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Abstract

A tracer module is implemented in the COSMO model in version 5.0 and higher. This
model component offers a set of functionalities commonly required for the treatment of new
prognostic variables (tracers) like memory management, input and output support or the
computation of advective transport. It allows for a simplified introduction of tracers into
the COSMO code, for a coherent treatment of tracers and for a well-structured code without
redundancies. Application of this module may range from the tracing of air masses to the
handling of microphysics species or aerosols.

1 Introduction

Water in all phases and various isotopic forms, volatile chemical compounds, radionuclides
or aerosols are all important components of our atmosphere. The adequate representation
of these tracers is thus a crucial theme for atmospheric modeling.
We use the term tracer to designate any substance present in the atmosphere as a trace
constituent and which can be transported passively, i.e. without influencing the flow (except
if the user chooses to implement a coupling term).

A consistent and flexible treatment of tracers in atmospheric models becomes increasingly
important as the complexity of these models augments by the introduction of new submod-
ules describing additional processes and implying the consideration of additional species and
even including other environmental compartments. A clear trend in the extension of atmo-
spheric models towards Earth’s system models has been observed in the past decades. All
atmospheric models which have made important steps into this direction handle tracers in
general modules providing basic functionalities like memory management or advective trans-
port to the submodules (hereafter called tracer clients) (e.g. Rast, 2009). Example of tracer
clients are the microphysics, atmospheric chemistry modules, etc.

Traditionally, adding a new tracer variable into COSMO required extensive and tedious code
modifications, since all tracers were treated as individual variables. The result was abundant
code redundancy, bugs and inconsistencies in the treatment of the individual tracers. The
general tracer module described here should facilitate extensions of the COSMO model by
providing a comprehensive API (Application Programming Interface) to the tracer client.
Consistency in the tracer treatment is promoted through the unity of the code describing
a given process (e.g. advection). This also simplifies code maintenance and introduction of
new features.

In this technical report a general description of the new tracer module can be found in section
2. A short user’s guide explains how to use the tracer module by showing concrete examples
(section 3) whereas section 4 provides some technical details on the implementation for model
developers. Section 5 presents the results obtained with the tracer enabled version. Issues
that might arise with this version are discussed in section 6 and conclusions are drawn in
section 7.
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2 Description of the tracer module

The tracer module consists in four new source code files, src tracer.f90, data tracer.f90,
src tracer metadata.f90, data tracer metadata.f90. Extensive modifications to the ex-
isting COSMO source code files had to be performed as well, changing the programming
paradigm based on individual variables for an automated treatment of the species (by loop-
ing over all tracers). in order to bring the required functionalities (see section 2.2) in an
automated form for the tracers.

The tracer API is a collection of few subroutines and functions that can be called by the
tracer client from any part of the COSMO code. They serve to define and retrieve tracers as
well as their corresponding metadata (attributes storing information about the tracers). All
subroutines and functions which can be called by the tracer client are located in the source file
src tracer.f90 and are described in detail in section 2.3. Useful named constants are made
available in the data tracer.f90 module. The source code files src tracer metadata.f90

and data tracer metadata.f90 contain low-level functions for handling metadata and are
not called directly by the tracer client.

Basic information about the tracer (metadata) such as its name or the operations it has to
undergo (e.g. advection, turbulent mixing, etc.) has to be passed to the tracer module upon
definition of a new tracer. This is the so-called set of standard metadata. A short description
of the mandatory standard metadata and of the optional standard metadata is provided in
table 1 and table 2 respectively. No default value is provided for the mandatory metadata
whereas the default value is used for the optional standard metadata if the user provides no
specification of these items.

Table 1: Basic set of standard metadata: mandatory items

Identifier Type Definition Default
value

T NAME ID CHAR Tracer name -

T GRBPARAM ID INT GRIB parameter number -

T GRBTABLE ID INT GRIB table number -

T PARENT ID CHAR Parent subroutine name (subroutine
which defines the tracer)

-

T UNITS ID CHAR Units -
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Table 2: Basic set of standard metadata: optional items

Identifier Type Definition Default
value

T NCSTDNAME ID CHAR Standard name ”undefined”

T NCLONGNAME ID CHAR Long name ”undefined”

T ADV ID INT Do advection? T ADV OFF

Options:

- T ADV OFF: no advection

- T ADV ON: advection

T DIFF ID INT Do horizontal hyperdiffusion? T DIFF OFF

Options:

- T DIFF OFF: no horiz. hyperdiffusion

- T DIFF ON: horiz. hyperdiffusion

T TURB ID INT Do turbulent mixing? T TURB OFF

Options:

- T TURB OFF: no turbulent mixing

- T TURB 1D: vertical turb. mixing

- T TURB 3D: 3-dimensional turb. mixing

T CONV ID INT Do passive convective transport? T CONV OFF

Options:

- T CONV OFF: no passive convective transp.

- T CONV ON: passive convective transp.

T INI ID INT Type of initial condition T INI ZERO

Options:

- T INI ZERO: initialize to zero

- T INI FILE: initialize using data from file

T LBC ID INT Type of lateral boundary condition T LBC ZERO

Options:

- T LBC ZERO: zero value

- T LBC FILE: values read from file

- T LBC CST: constant value

- T LBC ZEROGRAD: zero-gradient condition

T BBC ID INT Type of bottom boundary condition T BBC ZEROFLUX

Options:

- T BBC ZEROFLUX: zero flux condition

- T BBC ZEROVAL: zero value condition

- T BBC SURF VAL: values provided in a sur-
face field

T RELAX ID INT Do boundary relaxation? T RELAX FULL

Options:

- T RELAX OFF: no relaxation

- T RELAX FULL: relaxation at all boundaries

- T RELAX INFLOW: relaxation at inflow
boundary only

T DAMP ID INT Do Rayleigh damping? T DAMP ON

Options:

- T DAMP OFF: no damping

- T DAMP ON: damping

T CLP ID INT Do clipping? T CLP OFF

Options:

- T CLP OFF: no clipping

- T CLP POSDEF: clipping
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2.1 Assumptions

Some basic assumptions have been made about the tracers in order to keep a concise tracer
API and ensure a uniform tracer treatment.

The tracers are scalar, 3-dimensional prognostic (i.e. time dependent) variables defined on
the full model grid. They are defined along the three main spatial dimensions (rotated
longitude rlon, rotated latitude rlat, model level level) of the COSMO grid. The tracers
live at the mass-point (center of the grid box) collocated with temperature and pressure
(rlon, rlat, level). It is not possible to have tracers on the staggered positions of the
Arakawa-C/Lorenz COSMO grid (Schättler et al. 2011 or Doms 2011).

2.2 Functionalities of the tracer module

All basic functionalities which are common to all tracers as for example the allocation of the
memory and transport by advection are provided. In a broad sense, the tracer module han-
dles the infrastructure operations (related to the definition, the storage and the input/output
of a variable) and the operations related to what is referred in COSMO as the ”dynamics”
(Schättler et al., 2011). It does not handle processes which are specific to a tracer or to a
tracer class (basically the operations belonging to the ”physics” according to the COSMO
vocabulary or to additional submodules).

