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1 Abstract

An essential part of the COSMO dynamical core is the fast waves solver. Here, the processes
sound wave and gravity wave expansion are integrated and a stabilization of the whole time-
splitting procedure by divergence damping is done. Sound and long gravity waves have high
velocities and therefore are solved with a smaller time step (small compared to the larger
time step of the advection process) and vertically implicit, to prevent from the strong time
step reduction by flat grid elements in the vicinity of the ground.
This report describes a complete revision of the previously existing fast waves solver and
incorporates several new aspects. First, all vertical discretizations are done with the proper
distance weightings in the vertically stretched grid. Second, the so called strong conservation
form of the divergence operator is used. Third, the possibility to use a fully 3D divergence
damping should be possible. Fourth, the option to use a discretization of the horizontal
pressure gradient, which promises to be more stable in steep terrain, should be implemented.
Beyond these broader development goals several smaller improvements concerning e.g. the
formulation of boundary conditions, the use of the reference state, more accurate formulation
of the buoyancy term, or several other numerical operations have been done.
The report at first describes the discretization of the new fast waves solver to enable the model
developer or user to understand the code structure. The second part motivates the chosen
discretization by a truncation error analysis. Finally the third part assess the properties of
the new solver against idealized test setups, where partially exact solutions are known.
This development is available since COSMO version 4.24 (together with INT2LM 1.20).

2 Introduction

This technical report describes a complete revision of the fast waves solver and thus the
development of its new version. This new development is available since COSMO version
4.24 (available since July 2012).

The COSMO model was developed during the 1990’s and at first went into operations at the
end of 1999 at DWD (at this time named LM). Due to the planned usage of the COSMO
model for convection-permitting resolutions, the decision to abandon the hydrostatic approx-
imation was made from the beginning. The rising of massively parallel computers at this
time further led to the decision not to use any anelastic approximation, but to use the fully
compressible equation system. The latter equation system leads to a fast waves solver which
is relatively easy to parallelize. G. Doms (?) developed the first fast waves solver for the LM,
which mainly based on the solver of the MM5 (?, ?), and further using ideas of the leapfrog
based split explicit solver by ? and ?. A. Gassmann abandoned the 3-time level leapfrog
scheme and implemented a 2-time level Runge-Kutta scheme (? and ?). Additionally, she
introduced e.g. the dynamical bottom boundary condition (?) in the fast waves solver. This
at this time improved a lot the model behavior at the lower boundaries. J. Förstner imple-
mented the Runge-Kutta scheme of ? into the COSMO model and introduced T ′ instead of
T into the fast waves solver. This resulted in a reduced noise in the vertical velocity field,
mainly due to the better behavior of the temperature advection. Later on, G. Zängl has
demonstrated that the introduction of vertical weightings in some of the explicit terms of
the fast waves solver largely improves the pressure bias. This was one of the prerequisites
to be able to use the Runge-Kutta dynamical core for the 7 km COSMO applications at the
different COSMO services (e.g. COSMO-EU at DWD).

The main goals of this development project are the following:
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• The consideration of the vertical grid stretching by introduction of appropriate weight-
ings in all vertical discretizations of the fast waves solver. In particular their use
in the implicit terms in the discretization of the Euler equations requires a complete
re-derivation of the tridiagonal equation system.

• The usage of the ’strong conservation form’ for the divergence operator. Though mainly
developed for finite volume schemes with conservation properties, there was the hope
to gain advantages by a more direct discretization of the metric terms and by a better
formulation of the lower boundary conditions.

• The option for a fully 3-dimensional (3D) isotropic divergence damping instead of
the ’traditional’ quasi-3D version should be available. ? have derived the dispersion
relation of sound and gravity waves and have found a larger deviation from the correct
one in the case of the quasi-3D version compared to the isotropic version.

• A further option should be the alternative discretization of the horizontal pressure
gradients by the methodology of ?. This z-plane treatment should result in a more
stable behavior in steep terrain.

These new features did not only require changes at almost every place in the fast waves
code, but partially required a restructuring of the code logic, too. Together with the aim
to introduce a bit more descriptive variable names, the decision was made, to reprogram
the whole fast waves solver from scratch; a work which started at the end of 2010. This
approach resulted in additional smaller improvements at other places, too, concerning e.g.
the formulation of boundary conditions, the use of the reference state, a more accurate
formulation of the buoyancy term, and others.

This report is subdivided into three parts. In the first part, sections 3-7, the discretization of
the Euler equations, the setup and the solution of the vertically implicit tridiagonal equation
for w is explained. To offer the reader an as much as possible consistent description, several
repetitions of material presented in ? (or the revised version ?) have been unavoidable.
But with this, the model developer (and model user) should be able to understand the code
structure of the module fast waves sc.
To understand the embedding of the fast waves solver in the whole Runge-Kutta time inte-
gration framework, the reader should consult chapter 8 in ?. Also not contained here is the
stability analysis of the COSMO dynamical core. For this we refer to ?. There, the reader
will find reasons why the time integration scheme is done in the current manner.
In the second part (section 8), a motivation is given for one of the main development goals,
namely the improved vertical discretization, by a truncation error analysis.
In the third part (9 and 10) a broad investigation of the properties of the new fast waves
solver by idealized tests is performed. A few statements about model performance in real
cases closes this part.
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3 The Euler equations

The Euler equations in spherical, terrain following coordinates (λ, ϕ, ζ) with ζ = ζ(λ, ϕ, z),
r = rearth + z, can be written as

∂u

∂t
= −1

ρ

1

r cosϕ

(
∂p′

∂λ
+
∂ζ

∂λ

∂p′

∂ζ

)
+

1

ρ

1

r cosϕ

(
∂ αh

div ρD

∂λ
+
∂ζ

∂λ

∂ αh
div ρD

∂ζ

)
+
∂u

∂t

∣∣∣∣
slow

(1)

∂v

∂t
= −1

ρ

1

r

(
∂p′

∂ϕ
+
∂ζ

∂ϕ

∂p′

∂ζ

)
+

1

ρ

1

r

(
∂ αh

div ρD

∂ϕ
+
∂ζ

∂ϕ

∂ αh
div ρD

∂ζ

)
+
∂v

∂t

∣∣∣∣
slow

(2)

∂w

∂t
= −1

ρ

∂ζ

∂z

∂p′

∂ζ
+ g

(
p0
p

T ′

T0
− p′

p
+
p0
p

T

T0
qx

)
+

1

ρ

∂ζ

∂z

∂ αv
div ρD

∂ζ
+
∂w

∂t

∣∣∣∣
slow

(3)

∂p′

∂t
= − cp

cV
pD + gρ0w +

∂p′

∂t

∣∣∣∣
slow

(4)

∂T ′

∂t
= − R

cV
T D − ∂T0

∂z
w +

∂T ′

∂t

∣∣∣∣
slow

(5)

The denotations are the same as in ?, in particular T = T0 + T ′ and p = p0 + p′ are split
into the stationary reference state and deviations. Here only the ’fast’ processes are written
down and grouped into sound (left group of terms on the rhs), buoyancy (middle group of
terms in the w, p′, and T ′-equations) and artificial divergence damping (right group in the

three momentum equations). ∂u
∂t

∣∣
slow

, . . . , ∂T ′

∂t

∣∣∣
slow

denote the remaining (’slow’) processes

advection, Coriolis force and all physical parameterizations.

The occurring coordinate derivatives may be understood as

∂ζ

∂λ
≡ ∂ζ

∂λ

∣∣∣∣
z

≡ ∂ζ(λ, ϕ, z)

∂λ
,

∂ζ

∂ϕ
≡ ∂ζ

∂ϕ

∣∣∣∣
z

≡ ∂ζ(λ, ϕ, z)

∂ϕ
,

∂ζ

∂z
≡ ∂ζ

∂z

∣∣∣∣
z

≡ ∂ζ(λ, ϕ, z)

∂z
.

We remind the abbreviations and relations valid for the COSMO coordinate transformation

√
g := −∂z

∂ζ
= − 1

∂ζ
∂z

⇔ ∂ζ

∂z
= − 1

√
g
, (6)

∂z

∂λ

∣∣∣∣
ζ

= −∂z
∂ζ

∂ζ

∂λ
⇔ ∂ζ

∂λ
=

1
√
g

∂z

∂λ

∣∣∣∣
ζ

, (7)

∂z

∂ϕ

∣∣∣∣
ζ

= −∂z
∂ζ

∂ζ

∂ϕ
⇔ ∂ζ

∂ϕ
=

1
√
g

∂z

∂ϕ

∣∣∣∣
ζ

. (8)

The divergence is denoted by D = divv. One difference to the former version of the fast-
waves solver is the use of its so-called strong conservation form (?, eq. (3.122))

D ≡ divv =
1

r2 cosϕ

1
√
g

[
∂

∂λ
(r
√
g u) +

∂

∂ϕ
(r cosϕ

√
g v) +

∂rZ

∂ζ

]
(9)

with the definition

Z := r cosϕ
√
g ζ̇ =

∂z

∂λ
u+

∂z

∂ϕ
cosϕ v − r cosϕ w. (10)

Obviously, the divergence is expressed on one hand by derivatives in terrain following coordi-
nates but on the other hand of the physical components u, v, w in spherical coordinates. Here
one can cancel one factor r due to the shallow atmosphere approximation r ≈ rearth = const.,
which is used throughout in the COSMO model

D =
1

r cosϕ

1
√
g

[
∂

∂λ
(
√
g u) +

∂

∂ϕ
(cosϕ

√
g v) +

∂Z

∂ζ

]
. (11)
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It is advisable to introduce some other abbreviations

d̃hor :=
∂

∂λ
(
√
g u) +

∂

∂ϕ
(cosϕ

√
g v) , (12)

d̃vert :=
∂Z

∂ζ
, (13)

so we can write the divergence as

D =
1

r cosϕ

1
√
g

[
d̃hor + d̃vert

]
. (14)

Furthermore we define
Z = Zhor + Zvert (15)

with

Zhor := Zx + Zy, (16)

Zx :=
∂z

∂λ
u, (17)

Zy :=
∂z

∂ϕ
cosϕ v, (18)

Zvert := −r cosϕ w. (19)

The artificial divergence damping has been written in a more efficient form - compared to
the original idea of having a damping of the divergence1 - analogous to ?. This form allows
a common discretization of p̃ = p′ − αh

divρD in the horizontal momentum equations. To
indicate the optional divergence damping in the w-equation, the diffusion coefficient αv

div

carries an upper index ’v’.

