Consortium

. CONSORTIUM FOR SMALL SCAIE MODELING

for
Small-Scale Modelling

Technical Report No. 6

Documentation of the
Z-Coordinate Dynamical Core of LM

by
H.-W. Bitzer and J. Steppeler

April 2004
DOI: 10.5676/DWD_pub/nwv/cosmo-tr_6

Deutscher

Wetterdienst MeteoSwiss

Ufficio Generale

Hellenic National

per la Meteorologia B v 'E Meteorological Service
'.\::_,".-_;: ’::5
“q?%.;;;f;‘f;
Amt far Il Servicio Meteorologico
Wehrgeophysik Regionale di ARPA

www.cosmo—-model.org

Editors: G. Doms and U. Schéttler, Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany
Printed at Deutscher Wetterdienst, Offenbach am Main




A Description of the Z-Coordinate Dynamical Core of LM

HEINZ-WERNER BITZER AND JURGEN STEPPELER

Deutscher Wetterdienst, Offenbach am Main, Germany

Table of Contents

1 Introduction
2 Basic Numerical Concept
2.1 Equations of Motion . . . . . . . . . ... e
2.2 Volume Elements and Grid Design . . . . . . ... ... ... .. .......
2.3 Computation of Sub-Surface Values of Meteorological Fields . . . . . . .. ..
2.4 Spatial Discretization . . . . . .. ... 0 Lo L o
3 Time Integration and Numerical Solution
3.1 Fast Tendencies . . . . . . . . . . . .
3.2 Method of Solution . . . . . . . .. ... L
3.3 Structure of the Tridiagonal Matrix . . . . . . ... ... ... ... .. ....
4 Numerical Smoothing
4.1 Horizontal Diffusion . . . . . . . . ... oL
4.2 Vertical Diffusion . . . . . . . . ..o
5 Results for Idealized Test Cases
6 Summary
References

Appendix

IS SO ORI X

14
14
17
20

21
21
24

26

28

30

31



COSMO Technical Report No. 6 1

1 Introduction

Nonhydrostatic models using terrain-following coordinates, such as the Penn State-NCAR
Mesoscale Model "MM5” (Dudhia, 1993) or the Lokal-Modell "LM” (Steppeler et al., 2002)
are not well suited for predictions of flow near mountains in the environment of a stratified
atmosphere. Numerical errors can be induced around steep slopes, due to numrical errors in
connection with the terrain following coordinate transformation. The stratified atmosphere
generates artificial forces, caused by numerical errors. These can produce artificial circula-
tions which destroy clouds in the vicinity of mountains. For example, in the model LM, the
condition that such numerical forces remain reasonably small is dh < dz, with §z being the
layer thickness and dh the change of orography between one gridpoint and the next. This
condition is violated in most operational models, even for larger scale operational hydrostatic
applications. With fine meshes the model orography tends to be steeper than for coarser
meshes. Therefore the circulations driven by numerical errors can be substantial (Sundqvist,
1976).

For models using the terrain following coordinate, such as MMb or LM, a spatially homoge-
neous reference profile is introduced, in order to reduce this effect. If this reference profile is
rather near to the real state of the atmosphere in the model, the error mentioned is absent,
and nearly perfect simulations of gravitational waves can be done. This is the situation
investigated in this paper. As in addition rather smooth grid representations of the moun-
tain are used, the terrain following coordinate can be supposed to simulate these tests very
well. For operational applications on large areas it will not be possible to choose a horizon-
tally homogeneous atmospheric reference state in the way indicated. Therefore operational
applications will always suffer from numerically generated artificial forces near mountains.

A method to reduce this error has been proposed by Mesinger (1988). This method reduces
the coordinate deformation by having the model layers not following the mountains, but
rather ending at mountains. The lower boundary is treated under the assumption that it is
represented by a step function. While this coordinate has the expected advantages in low
wind situations, it has disadvantages concerning the flow around smooth topography. In
particular, Gallus and Klemp (2000) reported a failure to produce proper mountain induced
gravitational waves. As opposed to this, the test case proposed by Gallus and Klemp (2000)
is simulated properly using the terrain following coordinate. Another z-coordinate approach
was proposed by Tripoli (private communication). It has been presented at the Third Inter-
national Workshop on Non-Hydrostatic Modelling in Offenbach, 1999, and does not suffer
from the problems mentioned above. A short report on the workshop is given by Saito
(2001). The method by Tripoli is based on posing lower boundary values for the velocity
components using assumptions on the vorticity. In the present paper a different method is
used to obtain the approximation near the lower boundary. The free slip boundary condition
is used and numerically evaluated using the finite volume approximation.

With simple equations a sufficient convergence condition is met when the domain boundary
is a continuous spline. Such a condition is present in the z-coordinate atmospheric model
described here, being based on the shaved element method, used in computational fluid
dynamics and oceanography (Adcroft, 1997). A cartesian structured grid corresponding to
the case without orography is assumed and the topography is assumed to be represented by
a bilinear spline with nodes at the gridpoints with half values of the x-axis. There are three
types of grid squares: those which are completely under the earth, those completely above
the topography and those which are cut by the topography function. The first two classes
of elements can be treated in an obvious way. The volumes which are cut by the orography
are treated by the finite volume method.
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Without further approximations this method may require very small time steps, since the
elements cut from a volume may be rather small. One solution would be to use a semi-
implicit discretization (Thomas et al., 2000). Here we use the time splitting method, as
introduced by Klemp and Wilhelmson (1978b). This has been shown by Saito (1998) to
have good operational efficiency with the model LM. The problem of a restrictive CFL
criterion with small cut off elements is solved by using the thin wall aproximation, which is
common in oceanography. An atmospheric use of this method was tested by Bonaventura
(2000). The derivation of this method from the shaved element approach requires in addition
to the vertical walls also the use of horizontal walls as opposed to Bonaventura (2000), who
uses vertical walls only. Test integrations using this method in two space dimensions will be
given in Section 3. The test problems proposed by Gallus and Klemp (2000) are simulated
properly by the z-coordinate version of LM.

The present paper gives an extensive description of the z-coordinate, as implemented in the
LM. THe tests involving an idealized bell shaped mountain are described. They perform
well and the z-coordinate LM is now ready for further development towards operational
implementation.