The prognostic equation for a tracer can be derived from the prognostic equation for water
vapor (equation 3.148 in Doms, 2011):

∂qv

∂t
= −

{
1

acosφ

(
u
∂qv

∂λ
+ vcosφ

∂qv

∂φ

)}
− ζ̇

∂qv

∂ζ︸ ︷︷ ︸
ADV

− (Sl + Sf )︸ ︷︷ ︸
SRC/SINKS

+Mqv︸︷︷︸
MIX

(1)

Expanding the third term (MIX) of equation (1) using its definition (equation 3.153 in Doms,
2011) and reordering the terms, we get:

∂qv

∂t
= ADV︸ ︷︷ ︸

A

+DIFF︸ ︷︷ ︸
B

+TURB︸ ︷︷ ︸
C

+CONV︸ ︷︷ ︸
D

+RELAX︸ ︷︷ ︸
E

+DAMP︸ ︷︷ ︸
F

+SRC/SINKS︸ ︷︷ ︸
G

(2)

The terms in equation (2) are:

• A: horizontal and vertical advection (as described in chapters 4.4.2 and 4.4.3 of Doms,
2011)

• B: horizontal hyperdiffusion (or computational mixing) (as described in chapter 6.2 of
Doms, 2011)

• C: turbulent mixing (as described in chapter 4.3.3 of Doms, 2011 and in chapter 3 of
Doms et al., 2011)

• D: moist convection (as described in chapter 6 of Doms et al., 2011)

• E: boundary relaxation (as described in chapter 5.2 of Doms, 2011)

• F: Rayleigh damping (as described in chapter 6.4 of Doms, 2011)
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• G: sources and sinks (in the case of qv, microphysical sources and sinks from/to the
liquid and solid phases)

Written for an arbitrary tracer, equation (2) becomes:

∂ψ

∂t
= ADV︸ ︷︷ ︸

A

+DIFF︸ ︷︷ ︸
B

+TURB︸ ︷︷ ︸
C

+CONV︸ ︷︷ ︸
D

+RELAX︸ ︷︷ ︸
E

+DAMP︸ ︷︷ ︸
F

+SRC/SINKS︸ ︷︷ ︸
G

(3)

Equation (3) is a general equation valid for any tracer ψ. The tracer module takes care of
the 6 first terms (A to F). It means that these terms can be computed in an automated
way by the tracer module. The tracer client simply has to set correctly the corresponding
metadata (table 2). The 7th term, the sources and the sinks, is not computed by the tracer
module, since this term is specific for each tracer. The tracer module simply makes available
a tendency field that can be used to store the sources and the sinks. It is the responsibility
of the tracer client to fill this term with the sources and the sinks appropriated for its tracer.
Sources and sinks might be emissions, chemical transformations, phase changes or fluxes
from/to the soil for instance.

We describe the functionalities of the tracer module in more details in the following sub-
sections. If a standard metadata controls a functionality, it is added in brackets after the
subsection title. The possible values for the standard metadata are listed in table 2.

2.2.1 Tracer definition and memory management

The definition of a new tracer is done by a call to the tracer API (described in section
2.3). Memory required by the tracer, its boundary values and its tendency field is handled
internally by the tracer module. Pointers to these data fields can be retrieved by the tracer
client by calling the tracer API.

2.2.2 I/O methods

In order to Input/Output (I/O) a field in COSMO, the variable has to have a corresponding
entry in the var structure in the subroutine setup vartab. The tracer module now auto-
matically does this operation. An entry in the var structure is performed for the tracer and
this tracer no longer appears explicitly in the code of the subroutine setup vartab.

Any tracer can thus be read from and/or written out to file. However, associated fields like
the tendency or a possible surface field cannot be read or written out in an automated way
for the moment. This is further discussed in section 6.

The tracers can either be read/written in GRIB format or in NetCDF format like any other
field in COSMO. Output is possible on model levels (ml), levels of constant pressure (pl) or
levels of constant height (zl).

The relevant configuration switches are the following ones (namelist INPUT IO):

• yform read: determines the input format (GRIB or NetCDF)

• yform write: determines the output format (GRIB or NetCDF)
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• yvarml, yvarpl, yvarzl: determines the list of variables to output on the model levels,
pressure levels and height levels, respectively

In order to write a tracer out, it must simply be added to the corresponding output list
(yvarml, yvarpl, yvarzl). In order to read a tracer from file (as initial or/and as bound-
ary condition), the metadata T INI ID and T LBC ID have to be set to T INI FILE and
T LBC FILE, respectively. The model then automatically searches for the corresponding fields
in the initial and boundary condition files and stops execution should they be missing.

2.2.3 Advection (T ADV ID)

The type of advection used for scalar quantities depends on the dynamical core selected
by the user and on namelist switches that further refine the choice of a specific algorithm
used for advection. The tracer module currently implements all major existing options and
additionally offers the possibility to turn off advective transport for each tracer separately
(e.g. for idealized cases or sensitivity studies).

For the Leapfrog core, the standard advection scheme for tracers is a second-order centered
difference scheme in the horizontal and an implicit scheme in the vertical. Although certain
species are transported using alternative advection schemes (e.g. semi-Lagrangian advection
for precipitating microphysics species), the tracer module only implements the standard ad-
vection scheme (second order centered difference) for the tracers.
In the Runge-Kutta dynamical core a namelist switch allows a global selection (valid for
all tracers) of the advection scheme. A complete list of the schemes is given below and a
description of these schemes is provided in Doms (2011).

The relevant configuration switches are the following ones (namelist INPUT DYN):

• l2tls: determines if the Leapfrog dynamical core or the Runge-Kutta one should be
used

• y scalar advect: determines which scheme should be used in case of the Runge-Kutta
core (van Leer, PPM, Bott2, Bott4, Van Leer Strang, PPM Strang, Bott2 Strang, Bott
4 Strang, Semi-Lagrange 3 MF, Semi-Lagrange 3 SFD)

The tracer module reproduces the advection as it is coded in the original code. Bottom and
lateral boundary conditions used in this code part may not be consistent with the choices
made by the tracer client (T LBC ID and T BBC ID).

2.2.4 Horizontal hyperdiffusion (T DIFF ID)

Horizontal hyperdiffusion is an artificial diffusion (computational mixing) performed to
smooth the solution of the thermodynamical equations obtained by numerical integration.
Two different schemes are available in the COSMO model (Doms, 2011) and both have been
implemented for the tracers. Horizontal diffusion can also be switched off globally or for
each tracer separately (see table 2).

The tracer module reproduces the horizontal diffusion as it is coded in the original code.
Lateral boundary conditions used in this code part may not be consistent with the choice
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made by the tracer client (T LBC ID).

The relevant configuration switches are the following ones (namelist INPUT DYN):

• lhordiff: determines globally if horizontal diffusion should be activated

• itype hdiff: determines which scheme should be used (4th order linear or 4th order
linear monotonic with orographic limiter)

• hd corr trcr in: determines the correction factor for scalar (tracers) used for the
diffusion in the domain

• hd corr trcr bd: determines the correction factor for scalar (tracers) used for the
diffusion at the boundaries

2.2.5 Turbulent mixing (T TURB ID)

Different options are available for the turbulent mixing of tracers. Most of them compute the
diffusion only in the vertical direction while an option enables to compute additionally the
horizontal diffusion. The tracer module only implements the widely used options (i.e. prog-
nostic TKE-based scheme with an implicit treatment using either a Dirichlet or a Neumann
boundary condition at the Earths surface) and also the new option to have a 3-dimensional
turbulent mixing. The option to switch off turbulent mixing for each tracer individually is
made available.

The relevant configuration switches are the following ones (namelist INPUT PHY):

• ltur: determines globally if turbulent mixing should be activated

• itype turb: determines the parameterization used for turbulent diffusion (only value
3 is accepted for the tracers)

• imode turb: determines the mode (implicit vs. explicit) of turbulent diffusion (only
value 0 or 1 are accepted for the tracers)

• l3dturb: determines if horizontal diffusion should be computed in addition

The type of lower boundary condition is relevant for the turbulent mixing. This condition
can be set using the metadata T BBC ID (see table 2).

More information about the turbulent mixing in the COSMO model can be found in Doms
et al. (2011) and Buzzi (2008).

