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1 Introduction

This review aims to discuss the suitability of particle filtering as a method of choice for the
future COSMO meso-scale data assimilation system.

2 Nonlinear filtering

In this introductory section some basic facts on nonlinear filtering are given in order to
facilitate the subsequent discussion of the particle filtering technique.

2.1 Statement of the problem and notation

Let us be interested in the system (atmospheric, oceanic...) state, X, at the time instant tk,
Xk. The information we have on Xk is twofold:

1. We have the deterministic model,

Xf
k = Mk−1(X

a
k−1), (1)

where the superscript “a” means “analysis” (forecast initial conditions) and “f” fore-
cast.

2. We have observations Ys, s = k, k − 1, k − 2, ..., which are related to the state in the
known way:

Ys = Hs(Xs) + ηs, (2)

where ηs is the observation error, which includes both the measurement error and the
error in the observation operator Hs (representativeness error).

We assume that the deterministic model, Eq. (1), approximates the true system evolution,
so that if we substitute, into Eq. (1), the true system states (not the model states), a
discrepancy arises, which is called “model error”, ξ:

Xk = Mk−1(Xk−1)− ξk−1. (3)

We stress that this equation is a stochastic dynamic model for the true system state.

In order to properly assimilate the information contained both in the observations and the
model, we assume the error sources, ηs and ξs (s = k, k−1, k−2, ...), to be independent of X
and governed by the respective stochastic models, so that their probability distributions are
known, p(ηs) and p(ξs), respectively. For the assimilation to be sequential, we require that
both ηs and ξs are white sequences. For simplicity, we also assume that observation errors
and model errors are (probabilistically) independent.
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2.2 Sequential non-linear filtering

In data assimilation, our goal is the conditional distribution of the state, given all current
and past observations (called posterior distribution):

p(Xk|Y:k), (4)

where “ : k′′ means “up to k” (at the time moments tk, tk−1, tk−2, ...).

To develop an assimilation technique, we break up the observations into the present and past
batches: Y:k = (Y:k−1, Yk). Then, we transform Eq. (4) using the Bayes theorem:

p(Xk|Y:k) = p(Xk|Y:k−1, Yk) ∝ p(Xk|Y:k−1) · p(Yk|Xk, Y:k−1). (5)

Here, p(Xk|Y:k−1) is the predictive (prior) distribution (density) and

p(Yk|Xk, Y:k−1) = p(Yk|Xk) (6)

is the likelihood; the equality in Eq. (6) follows from the assumption that the observation
error sequence is white.

Thus,

p(Xk|Y:k) ∝ p(Xk|Y:k−1) · p(Yk|Xk). (7)

The likelihood is assumed to be known (from the observation operator and the observation
error probability distribution), so all it remains to be found is the predictive probability
density. From Eq. (3), we have:

p(Xk|Y:k−1) = p[Mk−1(Xk−1)− ξk−1 = Xk|Y:k−1].

Here, both Xk−1 and ξk−1 are random and unknown, so we use the “complete probability
rule”: p(X) = Ep(X|ϑ), with ϑ being some random variable (vector):

p(Xk|Y:k−1) = EXk−1
p[ξk−1 = Mk−1(Xk−1)−Xk|Xk−1, Y:k−1] (8)

(here the conditional expectation is taken over Xk−1). Using the previous posterior density,
p(Xk−1|Y:k−1), we obtain from Eq. (8):

p(Xk|Y:k−1) =

∫
p(Xk−1|Y:k−1) · p[ξk−1 = Mk−1(Xk−1)−Xk]dXk−1. (9)

The fact that the second p.d.f. in the r.h.s. of this equation is unconditional, follows from
the assumptions indicated above in the last paragraph of the previous subsection.