The buoyancy term in the w-equation has a slightly different form than in the former COSMO
versions. To derive it we use the ideal gas equation for moist air

p = ρRd (1 + qx)T, (23)

where

qx :=

(
Rv

Rd
− 1

)
qv − qcond, (24)

describes the so-called ’water loading’ in the buoyancy term. From this we can derive the

1A more self-evident form of the divergence damping leads to the three momentum equations

∂u

∂t
= −1

ρ

1

r cosϕ

(
∂p′

∂λ
+

∂ζ

∂λ

∂p′

∂ζ

)
+ αhdiv

1

r cosϕ

(
∂D

∂λ
+

∂ζ

∂λ

∂D

∂ζ

)
+

∂u

∂t

∣∣∣∣
slow

, (20)

∂v

∂t
= −1

ρ

1

r

(
∂p′

∂ϕ
+

∂ζ

∂ϕ

∂p′

∂ζ

)
+ αhdiv

1

r

(
∂D

∂ϕ
+

∂ζ

∂ϕ

∂D

∂ζ

)
+

∂v

∂t

∣∣∣∣
slow

, (21)

∂w

∂t
= −1

ρ

(
∂ζ

∂z

∂p′

∂ζ

)
+ g

(
p0
p

T ′

T0
− p′

p
+

p0
p

T

T0
qx

)
+ αvdiv

∂ζ

∂z

∂D

∂ζ
+

∂w

∂t

∣∣∣∣
slow

. (22)

However the discretization of this form leads to much more inefficient code, because - in contrast to the above
form - the divergence terms cannot be treated together with the pressure terms. Beyond this, both forms
have the same slight tendency to instability in a Bretherton-transformed equation system (see (?, Appendix
B)). Hence, there is no advantage in using this form.
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buoyancy term, expressed by p′ and T ′, without any approximation

−gρ
′

ρ
= −g 1

ρ
(ρ− ρ0) = −g 1

ρ

(
p

Rd(1 + qx)T
− p0
RdT0

)
= −gρ0

ρ

(
T0
p0

p

(1 + qx)T
− 1

)
= −g ρ0

ρ(1 + qx)

(
T0
p0

p′ + p0
T

− (1 + qx)

)
= −g ρ0

ρ(1 + qx)

(
T0
T

p′

p0
+
T0 − T

T
− qx

)
= +g

ρ0
ρ(1 + qx)

(
−T0
T

p′

p0
+
T ′

T
+ qx

)
In former versions of the fast waves solver, (1+qx) was neglected in the denominator because
qx is at most about 1%. Nevertheless one can avoid this neglect by

−gρ
′

ρ
= +g

p0
T0

T

p

(
−T0
T

p′

p0
+
T ′

T
+ qx

)
= +g

(
−p

′

p
+
p0
p

T ′

T0
+
p0
p

T

T0
qx

)
, (25)

i.e. densities are expressed by pressure and temperature in an efficient manner. By the way,
inserting T ′ = T − T0 results in

−gρ
′

ρ
= +g

(
−1 +

p0
p

T

T0
(1 + qx)

)
. (26)

This form is used for the ’dynamical bottom boundary condition’ (section 5.2.1). The reason
is, that for parallelization no boundary exchange of T ′ is needed; instead an estimation of T
by the starting value is used.

4 Discretization

4.1 Numerical operators for the spatial discretization

To define the numerical operators for the spatial discretizations we have to remember the
distinct grid positions, where the different variables are located in the COSMO model. The
main grid positions with integer indices (i, j, k) are those, where the scalars p, T , ρ, p0, T0, ρ0,
p′, T ′, qv, qc, ... and the divergence D are located. The velocity components u are defined at
the staggered grid position (i+ 1

2 , j, k), v at (i, j+
1
2 , k), and w at (i, j, k− 1

2). In the following,
we will keep the half indices for the staggered velocity positions for clarification. One should
notice that in the COSMO code the staggered grid positions (i + 1

2 , j, k), (i, j +
1
2 , k), and

(i, j, k − 1
2) (minus sign!) are denoted as (i,j,k) (this is indicated by the gray connection

lines in Figure 1).

For the grid position definition of the metric terms one has to notice that the half level posi-
tions z(h) (or ’hhl’), i.e. with the ’w’-position indices (i, j, k − 1

2) are prescribed. Therefore,
∂z
∂ζ and ∂ζ

∂z or
√
g and 1/

√
g are defined most naturally at the scalar (’s’) position (i, j, k) (in

this context it might by denoted equally as the ’ww’-position), ∂z
∂λ is defined most naturally

at the ’uw’-position (i+ 1
2 , j, k−

1
2), and

∂z
∂ϕ most naturally at the ’vw’-position (i, j+ 1

2 , k−
1
2).

For the spatial discretization we introduce the following 2-point operators, leading to at most
second order formulas. The limitation to two point operators in the vertical stems from the
fact, that only a tridiagonal implicit equation system should occur. For the horizontal
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operations in principle higher order discretizations may be used (this is currently under
investigation by A. Will and J. Ogaja at the University in Cottbus), but here only 2-point
formulas are used, too.

We start with the spatial averaging operators. Horizontal averaging is done by

ψ
λ
∣∣∣
i,j,k

≡ Aλψ|i,j,k :=
1

2
(ψi− 1

2
,j,k + ψi+ 1

2
,j,k), (27)

ψ
ϕ
∣∣∣
i,j,k

≡ Aϕψ|i,j,k :=
1

2
(ψi,j− 1

2
,k + ψi,j+ 1

2
,k). (28)

These are second order discretizations. In the following, the notation with an over-bar ’ψ’
is mostly used for prefactors, whereas the operator notation ’Aψ’ is mostly used for the
prognostic variables, for which an implicit equation system will be derived.

For the vertical averaging we have to keep in mind the special definition of the so called main
levels (index k) and the half levels (index k + 1

2). As stated above, in the COSMO model,

the user can prescribe the grid positions of the half levels z
(h)

i,j,k− 1
2

. The height of the main

levels is a simple arithmetic average

z
(m)
i,j,k :=

1

2

(
z
(h)

i,j,k− 1
2

+ z
(h)

i,j,k+ 1
2

)
. (29)

Accordingly an averaging from half level variables (e.g. w) to the main level is done by
arithmetic averaging:

ψ
ζ
∣∣∣
i,j,k

≡ Aζψ|i,j,k :=
1

2
(ψi,j,k− 1

2
+ ψi,j,k+ 1

2
). (30)

But averaging from main level variables (e.g. p′, T ′, ...) to the half level position is done by
a weighting

ψ
ζ,N
∣∣∣
i,j,k− 1

2

≡ AN
ζ ψ
∣∣
i,j,k− 1

2

:= gi,j,k− 1
2
ψi,j,k + (1− gi,j,k− 1

2
)ψi,j,k−1 (31)

with

gi,j,k− 1
2
:=

z
(h)

i,j,k− 1
2

− z
(h)

i,j,k− 3
2

z
(h)

i,j,k+ 1
2

− z
(h)

i,j,k− 3
2

. (32)

To be complete, we also note the extrapolation formula

ψi,j,k+ 1
2
= −(1− gi,j,k− 1

2
) ψi,j,k−1 + (2− gi,j,k− 1

2
) ψi,j,k. (33)

For vertical averages for u and v one has to use appropriate weights gi+ 1
2
,j,k− 1

2
or gi,j+ 1

2
,k− 1

2
,

respectively. The appropriate averaging operators are denoted by a bar above the N : AN̄
ζ

(of course one should even distinguish between the u or v position; but this can be easily
seen from the context).

In the program code the denotations gi,j,k− 1
2
= wgtfac(i,j,k) , gi+ 1

2
,j,k− 1

2
= wgtfac u(i,j,k)

and gi,j+ 1
2
,k− 1

2
= wgtfac v(i,j,k) (introduced by G. Zängl) are used.

Now we turn to spatial derivatives. For horizontal derivatives we can simply use the standard
centered difference formulas

δλψ|i,j,k :=
ψi+ 1

2
,j,k − ψi− 1

2
,j,k

∆λ
, (34)

δϕψ|i,j,k :=
ψi,j+ 1

2
,k − ψi,j− 1

2
,k

∆ϕ
, (35)
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Figure 1: Denotation of the levels and the position of variables in the COSMO-model. Grey
connection lines indicate staggered grid positions with the same indices in the COSMO
program code.

and analogous for staggered variables.

In the case of vertical derivatives things become a little bit more complicated. Here one has
to distinguish if the variable is defined on the half or the main level and if the target point
is on a half or a main level.

The derivative of a half level variable at the position of the main level is obviously done by

δζψ|i,j,k :=
ψi,j,k+ 1

2
− ψi,j,k− 1

2

∆ζ
. (36)

The derivative of a main level variable to the half level position could be done in the same
way

δNζ ψ
∣∣
i,j,k− 1

2

:=
ψi,j,k − ψi,j,k−1

∆ζ
(37)

with the argumentation, that from two points one can calculate a derivative only in one
manner, independently from the position of the target point. But a second order formula
can only be achieved if the target point is exactly in between the two main level points. For
a decentered target point, the formula is only of first order accurate. Therefore, one should
avoid this type of derivation operator, if possible.

Vertical derivative of a ’scalar variable to the u-Position’:

δ
(s,u)
ζ ψ := AλδζA

N
ζ ψ (38)

An equally accurate discretization is

δ
(s,u)
ζ ψ := δζA

N̄
ζ Aλψ (39)

For the vertical derivative ’u-Position to a scalar point’ one can use

δ
(u,s)
ζ u := AλδζA

N̄
ζ u (40)

analogous to eq. (38) or alternatively

δ
(u,s)
ζ u := δζA

N
ζ Aλu. (41)

Vertical derivatives ’scalar to v-position’ or ’v-position to scalar’ are discretized analogously.

Now we define operators for combinations or products of vertical derivatives. Such larger
stencils occur in particular in the metric correction terms.
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• The following metric term occurring in the ’strong conservation’-form of the divergence
is best discretized as

discr.(s)
[
∂z

∂λ
u

]
= δζ

(
Aλ

(
∂z

∂λ
AN̄

ζ u

))
. (42)

Analogous for the y-direction.

• Metric terms of ∇p and ∇D

discr.(u)
[
∂ζ

∂λ

∂ψ

∂ζ

]
(43)

occur in the explicit integration of the horizontal momentum equations (hence, at the
u- or v-position). The calculation of the metrical prefactor is done in any case by the
partitioning

∂ζ

∂λ
= −∂ζ

∂z

∂z

∂λ
. (44)

Here ∂ζ
∂z is defined most naturally at the ’s’-position and ∂z

∂λ most naturally at the
’uw’-position. Therefore

discr.

