, t) = ϕ̂b(kx, ky, kz, ω) ei(kxx+ky y+kzz−ωt). (27)

This leads to a system of the form A · (ûb, v̂b, ŵb, ρ̂b, p̂b)T = 0 with

A =



iω + αD(ikx)2 f − αDkxky αDikx(ikz +
δ
2 ) 0 −ikx

1
ρs

− f − αDkxky iω + αD(iky)2 αDiky(ikz +
δ
2 ) 0 −iky

1
ρs

αD,vikxKd αD,vikyKd iω + αD,v(ikz +
δ
2 )Kd − g

ρs
A35

−ikxρs −ikyρs A43 σ2iω 0
0 0 −ρs

g N2c2
s −iωc2

s iω


(28)

and with the abbreviations

Kd =

(
ikz +

δ
2 − σdd2

ω2
a

g

)
, (29)

A35 = − 1
ρs

(
ikz −

δ
2

)
− σLH

1
ρs

N2

g
, (30)

A43 = −ρs(ikz +
δ
2) + ρs

ω2
a

g
− σD89ρs

N2

g
. (31)

After an appropriate non-dimensionalization the requirement det A = 0 leads to the charac-
teristic equation for ω(k). This delivers the following dispersion relations:
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The characteristic equation for the non-hydrostatic, compressible equations follows
from the switches σ2 = 1, σLH = 0, σD89 = 0:

ω4 +

iαD(k2
x + k2

y) + iαD,v

(
kz −

i
2
ω2

a
g

)2

− σdd2αD,v

(
kz −

i
2
ω2

a
g

)
ω2

a
g

 ω3

−
[
c2
s

(
k2 +

1
4
ω4

a
g2

)
+ f 2

]
ω2

+

(k2
x + k2

y)(αD − αD,v)g
(
kz −

i
2
ω2

a
g

)
− iαD,v f 2

(
kz −

i
2
ω2

a
g

)2

+σdd2αD,v

(
−i(k2

x + k2
y)ω2

a + f 2
(
kz −

i
2
ω2

a
g

)
ω2

a
g

)]
ω

+N2c2
s (k2

x + k2
y) + f 2c2

s

(
k2

z +
1
4
ω4

a
g2

)
= 0. (32)

For αD = 0 and αD,v = 0 we get the compressible solution (i.e. the ’true’ solution), whereas
the influence of the artificial divergence damping can be inspected by αD, αD,v ̸= 0. Note,
that this dispersion relation is identical to equations (15) and (18) of Gassmann and Herzog
(2007), if the simplifications f = 0 and σdd2 = 0 are made.

The different anelastic approximations follow from σ2 = 0, αD = αD,v = 0 and the setting
of the switches σLH and σD89 (see table 11). This results in the dispersion relation[

c2
s

(
k2 +

1
4
ω2

a
g

)
+ a0

]
ω2 −

[
c2
s (k2

x + k2
y)N2 + f 2

(
c2
s

(
k2

z +
1
4
ω2

a
g

)
+ a0

)]
= 0 (33)

with

a0 =


N2c2

g

(
ikz − 1

2
ω2

a
g

)
for OP62, WO72,

0 for LH82,
−N2 for D89.

(34)

All the anelastic approximations eliminates sound waves, only the two branches for gravity
waves are contained.

In the following sections, we will evaluate and compare the dispersion relations (32) and (33)
for several realistic parameters.

7.3 Discussion of the results

To get an impression about the behavior of waves we consider two stratifications. First
an isothermal atmosphere with T0 = 260 K. In this case the inverse scale height is δ ≈
1/7606.5 1/m, the sound velocity is cs ≈ 323.2 m/s, the Brunt-Väisälä-frequency is N ≈
0.01919 1/s, and the acoustic cut-off frequency is ωa ≈ 0.03591 1/s. The second considered
atmosphere also has a mean temperature of T0 = 260 K but a Brunt-Väisälä frequency of
N = 0.01 1/s. We further consider wave expansion both in pure horizontal direction or in a
direction which is tilted by 20 degrees against the horizontal.

