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Project report

1 Summary

The project had the goal to explore various ways to verify very high resolution models
taking into account the fact that this kind of model are not to be looked at one gridpoint, at
least not for precipitation, on which the project finally focussed on. We explored methods
which allow building statistics out of the distribution of values surrounding a gridpoint.
These methods are commonly called fuzzy verification. Applying the various methods onto
idealized precipitation patterns, upscaling and the fraction skill score were kept for their
adequate properties. This is shown in Section 3. Verifications have then been carried out on
different regions and seasons with the Swiss COSMO-2 (2.2 km) and the German COSMO-
DE (2.8 km). It turns out that the useful scales of these models are situated between
30 and 50 km. This value can even be higher depending on the considered precipitation
threshold. The verification scores of very high resolution models are however better than the
corresponding high resolution models COSMO-7 and COSMO-EU which have a grid spacing
of ≈ 7 km. Sections 3 and 4 show details on these facts. Optimal verification methods should
lead to corresponding products. Upscaling is quite commonly used by building averages of
precipitation around gridpoints or over hydrological catchments. A product linked to the
fraction skill score is provided by the neighborhood method in which probabilities are built
out of the distribution of precipitation included in a spatial and temporal neighborhood of an
observation point. Optimization of the method and examples are shown in Section 5. It is
also interesting to compare the distribution functions of both the observed and the modelled
precipitation contained in boxes of 100 km x 100 km. Global models are clearly unable to
reproduce the tails of the distributions while high resolution models behave better although
not perfectly. This leaves possibilities to use higher moments of the distribution function like
for instance some quantiles, or to calibrate the distribution as done with EPS. This work is
exposed in Section 6.

2 General introduction

The project had the goal to investigate advanced postprocessing methods, including hydro-
logical applications, but it soon appeared that the most challenging postprocessing was the
one consisting of extracting pertinent information from the very variable fields provided by
very high resolution models (1-3 km), in particular for precipitation. This report will thus
target on the scale dependency of the precipitation verification. In very high resolution
models (1-3 km), the precipitation fields show usually a lot of variability. Although not
positioned at the right position at the right time, the structures are often more realistic than
those given by high resolution models (5-10 km). Typical images are shown in Fig. 1.

Clearly, the forecasts that can be generated by these two forecasts will differ, the probability
of exceeding some small threshold being smaller in the 2 km case. Even if one can argue
that the 2 km forecast is more useful than the 7 km forecast, the classical verification scores
will be smaller for the very high resolution model when looking at the grid scale (this is
often referred to as the double penalty effect). Therefore, methods have been developed for
extracting the information out of boxes of growing sizes. These so called fuzzy verification
methods are described in various papers (non exhaustive list): Contiguous Rain Area (Ebert
and McBride, 2000), Neighborhood method (Theis et al. 2005), Fraction skill score (Roberts
2005), Intensity scale technique (Casati et al. 2004, Mittermaier 2006). Other references can
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Figure 1: Example of precipitation field.

be found in Section 9. The generic behavior of such verifications has been sketched by N.
Roberts (Fig. 2).

Figure 2: Generic behavior of verification.

The goal of the present project was to find out the highlighted ”useful and accurate” scale.
Of course, the other interesting question is to know if at this scale the very high resolution
models show better scores than high resolution models. The scale dependency has been
looked at from four different points of view which are reproduced in the following chapters:

• Fuzzy verification: theoretical aspects and application during the MAP D-PHASE
DOP, by T. Bähler, F. Ament, T. Weusthoff

• Verification of DWD-models against high resolution precipitation and SYNOP mea-
surements, by U. Damrath

• Post-processing of COSMO-7 and COSMO-2 Precipitation with the Neighborhood
Method, by P. Kaufmann

• Statistical properties of precipitation in boxes of various sizes, by M. S. Tesini, C.
Cacciamani, T. Paccagnella.
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3 Fuzzy verification: theoretical aspects and application dur-
ing the MAP D-PHASE DOP (T. Weusthoff, T. Bähler, F.
Ament, MeteoSwiss)

3.1 Introduction

High resolution numerical weather forecast models are often punished when evaluated by
traditional scores, which are based on a point wise comparison of observation and forecast.
Although the structure of the observation may seem well forecasted by a high resolution
model, a standard score may reveal a bad score due to e.g. spatial discrepancies. The
coarser resolution model which cannot resolve the small-scale structure may in such a case
get better scores although the subjective impression tells us different. However, so-called
fuzzy verification methods try to avoid that problem by evaluating the forecast within a
window around the region of interest. The forecast is hereby evaluated on increasing spatial
scales by moving window domains of various sizes over the verification domain. The result
is then presented as a function of spatial scale and threshold (see Fig. 3).

A variety of methods proposed by different authors can be allocated to ”fuzzy verification”,
like those listed in Tab. 1. They are compiled by E.E. Ebert in form of a fuzzy verification
toolbox - the IDL code can be downloaded from her webpage:
http://www.bom.gov.au/bmrc/wefor/staff/eee/beth ebert.htm.

