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Section 1

Overview on the Model System

1.1 General Remarks

The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has
been designed for both operational numerical weather prediction (NWP) and various scien-
tific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the prim-
itive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere.
The model equations are formulated in rotated geographical coordinates and a generalized
terrain following height coordinate. A variety of physical processes are taken into account by
parameterization schemes.

Besides the forecast model itself, a number of additional components such as data assimi-
lation, interpolation of boundary conditions from a driving host model, and postprocessing
utilities are required to run the model in NWP-mode, climate mode or for case studies. The
purpose of the Description of the Nonhydrostatic Regional COSMO-Model is to provide a
comprehensive documentation of all components of the system and to inform the user about
code access and how to install, compile, configure and run the model.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been
developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular
mesh global gridpoint model GME form – together with the corresponding data assimila-
tion schemes – the NWP-system at DWD, which is run operationally since end of 1999.
The subsequent developments related to the model have been organized within COSMO,
the Consortium for Small-Scale Modelling. COSMO aims at the improvement, maintenance
and operational application of a non-hydrostatic limited-area modelling system, which is
now consequently called the COSMO-Model. The meteorological services participating to
COSMO at present are listed in Table 1.1.

For more information about COSMO, we refer to the web-site www.cosmo-model.org.

The COSMO-Model is available free of charge for scientific and educational purposes, es-
pecially for cooperational projects with COSMO members. However, all users are required
to sign an agreement with a COSMO national meteorological service and to respect cer-
tain conditions and restrictions on code usage. For questions concerning the request and the
agreement, please contact the chairman of the COSMO Steering Committee. In the case of
a planned operational or commercial use of the COSMO-Model package, special regulations

Part II – Physical Parameterization Section 1: Overview on the Model System



1.1 General Remarks 2

Table 1.1: COSMO: Participating Meteorological Services

DWD Deutscher Wetterdienst,
Offenbach, Germany

MeteoSwiss Meteo-Schweiz,
Zürich, Switzerland

USAM Ufficio Generale Spazio Aero e Meteorologia,
Roma, Italy

HNMS Hellenic National Meteorological Service,
Athens, Greece

IMGW Institute of Meteorology and Water Management,
Warsaw, Poland

ARPA-SIMC Agenzia Regionale per la Protezione Ambientale dell
Emilia-Romagna Servizio Idro Meteo Clima
Bologna, Italy

ARPA-Piemonte Agenzia Regionale per la Protezione Ambientale,
Piemonte, Italy

CIRA Centro Italiano Ricerche Aerospaziali,
Italy

AGeoBW Amt für Geoinformationswesen der Bundeswehr,
Euskirchen, Germany

NMA National Meteorological Administration,
Bukarest, Romania

RosHydroMet Hydrometeorological Centre of Russia,
Moscow, Russia
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1.2 Basic Model Design and Features 3

will apply.

The further development of the modelling system within COSMO is organized in Working
Groups which cover the main research and development activities: data assimilation, numer-
ical aspects, physical aspects, interpretation and applications, verification and case studies,
reference version and implementation. In 2005, the COSMO Steering Committee decided to
define Priority Projects with the goal to focus the scientific activities of the COSMO com-
munity on some few key issues and support the permanent improvement of the model. For
contacting the Work Package Coordinators or members of the Working Groups or Priority
Projects, please refer to the COSMO web-site.

At present, the COSMO meteorological services are not equipped to provide extensive sup-
port to external users of the model. If problems occur in certain aspects, we would kindly
ask you to contact the corresponding Work Package Coordinators or the current Scientific
Project Manager. We try to assist you as well as possible.

The authors of this document recognize that typographical and other errors as well as dis-
crepancies in the code and deficiencies regarding the completeness may be present, and your
assistance in correcting them is appreciated. All comments and suggestions for improvement
or corrections of the documentation and the model code are welcome and may be directed
to the authors.