2 Basic Numerical Concept
2.1 Equations of Motion

The following numerical model simulates a 3d atmospheric flow in z-coordinates. Since the
z-surfaces are horizontal, the governing equations are formulated in an orthogonal coordinate
system on a sphere. The underlying mathematical structure consists of the full compressible
Euler equations. The model takes gravity, coriolis force and metric terms into account,
Reynolds stresses and viscosity are neglected. Physical processes like cloud physics, radiation
and boundary layer physics are not included. The current version is suitable for idealized
experiments in fluid flows and is the starting point to develop a weather forecast model in
a z-coordinate system. The equations are the same as for the operational LM (Doms and
Schaettler 2001) with the simplifications mentioned above. The equations read:

ou N uv 1 dp

- . - R 1
5 v -Vu + . tanp + fo acos 5 O (1)
ov — u? 1 op

Z = Y -Vv— —tanp— fu— —— 2
5 v -Vo —tany fu i O (2)
ow _ — 1 8])

% = - -Vp — c—png (4)

Cy

oT — 1
- _Y.T- D

5 v -V oo, PP (5)

The advection operator is definied by
— 1 0 0 0
vV = Py (u87+vcos¢%> +w$ (6)

and the threedimensional wind divergence by
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Dy — 1 [au ow

0
54—%(@005(,0)] +£ (7)

acos @

The vertical acceleration due to the pressure gradient and gravity in (1.3) is expanded as

1ep p_O(T—TO Top’> 10p

T Tpo

By (8)

p’ is the predicted pressure perturbation. p is the total pressure calculated as the sum of
base-state pressure and predicted pressure perturbation:

p = po+p 9)

The full set of model equations become

% = —?-Vu+%tan<p+fv—pacosgog—zj\’ (10)
% = —?-Vv—u;tango—fu—pl—ag—i (11)
O Tur g T;TO—%;’—; —%%ﬁ (12)
66_11, = — U -Vp +gpow— z—zpD:a (13)
%_f - _:.VT_p_;ppg (14)

The governing nonhydrostatic equations describe a compressible model atmosphere, thus
meteorological unimportant sound waves are also part of the solution. According to the
Courant Friedrich Levy criterion the fastest signal velocity, i.e. the sound velocity, determines
the integration time step. In order to keep numerical efficiency, the mode-splitting time-
integration method proposed be Klemp and Wilhelmson (1978) is applied. In practice the
mode splitting time integration scheme in symbolic form can be written as:

o

ot = Sy +f¢’ (15)

Where 4 denotes a prognostic model variable, f, the forcing terms due to the slow modes
and sy, the source terms which are related to the acoustic and gravity wave mode (fast mode).
The full set of model equations can then be split:

a) slow tendencies

—

fT = —v-VT

fu = —?-Vu+%tan<p+fv (16)
2

fo = —?-Vv—u—tango—fu (17)
a

fo = — v -V (18)

— U
fp, = —v-Vp (19)
(20)
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b) fast tendencies:

1 8p
_ op. 21
Su pa Ccos @ O (21)
1 0p
sy = ——2L (22)
pa Op
10p  po |T-To Top
= ———+g— - —= 23
o poz o | T T po (23)
_ Cp
S, = gpow — ang (24)
1
st = ——pDs (25)
PCy

The fy -terms denote the tendencies due to the slow modes. These terms are kept constant
during the subcycle procedure. The equations for w’ p’ and T are coupled and solved
implicitly.

Currently the model still runs with the originally introduced A (po), (thickness of layer k
expressed by Apg) which is present in the entire programm code. So the vertical derivative
is written as:

0 gpo 0

9. = T Apodc (26)

2.2 Volume Elements and Grid Design

The Arakawa C-Grid of the LM is used in the current model. Fig. 2.1 illustrates the
staggering of the dependent model variables.

FI1GURE 2.1: The three dimensional grid box.

Note, that the ( -coordinate in the vertical is still used with A¢ = 1. Eq. (1.26) is applied
to gain 2
gain 5_(...).

The orography is definied at the corner points (7 + 1/2,j + 1/2) of a grid element (see Fig.
2.2).

Fig. 2.3 illustrates, how the surface of the orography intersects a column of volume elements.
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orography
defined here
j+1
\ J
\
Volume * .
Element . j+1/2
—_— ] L i+1f2, 172
— 3
i,]
i+l/2
i i+l

FIGURE 2.2: The horizontal grid and the definition of orography.

Fig. 2.4 illustrates for a bell shaped mountain, how the mountain’s surface intersects the vol-
ume element. In the LM with terrain-following coordinates the horizontal pressure gradient
is gained by applying the transformation formula which takes the vertical pressure difference
along the sloped surface into account. Since the current model is formulated in z-coordinates,
we have no metric term in the expression for (see Doms and Schéttler, 2001) % is not longer
present. Instead a significant difference in the calculation of the spatial derivatives between
the current model and the LM appears. As shown in Fig. 1.4 the volume element located

at 7, j, k is cut by the mountain’s surface. In the advection term of equation (1.16),

(27)

the three terms have to be determined at position i + 1/2, 7, k. For term 1 this is done in
the following way, using the centered difference approximation

S
—u% = —ﬂ‘”% = —% (Wi j kAU 6 + Wit1,5,kAUi+1,5,k) (28)
with w;jr = % (wiz1/2,5 + Uit1/2,5k) (29)
Auijjre = U124k — Uim1/2,5k (30)
Auiy1/jk = Uit11/2,5k — Yit1/2,5,k (31)

The velocity u;_1/5 ) required in (1.29) and (1.30) which is denoted in Fig. 2.4 with u*, is
unknown, as it is underneath the mountain.

Fig. 2.5 gives a horizontal cross section through the grid. All values within the dashed
area (see Fig. 2.5) lie underneath the mountain’s surface. The solid line represents the
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i-1/2 X\ i+1/2
12 e L2

i-1/2 s i+1/2

FIGURE 2.3: A column and the cells cut by a bilinear function representing the orography.

rx
; 1
B s = s~ s o
P HREN
// E : \x—z—cross
, —section

'
i-1/2 i i+1/2

FIGURE 2.4: A vertical cross section through the grid and the boundary value v* under the
mountain.

intersection curve of the mountain’s surface and a z-plane. Applying the formula

— 5
—Ug—z = —Wg—z :_X—j('Ui+1/2,j+1/2,,kAui+1/2,j+1/2,k
F0i41/2,—1 /26Dt 1/2,5—1/2,k) (32)
with
Viv1/2,j-1/2k — %('Ui,j—l/Q,k+'Uz'+1,j—1/2,k) (33)
and
AUz’+1/2,j—1/2,1c = Ujt1/2,5,k — Uit1/2,5—1,k (34)

Vi,j—1/2,k @nd u;11/9 j 1} are unknown quantities under the mountain. Our goal is, to deter-

ou

mine a realistic value for —u} and —vg—z at point 7 4+ 1/2, j, k. In order to do that the star

values are computed.
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i j+1

- j+1/2

* \ j_l

X—Y—Cross—
section
+1

i+1/2

i-1/2

FI1GURE 2.5: A horizontal cross section through the grid with boundary values in the horizontal

Please note, the star values are not computed in order to gain realistic values under the
mountain. These quantities are artificial. The star values are just preliminary values, so
called help values which are necessary to compute a realistic derivative at a point which lies
very close at the boundary. In the horizontal plane (Fig. 2.5) the star quantities are those,
which have at least one neighbour in the same plane positioned in the free atmosphere.

bo-k-1

1
1
1
1
1
1
1
1
1
1
:
1
S S R o -k surface
1
1
1
1
1
1
1
1
1
1

— . of terrain

----------- ---k+1

X—Z—Cross
—section

i i+1/2i+1

FIGURE 2.6: Boundary values v* under flat terrain.