2.2.6 Passive convective transport (T CONV ID)

Passive transport of scalar quantities by convection was previously not available in the
COSMO model. For the tracers, passive transport by convection using the Tiedtke scheme is
implemented. It is done in an analogous way as for the momentum components in COSMO
and follows ECMWF (2011). Other convection schemes available in COSMO (Kain-Fritsch,
Bechtold, shallow-convection based on Tiedtke) are not implemented for the tracers and thus
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cannot be selected for the tracers. It is possible to activate passive transport by convection
for each tracer individually.

The relevant configuration switches are the following ones (namelist INPUT PHY):

• lconv: determines globally if subgrid-scale convection should be activated

• itype conv: determines the parameterization used for subgrid-scale convection (only
value 0 is accepted for the tracers)

2.2.7 Lateral boundary conditions (T LBC ID)

Different types of lateral boundary condition (BC) can be applied to the tracers (see table
2). If boundary data coming from a coarser model are available in an input file, these data
can be used as boundary condition. If such data are lacking for a tracer, other values can be
used at the boundaries. One can choose between a value of zero at all boundaries, a constant
value (which has to be defined in the code by the user) or a zero-gradient method, in which
the values of the first line of the computing domain are chosen as boundaries.

There is no relevant configuration switch (except for the microphysics species).

2.2.8 Initial condition (T INI ID)

Different types of initialization can be applied for the tracers (see table 2). If initialization
data coming from a coarser model or from an analysis are available in an input file, these
data can be used as initial condition (IC). If such data are lacking for a tracer, an initializa-
tion using a value of zero can be chosen.

There is no relevant configuration switch (except for the microphysics species).

2.2.9 Boundary relaxation (T RELAX ID)

Boundary relaxation is performed in the COSMO model to gradually blend the solution
of the model with the boundary values and thus avoid abrupt transitions in the fields and
possible contamination of the solution due to numerical noise created by reflection at the
boundaries. The scheme used is described in Doms (2011).
Boundary relaxation for each tracer can either be switched off (e.g. in case of idealized
studies), can be performed at all boundaries or only at the inflow boundaries (like it is often
done for precipitation quantities in COSMO.

The relevant configuration switches are the following ones (namelist INPUT DYN):

• rlwidth: specifies the width of the relaxation zone (must be greater than 0 to perform
relaxation)
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2.2.10 Rayleigh damping (T DAMP ID)

Rayleigh damping may be applied in the COSMO model to avoid the reflection of gravity
waves, which might occur at the top of the model due to its formulation as a rigid lid. Two
types of damping are available in COSMO and for the tracers: damping by relaxing against
the boundary fields or by relaxing against the filtered forecast fields (Doms, 2011). Addi-
tionally damping can be activated/deactivated on an individual basis for each.

The relevant configuration switches are the following ones (namelist INPUT DYN):

• lspubc: determines globally if Rayleigh damping should be performed in the upper
layers

• itype spubc: specifies the type of Rayleigh damping

• rdheight: specifies the height of the damping layer bottom in meters (must be smaller
than the top of the model domain to perform damping)

2.2.11 Clipping (T CLP ID)

Several clippings are performed throughout the COSMO code to ensure positive values for
positive definite variables. Clipping removes thus negative values in order to ensure positive
definiteness. We also offer this functionality for the tracers. It is possible to switch on or off
the clipping for each tracer independently.

There is no relevant configuration switch.

Remark: For some species, different types of clipping are used at different locations in the
COSMO code. The tracer module does not use different clipping types but consistently use
the same method across the whole code.

2.2.12 COSMO options not implemented

Some existing schemes/configurations available in the COSMO model are not implemented
for the tracers. These schemes/configurations have been considered as not relevant, outdated
or as a major violation of a coherent tracer treatment. It is the case of:

• Semi-Lagrange advection in the Leapfrog dynamical core

• Positive definite advection scheme using Euler time stepping in the Leapfrog dynamical
core

• Turbulent mixing in case itype turb ̸= 3 and imode turb ≤ 2

• Convective tracer transport for schemes other than the Tiedtke scheme (Kain-Fritsch,
shallow convection, Bechtold)

• Special clipping types (e.g. massflux correction scheme)
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2.3 The tracer module API

The tracer module API consists of the subroutines and functions stored in the source file
src tracer.f90 as well as some predefined constants in the source file data tracer.f90.All
tracer module subroutine names start with trcr . They provide methods to the tracer client
for handling a specific tracer and its associated metadata or for handling a metadata for all
tracers, and also some facilities (e.g. memory management), which are not specific to one
tracer client.

A general feature of the tracer module is the ability to access any tracer or metadata by
either its name or its index. The second option is much faster since it does not imply string
comparison and is also the method to use in loops over all tracers (or over a subset of them).

All tracer module subroutines return an error status code (ierr) as the first argument. Any
non-zero value indicates an error. A function which translates this error code into a human
readable string is provided (see trcr errorstr below). It is the tracer clients responsibility
to check the status code returned and handle the error gracefully.

2.3.1 Methods for tracer handling

The methods described in this section are the ones the tracer client will use in order to
define, access, modify tracers from the client code.

trcr new This subroutine serves to define a new tracer. It must be called by the tracer
client each time a new tracer has to be added to the COSMO model. It should be called from
a meaningful location in the code (generally from an organize xxx subroutine). Once the
memory has been allocated by the tracer module (see trcr alloc below) no more tracers
can be defined.

The subroutine arguments are summarized in table 3 (in the correct order). Mandatory
arguments have to be specified in each call of trcr new. The other arguments can be passed
or not. If they are not passed, the default value of the corresponding metadata is used (see
table 2). Many arguments directly correspond to a metadata of the new tracer. Where this
is the case, the corresponding metadata identifier is given in parenthesis after the definition
of the argument.

A unique short name for the tracer has to be provided. It serves to identify the tracer and,
at the same time, is the variable name for the NetCDF format (Unidata, 2011). The units
have to be specified and should follow the SI system (International System of Units) if pos-
sible. These are the units used for reading and writing out the tracer. A GRIB parameter
number as well as a GRIB table number has to be given as well. For standard meteorological
variables, a specific GRIB number is dedicated to a specific variable. For some tracers, it
might be more complicated since the WMO (World Meteorological Organization) has not
attributed a fixed number to them. In that case, a GRIB parameter number and GRIB table
number which are not yet occupied has to be chosen. The owner (or parent) name, i.e. the
name of module which is in charge of the tracer, has to be passed as well.
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Table 3: Aguments for trcr new

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

yshort name Tracer short name
(T NAME ID)

CHAR IN Yes

iGRIBparam Tracer GRIB parameter num-
ber (T GRBPARAM ID)

INT IN Yes

iGRIBtable Tracer GRIB table number
(T GRBTABLE ID)

INT IN Yes

yparent Name of tracer owner
(T PARENT ID)

CHAR IN Yes

yunits Tracer units (T UNITS ID) CHAR IN Yes

ystandard name Tracer standard name
(T NCSTDNAME ID)

CHAR IN No

ylong name Tracer long name
(T NCLONGNAME ID)

CHAR IN No

itype adv Advection specification
(T ADV ID)

INT IN No

itype diff Horizontal hyperdiffusion
specification (T DIFF ID)

INT IN No

itype turbmix Turbulent mixing specifica-
tion (T TURB ID)

INT IN No

itype passconv Passive transport by convec-
tion specification (T CONV ID)

INT IN No

itype ini IC specification (T INI ID) INT IN No

itype lbc Lateral BC specification
(T LBC ID)

INT IN No

itype bbc Bottom BC specification
(T BBC ID)

INT IN No

itype relax Relaxation specification
(T RELAX ID)

INT IN No

itype damp Rayleigh damping specifica-
tion (T DAMP ID)

INT IN No

itype clip Clipping specification
(T CLP ID)

INT IN No

idx trcr Tracer index INT OUT No
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It is also strongly recommended to specify a standard name and a long name for the tracer.
This should be done with respect to the CF conventions (Eaton et al., 2011) and a table of
possible standard names is available on the Lawrence Livermore National Laboratory web-
page1.