[
∂ζ

∂λ

]
= −

(
Aλ

∂ζ

∂z

)
·
(
Aζ

∂z

∂λ

)
. (45)

This results in

discr.(u)
[
∂ζ

∂λ

∂ψ

∂ζ

]
= −

(
Aζ

∂z

∂λ

)
·

Aλ

(
∂ζ

∂z
δζA

N
ζ ψ

)
︸ ︷︷ ︸
=discr.(s)[ ∂ψ∂z ]

 . (46)

This means that a ζ-derivative can be expressed most naturally by a z-derivative.
Analogous:

discr.(v)
[
∂ζ

∂ϕ

∂ψ

∂ζ

]
= −

(
Aζ

∂z

∂ϕ

)
·

Aϕ

(
∂ζ

∂z
δζA

N
ζ ψ

)
︸ ︷︷ ︸
=discr.(s)[ ∂ψ∂z ]

 . (47)

• For the z-derivative of a scalar variable at the s-position we use in the following

discr.(s)
[
∂ψ

∂z

]
≡ δ(s,s)z ψ :=

∂ζ

∂z
δζA

N
ζ ψ. (48)

• We further remark that
√
g at the ’w’-position can be better calculated directly by

∂z

∂ζ

∣∣∣∣
k− 1

2

=
z
(m)
k − z

(m)
k−1

1
=

1
2

(
z
(h)

k+ 1
2

+ z
(h)

k− 1
2

)
− 1

2

(
z
(h)

k− 1
2

+ z
(h)

k− 3
2

)
1

=
z
(h)

k+ 1
2

− z
(h)

k− 3
2

2

(49)
instead of a weighted averaging, due to the special definition of the position of the
main levels (hint by A. Will (personal communication)).

Some definitions of these operators may seem a bit ad hoc for the reader. A deeper reasoning
for them is given in section 8, where truncation errors are calculated and those operators
with the smallest error are chosen.
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4.2 Discretization of the Euler equations

In the last section, spatial discretization operators have been defined, which are necessary
for the numerical treatment of the Euler equations. The basic time integration idea behind
the fast waves solver is the horizontally explicit-vertically implicit (HE-VI) scheme, where
the horizontal integration is further done by a forward-backward scheme and the vertical
implicit step is a general Crank-Nicholson scheme (?). It is therefore reasonable to define
a general time averaging operator, here called a ’Crank-Nicholson time averaging operator’,
by

β̂
(a)
i ϕ := β

(a)
i ϕn+1 +

(
1− β

(a)
i

)
ϕn. (50)

The upper index (a) denotes a process, e.g. the terms for sound expansion (s), the lower index
i simply enumerates terms. This nomenclature for the Crank-Nicholson weights is adopted

from ?. To limit the number of weights β
(a)
i , not for every term an own Crank-Nicholson

weighting parameter is introduced. u- and v-terms, which are analogous in a process, get
the same weighting parameter, because the both horizontal directions have often quite equal
rights in real model applications and their appropriate grid stretching in a limited area model
are not so different.

Now, the discretized Euler equations are expressed by the formerly defined operators:

un+1 − un

∆t
= −1

ρ

λ
1

r cosϕ

λ
(
β̂s1δλp

′ − β̂s7
∂z

∂λ

ζ

Aλ

(
δ(s,s)z p′

))
+

+
1

ρ

λ
1

r cosϕ

λ
(
δλ(α

h
divρD(uv))−

∂z

∂λ

ζ

Aλ

(
δ(s,s)z (αh

divρD(uv))
))

+
∂u

∂t

∣∣∣∣
slow

(51)

vn+1 − vn

∆t
= −1

ρ

ϕ
1

r

ϕ
(
β̂s1δϕp

′ − β̂s7
∂z

∂ϕ

ζ

Aϕ

(
δ(s,s)z p′

))
+

+
1

ρ

ϕ
1

r

ϕ
(
δϕ(α

h
divρD(uv))−

∂z

∂ϕ

ζ

Aϕ

(
δ(s,s)z (αh

divρD(uv))
))

+
∂v

∂t

∣∣∣∣
slow

(52)

wn+1 − wn

∆t
= −1

ρ

ζ,N
(
β̂s2
∂ζ

∂z

ζ,N

δNζ p
′

)
+

+g

(
β̂b1
p0
p

ζ,N 1

T0

ζ,N

AN
ζ T

′ − β̂b2
1

p

ζ,N

AN
ζ p

′ +
p0
p

ζ,N T

T0

ζ,N

qx
ζ,N

)
+

+
1

ρ

ζ,N
∂ζ

∂z

ζ,N

δNζ (αv
divρD(w)) +

∂w

∂t

∣∣∣∣
slow

(53)

p′n+1 − p′n

∆t
= − cp

cV
pD(p) + β̂b3gρ0Aζw +

∂p′

∂t

∣∣∣∣
slow

(54)

T ′n+1 − T ′n

∆t
= − R

cV
TD(T ) − β̂b4

∂T0
∂z

Aζw +
∂T ′

∂t

∣∣∣∣
slow

(55)

Here, different divergences D(p), D(T ), D(uv), D(w) have been introduced, because they can
carry different Crank-Nicholson weights (see sections 4.2.1).

Be aware, that each variable has a distinct time index, too, by the Crank-Nicholson operators

β̂. Only the additional slow processes ∂u
∂t

∣∣
slow

, . . . , ∂T ′

∂t

∣∣∣
slow

don’t carry any time index: they

are assumed to be constant during the small time step integration.

In deviation from the above defined operators, the following coefficient functions occurring
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in the buoyancy terms are calculated by

1

p

ζ,N

=
1

p0(zk+1/2) +AN
ζ p

′ ,
p0
p

ζ,N

=
1

1 +
ANζ p′

p0(zk+1/2)

, (56)

1

T0

ζ,N

=
1

T0(zk+1/2)
,

T

T0

ζ,N

= 1 +
AN

ζ T
′

T0(zk+1/2)
. (57)

The writing for the reference state variables T0 and p0 indicates that they can be calculated
exactly at their grid position2 (proposal by A. Will (personal communication)). Analogous

to that, 1
ρ

ζ,N
in eq. (53) is calculated with the aid of the ideal gas equation by the values of

T0(zk+1/2) +AN
ζ T

′ and p0(zk+1/2) +AN
ζ p

′. In particular ∂ζ
∂z

ζ,N
is calculated by (49).

4.2.1 Discretization of the divergence

The horizontal contributions of the divergence can be discretized by

d̃hor := δλ(
√
g
λ
u) + δϕ(cosϕ

ϕ√
g
ϕ
v). (58)

For the vertical contribution
d̃vert := δζZ, (59)

Z, Zx, Zy, Zhor and Zvert are needed. They are most naturally defined at the w-position
(i, j, k − 1

2). However, one cannot directly use d̃vert, because the implicit weighting must be
considered.

Zhor is calculated in the subroutine calc Z horiz, and discretized by

Zhor = Zx + Zy, (60)

Zx = Aλ

(
∂z

∂λ
AN̄

ζ u

)
, (61)

Zy = Aϕ

(
∂z

∂ϕ
cosϕ AN̄

ζ v

)
. (62)

In this manner Zhor can be calculated for k = 2, 3, ..., ke. At k = 1 (upper boundary) one
immediately gets Zhor = 0 (due to ∂z

∂λ = 0, ...). At k = ke + 1 (lower boundary) u and v
must be extrapolated. In contrast

Zvert := −r cosϕ w (63)

can be calculated at the boundaries, too.

The different divergence terms are:

D(p) =
1

r cosϕ

1
√
g

[
β̂s3 d̃hor + β̂s8 δζZhor + β̂s4 δζZvert

]
. (64)

D(T ) =
1

r cosϕ

1
√
g

[
β̂s5 d̃hor + β̂s9 δζZhor + β̂s6 δζZvert

]
. (65)

2Therefore the reference state variables have to be calculated not only on the main levels but on the half
level positions, too. This must be done in all modules, which calculate them. In particular in the interpolation
program int2lm one has to set the namelist switch lanalyt calc p0T0=.TRUE., if irefatm=1 is still used.
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D(uv) =
1

r cosϕ

1
√
g

[
β̂d1 d̃hor + β̂d5 δζZhor + β̂d2 δζZvert

]
. (66)

D(w) =
1

r cosϕ

1
√
g

[
β̂d3 d̃hor + β̂d6 δζZhor + β̂d4 δζZvert

]
. (67)

4.2.2 Mahrer discretization of the horizontal pressure gradients

The basic idea behind the discretization of the horizontal pressure gradient by ? consists in

using the gradient ∂p′(λ,z)
∂λ on z-planes instead of the conventional form ∂p′(λ,ζ)

∂λ + ∂ζ
∂λ

∂p′(λ,ζ)
∂ζ

(equivalently for the ϕ-direction). To this purpose p′ is interpolated vertically on the left-
and right hand side of the target u-position. This means, at both columns (i, j) and (i+1, j)
p′ is interpolated at the height zi+ 1

2
,j,k from the vertically nearest p′-values (analogous to the

λ-direction). In this manner, the nearest values of p′ are used in steep terrain. In contrast,

in the above mentioned ’conventional’ discretization, it can happen, that ∂p′(λ,ζ)
∂ζ is estimated

from p′-values, which are (vertically) quite far away. This bears the risk of an instability,
which does not occur in the Mahrer-approach.

A crucial point in the Mahrer discretization lies in the fact, that in the vicinity of steep
terrain, interpolation is not longer possible, when zi+ 1

2
,j,k lies under the orography at least

on one side of the u-position. As pointed out by ?, the then required extrapolation of p′

often leads to similar instabilities as the conventional discretization. ? describes a way,
how to estimate the extrapolation by the hydrostatic approximation in the ICON dynamical
core. Unfortunately, the need for a (quasi-)3-dimensional divergence damping necessary in
the time-splitting approach (?, ?) does not allow to transfer this idea to the COSMO fast
waves solver (there is no hydrostatic approximation for the divergence).

However, in the new fast waves solver, an also linear extrapolation is used if zi,j,ke > zi+ 1
2
,j,k

(similar for the other neighboring orography heights). This indeed can help to increase sta-
bility in steep terrain in idealized test scenarios (see sections 9.4 and 9.5). But in real case
applications, this approach is not entirely satisfying. One reason could be the occurring of a
mixed term in the Taylor expansion (section 8.2). Therefore, though the Mahrer discretiza-
tion has proven as a stable method in several real case runs (mainly for COSMO-DE), the
conventional discretization is still recommended.

5 Boundary conditions

5.1 The free slip condition

At the upper and lower boundaries the pure Euler equations (i.e. without friction/diffusion)
possess only one physical boundary condition: the free slip condition, i.e. the velocity
component perpendicular to the boundary must be zero

ζ̇ = 0, (68)

which is equivalent to

w =
1

r cosϕ

∂z

∂λ
u+

1

r

∂z

∂ϕ
v. (69)

As mentioned above, the vertically implicit solver needs this boundary condition at time
level n+1. This is not a problem, because un+1 and vn+1 are already known by the forward
step of the horizontal momentum equations.
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At the top boundary we can simply prescribe

ζ̇i,j,k= 1
2
= 0 ⇒ wn+1

i,j, 1
2

= 0. (70)

At the lower boundary the free slip condition reduces to

wn+1
i,j,ke+ 1

2

=
1

r cosϕ

[
Aλ

(
∂z

∂λ
un+1
(sfc)

)
+Aϕ

(
∂z

∂ϕ
cosϕ vn+1

(sfc)

)]
, (71)

where the cosϕ-terms are arranged analogous to the strong conservation form of the diver-
gence. un+1

(sfc) and v
n+1
(sfc) must be known at k = ke+ 1

2 , therefore they must be extrapolated.