The different verification methods are in a first instance evaluated by means of idealized
test cases. This way, three methods are identified to be well suited for the purpose of high
resolution precipitation forecast. Those methods, namely the Fraction Skill Score, Upscaling
and Intensity Scale, are then employed for the verification of precipitation forecasts of the
Swiss COSMO models during the D-PHASE operations period.
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Table 1: List of methods from the fuzzy verification toolbox (Ebert, 2008) which were
evaluated by means of the test bed approach.

Acronym Method Score Decision model for useful
forecast

UP Upscaling (Zepeda-Arce et
al., 2000; Weygandt et al.
2004)

ETS Resembles observation when
averaged to coarser scales.

YN, MC Anywhere in Window, 50%
Coverage (Damrath, 2004)

ETS Predicts event over minimum
fraction of region.

FZ Fuzzy logic (Damrath, 2004) ETS More correct than incorrect.

JP Joint probability (Ebert,
2002)

ETS More correct than incorrect.

ME Multi-event contingency ta-
ble (Atger, 2001)

HK Predicts at least one event
close to observed event.

IS Intensity scale (Casati et al.,
2004)

SS Lower error than random ar-
rangement of observations.

FB Fractions skill score (Roberts
and Lean, 2007)

FSS Similar frequency of forecast
and observed events.

PG Pragmatic approach (Theis
et al., 2005)

BS Resembles forecast based on
perfect knowledge of obser-
vations.

PP Practically perfect hindcast
(Brooks et al., 1998)

ETS
ratio

Can distinguish events and
non-events.

CS Conditional square root of
RPS (Germann and Za-
wadzki, 2004)

CSRR High probability of matching
observed value.

RM Area-related RMSE (Reza-
cova et al., 2007)

RMSE Similar intensity distribution
as observed.
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3.2 Test bed

3.2.1 Set-Up

The fuzzy verification package of E.E. Ebert contains a large number of methods and scores
which are applicable for different purposes. In order to determine which of the available
verification methods are suitable for verification of high resolution precipitation forecasts,
the methods were tested in an idealized case study. A test bed was set up as follows (Fig. 3):
a synthetically generated field that reflects a precipitation field containing simplified con-
vective rain cells is modified by a perturbation generator which induces several known and
assessable errors on that field. For each perturbation the resulting field was verified against
the initial synthetic field by means of the fuzzy verification toolbox. In addition to that,
the initial field was verified against itself, which represents a perfect forecast and should
result in perfect scores. The observed response to the perturbations is then compared to the
expected behavior. The sensitivity of the different methods and their cross-redundancy was
determined. Working with a synthetic field - instead of radar data - provides the advantage
of a simplified field with easier appreciation of the induced errors. However, the whole pro-
cedure was repeated with real radar data as will be presented in an upcoming publication.
The results for the idealized cases are presented in the next section.

Figure 3: Test bed setup for the evaluation of fuzzy verification methods.

3.2.2 Perturbations and expected response

The synthetic field was perturbed by different perturbations for which a specific response
was expected and additionally verified against itself (”perfect forecast”). Five types of per-
turbations are applied:

• XSHIFT - horizontal translation (10 gridpoints)

• BROWNIAN - no small scale
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• LS NOISE - wrong large scale forcing

• SMOOTH - high horizontal diffusion

• DRIZZLE - overestimation of low intensity precipitation

The appearance of the perturbations to the idealized precipitation fields is displayed in
Fig. 4, while the expected response to each perturbation is shown in Fig. 5. Here, red boxes
indicate scales where any sensitivity to the respective perturbation is expected, while blue
boxes denote the scales for which no response is assumed.

Figure 4: Perturbations on the synthetically precipitation field.

Figure 5: Expected response to the perturbations. Red boxes indicate that a response is
expected on these scales why blue boxes indicate scales where no sensitivity to the perturba-
tion is expected. When applying XSHIFT, for example, the verification results are expected
to be sensitive for small scales and all thresholds.

3.2.3 Results of Sensitivity Studies

The sensitivity of the results is expressed by means of the difference between the expected
behavior and the actual response to the perturbations. As measure for this difference, the
contrast is calculated. It is defined as the mean value of the fuzzy boxes where no response
was expected minus the mean value over all boxes where a response was expected:
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contrast = mean(not expected) - mean(expected)

The more the actual response equals the expected one, the higher the value of the contrast.
The results of the idealized cases in terms of contrast are given in Fig. 6. Some methods
were found to miss a perfect forecast, i.e. when the initial field was verified against itself,
the scores did not give the perfect value, which is usually 1. Those ”leaking scores” were
not further considered (FZ, JP, ME, PG, CS). For the five perturbations, the scores revealed
very different responses. Some are fairly good for all perturbations (e.g. UP and PP), while
others are especially good for a special kind of perturbation but fail to detect others (e.g.
YN and JP).

Figure 6: Results of the test bed experiment for the five perturbations on the idealized
precipitation field.