For the compressible equations with divergence damping we choose values of αD, αD,v = 50000,
100000, or 150000 m2/s, which are typical values for COSMO grid mesh sizes from about
2.8 km until about 10 km, respectively.
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Figure 55: Real part of ω of gravity waves for two stratifications N = 0.01919 1/s (top)
and N = 0.01 1/s (bottom) and two expansion directions α = 0◦ (i.e. horizontal) (left) and
α = 20◦ (right). The different equation sets are distinguished by different colors and line
types (see also table 11).

Short gravity waves. Figure 55 shows the positive real part of the gravity for the different
equation sets. For very short gravity waves (k = 0.003 1/m corresponds to a wavelength
λ = 2π/k ≈ 2.1 km) all equation sets show a quite good agreement with the ’truth’, the
dispersion relation of the compressible equations (black line). A closer examination shows
that for the anelastic equation sets it holds indeed that ω→ ±N for k →∞. The compressible
3D divergence damping versions do not exactly converge to the right value but the deviations
are less than about 0.05 % and therefore are negligible. The 2D divergence damping has a
quite strange behavior for tilted expansion, which is separately discussed below.

For longer waves (> 10 km) stronger deviations in the order of one percent are visible
for the OP62 and WO72 system and even stronger for the LH82 system. In contrast, a
remarkably good agreement with the compressible system is shown by the D89 equation
set. The compressible sets with 3D-divergence damping are generally quite close to the
compressible solution.
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Figure 56: As Fig. 55, now for the imaginary part of ω.

The damping (i.e. the imaginary part of ω) is shown in Figure 56. The horizontal expansion
of all anelastic sets has no damping. The same holds for tilted expansion in the cases LH82
and D89, however OP62 or WO72 show a certain damping for longer gravity waves. The
compressible equations with 3D divergence damping type 2 show a damping of nearly all
gravity waves. This is smaller for the 2D divergence damping. In contrast, type 1 even
shows a weak amplification. This was also stated in Baldauf (2010, appendix), were it has
been shown, too, that this behavior does not occur if the Bretherton-transformation is not
performed.

Long gravity waves. The long gravity wave behavior is shown in Fig. 57 (k = 0.0001 1/m
corresponds to λ ≈ 63 km). Obviously divergence damping has almost no influence to
this wave type. The OP62 and WO72 systems are still relatively close to the compressible
equations for wave lengths larger around 100 km. For even larger wave lengths the deviations
become larger. A different behavior has LH82: here an intermediate range of long gravity
waves show a larger deviation from the compressible solution, however, very long gravity
waves (λ > 300 km) are well represented. Under all anelastic approximations considered
here, such very long waves are worst represented by the D89 system. All these statements
reduce in strength if the stratification becomes less stable. (lower figures in Fig. 57).

For the damping of long waves (Figs. 58) similar statements hold as for the shorter waves.
For extremely long waves the influence of divergence damping decreases with increasing wave
length.
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Figure 57: As Fig. 55, now for long waves only.
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Figure 58: As Fig. 57, now for the imaginary part of ω.



COSMO Technical Report No. 23 93

Sound waves in the compressible systems. The compressible equations contain sound
waves. The divergence damping increasingly reduces their phase velocity with decreasing
wave length (Figure 59). However, for strong divergence damping the e-folding time is quite
small, therefore only long sound waves will be simulated in the current COSMO dynamical
core. In the case of tilted expansion (Figure 60), there is a small but relatively unimportant
difference between the different types of divergence damping.

The temperature stratification has almost no influence to the expansion of sound waves.
Therefore only results for N = 0.01 1/s are shown.
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Figure 59: Real (top) and imaginary part (bottom) of ω for the compressible equation sets
with different divergence damping coefficient αD = 150000 m2/s (left) and αD = 50000 m2/s
(right). N = 0.01 1/s, α = 0◦.
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Figure 60: As Fig. 59, now for α = 20◦ and only strong divergence damping αD =
150000 m2/s.