Using the explicit transition probability density, p(Xk|Xk−1), we can rewrite Eq. (9) as

p(Xk|Y:k−1) =

∫
p(Xk−1|Y:k−1) · p(Xk|Xk−1)dXk−1. (10)

Thus, Eqs. (7) and (9) provide the desired sequential non-linear assimilation algorithm:
having the posterior density at time tk−1, p(Xk−1|Y:k−1), we compute (in theory) the prior
density at time tk (using Eq. (9)) and then update it using current observations, Eq. (7).
At the very beginning of the assimilation process, we specify some initial distribution p0(X).
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3 Monte-Carlo filters

For high-dimensional systems like the atmosphere, the above non-linear sequential assimila-
tion technique in its pure and non-approximated form is absolutely unsuitable, mainly, due
to the complexity of the integral in Eq. (9) or (10). The analysis (measurement update)
step, Eq. (7), may become feasible for high-dimensional systems if the observation opera-
tor is only weakly non-linear and the observation-error distribution is multivariate Gaussian
(3D-Var). But the forecast step (time update) in its exact form is prohibitively expensive
even for linearized (tangent-linear) dynamics and Gaussian model errors, when the Kalman
filter is applicable. Simplified Kalman filters have not yet proven to be successful, so we
resort to Monte-Carlo methods.

One of such methods, known as the Ensemble Kalman Filter (EnKF), relies on the Gaussian
approximation of the predictive distribution (Evensen, 1994 and Houtekamer and Mitchell,
2005). But this approximation may become too restrictive if we attempt to treat highly non-
linear atmospheric processes that involve moisture, clouds, precipitation etc. at fine spatial
resolution. This leads us to turn our attention to fully non-linear assimilation methods
known as “particle filters”. The basic particle filter is called the bootstrap or SIR filter. The
term SIR means “sequential importance resampling” or “sampling importance resampling”.

4 The bootstrap (SIR) filter

The simplest particle filter proposed by Rubin (1987) relies on the discrete (point-support)
approximation to the probability distributions in question (just like the statistical technique
known as bootstrap (Efron and Tibshirani, 1993)). Namely, we proceed as follows

1. At the discrete time moment tk−1, approximate the posterior distribution, p(Xk−1|Y:k−1),
by the discrete distribution, so that the whole probability mass is concentrated in N
points (particles), {X−

k−1(j)}
N
j=1 (the sign “−” means “before sampling from the pos-

terior distribution”):

p̂(Xk−1|Y:k−1) =

N∑
j=1

wk−1(j) · δ[Xk −X−
k−1(j)], (11)

where the hat denotes an estimate and wk−1(j) are the weights.

2. Resampling: draw N samples from this discrete distribution: {X+
k−1(j)}

N
j=1 (the sign

“+” means “after sampling from the posterior distribution”). Now, all {X+
k−1(j)}

are independent and identically distributed samples from the approximate posterior
density Eq. (11).

3. Feed the time evolution model, Eq. (3), with Xk−1 = X+
k−1(j), j = 1, 2, ..., N , and

obtain (as it can be easily seen) a set of N samples from the approximate predictive
(prior) distribution:

X−
k (j) = Mk−1[X

+
k−1(j)]− ξk−1(j), (12)

where ξk−1(j) is the j-th pseudo-random realization of the model error on the (tk−1, tk)
time interval.
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4. Regard this sample from the approximate prior distribution as the discrete distribution
with equal weights:

p̂(Xk|Y:k−1) =
1

N

N∑
j=1

δ[Xk −X−
k (j)]. (13)

This is a virtual step, nothing is computed here. Actually, we can drop the assumption
that the prior distribution is approximated by the discrete one, instead, we can derive
the SIR equations by considering the analysis step as an importance sampler from the
posterior (at time tk) distribution (Pitt and Shephard, 1999), but we will not elaborate
on this.

5. Accomplish the analysis step, Eq. (7), with the point-mass prior distribution, Eq. (13):

p̂(Xk|Y:k) ∝
1

N

∑
p(Yk|X−

k (j)) · δ[Xk −X−
k (j)].

Denoting p(Yk|X−
k (j)) =: w′

k(j) and normalizing w′
k(j) (in order to obtain a proper

discrete distribution),

wk(j) =
w′
k(j)∑N

i=1w
′
k(i)

, (14)

we get the point-mass approximation to the posterior distribution:

p̂(Xk|Y:k) =
N∑
j=1

wk(j) · δ[Xk −X−
k (j)]. (15)

6. Now, we go to step 1 above and the process repeats.

Note that in the resampling step, if, for some j, the respective weight wk(j) is large, then,
likely, this particle will be sampled several times, Nj > 1, but if wk(j) is small, then, likely,
Nj = 0. So, the least likely (as identified by the likelihoods) particles are killed, whereas the
most likely particles multiply (“survival of the fittest”).

