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1 Introduction

It is well known that in numerical atmospheric simulation models for vertical discretisation a so-
called Lorenz (L-)-grid or a Charney-Phillips (CP-)-grid is normally applied in order to define the
staggered placement of model variables at grid points along the vertical. In case of an L-grid the
variables of temperature, pressure and horizontal momentum are placed at ’main-levels’, each of
them centred within a finite model layer, while the vertical velocity is assumed to be positioned at
’half-levels’, which are the interface levels between adjacent model layers. The difference of the CP-
grid to the L-grid consists in having placed temperature together with vertical velocity at half-levels.
For instance, the Lokal-Modell of the DWD uses an L-grid, while the Unified Model of the United
Kingdom Met Office is based on a CP-grid. A representative discussion of pros and cons concerning
both types of vertical grid staggering can be found in a thorough paper by Arakawa (2000). There,
Arakawa gives statements and draws conclusions from his own work and so from many other authors
that the CP-grid seems preferable compared to the L-grid also widespread in use. In order to char-
acterise an obvious shortcoming of the L-grid we quote from Arakawa’s article (2000, p.721-780)
the following statement: ’The problem with the L-grid is due to the existence of an extra degree
of freedom in the vertical distribution ofθ that cannot be controlled by any baroclinic (or internal)
modes... This extra degree of freedom introduces a vertical “computational mode” in the solution,
characterised by a zigzag vertical structure ofθ, which has no counterpart in the solutions of the con-
tinuous equation... It is important to note, that this problem with the L Grid is a property of the grid
rather than of a particular scheme. An increase in order of accuracy does not reduce the error due to
this mode because a computational mode cannot become “accurate” since there is no corresponding
true solution with which to compare it.’
This statement is a more general motivation, but due to the fact that the Lokal-Modell (=LM) as a
model of particular interest uses an L-grid, our concern and starting point comes immediately from a
paper by Arakawa and Konor (1996). In this article the main point we are interested in is the author’s
comparing numerical simulations with the L-grid and the CP-grid. For this, they use two linearised
versions of a primitive equation model for meridionally uniform perturbations, one for the grid type
L and the other for the CP-grid. In order to show the existence of a computational mode produced
by the L-grid and to demonstrate that this artificial effect is avoided in case of a CP-grid, a local
initial potential temperature perturbation as one specific set of integration is imposed on a resting
isothermal (T0 = 250K ) basic state on a zonally cyclic f-plane. The model uses simple centered
vertical differences on a p-coordinate and 40 equally spaced layers below 100 Pa. For a detailed de-
scription of the model equations and the experimental set-up we refer to Arakawa and Konor (1996).
The unbalanced initial perturbation inθ

′
is set equal to 0.5 K at levels with vertical index k=39/39.5

(k-index is counted downward), and with opposite sign at the adjacent level designed by k=38/38.5
for the L-grid/CP-grid, andθ

′
= 0 everywhere else.

As an introduction for our own numerical experimentation we deliberately describe and show the
experimental set-up and important results from Arakawa and Konor, concerning the isolated effect
of a computational mode due to the L-grid. In Figure 1 an important result from the author’s original
paper is therefore shown again (original Figure 3 from Monthly Weather Review 124, at page 521):
The original legend is sufficiently self-explaining. It shows in a time-height plot the evolution over
48 hours integration time of an initially specified spectral perturbation amplitude for two horizontal
wave components with a wavelength of 100 km and 250 km, respectively. From another quotation in
the relevant paper that simulation result may be characterised as follows. In case of the L-grid sim-
ulation ’... The flow is dominated by stationary components... The vertically propagating oscillatory
component is weak, having significant amplitudes only during early hours.’ A pure artificial vertical
zigzag structure is obvious. For the CP-grid, however, ’... The simulation shows vertical propagation
and almost complete dispersion of initial perturbations...’ and a stationary computational mode does
not occur.
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Figure 1:Original figure taken from Arakawa, A., and C.S. Konor, 1996 (see References)

In a first step of our following numerical simulations we are going to copy as exact as possible both
the hydrostatic simulation model and the numerical set-up from Arakawa and Konor’s paper, who
provide the reader with a fairly good description of their approach. On this ground we were then
easily able to copy the results from and could have obtained in such a way a comfortable method,
and also an appropriate calibration tool, for our concern with a nonhydrostatic model having im-
portant characteristics of the fast-mode part of the LM. With the adopted thickness and number of
model layers we were able to demonstrate for the LM-like compressible nonhydrostatic model with
L-grid versus CP-grid simulation results similar to Arakawa and Konor’s in case of hydrostatic grav-
ity waves, where a computational mode is revealed in case of the L-grid type model, while it is
avoided by using a CP-type model. To obtain this sort of simulations in a fairly neat form, we felt it
necessary to introduce, in addition, a non-reflective upper boundary condition. Instead of a Rayleigh
relaxation-type we have applied an radiative upper boundary condition (=RUBC) as suggested from
Klemp and Durran (1983) and Bougeault (1983). Within the scope of this LM-toy model with es-
sential components of the fast mode part of the real LM the possible occurrence of a computational
mode due to the L-grid and the application of a CP-grid instead in order to avoid this numerical
nuisance will be demonstrated. At this stage of work it seems however too early for a generalisation
of that simulation results to draw already the conclusion that the vertical grid staggering in the LM
should be changed from the L- to the CP-grid immediately. Neverthless, the results demonstrated
in this contribution give serious hints that the LM is suspected to have possible unwanted numerical
shortcomings related to the applied L-grid which are worth studying further in a more specific and
systematic manner. The importance of this should be underlined by still another quotation from the
key paper of Arakawa and Konor: ’The problem of the existence of the computational mode can
be serious, especially in the models that include moist processes, since the computational mode can
spuriously interact with the physical mode through inherently nonlinear condensation and associated
processes. An example of the latter is the effect of cloud layers generated by the zigzag vertical
structure of the potential temperature on the radiation field.’
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2 A duplicate of Arakawa and Konor’s simulation

As explained above we are interested in an almost exact repetition of numerical simulations from
Arakawa and Konor (1996). Their results have been depicted in our Figure 1 (taken from the original
paper). With strict quotation from that paper all the background may be assumed to be known,
that is, how this simulation experiment has been conducted and the model and the numerics were

Figure 2:Almost the same result as in Figure 1, but over the entire integration domain, for L-grid (left
panels) and CP-grid (right panels) and for horizontal wavelengths 100km (upper panels)
and 250km (lower panels). For more details see text.

designed. Moreover, the comments describing the special experiment were already noted in the
Introduction and need not be repeated here. In order to almost copy the result of interest shown
in Figure 1, we decided to apply the leap-frog scheme as an sufficient numerical time-integration
method, and for sake of caution, an Asselin time filter is added at every time step. In case of the
model version with L=250km, the time step is chosen∆t = 90s, for L=100km we used∆t = 30s.
In this way we are now in a position to be able to show the almost identical outcome, but here
over the entire integration area, from the lower boundary (at 100000 Pa) up to the upper boundary
(at 100 Pa) over 40 equally spaced layers, where the time evolution of the potential temperature
perturbation in the lowest 9 layers of Figure 1 is recovered fairly good in Figure 2. In addition
to a qualitative discussion of Figure 1 , and so of Figure 2, we make out that the gravity wave
perturbations, here expressed in terms of potential temperature and caused by the defined initial state,
propagate upward over a wider range of signal velocities different in dependence of an L-grid or a
CP-grid, and that in any case these propagating perturbations are reflected at the upper boundary due
to an lid condition imposed there. The reflected wave component as an obvious artificial phenomenon
can then ’contaminate’ in case of the L-grid even the computational mode of our concern. For the
smaller spectral component with L=100km the degree of reflection seems more obvious than for
L=250km, and for the experimental set with an CP-grid the strength of reflection seems apparently
reduced compared to the model version with L-grid.
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In the following we are interested in eliminating the reflected wave mode, which may be done by use
of a radiative upper boundary condition ( RUBC) instead of the lid condition. For the Arakawa-Konor
model (AKM), which is linear and a hydrostatic one, the Klemp-Durran-Bougeault typ of an RUBC
(=KDB-RUBC) is expected to be sufficient as an appropriate tool. Since the model variables in the
AKM are spectral amplitudes of a horizontal wave component depending on pressure and time, the
application of the KDB-RUBC is ideal. As known, this BC is local in time but global over the upper
boundary level. In general, this needs the Fourier transforms of vertical motion and a mass variable
at the upper boundary. Here, the RUBC is easily formulated in terms of the defined model variables
without an additional transform. The reader may be convinced about this from a necessary reference
to the original paper of Arakawa and Konor (1996). After a thorough and classical analysis we can
derive the appropriate RUBC for the given AKM. It reads

ω̂top = −k ptop

c0
φ̂top (1)

instead of the lid condition̂ωtop = 0. For the perturbation geopotential and vertical velocity variables
of the given model we have

φ
′
(x, p, t) = φ̂(p, t) sin kx , ω

′
(x, p, t) = ω̂(p, t) sin kx (2)

with horizontal wavenumberk = 2π/L , ptop = 100Pa, and the parameterc0 = +
√

κRT0, κ =
cp/cv. Here we make use of the normal meteorological notation also valid for the AKM . This
form of a KDB-RUBC has been applied in the AKM for both its L-grid and its CP-grid version. It
is important to note that in accordance with (1) the geopotential needed at the upper boundary (the
uppermost half-level) must be extrapolated by use of an uncentered difference form of the hydrostatic
equation different for L-grid and CP-grid due to different positions of the potential temperature on
these grids. In that way we have repeated the AKM simulations, and the corresponding results are
shown in Figure 31 for the case with L =100km.