1.2 Basic Model Design and Features

The nonhydrostatic fully compressible COSMO-Model has been developed to meet high-
resolution regional forecast requirements of weather services and to provide a flexible tool
for various scientific applications on a broad range of spatial scales. Many NWP-models
operate on hydrostatic scales of motion with grid spacings down to about 10 km and thus
lack the spatial resolution required to explicitly capture small-scale severe weather events.
The COSMO-Model has been designed for meso-β and meso-γ scales where nonhydrostatic
effects begin to play an essential role in the evolution of atmospheric flows.

By employing 1 to 3 km grid spacing for operational forecasts over a large domain, it is
expected that deep moist convection and the associated feedback mechanisms to the larger
scales of motion can be explicitly resolved. Meso-γ scale NWP-models thus have the princi-
ple potential to overcome the shortcomings resulting from the application of parameterized
convection in current coarse-grid hydrostatic models. In addition, the impact of topography
on the organization of penetrative convection by, e.g. channeling effects, is represented much
more realistically in high resolution nonhydrostatic forecast models.

The present operational application of the model within COSMO is mainly on the meso-β
scale using a grid spacing of 7 km. The key issue is an accurate numerical prediction of near-
surface weather conditions, focusing on clouds, fog, frontal precipitation, and orographically
and thermally forced local wind systems. Since April 2007, a meso-γ scale version is running
operationally at DWD by employing a grid spacing of 2.8 km. We expect that this will allow
for a direct simulation of severe weather events triggered by deep moist convection, such
as supercell thunderstorms, intense mesoscale convective complexes, prefrontal squall-line
storms and heavy snowfall from wintertime mesocyclones.

The requirements for the data assimilation system for the operational COSMO-Model are

Part II – Physical Parameterization Section 1: Overview on the Model System



1.2 Basic Model Design and Features 4

mainly determined by the very high resolution of the model and by the task to employ it
also for nowcasting purposes in the future. Hence, detailed high-resolution analyses have to
be able to be produced frequently and quickly, and this requires a thorough use of asynoptic
and high-frequency observations such as aircraft data and remote sensing data. Since both
3-dimensional and 4-dimensional variational methods tend to be less appropriate for this
purpose, a scheme based on the observation nudging technique has been chosen for data
assimilation.

Besides the operational application, the COSMO-Model provides a nonhydrostatic mod-
elling framework for various scientific and technical purposes. Examples are applications of
the model to large-eddy simulations, cloud resolving simulations, studies on orographic flow
systems and storm dynamics, development and validation of large-scale parameterization
schemes by fine-scale modelling, and tests of computational strategies and numerical tech-
niques. For these types of studies, the model should be applicable to both real data cases
and artificial cases using idealized initial data.

Such a wide range of applications imposes a number of requirements for the physical, nu-
merical and technical design of the model. The main design requirements are:

(i) use of nonhydrostatic, compressible dynamical equations to avoid restrictions on the
spatial scales and the domain size, and application of an efficient numerical method of
solution;

(ii) provision of a comprehensive physics package to cover adequately the spatial scales
of application, and provision of high-resolution data sets for all external parameters
required by the parameterization schemes;

(iii) flexible choice of initial and boundary conditions to accommodate both real data cases
and idealized initial states, and use of a mesh-refinement technique to focus on regions
of interest and to handle multi-scale phenomena;

(iv) use of a high-resolution analysis method capable of assimilating high-frequency asyn-
optic data and remote sensing data;

(v) use of pure Fortran constructs to render the code portable among a variety of com-
puter systems, and application of the standard MPI-software for message passing on
distributed memory machines to accommodate broad classes of parallel computers.

The development of the COSMO-Model was organized along these basic guidelines. How-
ever, not all of the requirements are fully implemented, and development work and further
improvement is an ongoing task. The main features and characteristics of the present release
are summarized below.

Dynamics

- Model Equations – Nonhydrostatic, full compressible hydro-thermodynamical equations in
advection form. Subtraction of a hydrostatic base state at rest.

- Prognostic Variables – Horizontal and vertical Cartesian wind components, pressure per-
turbation, temperature, specific humidity, cloud water content. Optionally: cloud ice content,
turbulent kinetic energy, specific water content of rain, snow and graupel.