Finally, we discuss how the ordinary deterministic analysis can be obtained with the particle
filtering assimilation scheme. As it can be easily seen from Eq. (15), the mean of the
posterior distribution is

X̂k =

∫
Xk · p̂(Xk|Y:k)dXk =

∑
wk(j) ·X−

k (j). (16)

This mean provides the best estimate, in the mean-square sense, of the current state of the
system, given all present and past observations. So, X̂k can be used as the “analysis”.

Eq. (16) implies that the analysis is just a linear combination of an inevitably small number
of particles. This has very serious consequences for the applicability of a particle filtering data
assimilation scheme for such a highly variable system as the atmosphere (see the discussion
below).
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5 Inherent advantages and disadvantages of the SIR filter

5.1 Advantages

The advantages of particle filtering include its great simplicity, substantial modularity, gen-
erality (no linearity, no Gaussianity needed). These are discussed in the referenced literature,
so it is not necessary to dwell on this in the critical review here.

5.2 Disadvantages

In the literature, two main drawbacks of the SIR filter were indicated.

First, an “impoverishment” of the particle swarm is often observed. This effect arises if the
predictive density appears to be substantially dissimilar to the likelihood. If this happens,
most of the “forecast” particles are rejected, leaving only a small number of heavily weighted
“survivors”. As a consequence, the diversity of the swarm of particles becomes too weak, the
point-mass approximation too poor, the filter ceases to follow the truth (degeneracy of the
filter). The above dissimilarity of the predictive density and the likelihood may be a result
of either very small model error or very small observational error.

Second, if the posterior distribution has heavy tails (outliers happen), then a very large
ensemble size is needed in order to represent these distant areas in phase space. This is
because their probability mass, pout, is so small that, in order to obtain a single “representer”
of these areas (provided we consider these outliers meteorologically important, say, indicating
possible severe weather events), the ensemble size should satisfy the inequality N · pout > 1,
so Nmin = p−1

out, which can be large. It becomes even larger if we wish to have several
“representers” in these remote areas in phase space. If, moreover, a difference between various
outlying areas is of interest to us (which is certainly the case for meso-scale modelling and
filtering), pout is divided into several even smaller probabilities, thus making Nmin further
larger.

6 Extensions to the SIR filter

A number of improvements and extensions to the basic bootstrap (SIR) filter have been
proposed in order to mitigate the above problems of the basic scheme.

To overcome the “impoverishment” problem Gordon et al. (1993) proposed the technique
called jittering. With this technique, one adds small random noise to the posterior sample,
thus making coincident particles differ from each other. This introduces the desired diversity
in the set (“swarm”) of particles.

Another technique (Rubin, 1987), called “particle boosting” consists in multiplying, at the
prediction step, the number of particle candidates N+ = mN , where m is an integer. Then,
one randomly takes N particles from the set of mN candidates. This also increases the
diversity, as desired. But this technique greatly increases the computational cost if the
forecast step is expensive (as is the case in the atmospheric data assimilation problem).

Musso et al. (2001) proposed “regularized particle filters”, in which the point-mass approx-
imation is replaced by the kernel density approximation, see also the “smooth bootstrap”
technique (Stavropoulos and Titterington, 2001). Again, the forecast particles become more
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different as a result of kernel smoothing, which can prevent the particles’ swarm from “im-
poverishment” and even degeneracy.

Xiong et al. (2006), similarly, proposed to use a posterior Gaussian resampling technique in
order to introduce variability in the ensemble sample (see below).

Liu et al. (2001) discuss reweighting as a means to control the balance between “diversity”
and “focus” in the posterior swarm of particles. As a generic choice, they recommend to use

πk(j) =
√
wk(j) (17)

as the probabilities of the particles Xk(j). But then, in the prior discrete distribution, Eq.
(13), 1/N should be replaced by (1/N)·wk(j)/πk(j). Using the square root in the definition of
the probabilities πk(j), allows us to tolerate, to some extent, low-weight particles (outliers),
which enhances diversity. Other than the square root choices are also possible.