Figure 3:Repetition of Arakawa and Konor’s ( 1996) simulation for L-grid and CP- grid with L
=100km, but a radiative upper boundary condition taken into account (compare with upper
panel of Figure 2).

A comparison with Figure 2 demonstrates that the reflection from the upper boundary could be re-
moved as desired. Similar results not shown here were found for the wavelength L= 250km. In
contrast to the CP-grid, we observe for the L-grid simulation a significant limitation of the grav-
ity wave dispersion process accompanied by the stationary zigzag phenomenon of a computational
mode.

1It needs a technical remark concerning Figures 2 and 3 and so on all Figures of this type. The contour colours are meant
as follows:browncovers an interval from± 0.1 K, yellowcovers values> 0.1 K, andgreenis valid for< −0.1 K
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3 An LM fast-wave toy-model

With the information from Arakawa and Konor’s simulation example, we turn now to the compress-
ible nonhydrostatic equations in a linearised form, having in mind the relation to the fast-mode part of
the LM. For this we refer to a thorough description of the LM dynamics and numerics documented
by Doms and Schättler (2002). On this ground we are going to derive an appropriate simulation
model with properties as much as possible of Arakawa and Konor’s model set-up.

3.1 Model equation set

Starting point is the following equation set

∂u
′

∂t
= −1

ρ̄

(
∂p

′

∂x
− 1
√

γ

∂p̄

∂x

∂p
′

∂ζ

)
+ f0v

′
(3)

∂v
′

∂t
= −f0v

′
(4)

∂w
′

∂t
=

g
√

γ

∂p
′

∂ζ
− g

(
p

′

p̄
− T

′

T̄

)
(5)

∂p
′

∂t
= gρ̄w

′ − κp̄

(
∂u

′

∂x
− 1
√

γ

∂p̄

∂x

∂u
′

∂ζ
− gρ̄
√

γ

∂w
′

∂ζ

)
(6)

∂T
′

∂t
=

gρ̄
√

γ

dT̄

dζ
w

′ − κ

cp

p̄

ρ̄

(
∂u

′

∂x
− 1
√

γ

∂p̄

∂x

∂u
′

∂ζ
− gρ̄
√

γ

∂w
′

∂ζ

)
(7)

These equations follow approximately from the fast-mode equation part of the LM by consequent
linearisation. The perturbation variables (primed entities) are assumed to be meridionally uniform.
Spherical metric terms have been dropped for the sake of simplicity. The variablesp̄ , ρ̄ , T̄ constitute
a hydrostatic basic state. The vertical coordinateζ is meant just as in the LM. In relation to the usual
z-coordinate the following operator is valid

∂

∂z
= − gρ̄

√
γ

∂

∂ζ
(8)

Here, the reciprocal pre-factor
(√

γ
)
/ (gρ̄) is defined as the Jacobian of the transformation from the

z- to theζ - coordinate. The equation set (3) - (7) deviates slightly from the present formulation
in the fast-wave part of the LM. In order to take into account inertia-gravity waves, that is without
separation of the rotational effect, the Coriolis terms are included here. Further, we emphasize the
presence of the first term on the right-hand side of equation (7), which is significant in case of a
non-isothermal basic state as it is for the LM. There, a polytropic state is stipulated. Neglecting
the term in that case leads however to an inconsistency concerning the gravity wave energetics and
an overestimation of the gravity wave frequencies. To evade this problem a-priori, a prognostic
equation forθ

′
should be used rather than forT

′
. We do so , although from the discussed point

of view unnecessary, because we prefer an isothermal basic state which makes that term vanishing.
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With this choice we are deliberately in accordance with the basic state of the AKM. Without any loss
of physical background the vertical z- coordinate is simply taken, and a horizontally plane terrain
may be sufficient for our considerations to be assumed. Thus, we change with these assumptions
from (3) - (7) to a physically identical set

∂u
′

∂t
= −1

ρ̄

∂p
′

∂x
+ f0v (9)

∂v
′

∂t
= −f0u

′
(10)

∂w
′

∂t
= −1

ρ̄

∂p
′

∂z
− g

ρ̄ c2
s

p
′
+

g

θ̄
θ

′
(11)

∂p
′

∂t
= gρ̄w

′ − c2
sρ̄

(
∂u

′

∂x
+

∂w
′

∂z

)
(12)

∂θ
′

∂t
= −N2

g
θ̄ w

′
(13)

For the isothermal basic state we have

N2 =
g

θ̄

dθ̄

d z
=

g2

cp T0
, θ̄ = T0 exp

(
N2

g
z

)
, ρ̄ =

ps

R T0
exp

(
− g

cpT0
z

)
(14)

with the familiar constantsc2
s = κp̄/ρ̄ = κ RT0 , κ = cp/cv , T0 = 250K, andps = 100000Pa

at the lower boundary. In order to perform similar numerical experiments as Arakawa and Konor
(1996) demonstrated, we assume also that the perturbations are horizontally standing waves in the
forms:

u
′
(x, z, t) = û(z, t) cos kx , v

′
(x, z, t) = v̂(z, t) cos kx

w
′
(x, z, t) = ŵ(z, t) sin kx , p

′
(x, z, t) = p̂(z, t) sin kx , θ

′
(x, z, t) = θ̂(z, t) sin kx

(15)

k = 2π/L is the zonal wavenumber with the wavelengthL . Inserting the wave-components (15) into
the above equation set, we obtain a simple prognostic equation system for the perturbation amplitudes
of their horizontal wave-components with wavelengthL :

∂û

∂t
= −k

ρ̄
p̂ + f0v̂ (16)

∂v̂

∂t
= −f0û (17)

∂ŵ

∂t
= −1

ρ̄

∂p̂

∂z
− g

ρ̂c2
s

p̂ +
g

θ̄
θ̂ (18)
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∂p̂

∂t
= gρ̄ŵ − c2

sρ̄

(
∂ŵ

∂z
− k û

)
(19)

∂θ̂

∂t
= −N2θ̄

g
ŵ (20)

The associated local total energy budget equation reads

∂

∂t

1
2
ρ̄
(
û2 + v̂2 + ŵ2

)
+

1
2c2

sρ̄
ρ̂2 +

g2ρ̄

2N2

(
θ̂

θ̄

)2
 = −∂ (p̂ ŵ)

∂z
(21)

and, for some reasoning further below, we note here the normal mode frequencies for the internal
gravity waves solution(ωg) and the acoustic wave solution(ωa) of the equation set (16) - (20) with
the rotational effect ignored(f0 = 0), following an usual analysis:

ω2
a ≈ c2

s

(
k2 + n2 +

1
4H2

)
(22)

ω2
g ≈

k2N2

k2 + n2 + 1
4H2

(23)

n denotes a vertical wavenumber, andH ,
(
H−1 = g/c2

s + N2/g
)
, a constant vertical scale height.

3.2 Time differencing scheme

For our linear system (16) - (20) we are going to adopt the time integration scheme as close as
possible from the fast mode part of the LM. To compare that with the LM we refer to the thorough
LM-documentation by Doms and Schättler (2002) and there with further quotations of Skamarock
and Klemp (1992), Ikawa (1988), and Dudhia (1993). With that application we have here

û(τ+1) − û(τ)

∆t
= −k

ρ̄
p̂(τ) + f0v̂

(τ+1) (24)

v̂(τ+1) − v̂(τ)

∆t
= −f0û

(τ+1) (25)

ŵ(τ+1) − ŵ(τ)

∆t
= −1

ρ̄

(
β+ ∂p̂(τ+1)

∂z
+ β−

∂p̂(τ)

∂z

)
− g

ρ̄c2
s

(
β+p̂(τ+1) + β−p̂(τ)

)
+

g

θ̄
θ̂(τ)

(26)

p̂(τ+1) − p̂(τ)

∆t
= gρ̄

(
β+ŵ(τ+1) + β−ŵ(τ)

)
−c2

sρ̄

(
β+

∂ŵ(τ+1)

∂z
+ β−

∂ŵ(τ)

∂z

)
+ c2

sρ̄ k û(τ+1)
(27)
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θ̂(τ+1) − θ̂(τ)

∆t
= −N2θ̄

g

(
β+ŵ(τ+1) + β−ŵ(τ)

)
(28)

As one can see, the terms for vertically propagating waves are treated implicitly. For the weights of
averaging these terms we have

β+ =
1
2

(1 + ε) , β− =
1
2

(1− ε) (29)

with the LM default-valueε = 0.4, determining the strength of implicity of the scheme. Since the
scheme in this form behaves neutral for acoustic waves, a so-called divergence damping is added in
the horizontal momentum equations as a remedy, which in our case means that in equation (24) the
pressure in the gradient term is replaced such

p̂(τ) := p̂(τ) + αd ∆t ρ̄c2
s

(
k û(τ) − ∂ŵ(τ)

∂z

)
(30)

αd = 0.1 is the default-value used in the LM. We drop here critical remarks concerning this measure.
The inclusion of the rotation terms in the momentum equations deviates from the LM fast-mode part,
but is a concession to the AKM with which we want to compare our solutions. For the sake of
stability these terms are formulated implicitly.