5.2 Boundary treatments

The following considerations does not concern true physical boundary conditions, but bound-
ary treatments in the sense that the appropriate terms cannot longer be calculated by cen-
tered differences but need a different numerical treatment.

5.2.1 The vertical pressure gradient in the horizontal equations of motion

In the both horizontal momentum equations there is a need to have a different discretization
of ∂p′/∂z or alternatively of ∂

(
p′ − αh

divρD
)
/∂z.

At the bottom boundary there exist two options. Th first option is to use a one sided
formula. Günther Zängl proposed to use a one sided derivative of 2nd order accuracy (a first
order formula is not accurate enough!) instead of the boundary treatment described in3 (?,
section 5.4).

For three arbitrarily prescribed points

z1, z2 = z1 + h1, z3 = z1 + h2, (72)

one can derive a one-sided derivative formula of 2nd order for a function f(z) in z1 by

af(z1) + bf(z2) + cf(z3) = (a+ b+ c)f + (bh1 + ch2)f
′ +

(
b
h21
2

+ c
h22
2

)
f ′′ + . . . . (73)

This results in the weights

a = −(b+ c), (74)

b =
1− ch2
h1

, (75)

c =
h1

h2(h1 − h2)
. (76)

This is active if the switch ldyn bbc=.FALSE. is set. If it is set to .TRUE., then the other
possibility is used, the so called ’dynamical bottom boundary boundary’ (?), described in
the next section 5.2.1.

At the top boundary a one sided derivative formula of first order is sufficient.

3Therefore the switch ldyn bbc=.FALSE. has a different meaning in the two fast waves solver versions.
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Dynamic bottom boundary condition for the pressure In section 5.4 of ? the
strong influence of the formulation of the lower boundary condition for the pressure p′ was
mentioned. Instead of a pressure extrapolation, ? proposed a so called ’dynamic bottom (or
lower) boundary condition’ for p′. The goal is to determine ∂p′/∂ζ in a manner consistent to
the free-slip condition ζ̇ = 0. The starting point for the derivation is the bottom boundary
condition ζ̇ = 0 at the surface z = hs(λ, ϕ), explicitly written

ζ̇ =
u

r cosϕ

∂ζ

∂λ

∣∣∣∣
z

+
v

r

∂ζ

∂ϕ

∣∣∣∣
z

+ w
∂ζ

∂z
= 0. (77)

The vertical pressure gradient occurs in the three momentum equations, therefore we differ-
entiate by time to obtain

∂ζ̇

∂t
=

1

r cosϕ

∂ζ

∂λ

∣∣∣∣
z

∂u

∂t
+

1

r

∂ζ

∂ϕ

∣∣∣∣
z

∂v

∂t
+
∂ζ

∂z

∂w

∂t
= 0. (78)

Here we insert the momentum equations (1)-(3) in the form

∂u

∂t
= Fu − 1

ρ

1

r cosϕ

∂z

∂λ

(
−∂ζ
∂z

∂p̃

∂ζ

)
,

∂v

∂t
= Fv −

1

ρ

1

r

∂z

∂ϕ

(
−∂ζ
∂z

∂p̃

∂ζ

)
,

∂w

∂t
= Fw − 1

ρ

∂ζ

∂z

∂p̃

∂ζ
,

with p̃ = p′ − αh
divρD and

Fu := −1

ρ

1

r cosϕ

∂p̃

∂λ
+
∂u

∂t

∣∣∣∣
slow

(79)

Fv := −1

ρ

1

r

∂p̃

∂ϕ
+
∂v

∂t

∣∣∣∣
slow

(80)

Fw := +g

(
−1 +

p0
p

T

T0
(1 + qx)

)
+

1

ρ

∂ζ

∂z

∂(αv
div − αh

div)ρD

∂ζ
+
∂w

∂t

∣∣∣∣
slow

. (81)

In Fw the form (26) of the buoyancy term was used. Sorting by ∂ζ
∂z

∂p′

∂ζ finally results in

∂ζ

∂z

∂p′

∂ζ

1

ρ

[(
1

r cosϕ

∂z

∂λ

)2

+

(
1

r

∂z

∂ϕ

)2

+ 1

]
= − 1

r cosϕ

∂z

∂λ
Fu − 1

r

∂z

∂ϕ
Fv + Fw. (82)

This delivers the needed value of ∂ζ
∂z

∂p′

∂ζ at the lower boundary (for k = ke) in the u- and
v-equation. The discretization of this expression and the averaging to the u and v position
is straightforward. Nevertheless, several spatial interpolations with 4-point or even 8-point
formulas are needed.

5.2.2 Boundary treatment of the divergence

In the ’strong conservation form’ the horizontal derivatives may be calculated in every grid
point by centered differences, even at the boundary points (see eq. (10)).

For the remaining vertical derivative ∂Z
∂ζ one needs Z at the boundary, i.e. at k = ke+ 1/2

and k = 1/2. For this two variants are possible. First it can be calculated by extrapolation;
this is currently implemented.
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Second, through the use of the exact boundary condition Z = 0. This is a theoretical
advantage of the ’strong conservation form’. An important requirement for this is that the
implicit weightings are chosen as

βs8 = βs4, and βs9 = βs6. (83)

But nevertheless, there remains the problem that Z must be subdivided into horizontal and
vertical parts, due to the vertically implicit solver. Therefore one cannot pose this exact
boundary condition for the divergence itself. This probably is the reason, why this second
boundary treatment does not work until now.

6 The linear equation system for the vertical velocity

6.1 Setup of the equation system

To get rid of the sound speed limitation, the Euler equations are solved vertically implicit.
To derive the equation system we write the Euler equations in the following linear form

A


un+1

vn+1

wn+1

p′n+1

T ′n+1

 = bn

with

A =


1
∆t1 0 0 Aup 0
0 1

∆t1 0 Avp 0
Awu Awv Aww Awp AwT

Apu Apv Apw
1
∆t1 0

ATu ATv ATw 0 1
∆t1

 , (84)

and
bn = (bu, bv, bw, bp, bT )

T . (85)

Of course, nearly all the terms arising in the Euler equations are non-linear. But this non-
linearity in the sound and buoyancy terms is small enough, that in every small time step, the
coefficients can be considered as quasi constant. They can even be considered as constant
through the whole fast waves integration procedure4.

Here the following operators have been used for the horizontal momentum equations

Aup =
1

ρ

λ
1

r cosϕ

λ
(
βs1 δλ − βs7

∂z

∂λ

ζ

Aλδ
(s,s)
z

)
, (86)

Avp =
1

ρ

ϕ
1

r

ϕ
(
βs1 δϕ − βs7

∂z

∂ϕ

ζ

Aϕδ
(s,s)
z

)
, (87)

In A we have already used the fact, that the artificial divergence damping in the u- and
v-equation must be treated explicitly, i.e. βd1 = βd2 = βd5 = 0, otherwise no tridiagonal

4There is an internal switch l small pert in pT. If it is set to .TRUE., then the coefficients (i.e. the lhs)
of this equation system is calculated only once per large time step. If it is set to .FALSE., then they are set in
every small time step. The latter setting may be an interesting, although efficiency reducing, option in heavy
weather conditions, e.g. in the simulation of tornadoes.
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system can be achieved. We will see below that the horizontal pressure gradient terms must
be treated fully explicit, too; therefore, Aup = 0 and Avp = 0.

For the vertical momentum equation we get

Awu = −
(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

δNζ

[
αv
div ρ

1

r cosϕ

1
√
g

(
βd3 δλ(

√
g
λ · ...) + βd6 Bx

)]
, (88)

Awv = −
(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

δNζ

[
αv
div ρ

1

r cosϕ

1
√
g

(
βd3 δϕ(cosϕ

√
g
ϕ · ...) + βd6 By

)]
, (89)

Aww =
1

∆t
1+

(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

δNζ

[
αv
div ρ

1

r cosϕ

1
√
g
βd4 δζ(r cosϕ · ...)

]
, (90)

Awp =

(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

βs2 δ
N
ζ + gβb2

1

p

ζ,N

AN
ζ , (91)

AwT = −gβb1
p0
p

ζ,N 1

T0

ζ,N

AN
ζ , (92)

for the pressure equation

Apu = +
cp
cv
p

1

r cosϕ

1
√
g

[
βs3 δλ

(√
g
λ · ...

)
+ βs8 Bx,

]
(93)

Apv = +
cp
cv
p

1

r cosϕ

1
√
g

[
βs3 δϕ

(
cosϕ

√
g
ϕ · ...

)
+ βs8 By

]
, (94)

Apw = −cp
cv
p

1

r cosϕ

1
√
g
βs4 δζ(r cosϕ · ...)− βb3gρ0Aζ , (95)

and for the temperature equation

ATu = +
R

cv
T

1

r cosϕ

1
√
g

[
βs5 δλ

(√
g
λ · ...

)
+ βs9 Bx

]
, (96)

ATv = +
R

cv
T

1

r cosϕ

1
√
g

[
βs5 δϕ

(
cosϕ

√
g
ϕ · ...

)
+ βs9 By

]
, (97)

ATw = −R

cv
T

1

r cosϕ

1
√
g
βs6 δζ(r cosϕ · ...) + βb4

∂T0
∂z

Aζ , (98)

where operators for the calculation of δζZhor have been introduced:

Bx := δζ

(
Aλ

(
∂z

∂λ
AN̄

ζ . . .

))
, (99)

By := δζ

(
Aϕ

(
∂z

∂ϕ
cosϕ AN̄

ζ . . .

))
. (100)

Using again the shallow atmosphere approximation (r ≈ rearth in all the prefactors) we can
cancel r cosϕ in Apw, ATw, and Aww.