So, even if the weights happen to differ considerably one from another, we may sample from a
more uniform discrete distribution. This means that for a heavily weighted particle, we may
not launch too many forecasts from the same (or similar) initial conditions (which looks as a
wasting of computer time, even though model-error perturbations can make these forecasts
slightly diverge). Instead, we may just remember that this particle has high weight and use
this knowledge in the subsequent analysis. Similarly, we may let “light” particles “live”, thus
preventing the particles’ swarm from collapsing.

Pitt and Shephard (1999) proposed to use a more complex sampling scheme, in which the
so-called proposal distribution (importance distribution) for importance sampling from the
posterior distribution becomes dependent on current observations (in the basic SIR formu-
lation, the proposal distribution is the approximate prior distribution). Introducing current
observations into the proposal density can, obviously, decrease the above dissimilarity be-
tween p(Xk|Y:k−1) and p(Yk|Xk), thus alleviating the “impoverishment” problem. As they
report, using the proposal distribution dependent on current observations significantly in-
creases the efficiency of the sampling scheme (less very-low-probability particles). But their
“auxiliary filter” requires multiple evaluations of the proposal density and the time transition
density, which would be very time consuming in the atmospheric data assimilation context.

A simpler technique to use current observations with the aim to appropriately change the
importance sampling distribution is “prior editing” proposed by Gordon et al. (1993). With
this technique, one enhances the ensemble size at the prediction step and removes the par-
ticles with small likelihoods at the current time step. But, similarly to “particle boosting”
(see above), this technique is computationally inefficient in our case in view of the high cost
of the forecast.

Another technique to skip hopelessly bad (not supported by observations) particles was
developed by Van Leeuwen (2003), see below.

Djuric (2001) proposed to combine the well-known from the seventies (Anderson and Moore,
1979) Gaussian sum filter with the SIR methodology. Such a combination can cope with the
outliers problem and the “impoverishment” problem of the SIR technique.

More on different flavors of particle filtering can be found in Farnhead (1998).

The above brief review of the techniques developed to improve the basic SIR formulation
demonstrates that there are a number of ways to make the SIR filter more efficient. However,
Stavropoulos and Titterington (2001) note that “in general the more sophisticated methods
did not lead to noticeable improvement over the simpler versions of particle filtering”.
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7 Non-meteorological and non-oceanographic applications of
particle filtering

In the last 15 years, a substantial literature arose devoted to applications of particle filtering.
The main areas of applications include target tracking, navigation, positioning, computer
vision, signal processing, financial time series modelling, bio-medical applications etc. The
common point of all these papers is the low dimensionality of the dynamical systems under
investigation. A few examples follow.

Marss (2001) reported on a successful implementation of a particle filter for a 3-D system.
Koller and Lerner (2001) worked on a system with 33,000 discrete states. If we assume that
in Euclidean space, about 30 points are enough to represent the function’s behavior along
each axis, we find that 33,000 points roughly correspond to the 3-D case. McGinnity and
Irwin (2001) worked with systems whose dimensionality ranged from 1 to 4. It was not
possible to find any high-dimensional (more than 10-D) particle filter applications in the
statistical literature among tens of available papers.

For such low-dimensional systems, it is of interest for us to look at the ensemble sizes in use.
About 40 papers have been checked and those with practical or near-practical applications
have been selected. Then, the ensemble sizes reported by the authors has been indicated.
The resulting distribution follows.

50

100

200, 200, 200

400

500, 500, 500

1000, 1000, 1000, 1000, 1000

3000

4000, 4000

5000, 5000, 5000

8000

9000

10000, 10000

50000, 50000

100000

50KF

The median of this distribution is about 3000, which is not encouraging for us. The N = 50
case corresponds to a simple 2-D mobile robot localization problem. 50KF means 50 Kalman
filters in a mixture Kalman filtering scheme.