Gravity waves in the compressible systems. In a section above we have already seen
that the gravity waves are almost correctly treated by the 3D divergence damping. For
the 2D divergence damping, this also holds only for purely horizontal expansion of gravity
waves, whereas it shows a strange behavior for tilted expansion: the frequency obviously
increases with decreasing wavelength instead of remaining constant. This behavior was
already remarked by (Gassmann and Herzog, 2007, eq. (20)). Since in real case simulations
and also in idealized tests this equation system behaves not so bad, a look to all the branches
of the dispersion relation is advisable. Figure 61 shows that the positive frequencies ω
are increasing with k. But the absolute values of the negative frequencies are decreasing.
Physically this means that upward traveling gravity waves are faster then expected, whereas
downward traveling gravity waves are slower than expected, so that their mean velocity is
nearly the correct one.
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Figure 61: As Figure 60, only gravity waves.

7.4 Summary

The dispersion relations for several anelastic equation sets and compressible equations with
several versions of the artificial divergence damping have been compared.

The general outcome is that the anelastic equation set is very well suited to simulate shorter
gravity waves. The compressible systems with ’type 2’ 3D-divergence damping treats the
phase and group velocity of this wave type well, too, apart from a small damping. But
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the 2D divergence damping, which is actually used in the COSMO model, exhibits a not
completely satisfying behavior.

Concerning long gravity waves (λ > 100 km), the anelastic equation sets have some draw-
backs. This probably reduces their applicability for global models a bit.

Sound waves are of course not contained in the anelastic equations, but also the shorter
waves are heavily damped in the compressible equations by divergence damping. Only for
rather long sound waves a reasonable realistic treatment can be expected.
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Summary

A flow solver for the Euler and Navier-Stokes equations in 3 dimensions has been written.
Time integration is based on dual time stepping, spatial discretization on finite volumes.
Second order central scheme with added artificial dissipation and fourth order scheme have
been currently implemented. Convergence in dual time is improved by adopting residual av-
eraging, local time stepping, preconditioning, multigrid. Tests with complex orography were
carried out, they are meant to address the issues related with flow initialization, hydrostatic
balance in the equations, inflow, outflow and upper boundary conditions. Some other test
cases are reported, to demonstrate the capability of the present method to dial with typical
basic phenomena.

8.1 Introduction

The general trend in numerical weather prediction is to increase the mesh resolution; conse-
quences are the increase in amount of mesh cells, reduction of time step and steeper lower
boundaries in regions with complex orography. In those regions mesh cells are more skewed,
so horizontal and vertical components of velocity and pressure gradient (and numerical errors
as well) are more strongly coupled.

Motivations for this work are the needs of improving numerical efficiency of the COSMO
model, improving the conservation properties of the scheme and its capability to deal with
steep orography.

Finite volume formulation has the capability of conserving the transported quantities, for
this reason it is a good candidate for improving the conservation properties of the dynamical
core. The dual time stepping procedure is very popular in the field of aerodynamics but it
seems that was never tested for simulation of atmospheric flows. The aim of this work is
to evaluate the performances of the scheme in comparison with the classical time splitting
procedure, which is the standard time integration scheme of COSMO, in the perspective of
using very small grid size and also very large time steps, those are required for climatological
simulations. The main questions to answer are related to three aspects: equation set in
conservative variables, the dual time stepping procedure and the finite volume schemes,
whether they are suitable for numerical weather prediction.

8.2 Mathematical formulation

The unsteady Euler equations are cast in integral form for a region Ω with boundary ∂Ω:

∂
∂t

∫
Ω

W dΩ +
∮
∂Ω

F · n dS =
∫

Ω
B dV (35)
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when the region Ω is fixed in time the above matrices are:

W =


ρ
ρu
ρv
ρw
ρE

 , F =


ρu ρv ρw

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρw
ρuw ρvw ρw2 + p
ρuH ρvH ρwH

 , B =


0
0
0
ρg
ρgw

 , (36)

where W is the vector of conserved quantities, F is the corresponding flux term, B the source

term, g the vertical component of the gravity vector g (usually the reference system z axis is
oriented like -g), n is the unit vector normal to the boundary surface and dS is the surface
area element. We denote density and pressure as ρ and p, the velocity vector u=(u,v,w).
For a perfect gas we can express the pressure from the total energy E

p = (γ − 1)ρ(E − u2

2 ) (37)

the total enthalpy is defined by

H = E +
p
ρ
. (38)

The integral form allows discontinuities in the flow field.