In many cases the surface of the terrain is flat (see Fig. 2.6). A star value under the surface
is necessary for the correct evaluation of the vertical derivative. As illustrated in Fig. 2.6 u*

at i +1/2, 4,k + 1 is required for 2% .
/2.3 d 9 liv1/2,5k+1/2

2.3 Computation of Sub-Surface Values of Meteorological Fields

The situation is represented in Fig. 2.7 where u* as a help quantity has to be evaluated. In
the current model a three point formula is applied.
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B -Qs_o___+op ____________ | k1
N uak__ji:::ﬁffs\<;; _______ -k
FX- zA [o- A ~
\
Z )]s T k+ 1
i-1/2 i+1/2

FI1GURE 2.7: The interpolation of sub-surface boundary values u*from surrounding values u.

Since the curvature of the spatial distribution of u is not taken into account the three points
have to be chosen very close to the boundary. The method to yield u* is based on the formula
for a plane in a 3-dimensional space.

'/
7777

FI1GURE 2.8: The plane used for the interpolation of u*.

The plane is stretched by the vectors @ and bin Fig. 2.8. The origin of the relative coordinate
system is detoned with 0,0. The vectors 7,71, 73 and r3 are the position vectors pointing to
ug, U1, us and u*, they read:

0 —Azx 0 AY 7
Ty = 0 ;T = 0 1= | —Az i3 = | —Az (35)
Uug Uy uQ Use

The general formula of a plane in parameter representation is:
F =10+ A@ + ub (36)

where A and y are the parameters and 7 is a vector pointing to a point in the plane which
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is stretched by @ and b. @ =17 — 70; b = r3 — 7 from (1.35) follows:

—Azx 0
a= 0 ; b= —Az (37)
U1 — Ug U2 — Uog

The demand is: u* is located within the plane. Thus, vector 7 in (1.36) can be replaced by
73:

—Azx 0 —Azx 0
—Az | = 0 | +X\ 0 +u* —Az (38)
u* U U — U U2 — Uo

The first two components of the vector equation (1.37) represent a linear system of equations
for the unknowns A\* and p*. The result is A* = 1, u* = 1. For u* we find the relation:

*

= U0+(U1—U0)+(UQ—U())=>

u* = w4+ ug — ug (39)
substituting ut = U195k
ur = Ui-1/2,5k-1
U2 = Uitr1/2,5k
U = Uiyi/25k-1  ylelds (40)
Uim1/2,4k = Wim1/2,5k—1 T Wit1/2,5k — Wit1/2,5,k—1 (41)

(1.41) is the answer for the preliminary value u; ;s ;; in case that the mountain is on the
west side. For the other sides the formula looks very similar.

o ﬁ}{, ______ ks
N ez

B -—,.A7. ------ ~--k-1----

i-1/2 i i+1/2

FI1GURE 2.9: The interpolation in case of a steep mountain going from top to bottom.

Fig. 1.9 illustrates the situation in case of a steep slope. Applying (1.28) would fail for
u* if the calculation were started from below because u;_i/5;x_1 is also unknown. Since
the calculation procedure starts from upper levels downward, first u; 1/ ;51 is calculated
because u;_1/3 j o is available and finally u* at k can be computed. In case of a flat terrain
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¢ “l; " ~eff——————— linear function of regression

\ kee -3

kee -2

kee -1

* kee

B U

FIGURE 2.10: The linear regression used near the surface.

(Fig. 2.6) instead of the formula of a plane, a one dimensional linear function of regression
is applied to compute u*.

Let’s assume that kee in Fig. 2.10 is the first level under the terrain with respect to the
(-direction. Then u;y1/9 jkee—15 Uit1/2, jkee A U112 jkee—3 are taken to determine the
linear function of regression:

Uii1/ojkee = UM+ 2us (42)
with
1
um = 3 (ui—i—l/?,j,kee—?) + Uit1/2,5kee—2 T ui+1/2,j,lcee—1)
and
us — Uit1/2,5,kee—1 — Wit+1/2,5,kee—3
2A(¢
because AC =1 yields:
1
us = 9 (uz’+1/2,j,k:ee—1 - ui+1/2,j,kee—3)

The preliminary star values of the other parameters are computed in the same way. Finally,
all the necessary star values are processed and all the derivatives close to the boundary can
be determined. The calculation procedure can be done in a subroutine which is called in the
model before the slow tendencies are calculated. The advantage of this program structure
is: no if statement is necessary while the slow tendencies are processed. At all the other
gridpoints under the surface the field is filled with 0. For the calculation procedure they
don’t have any importance. In fact they must not have any importance. The program can
be tested by writing strange numbers under the surface (except the star values). They should
not have any impact on the solution of the flow field. Do loops in i-, j- and k-direction don’t
need to be interrupted at the boundaries. This is important in order to keep the integration
sweeps in z-, y- and z-direction efficient.
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11

2.4 Spatial Discretization

To present the difference form of equations (1.16)-(1.25) the following notations for horizontal
and vertical averaging and differencing are defined.

—A

(2

The vertical advection waw

LM operational version):

360 3)(-3)
(o) o (o-¥)

(V172 + Yr—1/2)

(Po)k 1%k + A(po)y Yr—1
A (po)g_1 + A(po)y,

o))
(¢ )-+(e-5)
er)-+(c-3)

is still written with the contravariant vertical velocity C ( see

1
2
1
2
A

= 9
P

_wa_’t/J _ 0y _ ¢ _ w1>271/2 _ Wk-1/2
0z ac N (%) R AR
* —hC 1
Wi—1/2 = _Q(PO)k—1/2wk—1/2 ; A (pO)k—l/Z D) (A (po) + A (po)k_l)
1
Azg1y2 = 3 (Azg, + Azg—1) (43)

With these notations the slow tendencies of (1.10) - (1.20) read:

1 — 1 S S ]
- __ = =A . mA S
Ju aCos GPAN " o (u) acospP i | P ()
A mé _AaLpt ¥ _
NN WO TN ephe (44)
1 P — L2
= - 7¥ - T¥coso?
fo acos? AN o (v) acos pAyp vreosgto, (v)
_77774( _Aaip
—Q(pé v)  — (@) tany — f'u (45)
¢
- L L e, ) 6)
fo = T acosPPAN " AN acos p? Ay v oS plp \W ¢\
' 1 A ——— 0 ; m(
fr = —mU<§A () —m veos iy, ()" — (0¢ (p') (47)
fro= (1) — o veosgh, (1) 0, (1) (48)
T = T acos?? AN acos ¢? Ag v oS Poe ¢
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The slow tendencies are finally multiplied by the digital factors 0 or 1 depending on whether
the location of the parameter is under the surface or in the free atmosphere respectively:

fui,j,k

fvi,j,k =

fwi,j,k -

!
Pijk

fTi,j,k -

The tendencies of all the parameters under the surface are zero. This implies that those
parameters keep their initial value and have to be set only once. The digital factors, here de-
noted with weightu, weightv and weight are processed in a special subroutine (z_level.f90 of
src_artifdata.f90) at the beginning of the program run. In the program code some coefficients

fui,i,kwezghtui,j,k
fvi,j,kwezght'ui,j,k

fwi,j,kweighti,j,k

U
fp',j,

weighti,j,k
k

fr ; s weight; g

can be separated from equations (1.44) - (1.48):

1. horizontal advection of u and v:

zfadsx(j)

zfadsy(j)

zfadvz(j)
z fpvoy(j)

2. vertical advection of u:
2fkpTii1/2, k4172
kam$i+1/2,j,k—1/2

3. vertical advection of v:
2fkpT; j 112 k41)2
kamxi,j+1/2,kfl/2

4. vertical advection of w:

2gCuT;jk =

29avT; k-1 —

In none of the previous equations a flux limiter does occur. The equations are not written

in flux form.

1/2
acos ;A\
1/2
acos p;Ap
1/2
a.CoS P 1/2AX
1/2
a cos ‘Pj+1/2A(P

lw:,j,kJrl/Q T W k12
2 A(po) + A(po)yi1
}w;,j,k—uz + w;k+1,j,k—1/2
2 A (Po)k +A (po)k_1

}w;,j,kﬂ/z T W 12
2 A (Po)k +A (po)k+1
lw:,j,kfl/Q + w;k,j+1,k71/2
2 A (PO)k +A (po)k71

* *
]‘ wla]ﬂk_l/Q + wl:]ak+1/2

4

A(po)k

* *
1W; 551172 T Wi jk—1/2

4

A (Po)k_1
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T1 ! T2 T3
I
. - ——— il‘ =constant
1 ax
! I
1 fllow L—]

—
://r PR
S (RS = P U E Y R D .k
%
13k
% 12 1 12
f},Iz:i.-llz

FIGURE 2.11a: Definition of the flux limiter in the grid.

Fig. 2.11a and Fig. 2.11b illustrate why the introduction of flux limiters in the advection
terms would be faulty. The flux limiter fyz; /5 is the fraction of the free interface of the
volume ; ;5 divided by the total area AyAz of the interface. The so defined flux limiters
take values between 0 and 1. If for example the temperature gradient g—g is constant and
the flow vector is parallel to the mountain’s slope and constant with height, that means,
a uniform flow uphill, then the advection —u%—i is constant in the entire domain shown in
Fig. 2.11a. Thus the volume element at ; ; ;, which is cut by mountains slope experiences the
same temperature advection as all the other volume elements. For the mentioned volume

element:

oT oT
E = —f’yzi_l/QUZ‘_l/Q % / Wrong!! (50)
- 1—1/2
T1 ‘ T2 T3
__’I: -— %f:constant
—5
i il S i Snlnielintel Snieintetink: Seietett __'kHsurface
x i-1/2 :II. i+1/2
fyz ,,, =%

FIGURE 2.11b: Flux limiters for % in the case of a horizontal terrain.

Fig. 2.11b illustrates the same situation in a simpler case. The current is uniform in z-
direction and g—g = const. The temperature gradient is assumed to be constant % (‘3—5) =0

The temperature tendency due to the advection %—? = —u% is constant in the entire
domain. If the surface would fill i of the volume elements at level k, the free interfaces fyz of

all the volume elements at that level would be %. If the carrier velocity u were premultiplied
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by fyz = % at level k, this would reduce the temperature tendency due to the advection of

25%, which would be wrong!

The explained treatment of the boundary values has to be done with much carefulness.
The calculation of the corrrect derivatives close to the boundary are most important. The
respond of the flow field is very sensitive with respect to the calculation of the boundary.

3 Time Integration and Numerical Solution
3.1 Fast Tendencies

According to the mode splitting time integration method proposed by Klemp and Wilhelmson
(1978) the time step for stable explicit integration of the slow modes is subdivided into a
number of small time steps. The tendencies represented in equations (1.21) - (1.25) are
computed only once every big time step.

integration
time step
related to
slow modes

n+2

subcycles
}4 AL >| related to

acoustic

modes

FIGURE 3.1: The Klemp Wilhelmson scheme.

Fig. 3.1 visualizes the mode splitting technique. The sound waves show up in the pressure
gradient force, in the horizontal and vertical wind velocity and in the divergence term of
the pressure tendency equation. High frequency oscillation is also caused by the buoyancy
term. Additionally the vertical gravity wave propagation is also included in the reduced
set of equations (1.21) - (1.25). As one can see from Fig. 3.1 the time step from n to
n + 1 is computet two times in the subcycle procedure. This will later be one of the reasons
for approaches of a two time level integration scheme. The reduced set of equations which
becomes subject to a split time integration using small time steps is revealed by rewriting
the model equations (1.10) - (1.14) for the wind components, the pressure perturbation and
the temperature in the following form:

ou 1 op

at - pacoswa+fu (51

& :—ag—];+fv (52)
l; _ !

R e I

or 1 [D gpoaw]
ot PCy
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The threedimensional divergence D3 in equation (1.7) is separated into a horizontal part Dy,

1 ou O
= Gcosg a—i-%(vcosgo) (56)

and a vertical part D,

_ _9po 0w (57)
Apo 0¢
where the transformation (1.26) was applied in order to rewrite %.

The set of equation (2.1) - (2.5) with acoustically active terms the big leapfrog time step 2A¢
(see fig. 2.1) is subdivided into a number of small timesteps A7. 2A¢ must be an integer
number times the small time step A7. A7 is determined by the fastest signal velocity, this
means the sound speed:

As
AT <
V2
As is the horizontal spatial gridsize, As = aAX = aAp with cos ¢ = 1, supposed A\ = Agp.
The vertical gridsize does not matter as long as the integration is carried out implicitely. For
test cases the integration is sometimes carried out explicitely, then A7 is limited by

cs = velocity of sound (58)

A7 < AZmin

B \/ﬁcs

(59)

where Az, is the minimum vertical grid spacing (usually this is the thickness of the lowest
model layer).