3.3 Vertical discretisation with an L-grid

In addition to the semi-discrete equations (24)- (28) with an LM-specific time differencing scheme,
we want to exactly apply the vertical layering from the AKM with either an L-grid or a CP-grid. We
introduce the L-grid first. In this way the scheme is shown in Figure 4

Figure 4:Vertical staggering of variables of LM fast-wave toy-model with equally spaced layers in
accordance with AKM (see text)

As can be seen, the variablesû, v̂, θ̂, p̂ ( and alsōρ, θ̄, not shown in Figure 4) are positioned at main-
levels indicated with indicesk ∈ [1, ke], while the perturbation amplitude of vertical velocity,ŵ, is
defined at so-called half-levels with index numberingk

′ ∈ [1, ke1]. Coinciding with the numerical
set-up in the AKM, we assume 40 model layers, which meanske = 40 andke1 = ke + 1. In
accordance with a vertical z-coordinate the indexk is counted upward here, which is in contrast to
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the LM with its terrain-following coordinate. The thickness of model-layers is constant. It is given
by

∆z =
1
40

RT0

g
ln(1000) . (31)

With that scheme we introduce simple centred differences in the vertical in the equation system (24)
- (28), which leads straightforward to the following difference equation system:

û
(τ+1)
k = û

(τ)
k −∆t

k

ρ̄
p̂
(τ)
k + f0 ∆t v̂

(τ+1)
k (32)

v̂
(τ+1)
k = v̂

(τ)
k −∆t f0 û

(τ+1)
k (33)

for k ∈ [1, ke].

ŵ
(τ+1)

k′ = ŵ
(τ)

k′ −
2

ρ̄k−1 + ρ̄k

(
∆t

∆z

)
β+
(
p̂
(τ+1)
k − p̂

(τ+1)
k−1

)
− 2

ρ̄k−1 + ρ̄k

(
g∆t

2c2
s

)
β+
(
p̂
(τ+1)
k + p̂

(τ+1)
k−1

)
+ Cw

k′

(34)

with

Cw
k′ = − 2

ρ̄k−1 + ρ̄k

(
∆t

∆z

)
β−
(
p̂
(τ)
k − p̂

(τ)
k−1

)
− 2

ρ̄k−1 + ρ̄k

(
g∆t

2c2
s

)
β−
(
p̂
(τ)
k + p̂

(τ)
k−1

)
+

g∆t

2

((
θ̂τ

θ̄

)
k

+

(
θ̂τ

θ̄

)
k−1

) (35)

p̂
(τ+1)
k = p̂

(τ)
k −

(
c2
s∆t

∆z

)
ρ̄k β+

(
ŵ

(τ+1)

k′+1
− ŵ

(τ+1)

k′

)
+
(

g∆t

2

)
ρ̄k β+

(
ŵ

(τ+1)

k′+1
+ ŵ

(τ+1)

k′

)
+ Cp

k

(36)

with

Cp
k = −

(
c2
s∆t

∆z

)
ρ̄k β−

(
ŵ

(τ)

k′+1
− ŵ

(τ)

k′

)
+
(

g∆t

2

)
ρ̄k β−

(
ŵ

(τ)

k′+1
+ ŵ

(τ)

k′

)
+ ∆t c2

s k ρ̄k û
(τ+1)
k

(37)

for k ∈ [1, ke].

θ̂
(τ+1)
k = θ̂

(τ)
k −

(
N2 θ̄

g

)
k

∆ t

β+

 ŵ
(τ+1)

k′ + ŵ
(τ+1)

k′+1

2

+ β−

 ŵ
(τ)

k′ + ŵk′+1

2

 (38)

for k ∈ [1, ke].
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For the application of these difference equations boundary conditions forŵ have to be taken into
account

at the lower boundary: ŵ1 = 0 and

at the upper boundary:ŵke1 = 0 (lid-condition).
(39)

( It should be mentioned, that our notation is not quite consistent, since the symbolk is used to
indicate both the horizontal wavenumber and a vertical gridpoint index as subscript. The physical
background may, however, prevent any confusion!)

3.4 Numerical integration algorithm with an L-grid

Here, we rewrite the difference equations (32)-(39) with its implicit formulation of time differences
to come to an explicit time integration process. This will be done just as demonstrated in Doms and
Schättler (2002) for the LM. For thehorizontal momentum equations(32) and (33) it follows easily

û
(τ+1)
k =

(
1 + ∆ t2 f2

0

)−1
(

û
(τ)
k + ∆ t f0 v̂

(τ)
k −∆ t

k

ρ̄k
p̂
(τ)
k

)
(40)

v̂
(τ+1)
k = v̂

(τ)
k −∆ t f0 û

(τ+1)
k (41)

with an additionaldivergence dampingapproach, where the pressure perturbation in (40) is altered:

p̂
(τ)
k := p̂

(τ)
k + αd ∆t ρ̄k c2

s

k û
(τ)
k −

ŵ
(τ)

k′+1
− ŵ

(τ)

k′

∆z

 . (42)

Due to the implicit treatment of the Coriolis terms the prognostic time-step ofû is carried out first
before thêv - prognosis can follow.

An explicit procedure for thevertical velocitycomponent must be derived next. For that purpose
the pressure perturbation amplitude at the prognostic time-levelτ + 1, p̂

(τ+1)
k , in equation (34) is

eliminated using equation (36). In the well-known manner a tri-diagonal vertical structural equation
for ŵ

(τ+1)

k′ is explicitly obtained:

B2 ŵ
(τ+1)
2 + C2 ŵ

(τ+1)
3 = D

(τ)
2

Ak′ ŵ
(τ+1)

k′−1
+ Bk′ ŵ

(τ+1)

k′ + Ck′ ŵ
(τ+1)

k′+1
= D

(τ)

k′ ; k
′ ∈
[
3, ke

′ − 1
]

Ake′ ŵ
(τ+1)

ke
′−1

+ Bke′ ŵ
(τ+1)

ke′ = D
(τ)

ke′

(43)
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The right-hand side termsD(τ)

k′ , at time-levelτ , are known, and the time-independent coefficients

Ak′ ,Bk′ ,Ck′ either. Thus, the time-extrapolated values ofŵ
(τ+1)

k′ , for k
′ ∈

[
2, ke

′
]

, can be de-

termined from a Gaussian elimination process with an adherence condition at the lower boundary,
ŵ1 = 0, and a lid-condition at the upper boundary,ŵke1 = 0. The coefficientsAk′ ,Bk′ ,Ck′ and the

functionD
(τ)

k′ in (43) read

Ak′ =
(
β+
)2 ρ̄k−1

(ρ̄k−1 + ρ̄k) /2

[(
cs ∆t

∆z

)2

−
(

g ∆t

2cs

)2
]

=
(

ρ̄k−1

ρ̄k

)
Ck′

(44)

for k
′ ∈
[
3, ke

′
]

Ck′ =
(
β+
)2 ρ̄k

(ρ̄k−1 + ρ̄k) /2

[(
cs ∆t

∆z

)2

−
(

g ∆t

2cs

)2
]

=
(

ρ̄k

ρ̄k−1

)
Ak′

(45)

for k
′ ∈
[
2, ke

′ − 1
]

Bk′ = 1 + 2
(
β+
)2 [(cs ∆t

∆z

)2

+
(

g ∆t

2cs

)2
]

+ 2
(
β+
)2( ρ̄k − ρ̄k−1

ρ̄k + ρ̄k−1

)(
g (∆t)2

∆z

)
(46)

for k
′ ∈
[
2, ke

′
]

Dk′ = ŵ
(τ)

k′ −
2β+

(ρ̄k−1 + ρ̄k)

(
∆t

∆z

)[(
p̂
(τ)
k − p̂

(τ)
k−1

)
+
(
Cp

k − Cp
k−1

)]
− 2β+

(ρ̄k−1 + ρ̄k)

(
g ∆t

2c2
s

)[(
p̂
(τ)
k + p̂

(τ)
k−1

)
+
(
Cp

k + Cp
k−1

)]
+ Cw

k′

(47)

for k
′ ∈
[
2, ke

′
]

with the auxiliary variables:

Cp
k = −β− c2

s

(
∆t

∆z

)
ρ̄k

(
ŵ

(τ)

k′+1
− ŵ

(τ)

k′

)
+ β−

(
g ∆t

2

)
ρ̄k

(
ŵ

(τ)

k′+1
+ ŵ

(τ)

k′

)
+ ∆t c2

s k ρ̄k û
(τ+1)
k

(48)
for k ∈ [1, ke]

Cw
k′ = − 2β−

(ρ̄k−1 + ρ̄k)

(
∆t

∆z

)(
p̂
(τ)
k − p̂

(τ)
k−1

)
− 2β−

(ρ̄k−1 + ρ̄k)

(
g ∆t

2c2
s

)(
p̂
(τ)
k + p̂

(τ)
k−1

)
+
(

g ∆t

2

)[(
θ̂
(τ)
k

θ̄
(τ)
k

)
+

(
θ̂k−1

θ̄k−1

)] (49)

for k
′ ∈
[
2, ke

′
]
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The Gaussian elimination procedure is then applied to (43)- (49) in a common way. By a ’top-down
sweeping’ the following auxiliary entities are determined first:

Eke′ := −
Ake′

Bke′
, Fke′ :=

Dke′

Bke′
(50)

and then fork
′ ∈
[
ke

′ − 1, 2
]
:

Ek′ := −
Ak′

Bk′ + Ck′ Ek′+1

, Fk′ :=
Dk′ − Ck′ Fk′+1

Bk′ + Ck′ Ek′+1

E1 := 0 , F1 :=
D2 − C2F3

B2 + C2E3
= ŵ

(τ+1)
2

(51)

From all following ’down-top sweeping’ the vertical motion perturbation is easily calculated:

ŵ
(τ+1)

k′ = Ek′ ŵ
(τ+1)

k′−1
+ Fk′ k

′ ∈
[
3, ke

′
]

(52)

Once the prognosticvertical motion perturbationis calculated, thepressure perturbationand the
potential temperature perturbationat that time-level can immediately be found from the equations
((36), (37)) and (38).