For computing the Navier-Stokes equations, viscous fluxes G are added to F:

G = −



0 0 0
σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

u · σix − κ
∂T
∂x

u · σiy − κ
∂T
∂y

u · σiz − κ
∂T
∂z


(39)

σ is the stress tensor and its components are:

σxx = µ[2∂u
∂x
− 2

3 (∂u
∂x
+
∂v
∂y
+
∂w
∂z

)]

σxy = µ(∂u
∂y
+
∂v
∂x

)
(40)

the other components are obtained by exchanging the velocity gradient derivatives. µ is the
kinematic viscosity, the heat flux is given by the thermal diffusion coefficient κ multiplied
by the temperature gradient. In case of turbulent fluxes the turbulent viscosity µtur and
turbulent thermal diffusion κtur are modeled and added to the thermodynamical (laminar)
coefficients. Turbulent viscous flows were not simulated in this work.

Boundary conditions are different in case of inflow, outflow and rigid wall. Inflow conditions
allow to set four variables and extrapolate one variable from inside the flow field. Usually
momentum and density are set, and pressure is extrapolated. Outflow conditions allow to set
one variable (usually pressure or normal momentum component) and extrapolate the others.
Boundary conditions on rigid walls fix normal momentum component to 0 and extrapolate
tangential components and pressure. Artificial dissipation also requires boundary conditions:
usually zero artificial fluxes are set at the boundaries. In case of viscous computations all
the momentum components at the wall can be set to 0 (no-slip boundary condition), and
wall enthalpy or heat flux (enthalpy gradient) can be assigned. In case of inviscid flow the
heat flux at the wall could be added as an external source to the ground layer.
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8.3 Finite volume scheme and time integration

The equations are discretized by sub-dividing the flow domain in sub-domains (mesh cells),
assuming the conserved quantities W are known at the center of each mesh cell. In our
case the domain is sub-divided in structured form, which means that each cell is stored in
a 3-dimensional array and can be addressed by a 3-d index (i,j,k). Its 6 neighbors can be
simply addressed by the indices (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1). The
structured mesh arrangement allows more efficient algorithms for computing advective and
diffusive fluxes, and more efficient data storage, since it is not necessary to keep informations
for addressing the neighbor cells. The semi-discretization for a sub-domain of volume V leads
to the equation:

V
∂(W)
∂t
+R(W) = 0 (41)

where
R(W) = Q −D −B. (42)

R represents the sum of the net flux out of the sub-domain Q, the artificial dissipative flux
-D (that is required for numerical stability) and the source term -B, which are balanced by
the rate of change of W. The net flux out of the cell m is given by the sum over the six cell
faces k

Qm =

6∑
k=1

F
mk
· nS mk (43)

Fluxes F are approximated at the cell face centers by averaging the quantities between the

cell m and its neighbors k,

F
mk
=

F
m
+ F

k
2 (44)

Smk is the area of the face between cells m and k, and n the unit vector normal to the cell
face pointing outward. The artificial dissipation D is proportional to the fourth derivative
of the conserved variables:

D = ν∇4(W). (45)

It can be expressed in flux form as the sum of the third derivative over the cell faces, in order
to keep the conservation properties of the scheme.

Time derivatives are discretized by a second order backward formula, where the upper index
n indicates the current time step. Volume for our system is constant in time and can be
taken out of the time derivative:

∂(W)
∂t

=
3Wn+1 − 4Wn +Wn−1

2∆t
(46)

This formula is implicit, as it contains the variables W at the time step n+1. It is A-stable
and damps the highest frequency. In principle there are no limitations to ∆t due to numerical
stability. The dual time stepping procedure (Jameson, 1992) consists in solving the following
system by inner iterations which advance in pseudo-time τ to steady state:

∂(Wn+1)
∂τ

+R∗(Wn+1) = 0 (47)

where

R∗(Wn+1) =
3Wn+1 − 4Wn +Wn−1

2∆t
+R(Wn+1) (48)
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An explicit multistage Runge-Kutta time marching scheme with variable local ∆τ, residual
averaging, preconditioning and multigrid is implemented to advance the system in dual time,
until a norm of the dual time derivative is smaller than a given small value. It should be
noted that the backward implicit time derivative is second order accurate only when the
residuals of the dual time equations are driven to 0. A technique based on prediction can be
adopted, in order to keep the second order accuracy also in case of non perfect convergence
of the dual time iterations: the flow variables are initialized at the beginning of the dual
time iterations by an appropriate prediction formula, second order accurate in time. It has
been shown that the dual time iterations do not destroy the second order accuracy of the
prediction formula.