A personal interpretation of these results is that the particle filtering technique works if we
can really approximate (in the weak sense) the true distribution by a point-mass distribution.
In our effectively high-dimensional case this is certainly not possible.
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8 Applications of particle filtering in meteorology and oceanog-
raphy

8.1 A meteorological review

In the meteorological literature, the use of particle filters was proposed by Anderson and
Anderson (1999), Pham (2001), Kim et al. (2003), Xiong at al. (2006), Eyink and Kim
(2006), and Nakano et al. (2007).

Anderson and Anderson (1999) used a kernel smoothing (of the prior density) in a Gaussian
sum filter without resampling. They used the three-variable Lorenz model and the ensemble
size N = 40. They also showed that for a 3000-D global barotropic model in an idealized
setting, their kernel filter with N = 40 was capable of doing the assimilation job. However,
it is difficult to judge the relative merit of their filter as compared with other, more tradi-
tional approaches. Anderson and Anderson (1999) argue that a small ensemble size may be
sufficient if the system “lives” on a low-dimensional attractor. But on the meso-scale, we
hardly can assume that the attractor (if it exists) is low-dimensional — in view of the highly
variable and diverse atmospheric behaviour on the meso scale. Besides, at every assimilation
time step, observations will inevitably push the system off the attractor.

Pham (2001) proposed to use, in the meteorological and oceanographic context, a SIR filter
with kernel smoothing of the posterior density. He applied the filter for the three-variable
(just three degrees of freedom) Lorenz system and found that for good performance, 50
particles were needed. This is not a promising result for us because the dimensionality of
our phase space is about one million.

Kim et al. (2003) used the SIS (sequential importance sampling) and SIR filters for a one-
dimensional non-linear stochastic differential equation. They checked the ensemble sizes
of 100 and 104 and found that 104 particles were needed for SIS and 100 for SIR. Again,
this is not a good result for us, in view of the extremely low dimensionality of their phase
space, n = 1. They also proposed a parametric particle filter, in which the prior density is
approximated by a density from the exponential family. In their experiments, they found that
this filter performed better than SIR (nothing is said about SIS). The parametrization idea
seems fruitful, but in the implementation of their analysis step, only two free parameters
of the parametric density were updated, which is not acceptable for us, since we wish to
control, in the analysis, many meso-scale features across the domain of interest.

Xiong et al. (2006) proposed to use a posterior Gaussian resampling technique in order to
fight “impoverishment” of the ensemble sample. This method is not useful for us because it
is the non-Gaussianity that has drawn our attention to particle filtering. Besides, in other
respects (especially in the analysis scheme), the technique of Xiong et al. (2006) does not
differ from the basic SIR formulation. For the three-variable Lorenz system, the ensemble
size in their numerical experiments ranged from 100 to 1000. Again, this is not encouraging
for us, because we have to build a hyper-dimensional meso-scale data assimilation system.

Eyink and Kim (2006) proposed several methods based on the maximum entropy principle.
The methods were checked on low-dimensional systems, but the authors claimed that they
were preparing a paper in which they would report on a successful application of these
methods for high-dimensional oceanic thermohaline circulation assimilation.

A device to fight the “impoverishment” problem was proposed by Nakano et al. (2007).
Their suggestion is not to kill low-weight particles (thus, reducing the desirable diversity)
but to use them in a particle merging scheme. The merging is a linear combination (with
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the weights independent of the physical-space coordinates) selected to preserve the first two
moments of the multivariate posterior distribution. They tested their merging technique
in experiments with the three-variable Lorenz model and the 40-variable Lorenz-96 model.
While the merging technique itself does not seem to lead to vital improvements in the meso-
scale data assimilation context, their results are interesting for us in the ensemble sizes they
used. Namely, for the 40-D case, even as many as 260,000 members were not enough for
the performance of their filter to converge (to stop improving). This result, again, indicates
that in our 10−6-D case, the ensemble size necessary for a particle filter to properly work
will be enormous, thus prohibiting the use of the particle filtering idea for atmospheric data
assimilation.

8.2 Work of P. J. Van Leeuwen

In the oceanographic context, Van Leeuwen (2003) tested three formulations of particle
filters: first he used the standard SIR (with a slight modification of sampling from the
discrete probability distribution), second he proposed the local SIR (LSIR) and third, the
guided SIR (GSIR).