Optionally, it is also possible to get back a unique index which can be used to identify the
tracer (as a replacement for the tracer name in the trcr get subroutine).

We also encourage to specify all other optional arguments of trcr new which determine the
behavior of the tracer. The possible values for the arguments are summarized in table 2.

trcr get This subroutine enables the tracer client to retrieve a pointer to the tracer in
order to perform specific operations (e.g. microphysics, atmospheric chemistry, etc.). The
subroutine has to be called in each module or each subroutine (usually once per module
should be enough) for each tracer and each time level required.

The subroutine arguments are summarized in table 4 (in the correct order).

Table 4: Aguments for trcr get

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

idx trcr Tracer index INT IN Yes
or
yname Tracer name CHAR IN Yes

ptr Pointer to the tracer data REAL,

POINTER

OUT No

ptr bd Pointer to the tracer bound-
ary data

REAL,

POINTER

OUT No

ptr tens Pointer to the tracer tendency
data

REAL,

POINTER

OUT No

ptr surf Pointer to the tracer surface
field

REAL,

POINTER

OUT No

ptr tlev Time level for the pointers INT IN No

Either the name or the index of the tracer (which can be retrieved using the subroutine
trcr get index or directly during the tracer definition with trcr new) has to be passed as
input argument.

Pointers to the following data can be retrieved:

• a 3-dimensional pointer ptr(:,:,:) to the tracer data for the time level nnow or for
the time level specified by the optional argument ptr tlev. The pointer is dimensioned
with (ie, je, ke).

1http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.pdf
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• a 4-dimensional pointer ptr bd(:,:,:,:) to the tracer boundary data. The pointer
is dimensioned with (ie, je, ke, 2).

• a 3-dimensional pointer ptr tens(:,:,:) to the tracer tendency data. The pointer is
dimensioned with (ie, je, ke).

• a 2-dimensional pointer ptr surf(:,:) to the tracer surface data for the time level
nnow or for the time level specified by the argument ptr tlev. The pointer is dimen-
sioned with (ie, je).

Care should be taken not to call this subroutine excessively (e.g. in loops over all gridpoints)
due to performance reasons (especially if the tracer name is used to retrieve the data instead
of the tracer index).

trcr get ntrcr This function returns the total number of tracers currently handled by
the tracer module (table 5). It has no argument. This function is used to create the upper
bound of the loops over all tracers for instance (e.g. DO iztrcr= 1, trcr get ntrcr()).

Table 5: Aguments for trcr get ntrcr

Argument Definition Type Intent Mandatory?

result Number of tracers INT - -

trcr get index This subroutine returns the unique index identifying the tracer given its
name.
The subroutine arguments are summarized in table 6 (in the correct order).

Table 6: Aguments for trcr get index

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

yname Tracer name CHAR IN Yes

idx Tracer index INT OUT Yes

trcr errorstr This function returns a meaningful error message for any error code issued
by the tracer module. The input argument is the error code (see table 7). This error number
can come from any subroutine of the tracer API listed in this section.

Table 7: Aguments for trcr errorstr

Argument Definition Type Intent Mandatory?

ierr Error status INT IN Yes

result Error message CHAR - -
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2.3.2 Methods for metadata handling

A tracer metadata describes a property or determines a specific behavior of a tracer sub-
stance. Apart from the standard set of metadata every tracer has (see tables 1 and 2), the
tracer module allows the tracer client to define, set and retrieve arbitrary metadata for each
tracer substance. This section describes the API methods available to the tracer client for
handling the metadata associated with its own tracers. A metadata can be a single integer,
real, double, character, logical as well as a one-dimensional array of any of these types.
The methods for handling metadata are overloaded and the tracer client has a single in-
terface for all of the above types. The interfaces are described in more details below. For
simplicity reasons, we do not mention real and double for each interface but only real in
this documentation.

trcr meta define Define a new metadata and provide its default value. The subroutine
arguments are summarized in table 8 (in the correct order).

Table 8: Aguments for trcr meta def

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

yname Metadata name CHAR IN Yes

ydefault Default metadata value INT IN Yes
or
” ” REAL ” ”
or
” ” DOUBLE ” ”
or
” ” CHAR ” ”
or
” ” LOGICAL ” ”

iidx Metadata index INT OUT No

protect Flag to protect the metadata
from possible deletion

LOGICAL IN No

The name of the metadata has to be provided as well as a default value. The default value
will be applied to the metadata for all tracers, except if another value is specified for a given
tracer (using trcr meta set, see below). The type of the default value determines the type
of the metadata.

Optionally, the index of the metadata in the metadata structure can be obtained for more
efficient access and it is also possible to protect the metadata from deletion by another tracer
client.
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trcr meta set Store values for a given metadata (identified by its name or index) for a
specific tracer or for all tracers at once. The subroutine arguments are summarized in table
9 (in the correct order).

Table 9: Aguments for trcr meta set

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

itrcr Tracer index INT IN Yes
or
ytrcr Tracer name CHAR IN Yes
or
nothing

imeta Metadata index INT IN Yes
or
ymeta Metadata name CHAR IN Yes

ydata Specified value INT IN Yes
or
” ” REAL ” ”
or
” ” CHAR ” ”
or
” ” LOGICAL ” ”

The name or the index of the metadata to set has to be provided as well as the value to
store. If a tracer name or a tracer index is specified, then the value given will be used only
for this tracer. If the tracer name or index is omitted, it is assumed that the tracer client
wants to store metadata for all tracers and the last dimension of the value array needs to
correspond to the number of tracers. The type of the values has to be of the same type (INT,
REAL, CHAR, LOGICAL) than the default value provided to trcr meta define.
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trcr meta get Retrieve a given metadata for a specific tracer or for all tracers at once.
The subroutine arguments are summarized in table 10 (in the correct order).

Table 10: Aguments for trcr meta get

Argument Definition Type Intent Mandatory?

ierr Error status INT OUT Yes

itrcr Tracer index INT IN Yes
or
ytrcr Tracer name CHAR IN Yes
or
nothing

imeta Metadata index INT IN Yes
or
ymeta Metadata name CHAR IN Yes

ydata Specified value INT OUT Yes
or
” ” REAL ” ”
or
” ” CHAR ” ”
or
” ” LOGICAL ” ”

The name or the index of the metadata has to be provided and its value will be returned. If a
tracer name or a tracer index is specified, then the value is returned only for this tracer. But
if the tracer name or index is omitted, the value of the specified metadata will be returned
for all tracers. The value array needs to be dimensioned accordingly.

2.3.3 Infrastructure methods

These methods are low-level methods used to manipulate the data structures and the infor-
mation related to the tracers and the metadata. These methods are called only once in the
code and should not be called by the tracer client, as they are already implemented in the
model code.

trcr init This subroutine is called at the beginning of the initialization phase and defines
and initializes the mandatory metadata with default values, initializes some indices and
nullifies some pointers used in the tracer module.

trcr alloc This subroutine allocates the memory for the data structures used to save the
tracers, their tendency and boundary fields and initializes these structures. It is called only
once during the allocation phase of the COSMO model. After a call to this routine, no more
tracers can be defined and a call to trcr new will result in an error.

trcr setup vartab This subroutine is called from organize data.f90 and mimics the
COSMO subroutine setup vartab. This is a necessary operation in order to do I/O with
the tracers. Additionally, we also associate a pointer to the corresponding surface field if
this is required.
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trcr print This subroutine is called only once from lmorg.f90 after the allocation phase.
This routine produces a summary of all tracers and the associated metadata in the standard
output of the COSMO model. The standard output should be checked by all tracer clients
to make sure that their tracers are correctly handled (i.e. that the values of the metadata
have been set accordingly to their needs).

trcr cleanup This subroutine deallocates the memory allocated in trcr alloc. It is
called only once at the end of the COSMO program. After a call to this routine, any tracer
data is lost an all calls to trcr get or trcr meta get will result in an error.