The convergence rate of iterative solvers for compressible Euler or Navier-Stokes equations
is limited in case of low Mach number flows, because of the large difference between the
velocities of the advective fluxes and the pressure perturbations (acoustic waves). Usual
technique is to modify the acoustic speed in order to make the local Mach number large
enough almost everywhere in the flow domain. It has essentially two functions: the first
one is to improve the convergence rate, the second one is to modify the relative influence
of the artificial dissipation term, which would affect the physical solution for very small
Mach numbers. The basic idea is to pre-multiply the time derivatives of the flow variables
(without artificial dissipation) by an appropriate matrix, which performs the scaling of the
acoustic speeds with respect to the flux velocities. More details are in Turkel et al. (1996).
Preconditioning can only be applied when we are interested to obtain a steady solution, since
it destroys the time accuracy of the governing equations. In our procedure the physical time
derivatives are treated as source terms and they are concealed in the right hand side of the
equations set, while the dual time derivatives are relaxation terms.

8.4 Atmosphere at rest

The test case with atmosphere at rest (i.e. zero velocity components and no fluxes from the
boundaries) is useful to highlight the numerical issues related to the large vertical gradient
of pressure and density in case of a deformed mesh. Discretization errors in the computation
of the pressure gradient for tilted cells can produce non-zero horizontal components. Even
the little displacement of a single mesh point in the interior of a perfectly regular rectangular
mesh on flat orography can produce spurious velocity and disturbances in the flow solutions.
When pressure is a function only of the vertical coordinate z, a density field exists that
allows a steady solution with zero velocity. But the spatial discretization of the pressure
gradient is affected by metric terms. The discrete Euler flow equations for a cell m in case
of atmosphere at rest simplify to:

∂ρ

∂t
= 0 (49)

∂ρu
∂t
+

1
V

6∑
k=1

p mknxS mk = 0 (50)

∂ρv
∂t
+

1
V

6∑
k=1

p mknyS mk = 0 (51)

∂ρw
∂t
+

1
V

6∑
k=1

p mknzS mk = ρg (52)

∂ρE
∂t
= 0 (53)
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pmk is the pressure averaged at the face between the cells m and k:

p mk =
p m + p k

2 (54)

nx,ny,nz are the Cartesian components of the unit vector normal to the face, Smk is the
face area. The set of discrete equations in case of zero velocity is a system of 3Nc linear
equations in 2Nc unknowns p, ρ, constant in time, where Nc is the total amount of mesh
cells. So it is not possible to find discrete solution for the atmosphere at rest with generic 3
dimensional meshes: only additional constraints on mesh coordinates could allow a solution
for the equilibrium of the horizontal pressure gradient components. The resulting horizontal
accelerations produce spurious motions.

A reference pressure and density field p ref , ρ ref in hydrostatic equilibrium is subtracted from
the momentum equation to reduce the amount of spurious accelerations. By assuming that:

∇p ref = ρ ref g (55)

p′ = p − p ref (56)

ρ′ = ρ − ρ ref (57)

the momentum equations in discrete form can be written as follows:

∂ρu
∂t
+

1
V

6∑
k=1

p′mknxS mk = 0 (58)

∂ρv
∂t
+

1
V

6∑
k=1

p′mknyS mk = 0 (59)

∂ρw
∂t
+

1
V

6∑
k=1

p′mknzS mk = ρ
′g (60)