Concerning the finite difference algorithms related to fast modes, second-order accurate
differencing is used for spatial discretization of the reduced set of equations (2.1) - (2.5).
The vertical velocity, the pressure pertubation and in the current model also T' — Ty are
subject to time averaging with respect to the small time step A7. Time averaging is realized
in the same way as in the program code of the operationel LM

—T

V= 2 (L B ¥ 5 (1 B

N | =

see LM operational version (Doms and Schaettler, 1999). » + 1 is the future time level
related to the small steps A7. The subcycle procedure is a 2 time level integration scheme.
To simplify the notations we write

(1-Bow)=1-p"

(+6w) and =3

DN =

pt=

the model uses (s, = 0.4 (i.e. BT = 0.7, B~ = 0.3). The time averaging is then realized
with

P =TT+ By for ¢ =w,p (T —Tp) (60)
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The finite difference equations derived from (2.1) - (2.6) are written in the following form,
using definitions from Section 2.4.

v+1 v AT

T . —" N N (61)
P"'\acos‘P‘pAA “
v v A’T 'y
v T v = —m5¢p + f:’AT (62)
AT mhc N\ v+1 B Nnv
v+l v — = +
v I Apy 5ot gac(p) 4670 (v)
e [ p——hC
P0 + 0 - 0
— g AT —— =Y Sv+1 v
9AT—3 | B Trpg? + Trpg?
[T T T T
£0 n 0 - 0
_gATp—nhC B T + B —m | T fuAT (63)
P —p = gpodr [FTu T ]
A '
TR B (810 (Fayw™) 4+ 670 (fay)]
p"c
~AT—2Dyt 4 [ AT (64)
Cy
vt v = ngATi (876 (fwyw”“) + B¢ (fryw”)]
ApO prey
pn v+1

The horizontal divergence Dy, is computed at the centre of a grid box i, j, k even then when
the volume contains only a little piece of air. The horizontal divergence reads:

1

v+l _ v+1 v+1
Dy = AN (p‘PA/\(S)‘ (fyzu ) + A (p‘PAgo(S‘p (cos ofrzv ) (66)
the vertical part D, of equation (2.7) is:
Dy = Bé¢ (fryw’*) + B0 (fryw") (67)

The horizontal divergence Dy, is first computed with the new velocities 4**! and v**! at the
new time level v + 1. The equations (2.11), (2.12) and (2.16) remain in the explicit part of
the integration procedure if the calculation is carried out implicitely. Most important now is
the occurence of the so called flux limiters fxz, fyz and fxy. The last two letters denote the
interfaces of a control volume, see Fig. 2.2. xz for example denotes an interface stretched in
the xz-plane. All the flux limiters are non dimensional numbers between 0 and 1.

fzy = L;ALZ/ where s., is the real free interface expressed in m? and AzAy is the total area

of the interface. In case of fyz that reads: fyz = Asyygz . Only through these factors, in

the divergence term the current feel the boundary. If the slope is small, ﬁ—; < 1 the factors

are decreasing smoothly to zero as the flow is running in x-direction. Thus the current does
not notice a step size topography but a smooth terrain as it should be. This is the most
important difference of the shaved element method with respect to the Legoland topography.
In equation (2.14) the flux limiters are affecting the pressure and the pressure again affects
the vertical velocity. The term gpgw is not premultiplied by the flux limiters. As we see, the
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/fxzi,jdlz,k
£XY;,5,k-1/2

£x2341/2,5,%

£X2; 1/2,5,x

£X23,5-1/2,%

FIGURE 2.2: Flux limiters in three dimensions.

reference atmosphere is hiding here.

9po

9% —gpo this implies
w = —w Opo
gpo 02

but —w% is an advection term and above it was stated that the advection must be without
a flux limiter.

3.2 Method of Solution

A vertically implicit integration scheme is applied for the solution of equation (2.1) - (2.5).
Equations (2.3), (2,4) and (2.5) for the vertical velocity, the pressure perturbation and the
temperature become coupled due to time averaging. In the current version the temperature
deviation term

T — Ty
Tﬂ

is drawn into the implicit calculation procedure. The temperature equation (2.15) in differ-
encing form can be written as follows:

Ty =T + Ry (68)
where Ry, is the rest of the right hand side of equation. From (2.18) we gain:
Tyt = (To), =T — (To)g + Bi
respectively

T (M) TE (T, Ra

Ty I Ty
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v+l _
In (2.19) we call TkTi];To)k — @t and
TV — (T
kTifl())k = sk (2.19) then becomes
R
sith o= s + - (70)

with the substitutions (A.1) - (A.7), see appendix, the equation for the vertical velocity
(2.13) can be written in the following way:

“’Zﬂ/z — w1 = 9AT2Yp 1/ (8 ( P =) + 87 (k- pi)]

1 1
—gATB 2y o (Apo)kfl EikaZJrl‘i‘(Apo) K 5Tk 1P i]

B [ 1 1 v
—9ATS 2yp—1/2 | (Apo) gy 5TkPk + (Apo)y 2~77k1pk—1:|

1 1
+gATB 2172 | (Apo)y—y 558 + (Apo), QSZT]

_ 1, L,
+9ATH 2o | (Spodis 3ok + (ol gk ()

After reorganizing the terms and applying (A.8) - (a.10), see appendix, the equation for the
vertical velocity reads:

Z+}/2 = wlléf1/2 + 01?71/2 + 5+Clgjj1/2 [aflmpz O‘k 1/21’2_%
+(Bmle ot + o, 55571 (72
k12 = (fw)e—1p AT+ IB_ClqcU—ll/Q [O‘kB—l/zp% - a£—1/2PZ—1
+ ((Apo)k_l S5+ (Bpo)y %s;_l)] (73)

consequently the pressure tendency equation from (2.14) reads in differencing form:

1
Ak = (), A B Dy A 4 g (o),

g (po)y, Picp
(Apﬂ)k Cy

(w k12 T Wi 1/2) +:37 AT
(

» 1
fEYpi1/2Wg 1/ — f33yk—1/2wk71/2) + ﬂ+59AT

il 9 (po)i Pie
(po)y, (wk+l/2+wk+1/2) '6+(Ap0)]; CupAT

(ffcyk+1/2wk+1/2 ffyk—1/2w;':ﬂ/2) (74)
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Applying (A.11) and (A.12), (2.24) reads:
pz+1 = pp+ CII: + ﬁ+C}ICJ? (w,l;+1/2 + w,’;_l/Q) + 13+C,1€’1
(fxka/QwZﬁ/Q - fxyk—1/2w,:ﬂ/2) (75)
PkC v -
G = (f)yAr == 2ar (D7) + 86
(wll;+1/2 + wk—l/Q) + IB_CIICJI (fxyk+1/2wZ+1/2 - fmyk—1/2wZ—1/2> (76)