3 A short user’s guide

In this section, we first show briefly how we replaced the existing microphysics variables by
the tracer module. This example should help users who already have their tracers coupled
to the COSMO model (e.g. COSMO-ART) in making use of the tracer module. In a second
example, we outline the main steps to introduce a new tracer into the model.

3.1 The microphysics example

We have replaced the current treatment of all microphysics species (water vapor: qv, cloud
water: qc, cloud ice: qi, rain: qr, snow: qs, graupel: qg) by the tracer module. The
microphysics species are no longer handled as individual global variables but are now packed
in the data structures related to the tracers and can only be defined, accessed and modified
using the tracer methods.

3.1.1 The generic code parts

In all code parts where actions that can now be performed by the tracer module were
executed, we could simply remove the code lines related to the microphysics species. This is
for instance the case of the allocation (src allocation.f90), the filling of the var structure
(src setup vartab.f90) or the handling of the I/O for initial and boundary conditions
(organize data.f90). These actions are common to all tracers.
An example of a code section which is generic for all tracers can be found in Fig. 1. In
this code section, the list of the variables that need initial conditions to be read from file
is generated. On the left panel, the original code is shown. The generation of the variable
list implied to add each variable explicitly (i.e. using its name). In the new version, shown
on the right panel, the metadata T INI ID is tested for each tracer and if this metadata
indicates that IC have to be read from file (T INI FILE) then the tracer name is added to
the list.

3.1.2 The specific code parts

In code parts that are specific to the microphysics, the original code could be kept almost
unchanged. The main change is the access to the data. In the original code, a USE statement
of the module data fields.f90 is performed in order to get access to the microphysics
variables (qv, qc, etc.) and these variables can then be used directly. In the new version,
some trcr get have to be performed instead to retrieve the microphysics variables. An
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Figure 1: Replacement of the microphysics species in a generic code section
left panel: original code (without tracer); right panel: new code (with tracer)
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example can be seen in Fig. 2. This code section is extracted from the subroutine hydci pp,
which computes the rate of change of temperature, cloud water, cloud ice, vapor, rain and
snow due to microphysical processes related to the formation of grid scale precipitation.
On the left panel (original code version), it becomes clear that each microphysics specie is
accessed using the corresponding global variable defined in the source file data fields.f90

(USE data fields statement). It is then used in the code at the time level nx. In the tracer
version (shown on the right panel), local pointers are defined for each microphysical species
for each required time level. Then the data are accessed using the statements CALL trcr get

for each variable at the required time level. These pointers are 3-dimensional pointers. The
local pointers can then be used instead of the global variables in the parameterization.

It is crucial to notice that the tracer client now has to work with pointers instead of allocated
fields. This implies for instance that all instances of IF(ALLOCATED(my var)) have to be
replaced by IF(ASSOCIATED(my var)). The validity of a pointer (which points on a given
variable for a given time step) is not longer than one time step, whereas an allocated variable
is valid throughout the whole simulation (thanks to the swapping of the time steps).

Figure 2: Replacement of the microphysics species in a specific code section
left panel: original code (without tracer); right panel: new code (with tracer)

3.1.3 The microphysics specificities in generic code parts

Major difficulties when replacing the existing treatment of the microphysics species by the
tracer module methods arose in the code sections generic to all tracers. Indeed, numerous
inconsistencies are present in the advection, in the turbulent mixing, in the treatment of the
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lateral boundary conditions and in the time stepping for the microphysics species. Although
these operations should usually be handled in a consistent way for all tracers, we could not
harmonize the treatment of the microphysics species for backwards compatibility reasons.
We had to find a solution to handle these specificities without altering the integrity of the
tracer module. We made use of the metadata to distinguish these special cases. The use
of these special metadata is not recommended to other tracer clients and they
will be removed from the code over time.

We list below the metadata that we have defined to reproduce the original treatment of
the microphysics species, the possible values and the default (i.e. the standard treatment
for other tracers). We do not recommend using these metadata for other tracers without
intensive testing. Indeed, it is not clear at all for most of them why the behavior they are
activating is required for some microphysical species and if it would be meaningful for other
species. Caution is thus required when manipulating these metadata.

CLP 10E-12 At the end of the turbulent mixing for the Leapfrog dynamical core, a clip-
ping is performed to ensure that the positive definite quantities are not exhibiting negative
values. In case of cloud ice (qi), another clipping method than the usual one is performed.
Any value smaller than 10E-12 is set to zero instead of clipping only the negative values
(i.e. smaller than 0). The metadata CLP 10E-12 is set to FALSE for all tracers except for
qi. It means that we perform the usual clipping (clipping of the negative values only) for
all tracers except for qi (for which we clip any value smaller than 10E-12).

Remark: this metadata is only active for qi if the standard metadata T CLP POSDEF has
been set to TRUE.

MASSFLX CLP At the end of the turbulent mixing for the Leapfrog dynamical core and
the Runge Kutta core, a clipping is performed to ensure that the positive definite quantities
are not exhibiting negative values. In case of water vapor (qv) and cloud water (qc), a mass-
flux correction scheme can be used instead of the usual clipping method. This is activated
by a hard-coded internal switch (lmassf diffusion) in the original code. The metadata
MASSFLX CLP is set to FALSE for all tracers except for qv and qc. It means that we perform
the usual clipping for all tracers except for qv and qc (for which we redistribute the clipped
mass).

Remark: this metadata is only active for qv and qc if the standard metadata T CLP POSDEF

has been set to TRUE.

ADD CLP ADV When using the advection in the Runge-Kutta core not written in con-
servation form (ltrcr conserv form=.FALSE.), a clipping is performed at the end of the
advection routine (advection pd) but only for the precipitating species (qr, qs, qg). The
metadata ADD CLP ADV is set to TRUE for these species whereas it is set to FALSE for any
other tracer, thus activating this additional clipping only for the three species mentioned
above. This metadata is of course only active if advection is performed (i.e. if the metadata
T ADV ID has been set to T ADV ON).



COSMO Technical Report No. 20 25

BD 0GRAD FORCED Several types of lateral boundary condition can be chosen using
the metadata T LBD ID. This type is then used at several locations in the code, among others
in the advection. A routine (lateral boundaries zerograd in the new code, western boundary,
eastern boundary, southern boundary and northern boundary in the original code) in the
advection part of the Runge Kutta core (subroutine advection pd) sets the lateral bound-
aries in case of a zero-gradient boundary condition type. This routine should thus only be
called if T LBC ID is set to T LBC ZEROGRAD. However this is done in any case for qi, qr, qs
and qg in case the boundaries are not read from a file in the original code. We thus have to
define a metadata which overwrites the boundary settings in the advection (for Runge Kutta)
for these species except if the boundaries are read from file (T LBC FILE). BD 0GRAD FORCED

is thus set to FALSE for all tracers except for the above mentioned species. This metadata is
of course only active if advection is performed (T ADV ON).

BD SET FORCED The type of lateral boundary condition is also used at the end of the
dynamics computation (section 6.3.1 of lmorg.f90). At this location, the boundaries are
set in case a zero-value (T LBC ZERO) or zero-gradient (T LBC ZEROGRAD) boundary condition
has been chosen. For the precipitating species however, this boundary settings is done also if
the boundaries have been read from file and the type (zero-value or zero-gradient) is defined
according to the namelist switch itype lbc qrsg in the original code. In order to reproduce
this behavior, the switch BD SET FORCED is introduced. It is set to zero for all species except
for the precipitating species. For them, it is set to 1 or 2 according to the value of the
namelist switch itype lbc qrsg. A value of 1 means a zero-gradient boundary condition
whereas a value of 2 means a zero-value boundary condition.