Since the pressure perturbation p′ is usually 10 to 100 times smaller than full pressure,
the spurious acceleration is also smaller. Pressure and density perturbations are adopted
for computing the artificial dissipation terms. In order to evaluate the performances of
the numerical scheme, a skewed mesh was produced on a simplified orography with highest
mountain of 3 km (Fig. 62). The mesh contains 150 cells in horizontal direction and 160 in
vertical direction, with ∆x = 1 km and ∆z= 125 m. The mesh levels are flat above 13.5 km.
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Figure 62: Mesh for testing the atmosphere at rest

The reference pressure and density field is defined with constant Brunt-Väisälä frequency
NBV=0.01 1/s, and the initial field is defined with NBV=0.015 1/s, so the initial pressure and
density perturbations are computed as the difference between the two fields (Fig. 63). The
flow field computed after 90000 seconds is shown in Fig. 64.

(a) Initial pressure perturbation (b) Initial density perturbation

Figure 63: Initial perturbation field for atmosphere with NBV=0.015 1/s
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(a) Pressure perturbation (b) Vertical velocity component

Figure 64: Velocity components after 90000 s

The magnitude of the spurious velocity field is affected by the artificial viscosity ν: near
the ground it damps the oscillations, at the higher levels the mesh stretching in vertical
direction increases the artificial fluxes. This effect calls for a more appropriate formulation
of the artificial dissipation and for a smoother mesh clustering in vertical direction.

An exact solution of the discrete equations for the atmosphere at rest can be obtained in
2D cases on generic meshes: the pressure field can be computed from the equation for the
horizontal component (equilibrium of the horizontal component of the pressure forces acting
on the four sides of each cell): the pressure depends upon the metric terms. After the
pressure has been computed, the density field can be readily derived from the equilibrium in
vertical direction. An example of such a 2D solution for a skewed mesh shown in Fig. 65.

(a) Pressure perturbation (b) Vertical velocity component

Figure 65: Exact solution of the discrete equations for 2D atmosphere at rest: pressure field
computed from the equilibrium in horizontal direction

By comparing the numerical solution of pressure and density fields with the mathematical
solution (horizontal stratification) the effect of a deformed mesh can be seen: it is clear that
a mesh deformation induces disturbances in the field in such a way that pressure is increased
where the mesh density decreases (i.e. in correspondence of the valleys). The resulting
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velocity field is balanced.

8.5 Pressure gradient correction

A correction of the pressure gradient terms has been tested, in order to reduce the spurious
velocity for the atmosphere at rest. This seems to improve the convergence rate of dual time
iterations as well. The basic idea is to add a first order correction to the pressure averaged
at the cell faces, by considering the vertical pressure gradient ρg, when the face center has
different vertical coordinate from the cell center. Two different approaches were tested and
compared. In the first case the density is considered to be constant inside a mesh cell. The
averaged pressure at the face between cells m and k is computed as follows:

p′mk =
p′m + (

∂p′

∂z
)mδzm + p′k + (

∂p′

∂z
)kδzk

2 (61)

where δzk is the difference between the z coordinate of the cell face center and the k cell
center.

(
∂p′

∂z
)k = ρ

′
kg (62)

The second approach considers a vertical gradient of the density perturbation inside the cell,
related to the pressure gradient by the isentropic relation:

(
∂p′

∂ρ′
) = γp/ρ = c2 (63)

It means that entropy is assumed to be constant inside a cell, rather than density. Both
the averaged pressure and density are modified by adding the following corrections like in
eq.(61):

(
∂p′

∂z
)k =

ρ′kg

1 + δzk
c2

(64)

(
∂ρ′

∂z
)k =

ρ′kg
c2 + δzk

(65)

The perturbation fields after 90000 seconds are compared in Fig. 66 and show similar
behavior, with smaller velocities near the ground. Finally, the effect of reducing the artificial
viscosity is shown in Fig. 66(d). The flow computations of the atmosphere at rest were
carried out with time steps ranging from 18 to 750 seconds, without significant differences
in the results.
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(a) Pressure correction approach 1 (b) Pressure correction approach 2

(c) No pressure correction (d) Pressure correction and reduced artificial vis-
cosity

Figure 66: Comparison of horizontal velocity components after 90000 s with different pressure
correction approaches