Finally, the redundancy of the different methods was determined by calculating the correla-
tion of the scores resulting from the test bed experiments. The scores for all window sizes
and thresholds are therefore averaged over all perturbations and the correlation between
the different scores is determined (Fig. 7). Three main groups of redundant methods have
been identified this way: the first contains the methods UP, YN, MC, FB and PP, another
group includes FZ, JP and a third one FB, PP. In addition it should be mentioned that the
reliability is good for all scores - they show low standard deviations. Best performance in
this respect was found for RM, which has, however, no intensity component and requires a
lot of computational time. The Fraction Skill Score (FB) and Practically Perfect Hindcast
(PP) generally show very good results. As both scores were found to be redundant, the
more popular Fraction Skill Score was chosen as an appropriate method for the verification
of quantitative precipitation of high resolution numerical models. To account for large scale
error patterns, the Upscaling technique (UP) is added as a second method. Finally, Intensity
Scale (IS) seems to be a promising technique, which is very fast and able to detect a specific
scale of a spatial error.

3.2.4 Conclusions

Out of the huge set of methods which are available in the Fuzzy verification tool box, three
methods and corresponding skill scores were identified to be suitable for a verification of
high resolution quantitative precipitation forecast. The ”Upscaling” method (UP) considers
the mean value within each window to define an event (Zepeda-Arce et al. 2000; Weygandt
et al. 2004), while for the ”Fractions Skill Score” (FB) fractions of observed and forecast
gridpoints exceeding a certain threshold are determined and a score is calculated based on
these fractions (Roberts and Lean 2007). ”Intensity Scale” (IS) uses a slightly different
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Figure 7: Correlation of the tested scores (see Tab. 1) derived from the averaged scores for
each method.

approach: observation and forecast are transformed into binary images (rain larger then
threshold or not) and a wavelet analysis is performed on the binary error image (Casati
et al. 2004). For more information on the methods, the reader is referred to the given
references.

3.3 Application during the D-PHASE operations period (DOP)

3.3.1 D-PHASE - Settings

The Forecast Demonstration Project (FDP) of the WWRP (World Weather Research Pro-
gramme of WMO) D-PHASE (Demonstration of Probabilistic Hydrological and Atmospheric
Simulation of flood Events in the Alpine region) was initiated to demonstrate the ability of
forecasting heavy precipitation and related flooding events in the Alpine region. The D-
PHASE operations period (DOP) covers the months from June to November 2007. During
this time, several numerical and probabilistic models were run and alerts were issued based
on those models. In this section, results of the verification of the quantitative precipitation
forecast from two of those models, namely the Swiss COSMO models (COSMO-2 (2.2 km)
and COSMO-7 (6.6 km)) are presented. The reference observation is the Swiss radar com-
posite (NASS product). The verification is done on different spatial scales by varying the
window sizes and for various thresholds defining an event. For the present analysis, window
sizes of 1, 3, 5, 9 and 15 gridpoints were chosen for the coarser model and 1, 3, 9, 15, 27
and 45 for the high resolution model. The window sizes whigh = 3*wcoarse of the high
resolution model are comparable to window sizes wcoarse of the coarse resolution model.
The considered thresholds depend on the accumulation times that were evaluated. For 3 h
accumulations, the following thresholds were chosen: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 mm/3h.
For 24h accumulations, respective larger thresholds were chosen.

The scores are determined for 3h and 24h rain accumulations and are then aggregated on
different time scales. Hereby, for the 3h accumulations always the latest model run is taken for
both models beginning with a leadtime of 3h. This means that for COSMO-2 the leadtimes
+3 to +6 are evaluated and for COSMO-7 (6.6 km) the leadtimes +3 to +15. It will be
shown that the leadtime has no considerable influence on the difference in the skill of the
two models. However, if all runs of the lower resolution model are available they should be
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used for a ”fair comparison”. The 24h accumulations are only evaluated for the 00UTC runs
of both models without any cutoff, i.e. for leadtimes +0 to +24.

3.3.2 Results

The results concerning the verification of quantitative precipitation forecasts during the D-
PHASE Operations Period (DOP, June to November 2007) are presented for the two Swiss
COSMO models. In Fig. 8, the scores calculated for 3h accumulations using the two methods
UP and FB are given - the actual values for the score as well as the differences in the score’s
value of the two models for the respective scale. Generally, the skill increase with increasing
window size and decreasing threshold for both methods and both models. For the Fraction
Skill Score, which is displayed in the bottom row of the plot, useful scales are plotted in
bold numbers. Those are the scales at which an acceptable level of skill is reached, which
is given by FSSuniform lying halfway between random forecast skill and perfect forecast
skill (Roberts and Lean 2007). The difference plot (COSMO-2 - COSMO-7) reveals that
COSMO-2 has better skill on all scales. Especially small spatial scales (6.6 km to 50 km)
and thresholds between 0.4 and 5 mm/3h can be pointed out here. According to the Fraction
Skill Score, useful scales are especially those with low thresholds and large window sizes. The
COSMO-2 precipitation forecast is hereby also useful on grid scale for very low precipitation
thresholds, while COSMO-7 reaches a useful scale only for window sizes larger or equal 3
gridpoints.

Figure 8: Verification results for the two methods UP (top row) and FB (bottom) and the
period from June to November 2007 (3h accumulations). Displayed are the skill scores for
the COSMO-2 (left), COSMO-7 (middle) and the differences between those two (right). For
the latter, the spatial scale of the COSMO-7 in terms of gridpoints has to be multiplied by
3 to get the comparable spatial scale of COSMO-2.