The temperature equation (2.15) completes the set of differencing equations:

v 1% n p v
Ty = TY + (f7), AT — ﬂkkuA (1)h+1),c

g (Po)k AT pZ + il
+W P Cu [ﬁ (fwka/kaH/z — fxyp-1)2
w;1;+%/2) + ,87 <f$yk+1/2w1:+1/2 - fmyk,l/zw,';ﬂﬂ)] (77)

As can be seen, the flux limiters show up in the vertical derivative of w, which is the vertical
part of the divergence and they occur also in the horizontal part of the divergence D,’:H. For
the vertically implicit solution procedure equations (2.22), (2.25) and (2.27) form a coupled
system. Eliminating p} 1 and s, *1 at the future time step the w-equation (2.22) leaves

w”*1 as the only unknown. In order to eliminate p} "' and p} ] we use equation (2.25). The
derivation of the additional term in (2.22)
1 v+1 1 v+1
(Apo)j—y 2% T (Apo); 9%k—1 (78)

which contains the vertical velocities at time step v+ 1 too is outlined in the appendix (A.13)
- (A.16). Finally (A.15) with (A.16) are used in order to substitute the parenthesis (2.28) in
the equation for the vertical velocity (2.22). After rearranging the terms this yields a linear
tridiagonal equation system for w”*! which is written in the form:

ak—1/2w;';ﬂ1/2 + bk—1/2w,';ﬂ/2 + Ck—1/2w;';ﬁ/2 =dy_1/2 (79)

The matrix diagonals a, b and ¢ and the inhomogeneous part d read:

Ap—_1/2 = —6”012”_11/2 [af_l/z (C;Iilfl‘yk—n/z - C}Zil) - (APO)k
C/cT—llfﬂwk—n/z] (80)
b1 = 148G, [O‘k 1/2 (C fryp—_1/2 — C’,f2) + o1/
(lel_lfwyk—lp + Cﬁ_l) + (Apo)y 1 CF fwyk—1/2—
(APO) CkT—11fl'yk—1/2] (81)
k12 = —BYCH ), [Otk 1/2 (C foypi1j2 + Cf ) + (Apo)j_1
Ck fﬂﬁyk+1/2] (82)

di_1jp = Wi_yp+Cilyp+ BTG, [0‘1]3—1/2 (P + CF) = A_1yo

(Pk1 +Cp_y) + CkT—1/2] (83)
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The coefficients contain the flux limiters fxy and some additional terms with factors CT!
and C7 in the inhomogeneous part d which have their origin in the temperature equation.
Actually, according to a suggestion of Janjic (19xx), the vertical advection of pressure per-
tubation w%—’i should also be put into the implicit scheme - this wopuld further stabilize the
integration. The matrix equation (2.29) can be solved for w”*! using a standard tridiagonal
solver, provided that the vertical velocity at the upper and lower boundary is specified. At
the top boundary the vertical velocity is set to zero. At the lower boundary we must allow
the flow running parallel to the slope. Thus an appropriate value for w has to be taken at
the lower boundary.

X
1
1
i
i S S I N R N
I i
IR - __-N___-,p_ _______________ -T- kee—2
%
I N B S A
w \\
e R N 3 SECEEES B ~- kee
|
i

FIGURE 2.3: Boundary values of w under the surface

In Fig. 2.3 the volume element at ; sc. lies completely under the surface. The prognostic
equation (2.21) for the vertical velocity at ; yee—11/2 Tequires the two pressure values p; gee—1
and pj gee—2 in order to calculate the pressure gradient at ; gee 11/2. Since the pressure at
i,kee—1 is available this is no problem. The pressure at ; y..—1 needs the vertical velocity at
i,kee—1/2- Normally this velocity would be not available but because it is a boundary value
which is calculated according to equation (1.39) or (1.42) respectively. In the current model
(1.39) or (1.42) is applied every small time step A7. This is better rather than holding
the boundary values constant during the entire subcycle procedure. The best value for the
vertical velocity would yield if w; ye._1/2 were calculated dependent on the horizontal velocity
with the demand that the total flow vector ¥ = (u,v,w) at the surface is exactly tangential
to the surface. Such a method is not implemented yet.

3.1 Structure of the Tridiagonal Matrix

In Section 1 the boundary values, necessary for the calculation of the derivatives close to
the boundary were explained. The implicit scheme is related to the elimination of w**! in
a vertical column. The vertical do loop starts at k+1/2 and would normally end at .._1/2
because wgee_1/2 18 the lower boundary value. But kee is dependent on the orography, that
means, kee is a function of i and j: kee = {(i,j) or in the current model: kee = kfin(i,j). The
field kfin(i,j), contains the lowest k values at i,j this is the lowest level for w, the location
of the lower boundary value. kfin(i,j) is calculated at the beginning of the program run in
subroutine src_artifdata.f90 or z_level.f90 and is available in fast_waves.f90. The end of the
do loop in vertical direction would be kee which is a function of i,j. Thus the k-loop had to
be disposed to the interior of loop i and j; but this is not suitable. The tridiagonal equation
system for w”*! runs as follows see Fig. 3.4.
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FIGURE 3.4: The matrix of the 1-d implicit scheme.

If we demand from the matrix system that the boundary value wg.. should be retrieved,
then the coefficients and the inhomogeneous part read:

agee = 0
bree = 1
Ckee = 0
dk:ee = wZee

v+1

. v .
With these values wy,, is reproduced in w,_,

For k > kee we set:

ap = 0
by =1
C == 0
d, = 0
v+1

which generates w;; " = 0 for k > kee.

With this structure of tridiagonal system the do loops within the Gauss solver can be nested
in the normal way: k-loop outside, j- and i-loop inside, and again this constellation is sup-
posed to be numerically efficient.

4 Numerical Smoothing
4.1 Horizontal Diffusion

The program needs horizontal and vertical diffusion. At some boundaries some action is
necessary in order to process the derivatives close to the boundaries. Here the second order
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differencing scheme breaks down to order one. But there is another serious problem. Since
the model only uses the complete spatial differences in the derivatives this implies very high
errors for small volume elements in the calculation of the divergence term which acts on the
pressure tendency equation (see Fig. 4.1). If the volume element is very small it kills the
program run immedeately before one big time step is completed.