8.6 Gravity wave

The test case is described in Skamarock and Klemp (1994), it shows the capability of the
present scheme to simulate the time evolution of gravity waves produced by potential tem-
perature perturbations. The flow field is initialized with constant Brunt Väisälä frequency
NBV=0.01 1/s in a channel of length 300 km and height 10 km, with rigid free-slip upper
and lower boundaries. A small perturbation of potential temperature is located at x=-50
km (Fig. 67(a)). The wave is advected by a uniform stream of 20 m/s. The perturbation of
total temperature is implemented as a perturbation of density. The mesh is made of 1200x40
cells, ∆x=∆z=250m. Initial disturbance of potential temperature and solution computed af-
ter 3000 s are shown in Fig. 67. Time steps from 0.25 s to 50 s were tested, although details
of the solution deteriorate when the time step is larger than 3 s.
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(a) Initial potential temperature perturbation (b) Potential temperature perturbation after 3000
s

Figure 67: Gravity wave. Mesh with ∆x=∆z=250 m, time step 1 s

8.7 Density current

The test case is described in Straka et al. (1993). The equation set is completed by vis-
cous fluxes (momentum and internal energy diffusion), with constant diffusion coefficient.
Different mesh sizes (from ∆x = ∆z= 200m to 12.5m) and time steps between 0.25 and 10
seconds were tested. The complete flow field was simulated, without symmetric boundary
condition in x=0. The solution is affected by the time step when ∆t is larger than 1 second:
it seems that larger time steps introduce a sort of viscosity, so that local maxima of the flow
variables are smoothed and velocity is smaller. Mesh size below 50 m is sufficient to obtain
grid-converged solutions. In Fig. 68 the solution obtained with the finest mesh is shown, to-
gether with a comparison of the potential temperature obtained with different mesh density
and time step.
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(a) Potential temperature ∆x=12.5 m, ∆t=1 s
ν=1/160

(b) Potential temperature ∆x=50 m, ∆t=1 s
ν=1/160

(c) Pressure perturbation ∆x=12.5 m, ∆t=1 s
ν=1/160

(d) Potential temperature ∆x=100 m, ∆t=1 s
ν=1/160

(e) Horizontal velocity ∆x=12.5 m, ∆t=1 s
ν=1/160

(f) Potential temperature ∆x=100 m, ∆t=10 s
ν=1/160

(g) Vertical velocity ∆x=12.5 m, ∆t=1 s ν=1/160 (h) Potential temperature ∆x=100 m, ∆t=1 s
ν=1/80

Figure 68: Density current. Results after 900 s. Left: mesh with ∆x=12.5 m. Right: effect
of mesh density, time step, artificial dissipation ν

8.8 Advection

The test case is described in Schär et al. (2002). A scalar quantity contained in a circular
bubble is advected accross a highly skewed mesh. The inflow velocity is 0 below the altitude
of 4 km and rises smoothly to 10 m/s between 4 km and 5 km. Two different meshes were
tested: the first one contains 300x50 cells with ∆x=1 km and ∆z=500 m, the second one has
twice the number of cells in both directions with ∆x=0.5 km and ∆z=250 m (Fig. 69). A
time step of 50 s was adopted in both computations. An attempt was made to implement
and test the fourth order scheme described in Kok (2009), without significant improvements.
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(a) Initial (b) Time=5000 s (c) Time=10000 s

(d) Initial (e) Time=5000 s (f) Time=10000 s

Figure 69: Advection of a conserved quantity in a deformed mesh. Above: coarse mesh 1.
Below: mesh 2

8.9 Hydrostatic mountain flow

A classical hydrostatic test case is the flow simulation of a reference atmosphere with Brunt
Väisälä frequency NBV=0.01 1/s over a Gaussian shaped hill 10 m high, with free stream
velocity of 10 m/s. The gravity waves produced above the mountain are stationary and
momentum is transported in vertical direction. In order to avoid spurious reflection of the
waves against the upper boundary, two techniques can be adopted: a damping layer in
the upper atmosphere, where vertical velocities are smoothly damped, or a radiative upper
boundary condition, that allows the wave energy to cross the boundary without reflection.
In the first case (Fig. 70 a) about one third of the flow field is affected by an artificial
damping term, that modifies the global momentum budget. In the second case (Fig. 70 b)
the boundary condition has to be tuned to the local flow conditions, in order to be effective.
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(a) Rayleigh damping: velocity field. The dashed
line shows the lower side of the damping layer