The second example (Fig. 9) shows the results for 24h accumulations with only the 00UTC
model runs used for verification. The skill is higher for both models on all scales and the
useful scales are more numerous and almost identical for both models in terms of gridpoints.
The difference plot looks slightly different from that for the 3h accumulations. The differences
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in the skill of the two models are smaller and for a very small number of scales the coarser
resolution model has slightly better skill. However, for the larger number of evaluated scales
the skill of COSMO-2 is slightly better. This is especially true for the scales where the most
pronounced differences were found for 3h accumulations.

Figure 9: Verification results for the two methods UP (top row) and FB (bottom) and the
period from June to November 2007 (24h accumulations). Displayed are the skill scores for
the COSMO-2 (left), COSMO-7 (middle) and the differences between those two (right). For
the latter, the spatial scale of the COSMO-7 in terms of gridpoints has to be multiplied by
3 to get the comparable spatial scale of COSMO-2.

In Fig. 10, the results of the verification by means of the ”Intensity scale” method (IS) are
shown. The advantage of this method is that each scale is evaluated separately, while for the
other methods presented only the respective smaller scales are filtered. The results for the
two models show no consistent behavior for the different scales. However, both accumulation
times evaluated for each model reveal comparable skill. COSMO-2 has best skill for small
windows (low thresholds) and for large window sizes. For a window size of 16 gridpoints, i.e.
a spatial area of approx. 35 km x 35 km the score shows a relatively minimum. COSMO-7
behaves different: the skill is largest for high thresholds and large windows and a relative
maximum in skill can be found for a spatial scale of 16 gridpoints, i.e. an area of approx.
105 km x 105 km. The test bed experiment revealed that the ”Intensity scale” method is
able to detect the specific scale of a spatial error. Imposing a perturbation in form of an
horizontal shift, the response of the score was a minimum in skill for that specific scale. The
results presented here are averaged over a period of 6 month. However, such a minimum in
skill could be detected for the COSMO-2. To decide if this result is an artificial effect or
originates from a shift in the precipitation forecast, more detailed investigations are needed.

3.3.3 Conclusions and Outlook

With fuzzy verification methods, forecasts are evaluated on different spatial scales and for
varying thresholds. This procedure gives the chance to determine the scales on which a fore-
cast model reveals the desired skill for a specific purpose. Furthermore, a better comparison
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Figure 10: Verification results for the ”Intensity scale” method (IS) for the period from June
to November 2007 - 3h accumulations (left) and 24h accumulations (right). Displayed are
the skill scores for the COSMO-2 (top) and COSMO-7 (bottom).

between models of different spatial resolution is possible. Three methods were chosen by
means of a test bed experiment to be suitable for the purpose of precipitation verification
and those methods were applied to the quantitative precipitation forecasts of the two Swiss
COSMO models during the D-PHASE operations period. The three methods have differ-
ent characteristics and thus give different results. The upscaling method dumps out high
intensities by averaging over the respective window and spreads low intensities on the other
hand. The resulting scores give an impression of the accuracy of the mean precipitation
values. Fraction Skill Score in contrast considers the fraction of precipitation rates at grid-
scale with values above a certain threshold and allows also a direct evaluation of high rain
rates. However, due to the low sample of high rain rates, those scales are not classified as
useful scales. The results of the two methods (UP and FB) reveal that the high resolution
COSMO-2 (2.2 km) has better skill on all scales for 3h accumulations and on most scales
for 24h accumulations. Useful scales, according to the Fraction Skill Score, are especially
detected for low thresholds and large windows. The third method (IS) allows an evaluation
for individual scales and reveals a more complex picture, which is harder to interpret. More
detailed investigation is necessary to understand the results of this score. One of its main
features is the ability to detect a horizontal shift of the forecast precipitation field. However,
the three methods constitute an appropriate basis for the evaluation of quantitative precipi-
tation forecasts of numerical models with different spatial resolutions. The results presented
here are averaged over a rather long period of time (6 months). More information on the
strength and problems of the individual models can be gained from conditional verification,
e.g. stratified by weather types.
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4 Verification of DWD-models against high resolution precip-
itation and SYNOP measurements (U. Damrath, DWD)

4.1 Introduction

Precipitation forecasts with high resolution models often show a high variability of forecasted
patterns which have in some cases a characteristic size of only a few grid points. For those
cases with observations with nearly the same characteristic size usually it cannot be expected
that forecasted values and observed ones match correctly. Therefore, it is necessary to use
verification methods that take into account that also right ”signals” of forecasted events are
judged beyond point by point verification which are further needful for weather elements
with no high variability.

4.2 Methods

Traditional verification is carried out at DWD for nearly all weather elements which are
observed near the ground and far from the ground. RMSE and BIAS are calculated for
temperature, dew point depression, pressure wind (speed, direction and vector wind, no
BIAS). Categorical scores are computed for cloud covers at different heights, gusts and
precipitation in different classes. In order to check also the capability of the models to signal
an event in a region of interest so called ”fuzzy” techniques are used. These techniques are
fully described by Ebert, 2008, Roberts and Lean 2008, and Casati, 2004. A lot of scores
are defined within those frameworks and we have put our attention to the ETS from the
upscaling method, the fractions skill score and a modification of the energy squared score.
Using the energy squared score observed and forecasted fields are splitted in so called wavelets
that contain the differences of values of a scale under consideration from the scale above.
The modification relates to the original MSE Skill Score:

1− 2MSE(Y,X)

En2(X) + En2(Y )
(1)

to

1− MSE(Y,X)

En2(X) + En2(Y )
(2)

MSE is the mean square difference between observed and predicted precipitation for a given
wavelet, En2 is the sum of the squared values for the given wavelet. The main difference
between the wavelet method and the other methods is that with the wavelet method each
scale can be separated but with the other methods an overview of all scales below the scale
under consideration is given.