}4— /\x,=80 lengthunits —

fxy. ;=

i, k-1/

25
80

k-1/2

AV

\

30
— fyziu/z,k:H

k — A\ 2z, =401lenght-

units
fyzi—l/z,k= 00—
k+1/2

T |

EXYiwan 4 ~—— surface
FIGURE 4.1: A small cut cell

Fig. 4.1 illustrates why this error occurs in the divergence term or in the pressure tendency
equation which is used to represent the continuity equation. The correct volume Av can be
calculated as:

1
AV = Efwyi,lc—1/2f-77yj+1/2,kA370AZO (84)
AM
At = —p(Av) [(fyzi+1/2,kuz’+1/2,k - fyzi—l/Q,kui—l/Z,k) Az
+ (F2yi gp—1/2Wi =172 — FTYi g1 /2Wi o1 /2) Do) (85)

Equation (3.1) represents the change of mass within the triangle AV. The continuity equa-
tion is retrieved by dividing (3.1) by AV :
AM
2—‘; = —p(A) [(fyzis12.6tit1/2.6 — FYZio1/26%i—1/2,k)
AZO

5T TYi k—1/2fYZit1 )2, AT AZg

+ (f$yi,k—1/2wi,k—1/2

Am()

1 (86)
sFTYik—1/2fYZiv1/2,AT0A2

—fiﬂyi,k+1/2wi,k+1/2)

divided by p (Av) yields:
1Ap 1
;E = - A—aco (fyzi+1/2,kui+1/2,lc - fyzi—l/Z,k:uz’—l/Q,k)
1 1
1 + A
§f$yi,k—1/2fyzz‘+1/2,k 20
(f2Yi p—1/2Wi =12 — FTYi fr1/2Wi f+1/2)

! ] (87)

%fxyi,k—l/nyzi-i-l/Q,k
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From equation (3.4) it becomes obvious why the continuity equation or in the current model
the pressure tendency equation cannot work for small volume elements. The current model
uses the complete differences A%vo and ALZ() but in reality the volume element is much smaller,
the space differences Az and Azy have to be premultiplied by (% TrYik—1/2Yzit1 /2,k)- This
factor is missing in the current model. Unfortunately this factor can be of any smallness
and in addition the factor would occure in the horizontal part of the divergence too. This is
outside the implicit computation procedure which is directed only in the vertical. Thus the
stability criterion would be dependent on the smallest volume element if the factor would be
taken into account.

In order to overcome the problem we have to remove the very small volume elements. This is
done in subroutine src_artifdata.f90 or in z_level.f90 respectively. Generally volume elements
smaller than 1/60 or 1/120 of the total volume of an element are removed. In idealized
experiments with a smooth Gaussian mountain the surface will be much rougher. The other
volume elements greater than 1/60 or 1/120 are still not calculated correctly because of
the mentioned missing factor in the divergence term. The current model is suffering from
these deficiencies. The incorrect calculation of the derivatives in the divergence term results
into wrong tendencies which appear as an overreaction and creates peaks of the parameters
when stepped forward. Of course those peaks show up in the cut volume elements this means
direct at the boundary. When we apply a diffusion in order to damp down the overreaction it
should mainly act direct at the boundary. The horizontal diffusion is carried out sequentially,
first in x- then in y-direction. The fourth order diffusion is drawn to the boundary in the
following way:

work = 0
!

do j jstart-1 , jend+1
do i istart-1 , iend+1
work(i,j) = weight(i+1,j)*(s(i+1,j)-s(i,j)) &
- weight(i-1,j)*(s(i,j)-s(i-1,3))

enddo
enddo

do j = jstart-1 , jend+l
do i = istart-1 , iend+1
dcoeffl = dcoeff
if ((weight (i+1,j) < 0.5).and.(weight(i,j) > 0.5) dcoeffl
if ((weight(i-1,j) < 0.5).and.(weight(i,j) > 0.5) dcoeffl
zsten = -dcoeffl*(weight(i+1,j)-(work(i+1,j)-work(i,j)) &
-weight (i-1,j)-(work(i,j)-work(i-1,j)))

alam
alam

sten(i,j) = sten(i,j)+zsten
enddo
enddo
endif

In case if there is no boundary, the weight-factors are all 1. In this case the diffusion is
working like in the operational LM with dcoeffl = dcoeff which is the diffusion coefficient of
the operational version. Now if the boundary is at the east side (see Fig. 4.2) the value at
i+1 is beyond the boundary and weight (i+1,j) = 0. The program code above is acting in
the following way:
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work (i,j) = —As; As; = s(i,5) —s(i—1,7)
work (i —1,j) = As; — Asg Asy = s(i—1,7)—s(i—2,7)
zsten = —alam[— (work (i,7) — work (i — 1,7))]
zsten = alam[work (i,j) — work (i — 1,7)]
zsten = alam[Asy — 2As;] (88)
value of
parameter S
6 ---O
5 |
4 —
3 |
-af]— final value
2 |
L= ~a§—— boundary
| | | | |
° 1 P B e
-3 -2 i-1 [ e

FIGURE 4.2: Action of horizontal diffusion

In the example of Fig. 4.2 As; =4 and Asy = 1 the tendency according to diffusion yields:
zsten = —Talam (89)

zsten is negativ which implies, the fluctuating crazy boundary value s(i,j) = 6 is towed to
lower values and calmed down. The final value, indicated in Fig. 4.2 with the short dashed
line will be 2.5. Then As; = £As, and according to equation (3.5) zsten = 0. If a boundary
is there the diffusion coefficient changes to

1
12dt2

alam = (90)
As illustrated in Fig. 4.2 the final value, caused by the diffusion, fits well into the general
spatial distribution of the parameter s. But still the final value cannot represent the exact
gradient of s if the gradient is unequal zero. Only if % = 0 then Asy = 0 and from
As; = %ASQ follows As; = 0 ; this implies, the final value s; would be on the straight line
defined by s;_5 and s;_1. But it is very important to represent the correct vertical gradients
of the velocity components and the temperature. The diffusion must not bend the profile off
the gradient which has been established at gridpoints above the obstacle.

4.1 Vertical Diffusion

In order to sustain the established vertical gradient of the velocity and the temperature, the
vertical diffusion in the current model effects on the difference function s1(z) = s(z) — Sjin-
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The s(z) is the vertical profile of a parameter, for example u at gridpoint i,j (see Fig. 4.3).
Stin 18 the linear function of regression determined by the six last values above the surface.
s1in represents the vertical gradient of s(z) at the boundary properly. This is especially for
the temperature gradient very important, otherwise the diffusion would generate artificial
buoyancy which finally implies artificial motion at the obstacle.
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FI1GURE 4.3: Vertical profile of the u-velocity with linear regression function.
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FIGURE 4.5: Action of diffussion for a temperature profile.

Fig. 4.4 shows a linear temperature profile s(z). The corresponding difference function s1(z)
= s(z) - syn is represented on the right side of Fig. 3.4. Applying equation (3.5) for the
vertical diffusion an s1(z) yields Asg = s1(k-1) -s1(k-2) = 0 zsten in equation (3.5) is negativ
and T in Fig. 3.4 (right side) is nudged towards T%. Since Asg = 0 this demands As; =0
if zsten should be 0. Asy = sl1(k)-s1(k-1)=0 this imlpies sl1(k) = s1(k-1) in the equlibrium
state when T3 equals T5. With this construction of the vertical diffusion the value T (Fig.
3.4, left side) is nudged towards 77 which fits well into the vertical temperature distribution
and in this way the vertical diffusion does not disturb an established vertical gradient. One
particularity of the vertical diffusion has to be mentioned here: The diffusion coefficient is
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decaying rapidly with height. Actually we need the diffusion right at the boundary rather
than in the free flow domain. The existence of the vertical diffusion is absolutly necessary.
One can drop horizontal diffusion rather than vertical diffusion at the boundary.