(b) Radiative upper boundary condition: energy
flux

Figure 70: Hydrostatic flow computed with different upper boundary conditions

8.10 Conclusions

The CONSOL flow solver, based upon second order central finite volume schemes and implicit
time integration with dual time stepping, is capable to simulate the test cases considered
in the present work. A wide range of time steps can be adopted, as it is not limited by
numerical stability, that could be an advantage when time accuracy is not an issue. It is not
possible at this moment to draw a conclusion about the numerical efficiency with respect to
other schemes, since the solver is not optimized yet. More complex 3D test cases should be
simulated.

8.11 Implementation of a time integration procedure based upon dual
time stepping in COSMO

The time integration procedure based upon dual time stepping was implemented in a test
version of COSMO, by replacing the Runge-Kutta scheme currently adopted. This prelim-
inary study was meant to assess the possibility to use the scheme in the dynamical core
of COSMO. It seems that the dual time stepping was never used in the field of numerical
weather prediction, despite its popularity in aerodynamics. The idea was to keep the equa-
tions set with the spatial discretization schemes adopted in COSMO, and to replace only
the time integration scheme. Main difference is that the time splitting procedure operates in
physical time, by advancing the flow solution with smaller time steps for the fast processes
and larger steps for slow processes. The dual time stepping computes all processes with the
same time step, and iterates in order to improve the evaluation of the flow variables and the
time derivatives using the ’dual’ time as relaxation parameter. The dual time relaxation is
a pseudo-steady problem, which does not require time accuracy and can be solved with any
convergence acceleration technique, like local time stepping, implicit residual averaging and
preconditioning. As the scheme is implicit, in theory there is no limitation to the physical
time step due to stability.

Defining the prognostic variables in the COSMO solver as U = (u,v,w,p’,T’) and the model
equations as



COSMO Technical Report No. 23 109

∂U

∂t
= −R(U) (66)

where R(U) denotes the right hand side of the model equation for U , the Runge Kutta
integration takes the form of three steps to advance a solution U(t) to U(t + ∆t):

U∗ = Ut − ∆t
3 R(Ut)

U∗∗ = Ut − ∆t
2 R(U∗),

Ut+∆t = Ut − ∆tR(U∗∗)

(67)

where ∆t is the time step for the slow-frequency modes (the model time step), and super-
scripts denote time levels. The time-splitting technique integrates fast modes with smaller
time steps; terms associated with horizontally propagating modes are integrated explicitly,
while terms associated with vertically propagating modes are integrated implicitly. The im-
plicit integration component alleviates the severe Courant number restriction, arising from
vertically propagating acoustic modes when using grids with large aspect ratios ∆x

∆z , at the
cost of a simple tridiagonal matrix inversion. The Figure 71a shows the three stages of the
Runge-Kutta time integration procedure, where the blue arrows represent the small time
steps used to advance the fast tendencies of the governing equations, while the slow tenden-
cies are kept constant in each stage, represented by the red arrows.

(a) Runge-Kutta time integration (b) Dual time stepping integration

Figure 71: Time integrations in COSMO: 3 stages Runge-Kutta and Dual time stepping

In the dual time stepping procedure (see equations 47 and 48) the residual at the dual
iteration k is computed as follows:

R∗k = R(Uk) +
3Uk − 4Ut +Ut−∆t

2∆t
(68)
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we evaluate R(Uk) using the spatial schemes already implemented in the dynamical core of
COSMO for computing the time derivatives. The dual time derivative

∂Uk

∂τ
= −R∗k (69)

is integrated to the steady state (see Fig. 71b). A flow chart of the implementation is shown
in Fig. 72.

Figure 72: Flow chart of the Dual time stepping implementation in COSMO

Idealized test cases were computed, like mountain flow and inertia-gravity waves, which have
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shown that the scheme is capable to give similar results to the original COSMO model, as
reported in Petrone (2012). Larger time steps can be adopted. Applications to real test
cases would require further work to be completed.
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