SP ADV LF Advection in Leapfrog is normally done using centered differences and a
Leapfrog time stepping scheme. The vertical advection is done implicitly. This default is
applied to all tracers and to qv and qc. In the original code however, qi, qr, qs and qg

are advected using others schemes. qi is advected using a positive definite scheme based on
an Euler forward time stepping scheme. The vertical advection is also positive definite and
is solved explicitly. For the precipitating species, a semi-Lagrange scheme with a Leapfrog
time stepping is used. We use the metadata SP ADV LF to reproduce these various schemes.
The default, SP ADV LF=1, is applied to all tracers except the species mentioned above; the
normal Leapfrog scheme is used. For qi, the metadata SP ADV LF is set to 2, in order to make
use of the Euler forward time stepping scheme. For the precipitating species, SP ADV LF is
set to 3, inducing the use of the semi-Lagrange scheme.

Remark: A correct treatment of T ADV OFF is guaranteed only for the default Leapfrog
scheme.

3.1.4 Treating the surface field

For any prognostic variable, there are possibly associated fields: the tendency fields, the
boundary field, a surface field or an emission field for instance. In the current COSMO code,
the only field that can be associated directly to a variable is the boundary field. This is dic-
tated by the way COSMO defines a variable (i.e. by the composition of the var structure).
It means that only the boundary field can be handled properly in an automated way.

However, in order to treat correctly the bottom boundary condition in case a surface field
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should be used (T BBC ID set to T BBC SURF VAL), we need an automated method to relate
a surface field to the tracer. The method currently used is constrained by the variable
handling in COSMO and is not very satisfying. The tracer client has to define the sur-
face field (in data fields.f90), to allocated it (in src allocation.f90), to fill the var

structure for it (in src setup vartab), to update it (in lmorg.f90) and to deallocate it
(in src allocation.f90) himself or herself. In the tracer routine trcr setup vartab, we
search in the var structure for a field named like the tracer field but with an extension S

(QV S for QV for instance). If such a field is found, the pointer ptr surf in the tracer structure
is associated to this field. We check that this pointer is associated in case T BBC SURF VAL

has been chosen for the tracer.

This method is inflexible; the name of the surface field must be constructed using the name
of the tracer and the S extension. And it is laborious, the tracer client having to perform
lots of operations to handle this field. Care is required when a surface field should be used
as bottom boundary condition.

3.2 How to introduce a new tracer?

The introduction of a new tracer is relatively straightforward using the tracer module.

The general workflow to introduce a new tracer can be summarized in:

• Defining the tracer: name, GRIB information, set of dynamics operation to undergo,
type of initial and boundary conditions

• Defining associated metadata: determine if some information has to be attached to the
tracer and if yes, define and set these metadata

• Defining initial and boundary conditions if needed (in case they are not read from file
and should not have a zero value or a zero-gradient)

• Retrieving the tracer to perform various actions: computation of the source/sink terms
of the tracer and update of the tracer, use of the tracer to compute derived quantities

• Adding the tracer to the output list in the namelist INPUT IO

Each operation listed above has to take place in a meaningful location in the COSMO code.
Some basic knowledge of the workflow in COSMO can help to use the tracer module correctly.
We describe roughly the COSMO workflow in section 4.2.

3.2.1 Define the tracer and its metadata

The tracer client has to call trcr new from an appropriate location. This appropriate lo-
cation is usually organize physics for the physical tracers, src artifdata for artificial
tracers and the ”organizing” routine of associated modules (e.g. the ”organizing” routine of
the aerosol module in case of aerosols). This has to occur before the allocation phase but
after the initialization of the tracer module (i.e. in section 2.1. of lmorg.f90). An example
of an ”organizing” routine can be found in Appendix A.
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A crucial task for the tracer client is to choose the type of initial and boundary condi-
tions for the tracer, to define which processes (advective transport, convective transport,
etc.) it should undergo. In case of constant boundary conditions, the user has to retrieve the
boundary field using the procedure trcr get and assign a value to the corresponding pointer.

In some cases, it might be necessary to define additional metadata. It might be useful for
instance to have the molar mass of some chemical tracers. These metadata can be defined
at the same place using the procedures trcr meta define and trcr meta set.

3.2.2 Retrieve the tracer and its metadata

Wherever the tracer client needs to use its tracer (e.g. in parameterizations of physical or
chemical processes), it has to retrieve it using trcr get. The required time step has to be
specified. It is also possible to retrieve the tendency, the surface field or the boundary data
using the same procedure. An example can be found in Appendix B.

4 Implementation details

This section details some design choices made internally in the tracer module. It is important
to note that this information is subject to change at any time and that the tracer client should
not write code that assumes any of the information given here.

4.1 Data structures

The main data structures used to manage the tracers at a low level are allocatable arrays of
type REAL:

• trcr data is a 5-dimensional array dimensioned with (ie, je, ke, n trcr, n tlev)

and contains the tracer fields.

• trcr data bd is a 5-dimensional array dimensioned with (ie, je, ke, n bd, 2) and
contains the boundary field for the tracers.

• trcr data tens is a 4-dimensional array dimensioned with (ie, je, ke, n trcr)

and contains the tendency field for the tracers.

The number of tracers, n trcr, and the number of boundary fields for the tracers, n bd,
are updated by each call to trcr new. The method trcr get accesses these data structures
and returns 3-dimensional pointers for the tracer data and the tracer tendency and a 4-
dimensional pointer for the tracer boundaries.

4.2 Workflow

The COSMO workflow can be roughly described as follows:

1. Initialization phase

(a) Initialization of the environment and domain decomposition
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(b) Read of the namelist variables

(c) Initialization of the tracer module

(d) Definition of the tracers and of their metadata

(e) Allocation

(f) Print of the tracer list and metadata in the standard output

(g) Fill in of the var structure (I/O table)

(h) Definition of the variable list to read for IC, BC and for the restart

(i) Read (or computation) of the IC and of the two first BC sets

(j) Initialization of the output variable list

(k) Initialization of the various packages (dynamics, physics, assimilation, )

(l) (Model initialization by digital filtering)

2. Time stepping loop

(a) Time step initialization (read new BC data if needed and interpolate them in
time, swap time levels, reset the tendencies to zero)

(b) Computation of the physical parameterizations (first set)

(c) Computation of the dynamics

(d) Setting of special boundaries

(e) Computation of the assimilation

(f) Computation of budgets

(g) Computation of the boundary relaxation

(h) Computation of the physical parameterizations (second set)

(i) Nullification of small values for the tracers

(j) Boundary exchanges

(k) Diagnostics computation

(l) Results output (if needed)

3. Finalization phase

(a) Deallocation of the memory

(b) Collection of the timings

(c) Finalization of the MPI environment

The operations on the tracers cannot be performed in any order but they have to fit into the
COSMO workflow.

In order to check that the main tracer operations are done in the right sequence, the tracer
module internally uses a status variable which is checked upon every call to the tracer module
to ensure a legal calling sequence (state machine). This variable can take the value ”start”,
”define”, ”alloc” or ”finish”. At the beginning of the code, the status is ”start”. trcr init

can only be called with this status. At the end of trcr init, the status is changed to
”define”. trcr new and trcr alloc can only be called for the status ”define”. At the end of
the allocation routine (trcr alloc), the status is changed to ”alloc”. At this point, it is no
longer allowed to define new tracers. The filling of the var structure (trcr setup vartab)
and the printing of the tracer list and associated metadata in the standard output have to be
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performed for the status ”alloc”. The subroutines which access the tracer structure, namely
trcr get index, trcr check index and trcr get, can be called for the status ”define” or
”alloc”, depending on the arguments. trcr cleanup has to be called with the status ”alloc”
and the status is changed to ”finish” at the end of this subroutine.