5 Results for Idealized Test Cases

The ability of the shaved element method can be tested on idealized experiments. The results
presented below are carried out with a Gaussian mountain of Ay = 400 m top height. The
half width is set to ¢ = 10 km. Since Az = 2 km there are 5Az to cover the half width.
Thus the mountain is well resolved by sufficient gridpoints. The formula of the topography
reads:

ho
h(z,y) = (91)
1 + $20_;y2
ho = 400m top height of mountain
a = 10000m half width of mountain
up = 10m/s basic current.

The temperature lapse rate corresponds to an atmospheric stability N = 0.01 s~!. The
Scorer number

N
Se = —a (92)

Uo
is in this case equal to 10, which means the horizontal scale of the mountain is much larger
than the horizontal wave length of the buoyancy oscillation and the nonhydrostatic effect
is small. Thus the results represents the almost hydrostatic case. For small amplitude

mountains (NT';Q << 1) the steady linear solution is known. The following solutions of the

shaved element experiments are verified against the steady solution of the LM-operational
version with terrain following coordinates. Of course the results have to be interpolated on
the same z-levels which are used for the shaved element experiments, in order to yield a valid
comparison. In all the experiments the uniform basic flow is from left to right with 10 m/s.
All the experiments show the steady state solution.

Fig. 5.1 shows the u-velocity in a vertiacl cross section (x-z-plane). The plane cuts the
mountain through it’s centre. The numbers at the contour lines are given in m/s. The flow
is decelerated upstream of the mountain and accelerated in the lee, which is realistic. There
is no windshadow detectable. No artificial vorticity modification is necessary in order to gain
this solution. In Fig. 5.2 the same solution is represented, but here processed with the LM
operational version with the terrain following coordinate system. On the first glance glance
one cannot detect any difference. If we look in detail we find an additional contour line in
Fig. 5.2 at the right side of the plot in lower parts and in upper levels the 10.3 m/s contour
line (right half of plot) is a little bit more extended than in the shaved element plot.

Fig. 5.3 and Fig. 5.4 illustrate the vertical velocity w of the shaved element method and
the terrain following system respectively. Again the two plots are almost congruent. Small
differencies are visible when we look at the - 0.35 m/s contour line in lower levels. The area
of the minimum vertical velocity is a little bit larger in the shaved element experiment. One
can see the same phnomena in upper levels with the - 0.15 m/s contour line.
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FIGURE 5.1: U-velocity in a vertical cross section computed by shaved elements.
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FIGURE 5.2: As in Fig. 5.1, but using the terrain following version of LM.

In Fig. 5.5 and 5.6 the vertical velocity is illustrated in a horizontal cross section at level z
= 1164 m for both the shaved element experiments (Fig. 4.5) and the terrain following run
(Fig. 5.6). There is no difference detectable.

Fig. 5.7 illustrates a vertical temperature profile which is the temperature deviation of
the reference atmosphere (here shaved element experiment). The curvature of the profile
in the lowest levels is remarkable. This means, the current model is able to simulate an
inversion if the strongly bended profile is resolved with a few gridpoints. If the inversion
is the represented just by one gridpoint, the vertical diffusion would act on it. From the
mathematical point of view it would not make any sense to demand a resolution just by one

gridpoint!
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FIGURE 5.3: Vertical velocity in a vertical cross section computed by shaved elements.
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FIGURE 5.4: As in Fig. 5.3 but using the terrain following version of LM.

6 Summary

The new z-coordinate dynamical core of the LM has been described in detail. This version
allows for a better orography representation by avoiding the forcing of the atmosphere by
numerical errors in the presence of mountains. Problems concerning the prediction of pre-
cipitation which have been discussed in the literature in connection with similar approaches
are solved by introducing a simplified version of the shaved element finite volume method
using the thin wall approximation.

In this approach the mountains are represented by continuous linear splines. A regular grid
is cut by this orographic function, which near the surface produces cut cells of different size
and shape, which are treated by the finite volume method. For cells not cut by the orographic
function the finite volume method produces the finite difference scheme of the operational
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FIGURE 5.5: Vertical velocity in a horizontal cross section computed by shaved elements.
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FIGURE 5.6: As in Fig. 5.5, but for the LM with terrain following coordinate.

LM, specialized for the case of flat terrain. The finite difference equations are based on
centred difference approximation on the C-grid for those elements which are not cut by the
topographic function. For the elements cut by the topographic function the finite difference
equations are formulated using flux limiters in the horizontal and vertical directions. A small
amount of numerical smoothing is required to stabilize the Leapfrog time-integration scheme.

A number of three-dimensional numerical tests have been performed with the new dynamical
core. They showed that the method developed does not suffer from the problems reported
in connection with the n—coordinate (Mesinger, 1988). Especially, the solutions for hydro-
static flow over a bell shaped-smooth mountain are rather similar to those obtained by a
terrain following version of the model. Future work will focus on the inclusion of physical
paramterizations to allow testing for real cases, aiming at an operational application of the
z-coordinate version of the LM.
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FIGURE 5.7: A vertical temperature profile simulated by shaved elements.
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Appendix

The following variable are used as substitutes / abbreviations for complex assembled expres-

sions:

Po" —ghe
g
Yk—1/2

1 Dol

(Apo),_ 1/2 p" he

Tk

W /2
ak—l /2
1 /2

cr

2
Ck

(Apo)k 1 (po)y + (Apo)y, (Po) 1

(Apo),,

(p0)s—
(P™) k-
(o)1 1
(P k-1
(Apo)k 1(P0) (Apo)k(Po)kq

(Apo)y_1 Pk + (Apo)y Pk_y
((APO)k—l Ay + (Apo)y Ak—l)

= yp_1/2 ((Apo)p_y Ak + (Apo)y Ak-1)

1 (Apo)g_1 (po) +

(Apo)k_l + (Apo)k

k—1 ﬂk + (Apo)k 9271

(Apo)k (Po)k_1

(Apo)kq + (Apo)k (Apo)kq PZ +

= 2yk_1)0

- ()
B T™o /g,
_ T — T}
- (),

= ZQATyk—1/2

= 1—(Apo)g_, %wk
1
k9
0)k ATkap
ApO) Cy

o)y, A

= 1+ (Apo) 571
(p

g\p

(
g
_5(

From the temperature equation (2.27) we gain:
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