COSMO Technical Report No. 21 19

The right hand sides are

bn(u) =
1

∆t
un − 1

ρ

λ
1

r cosϕ

λ
(
(1− βs1)δλp

′n − (1− βs7)
∂z

∂λ

ζ

Aλ

(
δ(s,s)z p′n

))
+

+
1

ρ

λ
1
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λ
(
δλ(α

h
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n
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∂z

∂λ

ζ

Aλ

(
δ(s,s)z (αh

div ρD
n
(uv))
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+
∂u

∂t

∣∣∣∣
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,(101)

bn(v) =
1

∆t
vn − 1

ρ

ϕ
1

r

ϕ
(
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∂z
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ζ
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(
δ(s,s)z p′n
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+

+
1

ρ

ϕ
1

r

ϕ
(
δϕ(α

h
div ρD

n
(uv))−

∂z
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ζ

Aϕ

(
δ(s,s)z (αh

div ρD
n
(uv))

))
+
∂v

∂t

∣∣∣∣
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, (102)

bn(w) =
1

∆t
wn − 1

ρ

ζ,N

(1− βs2)
∂ζ

∂z

ζ,N

δNζ p
′n +

+g

(
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p
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ζ,N
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ζ T
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1

p

ζ,N
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ζ p

′ +
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p

ζ,N T
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ζ,N
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)
+

+
1

ρ

ζ,N
∂ζ

∂z

ζ,N

δNζ (αv
div ρD

n
(w)) +

∂w

∂t

∣∣∣∣
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, (103)

bn(p) =
1

∆t
p′n − cp

cV
pDn

(p) + (1− βb3)gρ0Aζw
n +

∂p′

∂t

∣∣∣∣
slow

, (104)

bn(T ) =
1

∆t
T ′n − R

cV
TDn

(T ) − (1− βb4)
∂T0
∂z

Aζw
n +

∂T ′

∂t

∣∣∣∣
slow

, (105)

with the explicit divergence terms

Dn
(p) =

1

r cosϕ

1
√
g

[
(1− βs3) d̃

n
hor + (1− βs8) δζZ

n
hor + (1− βs4) δζZ

n
vert

]
, (106)

Dn
(T ) =

1

r cosϕ

1
√
g

[
(1− βs5) d̃

n
hor + (1− βs9) δζZ

n
hor + (1− βs6) δζZ

n
vert

]
, (107)

Dn
(uv) =

1

r cosϕ

1
√
g

[
(1− βd1) d̃

n
hor + (1− βd5) δζZ

n
hor + (1− βd2) δζZ

n
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]
, (108)

Dn
(w) =

1

r cosϕ

1
√
g

[
(1− βd3) d̃

n
hor + (1− βd6) δζZ

n
hor + (1− βd4) δζZ

n
vert

]
. (109)

Here d̃nhor is calculated by eq. (58) and Zn
hor by eq. (60)-(62) (in both cases with un and vn,

Zn
vert analogous to eq. (63) with wn).

6.2 Solution of the tridiagonal equation system

The solution of the tridiagonal equation system is a tedious, but straightforward work. First,
one only ends up with a tridiagonal equation system, if the following requirements for the
implicit weightings are fulfilled:

β
(s)
1 = 0, β

(s)
7 = 0, (110)

and
β
(d)
1 = 0, β

(d)
2 = 0, β

(d)
5 = 0, β

(d)
7 = 0. (111)
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This simply means, that the equations for u and v must be solved explicitly, i.e. in a pure
forward sense:

un+1 = ∆t bn(u), (112)

vn+1 = ∆t bn(v). (113)

This can be done at the beginning of the small time step. As said above, the updated values
un+1, vn+1 are already available to formulate the boundary condition for the implicit equation
system for wn+1. ? determines optimal values of the remaining off-centering weights by a
stability analysis to

β
(s)
3 = β

(s)
5 = 1, β

(s)
2 = β

(s)
4 = β

(s)
6 = 0.7, (114)

β
(b)
1 = β

(b)
2 = β

(b)
3 = β

(b)
4 = 0.7, (115)

β
(d)
3 = β

(d)
4 = 1.0. (116)

Further we use for the metric correction terms β
(s)
8 = β

(s)
4 , β

(s)
9 = β

(s)
6 , and β

(d)
6 = β

(d)
4 .

Finally the equation system can be formulated as a linear system of equations for w
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2
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2
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2
(117)

(A, B, C, rhs and w are further defined at (i, j)) with the coefficients
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using the denotations

awp1 :=

(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

βs2, awp2 := g βb2

(
1

p

)ζ,N

, (118)

aww1 :=

(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

, aww2 := αv
div ρ

1

r cosϕ

1
√
g
βd4 , (119)

awT := −g
(
p0
p

)ζ,N (
1

T0

)ζ,N

βb1, (120)

apw1 := −cp
cv
p

1

r cosϕ

1
√
g
βs4, apw2 := −βb3gρ0, (121)

aTw1 := −R

cv
T

1

r cosϕ

1
√
g
βs6, aTw2 := βb4

∂T0
∂z

, (122)

and
rc := r cosϕ

ζ
. (123)

In apw1, aTw1, and aww2 one can cancel r cosϕ terms by the shallow atmosphere approxima-
tion and may set rc = 1. (By efficiency reasons the averaging factor 1/2 is defined into apw2

and aTw2 in the program code.)

The right hand side of eq. (117) reads

rhs := −Awp

[
b(n)p − (Apuu

n+1 + Apvv
n+1)

]
︸ ︷︷ ︸

=:b4,p

−AwT

[
b
(n)
T − (ATuu

n+1 + ATvv
n+1)

]
+

1

∆t

[
b(n)w − (Awuu

n+1 + Awvv
n+1)

]
. (124)

We express some of the needed terms more explicitly by

Apuu
n+1 + Apvv

n+1 =
cp
cv
p

1

r cosϕ

1
√
g

[
βs3 d̃

n+1
hor + βs8 δζZ

n+1
hor

]
, (125)

ATuu
n+1 + ATvv

n+1 =
R

cv
T

1

r cosϕ

1
√
g

[
βs5 d̃

n+1
hor + βs9 δζZ

n+1
hor

]
, (126)

Awuu
n+1 + Awvv

n+1 = −
(
1

ρ

)ζ,N
∂ζ

∂z

ζ,N

δNζ

[
αv
div ρ

r cosϕ

1
√
g

(
βd3 d̃

n+1
hor + βd6 δζZ

n+1
hor

)]
,(127)

where d̃n+1
hor is calculated via (58) and Zn+1

hor via (60) (both with un+1 and vn+1).
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The explicit solution for p′n+1 reads

p′n+1 = ∆t
(
b4,p − Apww

n+1
)

(128)

(this can be calculated without any further boundary conditions/treatments).

The explicit equation for T ′n+1 directly follows from eq. (55) using p′n+1 from eq. (128).

7 Stability of the divergence damping in tilted terrain

Though the divergence damping is in general necessary to stabilize the whole split-explicit
time integration scheme, it can itself become unstable. Beyond the stability limitation
αdiv∆t/∆x

2 ≤ 1/2 (?), there is an additional constraint in tilted terrain.

To derive this constraint, one can start from the following 2D equations for the quasi-2D-
divergence damping alone in terrain following coordinates

∂u

∂t
= αh

div

(
∂D

∂x
+
∂ζ

∂x

∂D

∂ζ

)
, (129)

∂v

∂t
= αh

div

(
∂D

∂y
+
∂ζ

∂y

∂D

∂ζ

)
, (130)

∂w

∂t
= 0, (131)

D =
∂u

∂x
+
∂ζ

∂x

∂u

∂ζ
+
∂v

∂y
+
∂ζ

∂y

∂v

∂ζ
+
∂ζ

∂z

∂w

∂ζ
. (132)

For an explicit discretization of these equations analogous to (51), a von-Neumann stability
analysis is relatively straightforward and results in the sufficient condition

αh
div ∆t

{
1

∆x2

(
2 +

∆x

∆ζ

∣∣∣∣∂ζ∂x
∣∣∣∣)2

+
1

∆y2

(
2 +

∆y

∆ζ

∣∣∣∣∂ζ∂y
∣∣∣∣)2
}

≤ 2. (133)

This can be reformulated by prescribing ∂z
∂x (at constant ζ). Due to the relations similar to

(7) and (8) and the estimation ∆ζ ≈ ∂ζ
∂z ∆z, this can be written as

αh
div ∆t

{
1

∆x2

(
2 +

∆x

∆z

∣∣∣∣∂z∂x
∣∣∣∣)2

+
1

∆y2

(
2 +

∆y

∆z

∣∣∣∣∂z∂y
∣∣∣∣)2
}

≤ 2. (134)

This is a quite general stability condition not only for the divergence damping but for explicit
discretizations of the diffusion equation in general. Because ∆h := ∂z

∂x ∆x is just the height
jump along a ζ-coordinate line, the expression

∆h

∆z
≡ ∆x

∆z

∂z

∂x
(135)

describes the ratio between the height change ∆h of a coordinate plane over one grid mesh
size ∆x and the vertical thickness ∆z of the grid box.

Near the ground, where small ∆z ∼ 20 m are common, the ratio ∆h/∆z can be quite large
even for rather gentle slopes. Therefore, in steep terrain the dimensionless value xkd :=
αdiv/(c

2
s∆t) must be chosen much smaller than the recommended value of 0.1 by ? or even

as the recommendation of 0.3 by ?. It is interesting that ∆h/∆z often achieves higher values
for coarser resolutions, where the jumps from one grid box to another are larger than for
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finer resolutions. Hence, the steeper slopes occurring in fine scale model applications are not
the limiting factor in this case.

The good news is that in practice, the limitation (134) must not be strictly fulfilled. One
reason is, that the forward-backward scheme of the fast waves solver rather adds the ten-
dencies of sound, buoyancy and divergence damping instead of doing an operator splitting.
Therefore, in the COSMO code a namelist variable divdamp slope was introduced to weaken
up the condition (134). The true value of αh

div is determined by

αh
div = min

(
xkd · c2s ∆t, divdamp slope · αdiv,slope

)
,

where xkd is the namelist variable for divergence damping, and αdiv,slope is the value deter-
mined by (134). Consequently, the divergence damping coefficient never exceeds the value
given by xkd.

8 Discretization errors in a stretched grid

8.1 General analysis procedure

Now, in a certain sense we go back to section 4.1 and answer the question, why the vertical
weighting is advantageous and why the chosen operators are to favor compared to other
choices. To this purpose, a truncation error analysis is carried out. But first, we have
to consider the following question: how can we determine the convergence order or the
truncation error for discretizations on a stretched grid?

Hence, we consider a (vertical) interval [0, L] which is discretized by N + 1 grid points

z
(h)
1
2

= L, z
(h)

1+ 1
2

, . . . , z
(h)

N− 1
2

, z
(h)

N+ 1
2

= 0. (136)

In COSMO the position of the half levels is prescribed, therefore we write half indices and

add an upper index (h). The grid mesh size in a grid box is ∆zk := z
(h)

k− 1
2

−z(h)
k+ 1

2

, k = 1, .., N .

In contrast to an equidistant grid there exist arbitrary many different possibilities to perform
a grid refinement. In the following, two variants of grid refinements are analyzed, that lead
to different orders of the truncation error.