He noticed that the SIR analysis is essentially global, so that on one domain’s sub-area, one
subset of particles appears to be consistent with the observations, whereas in other sub-areas,
quite different particles can be supported by observations. In order to let the observations
influence not just the global weights but local neighborhoods, he proposed to make the
weights spatially variable by performing the SIR analysis step many times for every grid
point with local data selection, like in optimum interpolation (OI). This can introduce the
necessary locality of the observational usage, but the great problem arises: what should be
the posterior particles if at different grid points different particles were selected. Van Leeuwen
(2003) used a simple gluing of the particles, which was not successful in his experiments and
does not seem to be a suitable approach in meso-scale assimilation for the two following
reasons.

1. From a theoretical point of view, this device violates the particle representation, so
that we, seemingly, cannot justify how to change (“break”) the particles at the analysis
step. How can we find the posterior distribution if the prior particles are completely
destroyed by “gluing” ? If “gluing” is an approximation, a question arises: is there a
proof that the error of this approximation tends, in some sense, to zero as the ensemble
size tends to infinity ? Without mathematically-based answers to these questions, the
technique becomes largely ad hoc, which should be considered as a serious drawback.

2. From a practical point of view, “gluing”, or equivalently, building the new posterior
particles of patches from different ensemble members (presumably, as many patches
as many different meso-scale features are present across the analysis domain) violates
the dynamical and physical balances in the new particles. This will certainly lead to
generation of spurious gravity waves (as noted by the author of the technique) and
also to spurious fluxes of heat, water, and momentum, giving rise to the well-known
“spin-up” phenomenon, which is highly undesirable in the data assimilation context
because a short- or very-short-range forecast is used at the analysis step as a source of
a priori information. In addition, like in OI, local data selection will lead to small-scale
noise, which can mask important meteorological details on the meso scale.

So, in the present form, the LSIR technique seems to be not suitable for meso-scale data
assimilation.



COSMO Technical Report No. 10 12

The GSIR technique of Van Leeuwen (2003) aims to reduce the ensemble size by removing
“bad” particles at the very early stages of the forecast. This is possible because we can
start the ensemble forecast step after we receive current observations (although, at the price
of some time delay in issuing the analysis, which may be not desirable in the operation
context). For meso-scale data assimilation, the GSIR idea can be useful, among others, but
GSIR remains a global technique (the weights do not vary across the domain), which prohibits
its direct use. The reason for this, as explained below, is that in the global ensemble, the
number of global particles should be comparable with the number of effective degrees of
freedom we wish to control in the analysis. In the meso-scale, the latter can be very large
as compared with the affordable ensemble size.

As for the numerical experiments of Van Leeuwen (2003), it is worth noting that his assimi-
lation/forecast results were not compared with observations. There was also no comparison
with other assimilation methods. Besides, in his experiments the assimilated fields look
smoother than atmospheric meso-scale patterns.

Concerning the applicability of the results obtained for oceanic data assimilation to atmo-
spheric problems, it should be mentioned that the atmosphere is much better observed than
the ocean. This implies that oceanic forecasts are relatively much worse than the atmospheric
ones. As a result of this, oceanic data assimilation works in a rather different “regime” than
the atmospheric one, which reduces the applicability of oceanic results to atmospheric data
assimilation, in particular, on the meso-scale.

9 Summary of the disadvantages of a hypothetical particle-
filtering based meso-scale data assimilation scheme

The main problem: critically insufficient ensemble size to resolve meso-scale details of me-
teorological fields and to allow efficient observational usage.

1. Mathematically, we cannot even imagine to approximate a million-dimensional density
by a handful of phase-space points (particles). This is completely “unmathematical”.
Even if we take into account that not all of these numerous degrees of freedom are
equally important and the effective number of degrees of freedom, neff is substantially
less, neff remains, as it follows from physical arguments for meso-scale modelling,
orders of magnitude larger than any practically imaginable ensemble size.

2. Meteorologically, an inevitably small ensemble size does not allow us to resolve small-
scale meso-scale details, as discussed below in this section.