4.3 Data

For fuzzy verification forecasts of GME, COSMO-EU and COSMO-DE are compared on
the same grid. That means that the forecasts of GME and COSMO-EU are transformed
to the COSMO-DE grid. Observations are the values from the radar composite of DWD
measurements which are also available on the grid of COSMO-DE. Traditional verification
uses SYNOP observations and the forecasted value for the nearest grid point for COSMO-
EU and an averaged value over 9 x 9 grid points for COSMO-DE in order to avoid scale
dependent effects. Evaluations were made for all forecasts starting in an interval of 3 hours.
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4.4 Results

Figs. 11 to 15 show exemplary the behavior of FSS, the ETS for August 2008 and these
scores together with the modified energy squared score for January 2009. Also an example
for traditional verification is presented (Figs. 16 and 17). These results are representative
for most of the other months.

Figure 11: Fractions skill score for forecasts of GME, COSMO-EU and COSMO-DE for
August 2008, forecast time 06-18 hours.
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Figure 12: ETS from upscaling for forecasts of GME, COSMO-EU and COSMO-DE for
August 2008, forecast time 06-18 hours.

Figure 13: Fractions skill score for forecasts of GME, COSMO-EU and COSMO-DE for
January 2009, forecast time 06-18 hours.
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Figure 14: ETS from upscaling for forecasts of GME, COSMO-EU and COSMO-DE for
January 2009, forecast time 06-18 hours.

Figure 15: Modified energy squared score for forecasts of GME (left), COSMO-EU (center)
and COSMO-DE (right) for January 2009, forecast time 06-18 hours; horizontal: skill score;
vertical: window size; red mark: skill for all scale.
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Figure 16: Example of traditional verification for surface weather elements for December
2008 (Start of forecasts 00UTC, scores measuring the quality of forecasts).

Figure 17: Example of traditional verification for surface weather elements for December
2008 (start of forecasts 00UTC, scores measuring the bias of forecasts).
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This is a list of abbreviations which appear in Fig. 16:

• N: total cloud cover

• N CL: cloud cover of low clouds

• N CM: cloud cover of medium height clouds

• N CH: cloud cover of high clouds

• TT: 2m-temperature

• TD: 2m-dew point depression

• Tm: 2m-minimum temperature

• TM- 2m-maximum temperature

• P: pressure reduced to mean sea level

• DD: 10m-wind direction

• FF: 10m-wind speed

• vw: 10m-vector wind

• FX: gust over the given threshold

• Prec: precipitation for the given thresholds

• SK: skill of COSMO-EU agains COSMO-DE

• GS and WGS: global skill and weighted(different weights for each element) global skill
over all elements

• red numbers: averages of the score for COSMO-DE

• blue numbers: averages of the score for COSMO-EU

4.5 Summary

Fuzzy verification methods show the following results which could be expected, but are
assessed now:

• The quality of precipitation forecast is best for low precipitation values and large areas.

• For extreme precipitation values the dependency on the scale is as for low precipitation
amounts. Higher quality occurs for larger areas. That means, indeed, that right
”signals” often can be detected - especially by the models with finer resolution.

• Unfortunately, the number of those cases is relatively low and, therefore the statistical
value of the scores is limited.

• The comparison between the models - and that follows from all the scores under con-
sideration - indicate that the quality of forecasts increases in general with the degree
of horizontal resolution.
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• The question, whether the forecasts of a model has an economical benefit cannot be
answered using these scores. It depends on the specific cost loss relationship. But if one
can accept that a fractions skill score of above 0.5 or a ETS from upscaling is higher
than 0.3 than one can find some areas in the graphics which indicate the horizontal
scale and the amounts of precipitation that could be accepted as ”good” forecasts.

• The example with the modified energy score shows that below a scale of 0.2◦ forecasts
of GME have no skill. COSMO-models have a small skill below this range. For
precipitation scales below 0.1 generally no skill can be expected.

Concerning the traditional verification it can be stated:

• Cloud covers are modeled with nearly the same quality for both models.

• COSMO-DE forecasts of temperature and dew point depression show small but sys-
tematic advantages against COSMO-EU.

• Although RMSE for pressure is for larger forecast times in COSMO-DE higher than
in COSMO-EU (this is mainly related to the BIAS) wind forecasts of COSMO-DE are
more trustable than those of COSMO-EU. This is also valid for gusts.