4.3 Metadata module

The metadata management of the tracer module is handled by a general metadata backend in
the source code files src tracer metadata.f90 and data tracer metadata.f90. The tracer
module defines a metadata container (of type t metadata) and pipes all metadata requests
from the methods trcr meta define, trcr meta set and trcr meta get to methods of the
metadata backend. The metadata backend is not logically linked to the tracer module and
can in principle be used for other metadata storage tasks.

Internally, all metadata is stored in a buffer of type CHARACTER. The different metadata
are typecast using the Fortran TRANSFER intrinsic. Depending on the compiler dependent
implementation, this allows for efficient access to metadata avoiding data copies.

Access to metadata can potentially be slow when done via name of the tracer and name of
the metadata. This is especially the case, when a large number of tracers and metadata have
been defined, implying a larger number of string comparisons. Accessing metadata in this
way from within loops should be avoided at all costs. Access by tracer index and metadata
index will be considerably more efficient. Further efficiency improvements can be achieved
with metadata accesses for all tracers at once (omitting the tracer index or name in the
metadata access methods, such as trcr meta get).

There are some internally hardcoded limits of the metadata module, such as the maximum
length of the metadata name and the maximum length of strings that can be stored. If these
limits are exceeded by any call to the metadata API, an appropriate error is issued. The
user can then increase the limits and recompile.

4.4 Performance considerations

The performance has been tested on several platforms (Cray XT systems, Cray XE systems,
NEC SX6, Mac OS). The performance of the model code is not changed significantly by our
implementation on all tested platforms except for the NEC SX6, where a slowdown of about
10% has been observed. The main reason is vectorization issues. Some optimizations will
be done in the future in order to achieve comparable runtime as with the original code. An
improvement of the boundary exchange (bulk exchange instead of individual exchange for
each tracer) is planned to prevent major performance issues when dealing with numerous
tracers.

An experiment has been conducted to analyze the rise of the computing time by adding
tracers successively, from zero additional tracers up to 100 additional tracers. For this
experiment, COSMO-7 simulations of 24 hours forecast (as run operationally at MeteoSwiss
but without any output) have been performed on a Cray XE6 system using 480 processing
units. The resulting timings for a various number of tracers are illustrated in Fig. 3.
With zero additional tracers, one hour of simulation takes 21.45 seconds. Fitting a linear
regression curve (least squares method) on the data, a slope of 0.7388 is obtained (equation:
time = 20.63 + 0.7388 ∗ num tracers). It means that adding one tracer costs about 0.7388
seconds more (out of 21.45 seconds), i.e. an increase of 3.5% of the computing time per
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additional tracer is observed. The computing time behaves extremely linearly with respect
to the number of tracers.

Figure 3: Runtime increase as a function of the tracer number

5 Results

The implementation of the tracer module is a purely technical change made to the code to
improve its structure. It does not change the results.

After some code refactoring (mainly operation reordering), we could reproduce most of the
results when handling the microphysics species with the tracer module. Some discrepancies
have been observed and it turned out that these differences in the results were related to
inconsistencies in the treatment of these species in the original code. Making use of the
metadata mechanism, it has been possible to reproduce these specificities (inconsistencies)
without degrading the integrity of the tracer module itself (see section 3.1.3).

The new code, including the handling of the microphysics species by the tracer module, has
been extensively tested for several dozen of configurations. All tests have been successfully
passed, i.e. bit-identical results have been obtained for all of them when comparing the
original code and the tracer enabled code.

Parallelization has not been altered by our developments and the major configuration options
of the original COSMO code are still available in combination with the tracer module.
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6 Issues and needs for further refinements

The tracer module offers a facilitated tracer treatment. However it has been implemented
in an existing code structure and only parts of this structure have been refactored. A larger
effort would be needed to achieve more flexibility in the tracer definition and to reach a
solution that could satisfy all tracer clients.

Technical and scientific aspects are still insufficiently well-handled for some tracer clients.
From the scientific part, the main issue for a satisfying tracer treatment is related to conser-
vation properties. Mass conservation is not guaranteed with the advection schemes imple-
mented in COSMO. Other properties like the ratio between tracers are not conserved at all.
This is not acceptable for several tracer clients.

From the technical side, the tracer module considers all tracers as being equal. We do not
have a concept of tracer family for the moment. The possibility for differentiated treatment
is left to the user, who can attach a new metadata, which controls a special behavior, to his
set of tracers. In some cases, it might nevertheless be advantageous to have at least some
”en bloc” methods to retrieve all aerosols in one call for instance. This kind of ”en bloc”
methods could easily be implemented in a future version.

Another technical limitation of the current COSMO code is related to the inflexible way of
defining variables. Each field that has to be read/written has to appear in the var struc-
ture. This structure contains among others the GRIB number for the element but also some
pointers to the variable itself and to the boundary field. This means that a boundary field
can be associated to each variable but no other field can be attached to it. A more general
way to define a field would help to handle associated fields for the tracers. Usually tracer
clients want to have a surface field, an emission, a tendency a flux or other type of fields
like a sedimentation velocity attached to their species. For the moment, only the boundary
field is completely handled by the tracer module. The tendency field can also be considered
as fully covered by the tracer module but cannot be written to output (which was also the
case in the original COSMO version). A surface field can be attached to the tracer field if
the user has chosen a surface value as bottom boundary condition but the tracer client still
has to declare, allocate and define this surface field himself (see section 3.1.4). This solution
is not satisfying in a long-term perspective. Emissions or other fields cannot be attached to
the tracers in an easy way for the moment. Replacing the var structure by a more flexible
datatype would alleviate this problem. In a prototype version, pointers can be saved into
the metadata as well. This pointer support associated to a better definition of the fields in
COSMO would enable to link variables in a convenient way.

Currently, metadata are defined within the code, requiring a new compilation each time a
metadata is changed. Handling some of the metadata via namelists would eliminate the need
for recompilation.

7 Conclusions

A major code modification has been implemented in the COSMO model for a better treat-
ment of passive, scalar prognostic variables (tracers). The implementation of this tracer mod-
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ule is a step towards an efficient, consistent and user-friendly tracer treatment in COSMO.
The module has been successfully used for handling the microphysics species (of both the
one-moment and the two-moment microphysics schemes) present in the model as well as for
tracing air masses (work of Bojan Skerlak, ETH Zürich) and for the forecast of snow water
content (Frick, 2012).

The mechanism to attach metadata to a tracer is a powerful functionality, which has been
intensively used for the handling of the microphysics species. Indeed, the specificities (incon-
sistent treatment) present in some code parts for the microphysics species could be repro-
duced without attempting at the tracer module coherence and operating mode. Replacing
the existing treatment of the microphysics species by the tracer module could therefore be
done without altering the results.

Although the new module provides rather flexible methods for prognostic variables and con-
venient extension possibilities, the general definition of a field in COSMO remains inflexible.
New methods for variable definition and additional support for pointer saving in the meta-
data would greatly improve the structure of the COSMO code and open new doors for future
developments.
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Appendix A: an organizing routine

*************************************************************************

!+ External procedure for organizing the calls to the xxx packages

!-------------------------------------------------------------------------

SUBROUTINE organize_xxx (yaction, ierror, yerrmsg)

!-------------------------------------------------------------------------

!

! Description:

! This procedure is the driving routine for calling the xxx

! parametrizations.

!

! Method:

!

! Current Code Owner:

!

! History:

! Version Date Name

! ---------- ---------- ----

! Code Description:

! Language: Fortran 90.

! Software Standards: "European Standards for Writing and

! Documenting Exchangeable Fortran 90 Code".

!==========================================================

USE ...