8.1.1 Discretization error analysis - variant A

In this first variant, the grid stretching is described by a coordinate transformation z(ζ). The
transformed coordinate ζ generates an equidistant grid:

ζk+ 1
2
=

(
k +

1

2

)
·∆ζ, k = 0, . . . , N. (137)

With increasing grid refinement ∆ζ → 0 all the grid mesh sizes ∆zk ≈ ∂z
∂ζ

∣∣∣
k+ 1

2

·∆ζ converge

to 0, too. Hence, the convergence inspection takes place for ∆ζ → 0.

With decreasing ∆ζ the stretching function locally becomes increasingly linear. Conse-
quently, with this approach to refine the grid one gets formally 2nd order truncation errors
for all two-point discretizations.
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In the following analysis one has to distinguish carefully between main and half levels; oth-
erwise a restriction to 2-dimensional fields in (λ, z) is sufficient. The grid is horizontally
defined by

λi = i ·∆λ (138)

with i = 0, 1, 2, . . . (for scalar- or w-positions) or i = 1/2, 3/2, 5/2, . . . (for u-position), and
vertically by the z-coordinates of the half levels

z
(h)

i,k+ 1
2

= z
(
λi, ζk+ 1

2

)
(139)

(with the above mentioned stretching function) and the main levels

z
(m)
i,k =

z
(h)

i,k+ 1
2

+ z
(h)

i,k− 1
2

2
. (140)

Hence, the w-positions are in (λi, z
(h)

i,k+ 1
2

), the scalars T , p are in (λi, z
(m)
i,k ), and so on.

In the following truncation error analysis these coordinates have to be inserted into the
discretizations according to the grid positions of the variables. Then a Taylor expansion for
∆λ → 0 and ∆ζ → 0 around the position of the target point (which itself can be a function
of ∆λ and ∆ζ, too) must be carried out.

8.1.2 Discretization error analysis - variant B

To avoid the circumstance, that for increasing resolution ∆zk → 0 the grid stretching be-
comes locally more and more linear, one can prescribe a constant grid stretching

∆zk
∆zk−1

= s

instead. Without any loss of generality we can assume that s > 1, i.e. the grid becomes finer

in the vicinity of z
(h)
0 = 0.

To this purpose we choose the grid points in

z
(h)

i,−1− 1
2

= h(λi)−
1

2
∆ζ − 1

s
∆ζ,

z
(h)

i,− 1
2

= h(λi)−
1

2
∆ζ,

z
(h)

i, 1
2

= h(λi) +
1

2
∆ζ,

z
(h)

i,1+ 1
2

= h(λi) +
1

2
∆ζ + s∆ζ, (141)

Here the prescription of a slope by h(x) is possible. The flattening of coordinate surfaces
with increasing height is neglected. The position of the main levels again is defined by Eq.
(140). The Taylor expansion is performed in analogy to variant A.

One has to note, that such a grid refinement does not converge globally! For the grid mesh
size it follows by the geometric summation formula

∆zk = ∆z1 · sk−1 =
L∑N−1

l=0 sl
· sk−1 =

L
sN−1
s−1

· sk−1. (142)

In particular for the coarsest grid mesh size it follows

∆zN = L
s− 1

s− s1−N

N→∞→ L
s− 1

s
̸= 0!



COSMO Technical Report No. 21 25

By this kind of grid refinement one inserts smaller and smaller grid boxes only on one end of
the interval (at z = 0), without a significant refinement at the other end (at z = L) for the
coarse grid boxes. This, of cause, is a bit odd situation for this variant of grid refinement.

8.2 Horizontal pressure gradient term in the u-equation

We inspect the discretization of the horizontal pressure gradient

∂p(λ, z)

∂λ
=
∂p(λ, ζ)

∂λ
+
∂ζ

∂λ

∂p

∂ζ
=
∂p(λ, ζ)

∂λ
− ∂z

∂λ

∂p

∂z
.

Discretization error analysis - variant A

1. The discretization with weighted vertical interpolation delivers

δλp−
(
Aζ

∂z

∂λ

)(
Aλ

(
∂ζ

∂z
δζA

N
ζ p

))
=

∂p

∂λ

∣∣∣∣
z

+

+dζ2

[
−1

6

∂z

∂λ

(
∂z

∂ζ

)2 ∂3p

∂z3
− 1

4

∂z

∂λ

∂2z

∂ζ2
∂2p

∂z2

]
+

+dλ2 [. . .] + dζ dλ · 0 +O(dζ4, dζ2dλ2, dλ4). (143)

The discretization operators are defined in section 4.1. For the 2nd order term ∼ ∆ζ2

one has either a contribution from the curvature of p(z) (first term) or a stretching
(=curvature) in the grid z(ζ) (second term).

2. The same discretization, but without weighted averages delivers

δλp−
(
Aζ

∂z

∂λ

)(
Aλ

(
∂ζ

∂z
δζAζp

))
=

∂p

∂λ

∣∣∣∣
z

+

+dζ2

[
−1

6

∂z

∂λ

(
∂z

∂ζ

)2 ∂3p

∂z3
− 1

2

∂z

∂λ

∂2z

∂ζ2
∂2p

∂z2

]
+

+dλ2 [. . .] + dζ dλ · 0 +O(dζ4, dζ2dλ2, dλ4). (144)

In the term ∼ ∆ζ2 the second term has a twice as large prefactor compared to the
discretization above. The prefactor of the term ∼ dλ2 is the same as above, as expected.

3. One can think about a lot of other discretizations for the horizontal pressure gradient,
for example with

δλp−
(
Aλ

∂ζ

∂z

)(
Aζ

(
∂z

∂λ
Aλδζp

))
=

∂p

∂λ

∣∣∣∣
z

+

+dζ2

[
−1

6

∂z

∂λ

(
∂z

∂ζ

)2 ∂3p

∂z3
− 1

2

∂z

∂λ

∂2z

∂ζ2
∂2p

∂z2
− 1

4

∂z

∂ζ

∂2z

∂λ∂ζ

∂2p

∂z2

−1

4

∂2z
∂λ∂ζ

∂2z
∂ζ2

∂z
∂ζ

∂p

∂z
− 1

4

∂3z
∂ζ3

∂z
∂λ

∂z
∂ζ

∂p

∂z

]
+

+dλ2 [. . .] + dζ dλ · 0 +O(dζ4, dζ2dλ2, dλ4). (145)

Obviously this is discretization generates larger errors.
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4. The Mahrer (1984)-discretization can only be inspected for gentle slopes. In this case
it follows

∂p

∂λ
=

∂p

∂λ

∣∣∣∣
z

+ dζ2

[
− 1

24

∂z

∂λ

(
∂z

∂ζ

)2 ∂3p

∂z3

]
+

+ dζ dλ

[
1

16

∂2z

∂λ2
∂z

∂ζ

∂2p

∂z2
+ . . .

]
+ dλ2 [. . .] + ... (146)

Though the term ∼ dζ2 is much smaller than in the above discretizations, another
second order term arises which is proportional to dζ dλ. This could explain the slightly
worse discretization properties in the vertical.

Figure 2: Grid positions and stretching in the ’discretization error analysis - variant B’ for
the horizontal pressure gradient ∂p/∂λ.

Discretization error analysis - variant B

1. The discretization with weighted vertical interpolation delivers

δλp−
(
Aζ

∂z

∂λ

)(
Aλ

(
∂ζ

∂z
δζA

N
ζ p

))
=

∂p

∂λ

∣∣∣∣
z

+

+ dz

[
1

8

∂h

∂λ

(
1

s
− s

)
∂2p

∂z2

]
+

+ dλ2 [...] + dz2 [..] +O(dz3, dλ2 dz, ...)(147)

Now the leading truncation error is indeed of first order in dz.

2. The same discretization but without weighted averaging

δλp−
(
Aζ

∂z

∂λ

)(
Aλ

(
∂ζ

∂z
δζAζp

))
=

∂p

∂λ

∣∣∣∣
z

+

+ dz

[
1

4

∂h

∂λ

(
1

s
− s

)
∂2p

∂z2

]
+

+ dλ2 [...] + dz2 [..] + ... (148)

Again the truncation error structure is the same as above but now the prefactor is
twice as large.
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3. The inappropriate discretization from above delivers

δλp−
(
Aλ

∂ζ

∂z

)(
Aζ

(
∂z

∂λ
Aλδζp

))
=

∂p
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For s ̸= 1 this don’t even is a consistent discretization!

4. For the Mahrer (1984) discretization one gets:
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The interesting result is, that no terms ∼ dz or ∼ dz dλ occur. So it is indeed a second
order discretization!

Summarizing the results, it is clear, that the discretization with vertical weightings (option 1)
is the best one. Further one can see, that discretizations with slightly wider stencils (option
3) in general lead to worse truncation errors. For the Mahrer discretization, the decision is
a bit more difficult. Whereas in analysis variant A there occurs a mixed second order term,
which is probably detrimental, in analysis variant B this is the only discretization which is
really of second order.

8.3 Buoyancy term in the w-equation

Terms of the form T ′/T0 (or p′/p0) occuring in the buoyancy term of the w-equation.

Discretization error analysis - variant A

1. The discretization in the new fast waves solver uses weighted vertical interpolations for
T ′ and calculates T0 exactly at the w-position.
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2. use no weighting for the vertical averaging and calculate T0 exactly at the w-position
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Compared to the above truncation error an additional term occurs, which stems from
the curvature of the coordinate transformation. Therefore the weighted average is the
better discretization.

3. use weighted averages both for T0 and T ′:
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As expected, an additional term occurs when the reference state temperature exhibits a
curvature. Since no statement about the sign of this term can be made, it is in general
better to have no such term at all, i.e. the direct calculation of T0 at this position is
the better solution here.

4. Previous version without weighted averages
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]
+O(dζ4). (154)

There arise several additional terms compared to the first version above.

Discretization error analysis - variant B Instead of (141) we use the following z-
positions of the grid

z
(h)
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s+ 1
dz,

z
(h)

i,− 1
2

:= h(λ),

z
(h)

i,+ 1
2

:= h(λ) + 2
s

s+ 1
dz, (155)

with the (dimensionless) stretching factor s; this simply leads to more symmetric formula in
s if applied to the w equation terms.

Figure 3: Grid positions and stretching in the ’discretization error analysis - variant B’ for
the buoyancy term in the w-equation.

1. use weighted vertical interpolations for T ′ and calculates T0 exactly at the w-position
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Through the weighting this discretization is indeed of 2nd order in dz.

2. use no weighting for the vertical averaging and calculate T0 exactly at the w-position
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This is only of first order for all s ̸= 1..
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3. use weighted averages both for T0 and T ′
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There arise additional terms.

4. Old version:
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There arise additional terms.

As in the section before, both analysis variants qualitatively deliver the same picture: the
use of vertical weightings delivers discretizations with the smallest errors. In particular for
variant B, there is a difference between a true second order discretization (option 1 with
weightings) and an only first order discretization (option 2, without weightings). Further,
the use of the exact values of the reference atmosphere is favorable.