• QPF verification against SYNOP observations shows in general a frequency bias which
is closer to 1 for COSMO-DE than for COSMO-EU. The small overestimation of
COSMO-EU forecasts compared to COSMO-DE leads to a bit higher TSS for COSMO-
EU. The evaluation of other scores that are not so strongly dependent on the frequency
bias is under consideration.
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5 Post-processing of COSMO-7 and COSMO-2 Precipitation
with the Neighborhood Method (P. Kaufmann, MeteoSwiss)

5.1 Introduction

With increasing resolution, the numerical weather prediction models advance towards scales
that are less and less deterministically predictable. This is especially true for precipitation
with its high temporal and spatial variability. The time of onset and the location of a
single convective cell for example cannot be predicted exactly due to the random nature
of convection. This uncertainty in time and space needs to be accounted for when using
high-resolution model output fields. The neighborhood method (Theis et al., 2005) accounts
for the probability related to the spatial and temporal uncertainty on the scale of a few
model grid cells. It solves the above-mentioned predictability problem by sampling a spatio-
temporal neighborhood around each grid cell to derive a probabilistic forecast for that cell.
Doing this, the neighborhood method provides a way to derive a probabilistic forecast from
a deterministic model. In the present study, precipitation forecasts of the two Swiss models,
the COSMO-7 with a grid spacing of 7 km (6.6 km after Feb. 2008), and the COSMO-2
with 2.2 km, are used as input.

5.2 Optimizing the neighborhood

5.2.1 Method

The neighborhood size has an important impact on the magnitude of the predicted prob-
abilities. Theis (2005) found that she could not optimize the neighborhood size based on
objective verification alone. With this unpromising perspective, I based the optimization for
the Swiss COSMO models on case studies of precipitation cases. The optimization of the
neighborhood uses a graphical comparison of the forecast probabilities with actual precipita-
tion measurements of 2006 - 2008. An objective evaluation of the neighborhood determined
in this way remains highly desirable and will be done this year (2009).

5.2.2 Spatial radius of neighborhood

Theis et al. (2005) tested three different sizes for the neighborhood: a small, a medium
and a large neighborhood with a spatial radius of 3, 6 and 10 grid points, respectively.
In this study, four sizes of 1, 3, 5, and 10 grid point radius are compared for COSMO-7
(Fig. 18). While the smallest radius retains most of the structural details, it also produces
probabilities that are either very high or very low with much fewer points in between than are
meaningful for a probabilistic forecast. The largest radius on the other hand only produces
low probabilities, blurring the structural information very strongly. The ideal neighborhood
radius is a trade-off between these extremes, lying for COSMO-7 somewhere in the range of
3 to 5 (Kaufmann, 2008) and for COSMO-2 between 8 to 15 grid points radius.

5.2.3 Shape of the neighborhood

Over homogeneous, flat terrain, a circular shape in space is the natural choice. In complex
terrain or along surface property discontinuities however, it seems advantageous to account
for the anisotropy. Theis et al. (2005) tested different anisotropic spatial shapes. The impact
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Figure 18: Probabilities of precipitation derived from COSMO-7 with a spatial neighborhood
radius of 1, 3, 5, and 10 grid points, in this order.

proved to be quite small and at times even detrimental. Therefore, a circular neighborhood
was chosen here, without further experimenting with the spatial shape.

The ellipsoidal shape of the neighborhood used by Theis et al. (2005) means that the spatial
radius depends on the temporal distance to the central point. This implies a space-time
dependency. It has at the same time the practical effect of smoothing the edges of the
regions with high probabilities, because grid points near the central point contribute to the
neighborhood at more time levels than those further away. If it is assumed that the time
and space dimensions are independent, the spatial radius is constant in time, leading to a
cylindrical neighborhood. This assumption is true if the ambient wind is nearly zero, and
becomes increasingly inaccurate with increasing advection. The cylindrical neighborhood
has the practical disadvantage of showing unreasonably sharp boundaries along the edges of
precipitation. Smoothing of the edges has to be added to ameliorate this. A smoothing with
linearly fading weights is introduced in the next section.

5.2.4 Linearly fading weights

The cylindrical neighborhood shape, in combination with localized strong precipitation
peaks, leads to a dotted plot of probabilities, with a circular dot surrounding each ma-
jor precipitation peak (Fig. 18). Such an unwanted feature could be smoothed out in an
additional step, but it is more meaningful to do this as part of the neighborhood processing.
This is achieved by adding an additional zone around the equally weighted neighborhood,
with decreasing weights. For simplicity, the weights are chosen to decrease linearly. The
meteorological reasoning behind such a zone is that given a convective rain forecast at the
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central point, it is equally likely to appear within a certain radius, but the likelihood de-
creases beyond this radius and finally reaches zero at some larger distance. Fig. 19 shows
the weight depending on the spatial distance of a grid cell to the neighborhood center for
three neighborhood sizes.

Figure 19: Weights of grid cells depending on the distance from the central cell, for tree
different sizes of the neighborhood. Blue: Zone of equal weight and fading zone with 15 grid
points radius each; red 10; orange: 5.

The result of adding such a fading zone is shown in Fig. 20. Here, the probability fields of
the lower panels of Fig. 18 are repeated, but this time calculated with an additional linear
fading zone of the same radius as the neighborhood itself. The areas are much smoother than
in Fig. 18, and the peak values are somewhat decreased. This is because the total radius
including the fading zone is now doubled.

Figure 20: Same as lower two panels of Fig. 18 but with an additional fading zone of the
same radius as the neighborhood, (left) 5 and (right) 10 grid points, added.