USE data_tracers, ONLY: T_ADV_ON , T_DIFF_ON, T_TURB_OFF, &

T_CONV_OFF , T_INI_FILE, T_LBC_CST, &

T_BBC_SURF_VAL, T_RELAX_FULL, &

T_DAMP_ON , T_CLP_POSDEF, T_ERR_NOTFOUND

USE src_tracers, ONLY: trcr_new, trcr_errorstr, &

trcr_meta_define, trcr_meta_set, trcr_get

!=========================================================

IMPLICIT NONE

!==========================================================

! Parameter list:

CHARACTER (LEN= *), INTENT(IN) :: &

yaction ! action to be performed

INTEGER (KIND=iintegers), INTENT(OUT) :: &

ierror ! error status

CHARACTER (LEN= *), INTENT(OUT) :: &

yerrmsg ! error message

! Local variables:

INTEGER (KIND=iintegers) :: izerr

CHARACTER (LEN=25) :: yzroutine

! Tracer pointers

REAL (KIND=ireals), POINTER :: xcomp_bd(:,:,:,:) => NULL()

!------------------------------------------------------------------------------

!- End of header
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!------------------------------------------------------------------------------

!------------------------------------------------------------------------------

!- Begin Subroutine organize_xxx

!------------------------------------------------------------------------------

yzroutine = ’organize_xxx’

izerr = 0_iintegers

...

!------------------------------------------------------------------------------

! Section xxx: Tracer definition

!------------------------------------------------------------------------------

IF (yaction == ’tracer’) THEN

! init error value

izerr = 0_iintegers

! Define all tracers required by the module xxx

! ----------------------------------------------

! define component X

CALL trcr_new( &

ierr = izerr, &

yshort_name = ’X_COMPONENT’, &

iGRIBparam = 222, &

iGRIBtable = 6, &

yparent = ’organize_xxx’, &

yunits = ’kg kg-1’, &

ystandard_name = ’x_component’, &

ylong_name = ’specific content of component x’, &

itype_adv = T_ADV_ON, &

itype_diff = T_DIFF_ON, &

itype_turbmix = T_TURB_OFF, &

itype_passconv = T_CONV_OFF, &

itype_ini = T_INI_FILE, &

itype_lbc = T_LBC_CST, &

itype_bbc = T_BBC_SURF_VAL, &

itype_relax = T_RELAX_FULL, &

itype_damp = T_DAMP_ON, &

itype_clip = T_CLP_POSDEF)

IF (izerr /= 0_iintegers) THEN

ierror = izerr

yerrmsg = trcr_errorstr(izerr)

RETURN

ENDIF

! Define and set all additional metadata required by the module xxx

! -------------------------------------------------------------------

! define metadata for molar mass [kg mol-1]

CALL trcr_meta_define(izerr, ’MOL_MASS’, -999_ireals)

IF (izerr /= 0_iintegers) THEN

ierror = izerr

yerrmsg = trcr_errorstr(izerr)

RETURN

ENDIF
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! set molar mass for component X to 58.443 g mol-1

CALL trcr_meta_set(izerr, ’X_COMPONENT’, ’MOL_MASS’, 58.443E-3)

IF (izerr /= 0_iintegers) THEN

ierror = izerr

yerrmsg = trcr_errorstr(izerr)

RETURN

ENDIF

!-------------------------------------------------------------------------

! Section xxx: Other operations

!-------------------------------------------------------------------------

ELSEIF (yaction == ’xxx’) THEN

...

!-------------------------------------------------------------------------

! Section xxx: Define the constant boundaries [kg kg-1]

!-------------------------------------------------------------------------

ELSEIF (yaction == ’boundaries’) THEN

! retrieve the boundaries of component X

CALL trcr_get(izerr, ’X_COMPONENT’, ptr_bd=xcomp_bd)

IF (izerr/= 0) THEN

ierror = izerr

yerrmsg = trcr_errorstr(izerr)

RETURN

ENDIF

! set the constant boundaries of component X to 0.8 kg kg-1

x_comp_bd(:,:,:,:) = 0.8_ireals

ENDIF

!-------------------------------------------------------------------------

! End of module procedure organize_xxx

!-------------------------------------------------------------------------

END SUBROUTINE organize_xxx

********************************************************************
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Appendix B: Module using a tracer variable

****************************************************************

!+ Source module for the parameterization lambda

!------------------------------------------------------------------------------

MODULE src_lambda

!------------------------------------------------------------------------------

!

! Description:

!

! Current Code Owner:

!

! History:

!

! Code Description:

! Language: Fortran 90.

! Software Standards: "European Standards for Writing and

! Documenting Exchangeable Fortran 90 Code".

!==============================================================================

!

! Declarations:

!

! Modules used:

!

!

!------------------------------------------------------------------------------

USE ...

!------------------------------------------------------------------------------

USE src_tracers, ONLY: trcr_get, trcr_errorstr, trcr_meta_get

!==============================================================================

IMPLICIT NONE

!==============================================================================

!

! Declarations

!

...

!

!==============================================================================

CONTAINS

!==============================================================================

! Parameterization driver. Advances the process one time step ahead.

!------------------------------------------------------------------------------

SUBROUTINE lambda_driver

!------------------------------------------------------------------------------

!

! Description:

!

!

!

!==============================================================================
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! Declarations

! Local variables of type INTEGER

...

! Local variables of type REAL

...

! Tracer pointers

REAL (KIND=ireals), POINTER :: &

xcomp (:,:,:) => NULL() , & ! component X at tlev=nx

xtens (:,:,:) => NULL() ! tendency of component X

! Metadata variables

REAL (KIND=ireals) :: molmass_x

CHARACTER(LEN=25) :: yzroutine = ’lambda_driver’

!==============================================================================

! Start calculations

!------------------------------------------------------------------------------

IF(l2tls) THEN

nx = nnew

ELSE

nx = nnow

ENDIF

!------------------------------------------------------------------------------

! Retrieve pointer to required tracers

!------------------------------------------------------------------------------

CALL trcr_get(izerror, ’X_COMPONENT’, ptr_tlev = nx, ptr = xcomp, ptr_tens=xtens)

IF (izerror /= 0) THEN

yzerrmsg = trcr_errorstr(izerror)

CALL model_abort(my_cart_id, izerror, yzerrmsg, yzroutine)

ENDIF

!------------------------------------------------------------------------------

! Compute derived quantities using component X

!------------------------------------------------------------------------------

DO j = jstarts, jends

DO i = istarts, iends

lamba1(i,j) = xcomp(i,j,ke) * lambda2 + alpha

ENDDO

ENDDO

...

!------------------------------------------------------------------------------

! Use molar mass

!------------------------------------------------------------------------------

CALL trcr_meta_get(izerror, ’X_COMPONENT’, ’MOL_MASS’, molmass_x)

IF (izerror /= 0) THEN

yzerrmsg = trcr_errorstr(izerror)

CALL model_abort(my_cart_id, izerror, yzerrmsg, yzroutine)

ENDIF
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DO j = jstarts, jends

DO i = istarts, iends

zeta(i,j,ke) = (xcomp(i,j,ke)/molmass_x)*rho(i,j,ke)

ENDDO

ENDDO

...

!------------------------------------------------------------------------------

! Update the tendency of component X

!------------------------------------------------------------------------------

DO k=1,ke

DO j = jstarts, jends ! DO loops over COSMO horizontal grid points

DO i = istarts, iends

xtens(i,j,k) = xtens(i,j,k) + (lambda3(i,j,k)-lambda1(i,j))* &

(hhl(i,j,k)-hsurf(i,j))*beta^2

END DO

END DO

END DO

...

!------------------------------------------------------------------------------

! Update component X

!------------------------------------------------------------------------------

xcomp(:,:,:) = xcomp(:,:,:) + xtens(:,:,:) * dt

!------------------------------------------------------------------------------

! End calculations

!==============================================================================

END SUBROUTINE lambda_driver

!==============================================================================

END MODULE src_lambda

************************************************************************
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