8.4 The divergence term
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Discretization error analysis - variant A

1. ∂Zx
∂ζ is discretized by a weighted vertical average

divv =
∂u(x, z)

∂x
+
∂w(x, z)

∂z
+ dζ2

(
−1

4

∂2z

∂x∂ζ

∂z

∂ζ

∂2u

∂z2
− 1

4

∂2z

∂ζ2
∂z

∂x

∂2u

∂z2

−1

6

(
∂z

∂ζ

)2 ∂z

∂x

∂3u

∂z3
+

1

24

(
∂z

∂ζ

)2 ∂3w

∂z3

)
+ dx2 () + . . .(161)

2. ∂Zx
∂ζ is averaged without weights:
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One of the terms has a twice as large prefactor and two additional terms occur.

Discretization error analysis - variant B

1. ∂Zx
∂ζ is discretized by a weighted vertical average
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Figure 4: Grid positions and stretching in the ’discretization error analysis - variant B’ for
the divergence term in the scalar p′- or T ′-equations.

2. ∂Zx
∂ζ is discretized without weightings
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For a stretched grid (s ̸= 1) this is not a consistent discretization at all!

9 Idealized tests

In this section, the properties of the new fast waves solver are inspected using several idealized
test setups. All the following simulations are performed with COSMO version 4.26.2 (con-
cerning the dynamics this is similar to the more official version 4.27). If not otherwise stated,
the switches for the new fast waves solver are itype fast waves=2, ldyn bbc=.FALSE., and
itype bbc w=114. These settings will be denoted as ’FW2’ in the following. The namelist
values for the simulations with the old fast waves solver are 1, .TRUE., and 2, respectively.
The old fast waves solver settings are denoted by ’FW1’.

9.1 Linear gravity and sound wave expansion

In ? (in the following abbreviated by BB13) an exact analytic solution for the expansion
of linear gravity and sound waves for the compressible, non-hydrostatic Euler equations in
an isothermal atmosphere was derived. This test case inspects almost all terms of the fast
waves solver (with the exception of the ’horizontal’ metric terms) together with the time
integration scheme and the coupling with the advection process.

In the following simulations, the same setup as proposed for the small-scale test in BB13 is
used. A weak warm bubble is set into a 10 km high and 300 km wide channel with periodic
boundary conditions in the horizontal. The only difference is the definition of the grid. To
demonstrate the benefit of the vertical weightings in the new fast waves solver a vertical grid
stretching is introduced, with a grid stretching ratio of 1:10 between the finest vertical mesh
size around z = 5 km and the coarsest mesh size around z = 0 and z = 10 km. Figures
5 show the grid for the first three chosen (horizontal) resolutions ∆x = 1000 m, 500 m,
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and 250 m with 300 × 20, 600 × 40, and 1200 × 80 grid points, respectively, and the initial
temperature perturbation T ′ of the weak warm bubble at t = 0. The time steps for these
simulations are 20 s, 10 s, and 5 s, respectively, and analogous for the finer resolutions.
During the expansion of the waves a background velocity field with u0 = 20 m/s advects the
waves to the right. Figure 6 shows the solution for T ′ and w of FW2 after 30 min. together
with the analytic solution.

Figure 5: Grid and initial temperature perturbation T ′(t = 0) for the first three resolutions
∆x = 1000 m, 500 m, and 250 m for the linear gravity/sound wave test.

The following results are obtained by COSMO 4.26.2 (with the additional implementation
of the grid stretching in src artifdata.f90). Figures 7 and 8 show the error norms of the
simulated solution against the analytic solution after 30 min. The error norms

Lm(ψ) =

(
1

NxNz

Nx∑
i=1

Nz∑
k=1

|ψ(xi, zk)− ψlin(xi, zk)|m
)1/m

, m = 1, 2,∞ (165)
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Figure 6: Temperature perturbation T ′ and vertical velocity w after 30 min. for ∆x = 250 m
horizontal resolution. Comparison between FW2-simulation (shaded) and analytic solution
(lines).

for any field ψ(x, z, t) are calculated as described in BB13 for the COSMO model; in par-
ticular the L∞ norm is the usual maximum norm. In all cases, the errors of the new fast
waves solver (FW2) are smaller compared to those of the old one (FW1). For the coarsest
resolution the error of FW1 is nearly twice as large compared to FW2. One should notice
that the more gentle slope for FW2 does not mean a smaller convergence rate. As one can
see from the curvature of the lines, the simulation for the coarser resolutions is not yet in the
convergence range. In contrast, these error norms show that the errors for not completely
resolved structures are better with the vertical weightings in the new FW2. For very fine
resolutions, at least for the L∞-error of w, the error norms of FW1 and FW2 are nearly the
same and result in a convergence rate of about 0.7 for T ′ and slightly higher for w. The
reason for this behavior is, that for an increasing number of vertical grid points, the local
grid stretching becomes increasingly linear. This can be seen in figures 5, too. Consequently,
the importance of the weightings in the averages decreases.

9.2 2D linear flow over a series of hills

To test the proper inclusion of metric terms, 2-dimensional flow over a couple of hills is
inspected. The test setup is chosen as in (?, section 5.b), but with a reduced mountain
height of hmax = 1 m. This test combines hydrostatic and non-hydrostatic features of flow
over mountains. An analytic solution for linear flow over hills for exactly the compressible,
non-hydrostatic Euler equation system used in the COSMO model and in particular for this
test setup is given in ?.
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Figure 7: Linear gravity/sound wave test of BB13 with vertically stretched grid. Error norms
of T ′ for the new fast waves solver (FW2, red) and the old one (FW1, blue) for different
resolutions.

The vertical grid is stretched by a quadratic stretching function, i.e

z
(h)
k = Htop · (βη2 + (1− β)η), η = 1− k − 1

ke
, k = 1, 2, . . . , ke+ 1. (166)

(1 + β)/(1− β) is roughly the ratio ∆ztop/∆zbottom. We choose Htop = 25 km and β = 0.95
and the following two resolutions:
1.) ∆x = 1000 m and ke = 50 vertical levels,
2.) ∆x = 500 m and ke = 100 vertical levels.
The tables 1 give an impression about the resulting vertical levels. All physical parameter-
izations, in particular the turbulence scheme, are switched off. Otherwise boundary layer
effects would prevent from a correct comparison with the analytic solution.

The comparison for these two resolutions with the analytic solution is quite good (see figure
9). Both the hydrostatic pattern (higher above the hills) and the non-hydrostatic pattern (in
the vicinity of the hills) is well represented by the simulation. The convergence to the correct
solution can be seen also in the error measures between the simulations for the two different
resolutions and the analytic solution (table 2). The integration area for the determination
of the errors is chosen as far as possible away from the boundaries, therefore it was chosen
horizontally in the range [80, 120] km and vertically approximately in the range [0.5, 7] km.
The errors for the new fast waves solver are smaller compared to the old one. Again, as
for the linear wave expansion in the section before, the differences become smaller, when
the local grid stretching ratio becomes smaller. It is interesting, that the version with the
isotropic 3D divergence damping is even better than with the quasi-3D version.
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Figure 8: Linear gravity/sound wave test of BB13 with vertically stretched grid. Error norms
of w for different resolutions.

9.3 3D linear flow over a hill

An analogous 3D test uses a single mountain with a rotational symmetric Gaussian shape

h(x) = hmax · 2−
x2+y2

a2 (167)

and a half width of 2a = 10000 m. The hill is located exactly in the center of the simulation
domain at the position (100, 100) km.

Again the turbulence scheme and other parameterizations are switched off. The vertical
stretching is done as in section 9.4. The inflow velocity is u0 = 20 m/s, the atmospheric
stratification N = 0.01 1/s. The horizontal resolution is ∆x = ∆y = 500 m and a time step
∆t = 5 s has been chosen.

Figure 10 shows horizontal cross sections of w after 24h simulation time. In this 3D test case
the error norms of FW2 and FW1 (again against the analytic solution of ?) are almost the
same, with an improvement of only about one percent for FW2.

9.4 2D flow over steep mountains

To inspect the ability to stably simulate flow over steep mountains, a single 2D mountain
(i.e. a mountain ridge) with a Gaussian shape

h(x) = hmax · 2−(
x
a)

2

(168)

and a half width of 2a = 6000 m is used. A constant inflow velocity of u0 = 20 m/s and
a dry atmosphere with a stable stratification N = 0.01 1/s are prescribed. In the following
different values for the height hmax are tested.
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k VCOORD(k)

1 25000.0000
2 24034.5000
3 23088.0000
4 22160.5000
...
45 492.0000
46 362.5000
47 252.0000
48 160.5000
49 88.0000
50 34.5000
51 0.0000

k VCOORD(k)

1 25000.0000
2 24514.8750
3 24034.5000
4 23558.8750
...
95 160.5000
96 121.8750
97 88.0000
98 58.8750
99 34.5000
100 14.8750
101 0.0000

Table 1: vertical levels for the 2D linear flow over hills generated by eq. (166) for ke = 50
(left) and ke = 100 (right).

∆x FW L1 · 10−5 L2 · 10−5 L∞ · 10−5

1000 FW1 4.377 7.749 34.88
1000 FW2 3.357 5.898 26.91
1000 FW2, 3D div.damp. 3.007 5.183 28.92

500 FW1 2.112 3.191 15.23
500 FW2 1.940 2.890 12.89
500 FW2, 3D div.damp. 1.273 1.780 7.56

Table 2: 2D linear flow over flat mountains. Error measures for two different resolutions in
a stretched grid.

The horizontal grid mesh size of the 2-dimensional simulations is ∆x = 1000 m. Therefore a
time step ∆t = 10 s has been chosen. The vertical grid is stretched again by the quadratic
stretching function (166). Here we choose Htop = 25 km, ke = 65, and β = 0.95, leading to
∆zbottom = 24.9 m and ∆ztop = 745 m, which are quite realistic values for model applications.
The simulations run with a turbulence scheme switched on, to prevent from unphysically
strong wave breaking.

The simulation with FW1 remains stable until hmax = 2100 m, but becomes unstable for
hmax = 2200 m. This latter mountain height corresponds to a maximum slope angle α ≈ 27◦

and a maximum step size of the orography maxi |hi−hi+1| ≈ 500 m. The instability develops
in the bottom grid boxes, where high vertical velocities occur (Fig. 11).

In contrast, the simulation with the new fast waves solver FW2 remains stable until hmax =
3100 m. This corresponds to a maximum slope angle α ≈ 35◦ and a maximum step size of
the orography maxi |hi − hi+1| ≈ 710 m (left panel in Fig. 12). The same height can be
achieved both for the quasi-3D and for the full 3D-divergence damping.