The cylindrical neighborhood shape with a fading zone is approximately equivalent with an
ellipsoidal neighborhood with a larger temporal but smaller spatial radius (Fig. 21). With the
same temporal radius, the linear fading provides smoother edges than the discrete weights
of the ellipsoidal shape, while the values within the edges are retained. The smoother areas
with non-zero probabilities are more realistic than the patchy areas of the ellipsoidal shapes.
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Figure 21: Approximately equivalent neighborhood shapes for COSMO-2. Left: ellipsoidal
with 13 grid point radius, right: cylindrical with 8 grid point radius plus 8 grid point fading
zone giving smoother transitions and edges. Shown is the 12h sum ending 18 May 2008 at
6:00 UTC.

5.2.5 Temporal radius

The temporal radius of the neighborhood represents the uncertainty in time of a rainfall
prediction. For convective precipitation, it is known to span several hours. However, tests
with temporal radius of 0, 1, 3, and 6 hours showed relatively little influence. The rainfall
accumulation of 6 hours and even more so of 24 hours already has a smoothing effect on the
time dimension, rendering the temporal extent of the neighborhood less critical. From the
computational point of view, a smaller temporal radius is favorable because it is less costly.

5.3 Examples of products

5.3.1 COSMO-7, threshold 25 mm / 6h

Fig. 22 displays an example for a COSMO-7 product with a threshold of 25 mm per 6 hours.
The situation shown occurred in August 2006, with a small region of strong precipitation over
southern Switzerland. The probabilities for precipitation above the threshold level of 25 mm
/ 6h reach 50% in that region. Although probabilities and single precipitation events cannot
be compared directly, large probabilities should coincide with rainfall above the threshold for
a majority of cases. The probabilities generally decrease with increasing neighborhood size,
thus a frequent occurrence of moderate probabilities with actual rainfall above the threshold
as in Fig. 22 would indicate that the chosen neighborhood size is still slightly larger than
optimal.

5.3.2 COSMO-2, threshold 25 mm / 6h

Fig. 23 shows on the left the product for COSMO-2 with a 25 mm per 6 hours threshold. On
the right side, the actually occurred rainfall amount as measured at Swiss stations is shown.
This is during the same episode already presented in Fig. 21, but 12 hours earlier.
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Figure 22: Probabilities predicted by the neighborhood method (left) and actual rainfall sum
(right) for 2006-08-18 00:00 UTC.

Figure 23: Probabilities predicted by the neighborhood method (left) and actual rainfall sum
(right) in Switzerland (within dashed box in left figure) for 2008-05-18 06:00 UTC.

5.3.3 COSMO-7, threshold 50 mm / 24h

With a forecast range of just 24 hours, COSMO-2 cannot be used with the neighborhood
method for 24h precipitation sums, unless the temporal radius is set to zero. The cor-
responding product for COSMO-7 (Fig. 24) shows a case with strong precipitation over
northern Switzerland. The region of probabilities of 50% and more for precipitation above
the threshold level of 50 mm / 24h nicely fits with the observed precipitation.

5.4 Conclusions and Outlook

The neighborhood method is used to derive a probabilistic forecast from a deterministic
model. The probability is related to local-scale spatial and temporal model uncertainty. The
resulting plots are compared to real cases and are optimized in this way. For COSMO-7, a
spatial radius of 5 grid cells (33 km) with an additional zone of 5 grid cells with decreasing
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Figure 24: Probabilities predicted by the neighborhood method (left) and actual rainfall sum
(right) for 2006-09-18 06:00 UTC.

weights and a temporal radius of 3 hours gives probabilities which are in accordance with
the observed events and non-events. The radius of the zone with equal weight and of the
zone with fading weights combine to an ”effective” radius of approximately 7.5 grid cells
(50 km). The temporal radius is currently chosen to be 3 hours for COSMO-7; however the
extent of the neighborhood in time is of lesser importance. The respective values optimized
in the same way for COSMO-2 are 10 grid cells (22 km) radius plus additional 10 grid cells
for the fading zone, with a temporal radius of 1 hour. The two zones of the neighborhood
add up to an ”effective” radius of 15 grid cells (33 km). Compare this to the German
Weather Service (DWD) which uses an ellipsoidal neighborhood with 13 grid point radius
(36 km) for its 2.8 km resolution model. A throughout validation however, using objective
verification, will have to follow to prove the quality of the probability forecast with the chosen
neighborhood. Such a verification is planned for this year (2009). The neighborhood method
is able to represent the local uncertainty concerning the prediction of the exact position and
onset of precipitation. It does not account for the uncertainty related to synoptic forcing,
which can be done using a model ensemble forecast. A combination of the ensemble and the
neighborhood methods would combine both synoptic-scale and small-scale uncertainties.
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6 Statistical properties of precipitation in boxes of various
sizes (M. S. Tesini, C. Cacciamani, T. Paccagnella, ARPA-
SIMC).