To complete the numerical integration algorithm, we list the constants how they are chosen in this
model:

f0 = 10−4 s−1 - Coriolis parameter

k = 2π/L - wavenumber associated with wavelengthL = 100, 250km

R = 287m2 s2 K−1 - gas constant

g = 9.80665m s−2 - gravity constant

cp = 1005J K−1 kg−1 ,

cv = 718J K−1 kg−1 - specific heat at constant pressure and constant volume, respectively

ε = 0.4 - implicity parameter (see Subsection 3.2, (29))

αd = 0.1, ...0.3 - divergence damping parameter (see 3.2, (30))

T0 = 250K - assumption of an isothermal model atmosphere

ps = 100000Pa - pressure at lower boundary

c2
s = κ RT0 , κ = cp/cv - constant sound wave speed squared

∆t = 1s, ...10s - time-step

∆z = (1/40) RT0 1n (1000) /g - constant model layer thickness of the 40-layer model

together with formulae to calculate basic state parameters in the difference equations above
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ρ̄k =
ps

RT0
exp

(
− g

RT0
zk

)
, θ̄k = T0 exp

(
g

cp T0
zk

)
(

N2θ̄

g

)
k

=
(

dθ̄

d z

)
k

=
g

cp
exp

(
g

cp T0
zk

)
for k ∈ [1, ke] .

3.5 Simulations with L-grid model version

Based on the model algorithm for a vertical L-grid, described in the previous Subsection 3.4, we carry
out simulations similar to Arakawa and Konor’s (1996) with their model (AKM). It serves us to cal-
ibrate our LM toy-model. Therefore, our concern is mainly to simulate hydrostatic gravity waves,
which is guaranteed with the choice of relatively large horizontal wavelengths ofL = 100, 250km
compared to the initially produced vertical wavelength. On a state of rest a local zig-zag initial per-
turbation inθ

′
is imposed to± 0.5K at the vertical gridpoints indexed withk = 2/3, andθ

′
= 0

everywhere else. From this manipulation sound- and gravity waves are generated, and their propa-
gation can then be simulated in terms of a dispersion process. Besides linearisation, our approach
differs from the leap-frog / split-explicit time-scheme of the LM in such a way, that we run the fast-
mode model part in a stand-alone form not linked within a splitting scheme with the slow-mode
model part. In a first set of simulations we assume a horizontal wavelength ofL = 250km

Figure 5:Linear LM fast-mode simulation with L-grid for a horizontal wave length of 250km. Time
evolution of the potential temperature perturbation amplitude over 48 hours integration
time with time-step∆t = 10s and a divergence damping parameter ofαd = 0.3 (Further
explanation see text, contour interval similar to previous figures).

On an empirical ground the time-step is chosen∆t = 10s and the divergence damping parameter
has been setαd = 0.3 in order to damp out acoustic waves. Over 48 hours integration time the
simulation shows, how a gravity wave dispersion process takes place from the assumed initial po-
tential temperature perturbation in case of the L-grid staggering of variables and influenced by an
upper lid-condition. Obviously, wave perturbations propagate only partially upward, where they are
reflected at the upper boundary to reach lower parts of the integration domain again, while another
wave mode remains to be stationary as a pure computational mode (Fig. 5).
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Figure 6:Further simulations with L-grid for a 250km horizontal wavelength over 48 hours integra-
tion time in dependence of varying time-step∆t = 1, 10, 20s and divergence damping pa-
rameter ofαd = 0., 0.1, 0.5, and compared to the simulation with∆t = 10s andαd = 0.3
in Fig. 5.

From an empirical point of view the Figures 5 and 6 show that the simulation with∆t = 10s brings
about an optimal result, if the divergence damping term is switched on withαd = 0.3 while the
choice ofαd = 0.1 (LM-default value, see upper right panel of Figure 6) leads to an unsatisfactory
solution, which tends to make the matter still worse, ifαd = 0 (upper left panel of Figure 6) is
taken. We interpret this outcome as an accuracy problem due to the choice of a time-step as large as
∆t = 10s. Related truncation errors seem to become the cause of artificial, horizontally propagating
acoustic waves, which however can be damped, if the divergence damping mechanism is taken into
account. Due to this, the choice ofαd = 0.3 is shown to be sufficient, whileαd = 0.1 is still too
small to be effective. In the lower right panel of Figure 6 it is shown that even with a time-step
of ∆t = 20s, which is connected with a still more reduced time-difference accuracy, the simulation
becomes successful, provided the divergence damping effect is sufficiently increased (e.g.αd = 0.5).
If in contrast to this the time-difference accuracy is improved by using a sufficiently small time-step
of ∆t = 1s there seems to be no reason to apply any divergence damping, since no spurious acoustic
waves occur (lower left panel in Figure 6). Here we speculate about the nature of this kind of
time-difference accuracy. From a physical point of view, an inherent hydrostatic adjustment process
seems to take place, where the horizontally propagating acoustic modes play the role of a catalyst.
If the timestep is small enough, the simulation is accurate to model the adaptation well enough in
analogy to the well-known geostrophic adjustment, which must be simulated properly to avoid noisy
gravity waves. This means here that larger timesteps appear to produce spurious acoustic waves
which are then necessery to be damped out using some remedy in terms of an stronger divergence
damping parameter. The same qualitative result can also be shown from simulations with a horizontal
wavelength ofL = 100km for the assumed initial potential temperature perturbation (Figure 7).
With ∆t = 1s andαd = 0.3 one obtains an optimal result, while with the same time-step, but ignored
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divergence damping, the solution tends to become noisy. If then the time-step is further increased up
to ∆t = 5s the emergence of spurious horizontally propagating acoustic waves is obvious, and the
gravity wave solution is almost destroyed. The choice of an increased divergence damping parameter,
αd = 0.5, makes, however, this larger time-step applicable and leads to a solution comparable with
that from∆t = 1s andαd = 0.3. With the specific time-differencing scheme suitable, and applied
here to the compressible nonhydrostatic equations, we were able to recover the hydrostatic gravity
wave solutions for a 100km- and 250km horizontal wavelength as found from the hydrostatic AKM
concerning the L-grid. This has been demonstrated by comparing the appropriate solutions of Figure
2 with those of Figures 5 , 6 and 7 . Of particular interest is here, too, that the L-grid causes an
unwanted stationary zigzag-computational mode which we know to be avoided in the AKM when
introducing the CP-grid staggering instead. This change to the CP-grid must be managed in the
following for our toy-model.

Figure 7:Simulations with L-grid for a 100km horizontal wavelength over 48 hours integration time
for time steps∆t = 1s and5s in dependence of divergence damping parameter ofαd =
0., 0.3, 0.5.

3.6 Vertical grid-staggering with a CP-grid

We refer strictly to our description of the L-grid algorithm in Subsections 3.3 and 3.4 . In order to
define here the vertical differencing for a CP-grid option of the LM fast-wave toy-model, we need
only list the differences to the L-grid formulation. In contrast to the L-grid scheme (see Figure 4) the
CP-grid staggering scheme is shown in Figure 8.

In this case the variableŝu, v̂, p̂ are placed at main-levels indicated with indicesk ∈ [1, k], while ŵ
andθ̂ are defined at half-levels indexed withk

′ ∈ [1, ke1]. For the basic state we assume againρ̄ to be
positioned at main-levels, but̄θ now at half-levels together with its perturbation valueθ̂. To make the
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Figure 8:Scheme of vertical staggering according to CP-grid

matter simple enough, we comment here only the changes from the numerical integration algorithm
written down in the Subsection 3.4 for the L-grid. The horizontal momentum equations (40), (41)
with the divergence damping (42) included remain as they stand there. The Gaussian elimination
procedure to compute the vertical velocity from a tri-diagonal vertical structural equation system
(43) remains also formally untouched . Only the termCw

k′ involved, obtains a more simple form
compared to (49). Due to a more natural formulation of the buoyancy term with a CP-grid, its
vertical averaging is avoided. Instead of (35) we have

Cw
k′ = ... g∆t

(
θ̂(τ)

θ̄

)
k′

for k
′ ∈
[
2, ke

′
]

(53)

The first two terms on the right-hand side of equation (35)/(49) are identically introduced in (53)
written in symbolic form by dots. The pressure perturbation equation ((36), (37)) is used without any
change, while a minimal modification is made for the potential temperature perturbation equation
(38):

θ̂
(τ+1)
k′ = θ̂

(τ)
k′ −

(
N2θ̄

g

)
k′

∆t
(
β+ŵ

(τ+1)

k′ + β−ŵ
(τ)
k′

)
for k

′ ∈ [1, ke1] (54)

The boundary conditions (39) are assumed here, too, and the list of constants used in the L-grid
version is also valid. With this specifications we are going to carry out similar simulations with the
CP-grid model version to show the impact of the CP-grid against the L-grid as already demonstrated
with the hydrostatic AKM in Section 2.