3. Practically, a particle filtering based analysis scheme would imply critically ineffi-
cient use of observations (as compared to OI and Var).

In a particle-filter atmospheric data assimilation scheme, tens of thousands, and very
soon, millions of observations can influence the analysis only through a few (30-50)
free parameters, the particle weights (a “bottleneck”). So, information contained in a
huge number of observations, before correcting the forecast fields, should be “summa-
rized” in an extremely small number of particle weights. Obviously, such a tremendous
“compression” of observational data is impossible without an immense loss of informa-
tion. But if we waste valuable observational information, we cannot hope to design an
efficient assimilation system.

In other words, in the SIR filter, local corrections due to local observation-minus-
forecast differences are virtually impossible because only the combined effect of all
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observations does influence the analysis (through the particle weights), see Eq. (16).

The most severe consequence of the small ensemble size is that the number of degrees of
freedom of the meso-scale field we wish to resolve appears to be orders of magnitude larger
than the number of adjustable parameters (the particle weights) at the analysis step. Indeed,
if we intend, in the analysis, to resolve meteorological details of the size of kilometers, then
we have to design an analysis scheme capable of controlling the analysis fields with this
granularity. In other words, if in the analysis we admit a feature (say, a cloud system) of
the size of 10 km, and observations indicate that we have to correct the forecast in this
10-km area, then the analysis technique should allow this. And this job has to be done
simultaneously, in other 10-km “boxes”, independently of each other. In a 1000 by 1000 km
domain there are 10,000 horizontal “boxes”. In the vertical, similarly, if we aim at details,
say, 500-m deep, then 10 to 20 vertical “boxes” have to be resolved. Thus, in total, we
obtain 10, 000 · 20 = 200, 000 3-D “boxes” or degrees of freedom. But, in the SIR analysis,
we have only N (recall, N is the ensemble size) free parameters, with N being about 30–50.
Obviously, it is absolutely impossible to control 200,000 degrees of freedom with such a tiny
number of adjustable parameters.

Otherwise stated, the SIR analysis equation, Eq. (16), can be viewed as an expansion of the
analysis field in the basis functions X−

k (j), the particles’ fields (a kind of spectral technique).
But the number of the basis functions, N , is so incredibly small as compared to the number of
meso-scale details to be resolved, that we have to conclude that the SIR filter is inappropriate
with a reasonable (for us) ensemble size. With N = 50, only about 50 details over the whole
3-D analysis domain can be resolved, which is far too small for a state-of-the-art and a
prospective meso-scale data assimilation system.

The LSIR Ansatz of Van Leeuwen (2003) could be a remedy but it seems to lack mathematical
and meteorological justification (see above).

In addition to the above small-ensemble-size issues, the following practical points are worth
noting.

1. In 3D and 4D-Var analysis schemes, the very important role of the prior (background)
probability distribution (covariances) is well established. To obtain a good analysis,
very sophisticated background-error covariance models have been proposed. In par-
ticular, control of multivariate covariances, non-separability (vertical by horizontal) of
3-D correlations and other aspects are shown to be of great importance for a successful
background-error covariance model. With a particle filter, we do not care about these
issues at all, completely relying on the (small) swarm of particles. But particles are
selected, to a large extent, at random, so the implied probability distribution is also
random (significantly contaminated by sampling noise). Is it good to use this random
prior distribution as if it were the true one?

2. As noted by Anderson and Anderson (1999), the SIR filter may fail if the forecast
model is biased. In this case, all particles can be biased, so that the observations will
be not capable of removing this bias at all (because the observation has only “the
right” to select from prior particles, which are all biased).

3. The SIR analysis algorithm is so incredibly simple that we may question: why the
substantial simplification of the analysis technique (from the complicated 3D-Var to
the extremely simple SIR) will lead to an improvement? Common practice shows that
the converse is almost always the case.
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10 Conclusions

The SIR filter is not recommended for meso-scale data assimilation because it would imply,
for an affordable ensemble size, first, critically inefficient observational usage and second,
lack of high-resolution meso-scale fields’ analysis corrections.

The LSIR filter is also not recommended for meso-scale data assimilation in its present form
because of lack of its mathematical and meteorological justification.
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