Of course, one cannot expect a large increase in stability over steeper mountains, because
the main time integration scheme is the same in the new and the old fast waves solver. In
particular the treatment of the metric correction terms is nearly the same. But nevertheless,
the better discretization of vertical operations seems to help a bit in stability.

The same simulation with Mahrer discretization (see section 4.2.2) allows even much higher
mountains until hmax = 4800 m. This corresponds to a maximum slope angle α ≈ 47◦ and
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Figure 9: Linear flow over mountains (Schaer et al. 2002-setup) with vertical grid stretching
by FW2. Vertical velocity w for ∆x = 1000 m (left column) and ∆x = 500 m (right column).

a maximum step size of the orography maxi |hi − hi+1| ≈ 1100 m (right panel in Fig. 12).

9.5 3D flow over steep mountains

To inspect stability over 3D steep mountains we use again a rotational symmetric Gaussian
hill

h(x) = hmax · 2−
x2+y2

a2 (169)

with a half width of 2a = 6000 m.

The horizontal resolution is ∆x = ∆y = 1000 m. Other model settings (vertical grid, time
step, parameterizations, ...) are as in the section 9.4 before.

The simulation with FW1 is stable until a hill height of 1900 m (and becomes unstable for
2000 m). In contrast, the simulation with FW2 is stable until a hill height of 3000 m (and
becomes unstable for 3100 m). Again much steeper slopes can be simulated with FW2 and
the Mahrer discretization, here hill heights until 4600 m can be achieved (becomes unstable
for 4700 m).

Compared to the values for the flow over 2D mountain ridges, all these maximum heights
are a bit reduced for the 3D case. This indicates that more complex flows tend to reduce
the maximum allowable slopes and orography steps.

9.6 Convective warm bubble test

The warm bubble test by ? is a standard test case to investigate the model behavior in
strong convective situations.

An elliptic shaped 3D warm bubble with horizontal radius of xd = yd = 10000 m, a vertical
radius of zd = 1400 m and a maximum temperature increment of 2 K is set into a prescribed
moist atmosphere (see figure 13). The atmosphere has a prescribed velocity profile with no
velocity at the bottom and an increasing velocity with height until umax = 30 m/s (this
value is used here).
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Figure 10: Vertical velocity w for linear Flow over a 3D Gaussian shaped mountain with
height 1 m. Vertical velocity w simulated with the old (left) and new (right) fast waves
solver (FW2) after 24 h. Cross section in z = 3000 m. Shaded: COSMO simulation, black
lines: analytic solution

The COSMO setup has been chosen as close as possible to WK82; exceptions are a higher
horizontal resolution of ∆x = ∆y = 1000 m, a time step of ∆t = 10 sec., and the use of the
6-class graupel microphysics scheme (i.e. the prognostic variables qv, qc, qi, qr, qs, qg are
used). The vertical grid points are prescribed again by (166) with ke = 65, Htop = 22 km, and
β = 0.95. Figure 14 shows the specific mass concentrations after 30 min. and 1 h simulation
time for three different model setups. The runs with FW1 generates higher maximum values
of graupel and rain compared to the runs with FW2, whereas FW2 produces higher maxima
of cloud ice and snow.

Figure 15 shows the time development of the maximum vertical velocity. The first cumu-
lonimbus cloud with maximum updrafts develops after about 30 min. This structure then
dissipates and generates new clouds later on. Generally these values are in a realistic range,
nevertheless they are a bit higher than those of ?. But one should notice, that their simula-
tions have been done with ∆x = ∆y = 2000 m, probably leading to more diffusion compared
to the higher resolution used here. FW2 produces slightly higher values of wmax(t) than
FW1, in particular for later times.

The simulations with FW2 have been performed with 2 setups: one with the standard quasi-
3D divergence damping (i.e. αv

div = 0) and one with the full 3D divergence damping (i.e.
αv
div = αh

div). The differences between these two versions are quite small. Therefore the
slightly unphysical modification of the dispersion relation for gravity waves by the quasi-3D
divergence damping mentioned in ? seems to be not too strong in this case.

An interesting aspect in connection with divergence damping is the treatment of the first
small time step. For the quasi-3D version it is absolutely necessary for real case simulations
to perform no divergence damping in the first step; otherwise instabilities occur. These
are obviously induced by complex terrain, because they haven’t been neither seen in the
stability analysis without orography (?) nor do they occur in idealized tests with simple
orographies. In contrast to this, simulations with the full 3D divergence are independent
from the treatment of the first small time step: they run stable, both if it is applied in the
first step or not. 5. In this respect, the full 3D divergence damping is also more satisfying

5To force the application of divergence damping also in the first small time step, one has to set the internal
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Figure 11: Flow over a 2D Gaussian shaped mountain with height 2200m. Vertical velocity
w simulated with FW1 after 3 and 5 minutes. The run crashed only a few time steps later.

from a theoretical viewpoint than the quasi 3D version (the better dispersion properties of
the full 3D version have been mentioned already in the introduction 2).

10 Real cases

The predominant feature of the new fast waves solver is its higher stability property. This has
been demonstrated in the idealized tests in sections 9.4 and 9.5. There have been numerous
examples of real case simulations which have been stabilized by using FW2. To list some of
them:

The operational deterministic COSMO-DE and several COSMO-DE-EPS ensemble runs at
’28.06.2011, 6 UTC’ crashed by a shear instability after about 16 hours simulation time.
Although this should be cured by a Smagorinsky diffusion, the runs with the new FW2
remained stable.

Another problem occurs, if the velocity fields near the ground become too noisy. This
happened for the operational COSMO-DE run at ’12.07.2011, 6 UTC’, where qr ’exploded’
in the Alps. This could be cured by the more stable version of the tracer advection scheme,
namely with the Strang-splitting variant of the Bott advection scheme. Otherwise, without
this measure, the runs with the new FW2 remained stable, too.

Other examples were several experimental COSMO-DE runs with 65 levels which crashed
during the summer 2012 period. (e.g. the ’15.07.2011, 12 UTC’ run crashed after only 215
time steps (i.e. after about 1.5 h)) FW2 experiments didn’t show any crash during July and
August 2012.

O. Fuhrer reported an operational COSMO-2 ’16.06.2011, 0 UTC’ run model crash after
1190 time steps ( 6.6 h). A. Seifert reported a model crash of an experimental COSMO-1
(resolution 0.01◦ (about 1.1km), 1700 * 1700 grid points) at the ’24.08.2011 after only 10
time steps. Again these two runs have been stably simulated by FW2.

switch l no div damping in 1st step=.FALSE. in module fast waves sc.
Attention: the runs with the 3D divergence damping and l no div damping in 1st step=.TRUE. do not work
in COSMO 4.27 due to a bug in the code. This will probably be fixed in version 4.28.
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Figure 12: Flow over a 2D Gaussian shaped mountain. Vertical velocity w simulated with
the new fast waves solver (FW2) after 24 h. Left: with conventional pressure discretization
and a mountain height hmax = 3100 m. Right: with Mahrer (1984)-discretization and
hmax = 4800 m.

Though a slightly higher accuracy of FW2 compared to FW1 has been shown in the ideal-
ized tests, the verification results for several periods at DWD didn’t show larger deviations
between these two versions. In particular during the winter period 2012/2013 there occured
slight improvements in the pressure bias but a slight negative behavior in the cloud coverage.
Nevertheless, the higher stability of the new fast waves solver led to the decision to introduce
it both in COSMO-DE (2.8 km) and COSMO-EU (7 km) at 16 January 2013 after a 5 month
testing period at DWD.

One should notice, that for a proper interpolation form driving initial and boundary data,
the interpolation program INT2LM (since version 1.20) must use the same reference state
as COSMO for the half levels, too. Therefore, the namelist switch lanalyt calc T0p0 must
be set to .TRUE. if itype fast waves=2 is used (to be precise: this is only necessary, if the
older reference atmosphere irefatm=1 is used). The same holds for possible postprocessing
programs, e.g. the lmstat feedback file generator.

11 Conclusions

The development of a new fast waves solver for the COSMO model has been described in this
report. This new development is available since COSMO version 4.24 and should be used
together with the interpolation program INT2LM since version 1.20. The slightly better
accuracy properties and in particular the better stability properties in steeper terrain has
been demonstrated. In the end, the new fast waves solver was introduced operationally at
DWD for both model setups 2.8 km COSMO-DE (deterministic and ensemble mode) and
7 km COSMO-EU at 16 January 2013.

On the NEC SX9 (DWD) the new fast waves solver needs about 30 percent more computation
time compared to the old one. This results in an increase of runtime of about 6 percent for
the whole COSMO model. A certain increase in runtime is understandable due to the larger
number of computations and storage loads by the additional vertical weightings. These values
are also quite dependent from the computer architecture. On some Intel based computers
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Figure 13: skew T - log p -digram for the environment atmosphere of the Weisman, Klemp
(1982) test case.

these run times can be even higher, but a report from our Russian colleagues (running
COSMO on an SGI ALTIX, built on Intel(R) Xeon(R) X5560 processors) indicates, that the
runtime can even be much smaller with the new FW solver.

Of course, there is still enough work to be done. For example, until now it is not possible to
use the exact boundary condition for Z and hence for the divergence, which is a bit unsat-
isfying. Though the Mahrer discretization (section 4.2.2) has been proven as advantageous
in idealized steep mountain tests and as stable in many real case simulations, a detailed
verification and assessment is still needed, possibly together with an improvement of the
lower boundary treatment. Finally, the isotropic 3D divergence damping offers theoretical
advantages and runs stable in several real test cases. Consequently, it should be further in-
vestigated. The full 3D divergence damping results in an about 10 percent longer runtime for
the fast waves solver, resulting in an about 2 percent longer runtime for the whole COSMO
model. Therefore, the question remains, if these additional computational costs justify its
usage in operational applications.

The new solver was developed for the Runge-Kutta time integration scheme, which is now
used by every NWP center of the COSMO consortium and by the most (if not all) climate
runs of the climate CLM community. But in principle, there is no reason, why the new solver
shouldn’t be used for the ’old’ leapfrog time integration scheme, too (a certain harmonization
of other discretizations used in the leapfrog scheme and the vertical weightings introduced
here is probably needed, before). Hence, there is a certain hope to replace the other fast
waves solvers in future by this new development and therefore to reduce complexity and
maintenance efforts in the COSMO code.
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Figure 14: Weisman, Klemp (1982) test case with the 6-class graupel scheme. Specific masses
of the microphysical constituents qr, ... Left: after 30 min., Right: after 1 h. Top row: old
FW1, middle row: new FW2, bottom row: new FW2 with 3D-divergence damping. Black
lines: isolines of temperature; thick line is 0◦ C.
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parison between old FW1 and new FW2 with quasi-3D or full 3D divergence damping. Time
step ∆t = 10 sec.
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