3.7 Simulation with the CP-grid model version

Here we carry out simulations on the basis of the CP-grid model version described in Subsection
3.6 . With reference to 3.5, the numerical set-up is chosen to compare the results with the previous
L-grid simulations. For horizontal wavelengthsL = 100, 250km with time-step∆t = 1s and10s,
respectively, andαd = 0.3 in each case, the CP-grid results are shown in Figure 9, compared with the
corresponding L-grid simulations over 48 hours integration time. This result can be compared with
that in Figure 2, where analogous runs have been shown with the hydrostatic AKM. The similarity of
results between Figure 2 and Figure 9 was expected to be found in this way, because in both situations
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hydrostatic gravity waves were simulated due to the same, relatively long horizontal wavelengths of
the assumed initial perturbation. Therefore, the discussion of the results depicted in Figure 9 is
qualitatively the same as that about Arakawa and Konor’s simulation shown in Figure 2, and need
not be repeated here. So we can refer to our discussion in Section 2. On the whole, we can state
that a computational mode in the L-grid nonhydrostatic model version is possible to occur - here
deliberately provoked by a special initial perturbation - and due to the introduction of a CP-grid
instead this unphysical nuisance is removed, and, moreover, we observe that the CP-grid seems to
support the gravity wave dispersion process much better.

Figure 9:Comparison of L-grid simulations with corresponding CP-grid runs for horizontal wave
components withL = 100, 250km wave length over 48hours integration time.

In order to demonstrate further aspects of the possible occurrence of a computational mode in the
L-grid, Arakawa and Konor (1996) carried out still a second set of simulations with their AKM not
mentioned up to now in this paper. We will add this in brief from the point of view of the LM toy-
model. In this set, the initial conditions are modified in a way thatθ

′
= 0 is assumed everywhere

without any local perturbation imposed. Instead, a Newtonian-type diabatic heating term is added
in the prognostic equation for̂θ, (20), on its right-hand side, using a time-independent equilibrium
value amplitudêθ∗. The modified potential temperature equation reads then

∂θ̂

∂t
= −N2θ̄

g
ŵ − λ

(
θ̂ − θ̂∗

)
(55)

with θ̂∗ = 10K for the equilibrium value, andλ = 1/86400 s−1 for the relaxation constant. This
term is applied at only one single model level, atk = 4 andk

′
= 4, respectively. These parameters

are identical with those in Arakawa and Konor’s paper. In Figure 10 we show the corresponding
results from this set of simulations.

The simulation with the horizontal wavelength of 250 km is not shown here. It brings qualitatively
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Figure 10:Simulation with Newtonian-type heat forcing at a single model level for horizontal wave-
length of 100km and L-grid against CP-grid.

an analogous result as shown for the 100km-wave component. Since for both these large wave-
lengths the nonhydrostatic model simulates wave solutions comparable with the hydrostatic approx-
imation, the results can be compared directly with the corresponding AKM-simulations (see Figure
4 in Arakawa and Konor 1996). Thus, the same qualitative discussion of the result in Figure 10 is
valid and, with reference to Arakawa and Konor (1996), needs not be repeated here. In particular, we
see the generation of a spurious zigzag distribution of the potential temperature perturbation due to
the L-grid, which does not occur when using the CP-grid instead. We add still another experiment,
where the effect of a subgrid-scale convective forcing is simulated with the given toy-model. For
that purpose the continuity equation is thought to be extended to take into account an additional term
describing the divergence of a subgrid mass flux. In terms of equation (19), which is the continuity
equation for the given system, we add an expression of the vertical divergence of a vertical mass flux
like this:

∂p̂

∂t
= gρ̄ ŵ − c2

s ρ̄

(
∂ŵ

∂z
− kû

)
− c2

s

∂F̂z

∂z
(56)

With background valuesw
′ ∼ 5m s−1, ρ

′ ∼ 10−3kg m−3, ∆z ∼ 103m we make use of an estimate∣∣∣c2
s ∂ F̂z/∂z

∣∣∣ ∼ 0.5kg m−1 s3 .

The positive value is imposed at an altitude corresponding to levelk = 3, while its negative value
holds atk = 8. Otherwise this term is set equal zero. Thus, a step-like vertical distribution of an
constant mass flux directed upward in between an interval3 ≤ k ≤ 8 is imposed, while it is zero
below and above. In the simulation with this kind of forcing the term of concern is assumed to be
constant in time. In this experimental set-up no initial local perturbation is otherwise imposed.

Due to this specification of a vertical massflux distribution the following result is expected: massflux
divergence (convergence) is accompanied with flow convergence (divergence) atk = 3 (k = 8).
Thus, we observe atk = 8 downward motion of air with higherθ from above, which leads to
local heating there, while upward motion right next atk = 9 carries air with lowerθ from below
bringing local cooling. The same takes place atk = 3, andk = 4, respectively, but in reverse order
and somewhat weaker. As demonstrated in Figure 11, the typical difference of simulation results
between L-grid and CP-grid is observed. The L-grid produces a stationary computational zig-zag
structure, while the physical solution expected cannot be reproduced. The CP-grid, however, avoids
this non-physical phenomenon and seems even necessary to properly simulate the adopted process.
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Figure 11:Time evolution of the potential temperature perturbation with imposed subgrid-scale
massflux (see text) for horizontal wavelength of 100km with L-grid versus CP-grid. (con-
tour colour interval here 0.01K in between (-0.1; + 0.1).

In all Figures above the simulation results have been shown over the entire integration domain. There
we have always tacitly accepted that the internal gravity wave pattern propagating upward arrive
eventually at the upper model boundary, where they are reflected owing to the assumed lid-condition
ŵtop = 0 with a following contamination of the physical solution. These results suggest urgently the
implementation of an absorbing upper boundary condition instead of the reflective lid-condition here
still applied. This will be our concern in the next section.
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4 Application of a radiative upper boundary condition

In all our results shown by now it can be observed that reflecting wave components occur which prop-
agate downward as an unnatural phenomenon to contaminate then internal solutions, and, moreover,
veil and distort even unphysical modes like zigzag patterns owing to an L-grid which might then not
always be detected easily from. With this motivation, but also from much more general reasons, it
is strongly indicated to improve any model of concern in order to get rid of an upper lid-condition
and introduce an absorbing or non-reflecting upper condition instead. Here, we are interested in ap-
plying a radiative boundary condition for our compressible nonhydrostatic toy-model as a desirable
improvement in the above sense. Moreover, we have in mind to start finding out in principle a way to
extend this application to the real LM. In the following Section, however, we deal with that problem
in the narrow sense. It needs no explanation, why we are here particularly interested in applying a
radiative boundary condition, since our toy-model is a simple horizontally spectral model. Thus, we
operate always in the Fourier space with a monochromatic wave component which allows the direct
application of a radiative boundary condition, while normally a Fourier transform is necessary to
apply.

4.1 Derivation of the Klemp-Durran-Bougeault type of a radiative upper
boundary condition

The following analysis starts from the toy-model equations (16) - (20) with all their explanations
given in Section 3. The only modification is thought to be done in the prognosticŵ - equation, where
a hydrostatic switchµ is added to be multiplied with the vertical acceleration term in (18). Setting
µ = 1 gives the full nonhydrostatic system whileµ = 0 reduces the system to the hydrostatic model
equations. With this notation we carry out the elimination of the horizontal momentum components
and the potential temperature perturbation amplitude to obtain two relationships for pressure and
vertical momentum:

[
1
c2
s

(
∂2

∂t2
+ f2

0

)
+ k2

]
∂p̂

∂t
= −

(
∂2

∂t2
+ f2

0

)(
∂

∂z
+

N2

g

)
(ρ̄ŵ) (57)

(
∂

∂z
+

g

c2
s

)
∂p̂

∂t
= −

(
µ

∂2

∂t2
+ N2

)
(ρ̄ŵ) (58)

The z- and t- dependencies may now be separated

(
p̂

ρ̄ŵ

)
= Re

(
P (z)
W (z)

)
exp(−iωt) (59)

allowing the following to be written:

[
∂2

∂z2
+
(

g

c2
s

+
N2

g

)
∂

∂z
+

N2

c2
s

](
P

W

)
+
(

N2 − µ2ω

ω2 − f2
0

)(
k2 − ω2 − f2

0

c2
s

)(
P

W

)
= 0 (60)