Model verification at ARPA-SIMC, in particular QPF, is operationally performed by using
an upscaling method of both forecasted and observed fields over areas of selected size. The
domain is divided in many squared areas and, for each area and for the chosen period
of time, some indicators deduced by the distribution of the forecasted precipitation field
(such as mean, maximum value, 90th percentile), are compared to those deduced by the
distribution of the observed rainfall. Results concerning models performance depend on the
considered distribution parameter; for example categorical verification scores for COSMO-I7
are better if the chosen indicator is the maximum value of precipitation in the area rather
than those obtained selecting the mean value. Nevertheless all the distribution parameters
are equally useful because they provide different information on the ability of the model in
reproducing the precipitation field. Our interest is therefore addressed to the study of the
distribution of the precipitation field, in order to analyze the capability of the models in
reproducing precipitation statistical properties. Currently we focused on COSMO-I7 and
ECMWF verification. The results suggest that verification methods based on the statistical
description of model QPF and observations give more credit to high resolution model than
the traditional standard verification, based on the comparison of model grid-point against
observation (for example the choice of nearest grid point). We have applied a methodology
based on the estimation of the distribution function of the observed/predicted precipitation
field considering all points that fall in each area throughout the examined periods. Each
area contains a lot of observation points as well as model grid-points: we assume that the
occurrence of precipitation in each of these points is equiprobable. In order to consider well-
founded this assumption, areas should be chosen carefully taking into account orographical
and geographical features. The dimension of the selected areas is a critical point too. We
followed a pragmatic approach for the choice of the dimension on the box: we should have
enough forecast and observation points to perform significant statistics in each area. We
chose squared areas of about 100 km x 100 km (see Fig. 25), containing about 200 COSMO-
I7 grid-points or 16 IFS-ECMWF grid-points.

There are more than 1000 rain-gauges, belonging to regional/local administrations and pro-
vided by Italian Department of Civil Protection over the Italian territory, and the number
of rain-gauges varies from 20 to 130 depending on the selected region. Tests on smaller
area have been performed, but the results are very sensitive to the density of the observa-
tion points. We approached the problem mostly from a qualitatively point of view using a
boxplot representation. A boxplot is a simple graphical summary of a dataset that can be
useful to display differences between populations without making any assumptions of the
underlying statistical distribution. It is possible to obtain information about the spread of
the distribution and a roughly description of key measures that define it, such as the median,
the quartiles, maximum and minimum values, and a range of values identified as ”outliers”.
In this way we can, at least qualitatively, describe the type of precipitation: for instance
the resulting distribution of a convective rainfall system possesses a long ”tail” while the
distribution of a widespread light rain event presents a distribution with a peak near a low
amount of rainfall and little or no ”tail”. In this context, COSMO-I7 and IFS-ECMWF
are used as representative of models with different horizontal resolution without focusing on
their quality. In Fig. 26 the time-series of the daily forecasted/observed rainfall distribution
are shown, obtained considering all the model grid-points and all the observed rain that fall
daily (00-24UTC) within each area for ECMWF (blue), COSMO-I7 (red) and observations
(green) during Autumn 2007. The number of stations in this area (131) is comparable with
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Figure 25: Box distribution.

COSMO-I7 grid-points (192), while ECMWF presents only 16 grid-points.

In general, we observe that COSMO-I7 is more realistic than ECMWF in reproducing the
intra-box variability. However, COSMO-I7 presents both a large number of false alarms
and high ”spikes”. On the other hand, ECMWF shows a greater number of missed alarms,
especially if we chose high reference thresholds. According to most standard verification
measures, COSMO-I7 forecast may have poor quality, but it might be very valuable to the
forecaster since it provides additional information on the distribution and variability of the
rain field over the considered region. The role of horizontal resolution is very important since
it allows a more realistic simulation of the precipitation distribution, in particular for the
”tails”, that nevertheless represent the most interesting values of the rain field, especially for
the emission of warning alerts to the Civil Protection. A better description of the distribution
function of the observed precipitation field over each area represents a fundamental step in
order to apply this methodology also to COSMO-I2, as the difference in the density of model
grid-points and observations should represent a critical point. In fact, if we consider an
area in which the number of model grid-points is significantly greater than the number of
observations, such as the one shown in Fig. 27 where there are 34 stations, 212 COSMO-I7
grid-points and 16 ECMWF grid-points, we can see that ”tail” of COSMO-I7 distribution is
overestimated compared to the ”tail” distribution of observations. Is it a sampling problem
or does it depend on the behavior of the model in that area ? The question is still open.
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Figure 26: Time-series of the daily forecasted/observed rainfall.

Figure 27: Example of area in which the number of model grid-points is significantly greater
than the number of observations.
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7 Open points

• The fact that precipitation patterns cannot be trusted at small scales is obviously
dependent on the synoptic configuration. When a lot of uncertainty in the positioning
is existent in purely convective situations, it is well possible that precipitation patterns
are reproduced correctly in situations where orographic forcing is dominant (as long
as the orography is correctly represented). Verification stratified by a weather type
classification is thus recommended.

• By building statistics of precipitation values in a neighborhood of a gridpoint it is
possible to build probabilistic precipitation forecasts. The same can be provided by
Ensemble Prediction Systems (EPS), especially convection permitting EPS. Both meth-
ods should be compared by classical or fuzzy verification. Both systems can also be
combined by applying the upscaling or the neighborhood method to the EPS.

8 Contributing scientists

The authors of the four articles are the contributing scientists.
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