Normalising equation (60), the change of variables is made

(
P (z)
W (z)

)
=
(

P̃ (z)
W̃ (z)

)
exp

(
− z

2H

)
(61)
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using the definition of a reciprocal vertical scale height

1
H

= −1
ρ̄

dρ̄

dz
=

N2

g
+

g

c2
s

, (62)

finally leaves the well-known wave equation

d2

d z2

(
P̃

W̃

)
+ n2

(
P̃

W̃

)
= 0 (63)

with the vertical wavenumber squared

n2 =

(
N2 − µ2ω2

)
k2

ω2 − f2
0

+
µ2ω2

c2
s

− 1
4H2

(64)

The general solution of (63) reads

W̃ (z) = a exp(i n z) + b exp(−i n z) (65)

and similar forP̃ (z). The relationship (64) constitutes a rather general dispersion equation to deter-
mine the frequencyω for acoustic and inertia-gravity modes. A fairly detailed discussion forµ = 1
can be found in Gossard and Hooke (1975, p. 112). In a next step we are interested in considering
the vertical energy flux averaged over a periodic time length2π/ω. For the present we find

p̂ŵ = Re(Pexp(−iωt)) Re

(
W

ρ̄
exp(−iωt)

)
=

1
4ρ̄

(
P

∗
W +

∗
PW

)
=

1
2ρ̄ (0)

Re

( ∗
W̃ P̃

) (66)

The upper stars in (66) denote complex-conjugate entities. This general expression needs to be more
specified in view of introducing now the Klemp-Durran-Bougeault radiative boundary condition (=
KDB-RUBC) with its rather restricting assumptions. We are motivated to do so, since it is common
that a radiative boundary condition following from the general case is impracticable to be applied
due to its global properties in space and time. In contrast, the KDB-RUBC seems here particularly
attractive, because it is local in time, and the global character in space is not an obstacle at all due to
the specific definition of model variables. The list of assumptions to arrive at the KDB-RUBC is:

• hydrostatic approximation(µ = 0)

• anelastic condition
(
c2
s →∞

)
• isothermal basic state

• no rotation(f0 = 0) (67)

• Boussinesq - approximation
(

∂
∂z �

1
H , n2 � 1

H2

)

23



COSMO Technical Report No. 7

With this limitations the dispersion equation reduces to

ωn = ±N k (68)

and from (57) follows with (59) and (61) the relation

P̃ = i
ω

k2

dW̃

dz
. (69)

Inserting (69) in (66) leads, together with (65), to

p̂ŵ = − ωn

2ρ̄0k2

(
|a|2 − |b|2

)
(70)

At this point we have to specify the energy flux (70) at the upper boundary. In accordance with
a condition of outgoing wave energy there, it is inferred from the energy budget equation (21) by
integration from the bottom to the upper boundary that

(p̂ŵ)top > 0 (71)

must hold. With alwaysn > 0 (cf. with (65)) we start assumingωn = Nk > 0. In accordance with
the desirable condition (71) it follows from (70) at the upper boundarya = 0. In this case we infer
from (65)dW̃/dz = −inW̃ , and via (69) we arrive at

P̃top =
Ntop

k
W̃top . (72)

If, however,ωn = −N k < 0 , we find withb = 0 from (65), (69), (70) the same result as (72).
Provided thatztop <∞, we finally obtain by use of (61) and then ((57), (58)) the KDB-RUBC in the
form

p̂top =
(ρ̄N)top

k
ŵtop . (73)

In our casek > 0 is always valid. A direct application of (73) would be possible in our toy-model,
provided the limiting assumptions behind this RUBC can be neglected compared to its desirable
advantages. Apart from the original references (Klemp and Durran 1983, Bougeault 1983) we refer
particularly to Durran (1999) who gave in his monography an excellent overview about this subject.
Moreover, Durran has suggested an interesting computational method, how to incorporate the KDB-
RUBC in a nonhydrostatic linear model algorithm. In the following we want to take up with his idea
in order to apply it for the present model scheme.

4.2 Implementation of the KDB - RUBC

Before we put forward the matter, it seems worth thinking about, if there is really a good reason
to deal with the KDB-RUBC in connection with a compressible nonhydrostatic model because of
rather limited assumptions implied in this boundary condition. We are motivated to do so because
of a reasoning as follows. The time differencing scheme used and described in Section 3.2, which
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is essentially the time scheme in the fast-wave part of the LM, treats those terms responsible for
vertically propagating acoustic waves implicitly in order to damp them significantly. Moreover, the
divergence damping modifying the horizontal pressure gradient term serves to damp acoustic waves,
so that, on the whole, acoustic modes seem to be significantly removed, while gravity modes, as the
essential physical content of this equation part, remain untouched due to these numerical techniques.
Having almost only gravity modes involved in this scheme we want to make, in addition, sure the
applicability of the KDB-RUBC by treating approximately hydrostatic gravity waves (which makes
then the solution comparable with the simulations from Arakawa and Konor who used a hydrostatic
system). In this line we carry out a special simulation with our toy-model stipulating nowk = 0 for
an infinite horizontal wavelength and the case of no rotation,f0 = 0. The model is initialised again
with the above defined zigzag-perturbation forθ̂ with±0.5K at vertical gridpoints indexed with k=2
and k=3, respectively. In contrast to the complete equation system (16) - (20) the reduced one leads
instead of the dispersion relations (22) and (23) here to a stationary gravity solutionω2

g = 0 and to
acoustic wave modes propagating vertically only,ω2

a ≈ c2
s n2 . This simulation is shown in Figure

12. It supports the possible application of the KDB-RUBC.

Figure 12:No rotation case simulation over 48 hours integration time with zero horizontal wavenum-
ber. Lower stripe demonstrates a stationary gravity mode with no dispersion at all in both
panels. Vertically propagating acoustic waves are treated implicitly, in the left panel with
ε = 0.4, and in the right panel fully implicit withε = 1. (plot valid both for L- and
CP-grid).

Figure 12 demonstrates that the propagation of gravity modes have been suppressed. The local
initial potential temperature perturbation can therefore not trigger a dispersion process compared to
the more general toy-model simulations discussed above. Instead, the initial zig-zag perturbation
remains so during the integration owing to a stationary mode,ω2

g = 0. Due to the existence of a
vertically propagating acoustic mode we can, however, test how the implicit time-scheme does work
to damp off this mode in dependence of the implicity parameterε. In an isolated manner we can
observe that with the LM default-valueε = 0.4, that is with the implicity weightsβ+ = 0.7 and
β− = 0.3, the acoustic mode, also caused by the special initial perturbation, is significantly reduced
and eventually totally removed. In case of a fully implicit treatment (ε = 1 , that corresponds to
β+ = 1 andβ− = 0) the effect of filtering out the acoustic mode is still more obvious. Since the
implicit technique seems sufficient to remove vertically propagating acoustic waves, we conclude that
the introduction of the KDB-RUBC, exclusively effective for (hydrostatic) gravity modes, may be
possible to be used also in a nonhydrostatic compressible model frame provided that acoustic modes
are sufficiently removed by appropriate numerical methods. From this thinking we are motivated to
apply the KDB-RUBC in the given model. We start from the model equations with the given time-
and vertical differencing scheme, described above in Subsection 3.2, 3.3 and 3.4 (equations (24) -
(30), (31) - (39), and more directly, equations (40) - (51)). To demonstrate the method, we use the
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vertical L-grid version first. The adaptation to the CP-grid is then easy to be done. Fortunately, afirst
methodhow to accomplish our approach, has been proposed by Durran (1999, p.429-430), which
seems encouraging to be adopted for our purpose.

Figure 13:Change of uppermost gridpoint placement from case with (a) upper lid-condition to case
(b) for introducing an RUBC according to Durran’s (1999) approach.

According to Durran (1999), we change the numerical integration algorithm shown in Subsections
3.3 and 3.4 as follows. As indicated in Figure 13, we reduce the number of vertical computational
gridpoints fromke to ke − 1. Thus, the horizontal momentum equations ((40), (41)), with (42)
involved, the pressure perturbation equation (27) and the potential temperature equation (28) are
applied at vertical gridpointsk ∈ [1, ke− 1]. With these difference equations fork = ke − 1 there

is, in particular, an access tôw(τ,τ+1)

ke′ = ŵ
(τ,τ+1)
top which appears to be now the non-zero upper

boundary value. Durran’s approach consists then in changing in the tri-diagonal structural equation
set forŵ(τ+1)

k′ , (43), the latter equation fork = ke
′
. This will be elaborated next. We start from

the prognostiĉw(τ+1)

k′ - equation (34) which must be reformulated fork = ke
′
in such a way that an

access tôp(τ,τ+1)
ke is avoided. This is made by using forward differences for the corresponding terms

in (34) together with (35), where we define a new pressure value at the half-indexed gridpointk
′
=

ke
′

, p̂
(τ,τ+1)

ke′ = p̂
(τ)
top . This becomes necessary due to the proportionality of spectral perturbation

pressure and vertical motion in the KDB-RUBC (73). So we have

ŵ
(τ+1)
top = ŵ

(τ)
top −

4
ρ̄ke−1 + ρ̄ke

(
∆t

∆z

)
β+
(
p̂
(τ+1)
top − p̂

(τ+1)
ke−1

)
− 2

ρ̄ke−1 + ρ̄ke

(
g∆t

c2
s

)
β+p̂

(τ+1)
top + Cw

top

(74)

with a similar change inCw
top:

Cw
top = − 4β−

ρ̄ke−1 + ρ̄ke

(
∆t

∆z

)(
p̂
(τ)
top − p̂

(τ)
ke−1

)
− 2β−

ρ̄ke−1 + ρ̄ke

(
g∆t

c2
s

)
p̂
(τ)
top

+
g∆t

2

(
θ̂ke−1

θ̄ke
+

θ̂ke−1

θ̄ke−1

) (75)
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and some reasonable approximation for the latter term in (75). In the next step, equation (36) for
k = ke − 1 is used to eliminatêp(τ+1)

ke−1 from equation (74) which leads in contrast to the general
procedure of Subsection 3.4 to a more specific relationship

Atopŵ
(τ+1)

ke′−1
+ Btopŵ

(τ+1)
top = D

(τ)
top − α̃topp̂

(τ+1)
top (76)

with coefficientsAtop, Btop, differing from the formerAke′ , Bke′ in (43), and with an additional
coefficientα̃top :

Atop = −
(
β+
)2 ρ̄ke−1

(ρ̄ke−1 + ρ̄ke) /2

[
2
(

cs∆t

∆z

)2

+ g
(∆t)2

∆z

]
(77)

Btop = 1 +
(
β+
)2 ρ̄ke−1

(ρ̄ke−1 + ρ̄ke/2)

[
2
(

cs∆t

∆z

)2

− g
(∆t)2

∆z

]
(78)

α̃top =
4β+

(ρ̄ke−1 + ρ̄ke)

[(
∆t

∆z

)
+
(

g∆t

2c2
s

)]
(79)

The right hand side termD(τ)
top reads

D
(τ)
top = ŵ

(τ)
top + 4β+ (∆t/∆z)

(ρ̄ke−1 + ρ̄ke)

(
p̂
(τ)
ke−1 + Cp

ke−1

)
+ Cw

top (80)

Here we arrive at a point, where the KDB-RUBC (73) needs to be introduced explicitly. We use it in
the form

p̂
(τ+1,τ)
top =

(
Nρ̄

k

)
top

ŵ
(τ+1,τ)
top ⇒ btop ŵ

(τ+1,τ)
top (81)

with the definition

btop :=
(

Nρ̄

k

)
top

=
g
√

κ− 1
2csk

(ρ̄ke−1 + ρ̄ke) , κ = cp/cv (82)

for the assumed isothermal basic state. The KDB-RUBC ((81) , (82)) is then inserted in (76) to
eliminatep̂

(τ+1)
top . In contrast to the Gaussian elimination procedure in Subsection 3.4, the ’top down

sweeping’ for the auxiliary entitiesEk′ , Fk′ begins here instead of (50) with

E := − Atop

Btop + α̃topbtop
and Fke′ := − Dtop

Btop + α̃topbtop
(83)

while the other entities fork
′ ∈

[
ke

′ − 1, 2
]

remain unchanged as in (51). It should be noticed

that p̂(τ)
top in Cw

top is eliminated by using ((81) , (82)) either. The following ’down-top sweeping’ to

calculate the vertical motion̂w(τ+1)

k′ for k
′ ∈

[
3, ke

′
]

is then accomplished according to (52). The

prognostic step for the pressure perturbation and also for the potential temperature follows as usual
to complete one time-step cycle.
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Apart from this Durran-method we suggest still asecond method. This approach attempts to avoid the
introduction of the KDB-RUBC into the vertically implicit time-scheme, but it applies this boundary
condition in an explicit way rather. We demonstrate this as follows. For that purpose we need
not modify the uppermost gridpoint placement as necessary in the previous method and shown in
Figure 13a, b. The gridpoint arrangement demonstrated in Figure 13a is maintained, and the only
modification is to assumêw 6= 0 at the upper boundary (atk

′
= ke1) owing to the RUBC:

ŵ
(τ+1,τ)
top =

kcs

gρ̄top

√
κ− 1

p̂
(τ+1,τ)
top (84)

which is a rearranged form of the KDB-RUBC ((81) , (82)). Provided this vertical motion value is
prescribed at the upper boundary, the prognostic step for pressure with (36) and for potential tem-
perature (38) is possible fork = ke with easy access to this boundary value. In order to execute
the prognostic step for the vertical motion before by solving its tri-diagonal vertical structural equa-
tion set, the corresponding equation fork

′
= ke

′
is slightly modified compared to the form in (43).

Taking into account the significant boundary value, its contribution is added to theke
′

- equation as
follows

Ake′ ŵ
(τ+1)

ke′−1
+ Bke′ ŵ

(τ+1)

ke′ = D
(τ)

ke′ − Cke′ ŵ
(τ)
top (85)

Here, the closure approximation is made to put the boundary value term on the right-hand side,
where it is applied at the discrete time levelτ instead ofτ + 1. From a practical point of view this
small retardation is found to be irrelevant. In order to determineŵtop from the KDB-RUBC (84), we
need, however, the perturbation pressurep̂top which is not directly available from the general time-
stepping procedure. Thus, an extrapolation technique is invoked. The practical experimentation has
shown that the application of some formal mathematical extrapolation is unsuitable. A successful
method consists in using an adequate hydrostatic extrapolation. For that purpose it has shown to be
necessary to use the consistent hydrostatic part of the prognosticŵ - equation with the given time-
scheme included. In the present case we have to use the hydrostatic part of (26) which is here applied
with L-grid and forward vertical differences:

β+
p̂
(τ+1)
top − p̂

(τ+1)
ke

∆z/2
+ β−

p̂
(τ)
top − p̂

(τ)
ke

∆z/2
= − g

c2
s

(
β+p̂

(τ+1)
ke + β−p̂

(τ)
ke

)
+

gρ̄ke

θ̄ke
θ̂
(τ)
ke (86)

This relation makes it possible to determinep̂
(τ)
top as the input value in the KDB-RUBC (84) to de-

termineŵ
(τ)
top, provided the prognostic step for the perturbation pressure with equation ((36), (37)) is

made before.

This is oursecond methodwhich is an explicit approach compared to thefirst methodsuggested from
Durran (1999). The following application of both methods to our nonhydrostatic toy-model will be
shown to be practically equivalent, though the Durran-approach demonstrates a perfect incorporation
and adaptation to the given vertically implicit time-scheme, while oursecond methodbrings about
some slight inaccuracies concerning the precise time-level assignment forŵtop within the given time-
scheme. Nevertheless, the latter approach promises to be a more simple method without troublesome
preparatory changes in a given model and with more convenient properties for using different time-
schemes. For numerical experimentation it becomes much more easy in the programming code to
switch on/off the RUBC.
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4.3 Results with KDB-RUBC

Here, we carry out toy-model simulations with KDB-RUBC instead of an upper lid-condition. We
are going to apply both methods as explained in the previous Subsection, but the results shown in
the following do not differ from each other at all. All the results up to now demonstrated with
upper lid-condition have been repeated with KDB-RUBC involved and will be shown in the next
Figures against the corresponding model version with upper lid. Figure 14 gives a comparison of
lid-condition against RUBC for L- and CP-grid and in each panel for a horizontal wave component
with 250km-wavelength.

Figure 14:Simulations over 48 hours with 250km horizontal wavelength and both L- and CP-grid.
Panels on the left row show the integrations with upper lid-condition, and the panels on
the right row demonstrate the solution with KDB-RUBC involved.

The same type of simulation results follow immediately in Figure 15 for the potential temperature
perturbation amplitude of a 100km horizontal wavelength.

In both figures (Figures 14, 15) the effect of the KDB-RUBC is clearly demonstrated. The reflec-
tive mode is essentially removed against the case with upper-lid condition. Thus, the advantages
of the CP-grid on the one side and the disadvantages of the L-grid on the other side are much bet-
ter revealed if a radiative upper boundary is assumed. In this case it is demonstrated best, how a
dispersion process, here initiated by some special local imbalance of the hydrostatic basic state can
be properly simulated. In spite of very specific and isolated simulations, deliberately adopted from
Arakawa and Konor (1996) for methodical reasons, we still draw a more general conclusion that the
L-grid can produce obvious shortcomings concerning the simulation of a possible dispersion process
on the background of a given spectrum of internal gravity modes. Only in case of a CP-grid this dis-
persion process can be supported by a wide range of internal modes and is therefore simulated quite
well, while using an L-grid, significant distortions of that process occur. In the latter case the associ-
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Figure 15:The same as in Figure 14 , but for 100km horizontal wavelength instead of 250km. Further
explanation see text.

ated spectrum of internal modes is distorted, becomes shrunk, and brings about even an unphysical
stationary mode.

Figure 16:Vertical flux of wave energy over 48hour simulation with L-grid and 100km horizontal
wavelength indicating how effective the KDB-RUBC operates

In Figure 16 we show the effectiveness of the KDB-RUBC for the L-grid simulation associated to
the upper right panel of Figure 15. There can be seen the quantitative evaluation of the vertical flux
of mechanical wave energy at the upper boundary in terms of(p̂ŵ)top. This expression has to have a
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positive sign in case of outgoing radiation, and Figure 16 demonstrates this positiveness over the 48
hour simulation time. The fastest vertically propagating signals associated to highest frequencies of
the energy flux arrive at the upper boundary first, while after some gap the bulk of energy impinges
on the model top at around 12 hour integration time having then the broadest amount of outgoing
energy with slower frequencies. After that time increasingly less wave energy propagates upward,
because most of it remains trapped as a stationary computational mode due to the L-grid properties,
and, thus, the amount of outgoing energy dyes off over the following time.

Figure 17:Time evolution of the potential temperature perturbation with imposed subgrid-scale
massflux with L-grid versus CP-grid and with KDB-RUBC (compare with Fig.11).

Figure 18:Simulation with Newtonian-type heat forcing at a single model level for horizontal wave-
length of 100km and L-grid versus CP-grid, here with KDB-RUBC taken into account
(compare with Fig.10).

Finally, we demonstrate the KDB-RUBC influence also from simulations already discussed in Sub-
section 3.7 for L-grid versus CP-grid, but executed there with upper lid-condition, where a simplified
convective massflux and an Newtonian-heating case has been shown. A direct comparison without
and with KDB-RUBC can be seen from Figure 10 versus Figure 18 in case of the Newtonian-heating
simulation, and Figure 11 versus Figure 17 concerns the vertical massflux situation. The finding is
also here that due to the impact of the KDB-RUBC the advantages of the CP-grid choice is much
more distinct against the more distinct shortcomings of comparable L-grid simulations.
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5 Simulations with LM - layering

All our previous simulations have used a vertical layering as proposed from Arakawa and Konor
(1996). Instead of their choice of 40 geometrically equidistant vertical layers, we want to adopt
now the vertically non-equidistant distribution of layers as valid in the LM. According to this a new
experimental set-up with 35 layers is chosen from the COSMO LM-documentation by Doms and
Schättler (2002, A description of the Nonhydrostatic Regional Model LM, Part I: Dynamics and
Numerics, LM_F90 2.18, Nov.2002, at pages 57, 58 in Tables 4.1 and 4.2). In accordance with this
the new vertically dicretised structure is formed by 35 main-levels and 36 half-levels, respectively.
Since we remain here with a verticalzk - coordinate as in the constant-layer model version above, the
verticalzk - distribution is adopted from the tables referred. For the present the basic state is assumed
to be isothermal and not yet polytropic as normally used in the LM. On this basis the given LM fast-
mode toy-model has been reformulated and extended to have then the LM - vertical layering. This
has been made both for the vertical L-grid and the CP-grid staggering and in each case with KDB-
RUBC omitted or involved. The documentation of all these modifications is rather lengthy and will
therefore be dropped here.

Figure 19:Time-height plot of potential temperature perturbation over 96-hour simulation time for
L-grid with non-equidistant LM-layering , starting from an initial zig-zag perturbation.
Upper row of panels: upper lid-condition. Lower row of panels: use of KDB-RUB. Each
right panel is the continuation in time of the corresponding left one.

A simulation up to 96 hour integration time is shown in this context in Figure 19, where the typical
L-grid deficiency can also be demonstrated and is more obvious with KDB-RUBC involved. The
latter measure avoids a reflective mode downward from the upper boundary, so that almost all wave
energy from the initial zig-zag perturbation with±0.5K prescribed only at vertical gridpointsk =
15/16 remains concentrated in an unphysical computational mode all over the integration time. It is
interesting to note that the dispersion process triggered by the initial perturbation assumed here brings
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about quite a different behaviour compared to all previous simulations with an equidistant layering
adopted from Arakawa and Konor (1996). We postpone a deeper discussion of this numerical aspect
beyond this report. Nevertheless, an anyhow triggered dispersion process with internal gravity modes
involved depends for a given source strength on the thickness of layers and the way how the thickness
of layers is varied through the depth of the model atmosphere (Gassmann 2003). In contrast to the
L-grid simulation we show the comparable CP-grid case in the following Figure 20.

Figure 20:Comparable to Fig 19 the simulation with CP-grid property and KDB-RUBC involved.

We show here the simulation with KDB-RUBC only, since the related case with upper lid-condition
has found to be not significantly different when using the CP-grid and having an initial zig-zag
triggering at levels as assumed here. Compared to the result in Figure 19 it is demonstrated that the
stationary computational mode is removed as expected, but the propagation of gravity modes behaves
clearly different. Almost all wave energy seems trapped in the lower part of the model atmosphere
where even reflections at the lower boundary can be observed. Although worth discussing these
aspects we skip that here and restrict ourselves to the demonstration of L-grid shortcomings versus
CP-grid advantages also in case of a vertical distribution of layer thickness used in the LM.
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6 Conclusion

Starting point of our contribution was a paper by Arakawa and Konor (1996), in which these authors
have carried out numerical simulations demonstrating important differences between the vertical grid
type L and CP. They have shown that the L-grid version of their linear primitive model produces a
computational mode without any physical meaning, while a model version with the CP-grid instead
avoids this shortcoming. A thorough discussion including also quotations from many other authors
are found in Arakawa (2000). We were particularly interested in the approach of Arakawa and Konor,
because they have used a linearised hydrostatic model version as a simple and serious research tool,
which is easy to copy for own investigations. After methodical studies with this model and with the
identical experimental set-up we have then changed the model type to a compressible nonhydrostatic
equation set in view of the linear fast-mode part of the LM. In order to be able to compare the
solutions from this system with Arakawa and Konor’s (1996) as close as possible, the design of
vertical differencing (40 equally spaced layers), the choice of a basic state (isothermal and at rest) and
the specific initialisation exactly remains as suggested by Arakawa and Konor. The model equations
are written in spectral form for a horizontal wave component with vertically dependent perturbation
amplitudes. The time-evolution of them can thus be investigated so as they are affected by the
presence of gravity and sound wave modes. The given model design separates the combined effect of
vertical differencing (layering, staggering) and LM - fast wave time-scheme with divergence damping
involved in an isolated manner. First of all we apply this model tool in order to study computational
influences on the dispersion process triggered by initially defined perturbations when using either
the L-grid or the CP-grid. Within the scope of this investigation with a compressible nonhydrostatic
model type very similar to the linearised LM fast mode equation part, we were also able to show that
the CP-grid model version is clearly superior to an application of the L-grid in that model. Thus, there
is a strong suspicion that the disadvantages of the L-grid demonstrated are expected to be possible
also with the LM.

An important by-product of our simulations with L-grid versus CP-grid is that we have succeeded
in incorporating the KDB-RUBC in the given scheme. The results without it suffer from strong
reflections of gravity wave energy as a nuisance at and from the upper model-lid downward. Our
investigation has shown that the application of the KDB-RUBC is possible and also successful in
case of the nonhydrostatic compressible LM-like fast-mode model. Two methods how to incorporate
the KDB-RUBC in this model has been tested. The first one is adopted from Durran (1999), and
a second one is an explicit method. Both methods are equally successful showing almost identical
results. In view of the present studies the impact of simulations with the KDB-RUBC included
show that the advantage of a CP-grid is found to be much more distinct against the more distinct
disadvantages with the L-grid.

Finally, we emphasise the meaning of our simple simulation model, that it is closely related to the
linearised LM – fast mode equation part. In the sense ofres severa verum gaudiumit is a nice toy-
model to study with it different options of time difference approximations in order to come then to
an optimal time scheme for the LM as a whole. Furthermore, it is also possible to make studies
concerning the proper way of layering through the vertical which seems also far from optimal.

Acknowledgement: The authors appreciate Peter Meyring’s important help to convert the original
text into the desirable LATEX-form.
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Issues of the COSMO Technical Reports series are published by theConsortium for Small-Scale
Modellingat non-regular intervals. COSMO is a European group for numerical weather prediction
with participating meteorological services from Germany (DWD, AWGeophys), Greece (HNMS),
Italy (UGM, ARPA-SMR) and Switzerland (MeteoSwiss). The general goal is to develop, improve
and maintain a non-hydrostatic limited area modelling system to be used for both operational and
research applications by the members of COSMO. This system is initially based on the Lokal-Modell
(LM) of DWD with its corresponding data assimilation system.

The Technical Reports are intended

• for scientific contributions and a documentation of research activities,

• to present and discuss results obtained from the model system,

• to present and discuss verification results and interpretation methods,

• for a documentation of technical changes to the model system,

• to give an overview of new components of the model system.

The purpose of these reports is to communicate results, changes and progress related to the LM
model system relatively fast within the COSMO consortium, and also to inform other NWP groups
on our current research activities. In this way the discussion on a specific topic can be stimulated at
an early stage. In order to publish a report very soon after the completition of the manuscript, we
have decided to omit a thorough reviewing procedure and only a rough check is done by the editors
and a third reviewer. We apologize for typographical and other errors or inconsistencies which may
still be present.

At present, the Technical Reports are available for download from the COSMO web site (www.cosmo-
model.org). If required, the member meteorological centres can produce hardcopies by their own for
distribution within their service. All members of the consortium will be informed about new issues
by email.

For any comments and questions, please contact the editors:

Ulrich Schättler Andrea Montani
ulrich.schaettler@dwd.de amontani@smr.arpa.emr.it
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