- Diagnostic Variables – Total air density, precipitation fluxes of rain and snow.
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- Coordinate System – Generalized terrain-following height coordinate with rotated geograph-
ical coordinates and user defined grid stretching in the vertical. Options for (i) base-state
pressure based height coordinate, (ii) Gal-Chen height coordinate and (iii) exponential height
coordinate (SLEVE) according to Schär et al. (2002).

Numerics

- Grid Structure – Arakawa C-grid, Lorenz vertical grid staggering.

- Spatial Discretization – Second-order finite differences. For the two time-level scheme also
1st and 3rd to 6th order horizontal advection (default: 5th order). Option for explicit higher
order vertical advection.

- Time Integration – Second-order leapfrog HE-VI (horizontally explicit, vertically implicit)
time-split integration scheme by default, including extensions proposed by Skamarock and
Klemp (1992). Option for a three time-level 3-d semi-implicit scheme (Thomas et al., 2000).
Several Options for two time-level 2nd and 3rd order Runge-Kutta split-explicit scheme after
Wicker and Skamarock (2002) and a TVD-variant (Total Variation Diminishing) of a 3rd order
Runge-Kutta split-explicit scheme.

- Numerical Smoothing – 4th-order linear horizontal diffusion with option for a monotonic ver-
sion including an orographic limiter. Rayleigh damping in upper layers. 2-d divergence damping
and off-centering in the vertical in split time steps.

Initial and Boundary Conditions

- Initial Conditions – Interpolated initial data from various coarse-grid driving models (GME,
ECMWF, COSMO-Model) or from the continuous data assimilation stream (see below). Option
for user-specified idealized initial fields.

- Lateral Boundary Conditions – 1-way nesting by Davies-type lateral boundary formulation.
Data from several coarse-grid models can be processed (GME, IFS, COSMO-Model). Option
for periodic boundary conditions.

- Top Boundary Conditions – Options for rigid lid condition and Rayleigh damping layer.

- Initialization – Digital-filter initialization of unbalanced initial states (Lynch et al., 1997)
with options for adiabatic and diabatic initialization.

Physical Parameterizations

- Subgrid-Scale Turbulence – Prognostic turbulent kinetic energy closure at level 2.5 including
effects from subgrid-scale condensation and from thermal circulations. Option for a diagnostic
second order K-closure of hierarchy level 2 for vertical turbulent fluxes. Preliminary option for
calculation of horizontal turbulent diffusion in terrain following coordinates (3D Turbulence).

- Surface Layer Parameterization – A Surface layer scheme (based on turbulent kinetic
energy) including a laminar-turbulent roughness layer. Option for a stability-dependent drag-
law formulation of momentum, heat and moisture fluxes according to similarity theory (Louis,
1979).

- Grid-Scale Clouds and Precipitation – Cloud water condensation and evaporation by sat-
uration adjustment. Precipitation formation by a bulk microphysics parameterization including
water vapour, cloud water, cloud ice, rain and snow with 3D transport for the precipitating
phases. Option for a new bulk scheme including graupel. Option for a simpler column equilib-
rium scheme.

- Subgrid-Scale Clouds – Subgrid-scale cloudiness is interpreted by an empirical function
depending on relative humidity and height. A corresponding cloud water content is also inter-
preted. Option for a statistical subgrid-scale cloud diagnostic for turbulence.
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- Moist Convection – Tiedtke (1989) mass-flux convection scheme with equilibrium closure
based on moisture convergence. Option for the Kain-Fritsch (1992) convection scheme with
non-equilibrium CAPE-type closure.

- Shallow Convection – Reduced Tiedtke scheme for shallow convection only.

- Radiation – δ two-stream radiation scheme after Ritter and Geleyn (1992) for short and
longwave fluxes (employing eight spectral intervals); full cloud-radiation feedback.

- Soil Model – Multi-layer version of the former two-layer soil model after Jacobsen and Heise
(1982) based on the direct numerical solution of the heat conduction equation. Snow and
interception storage are included. Option for the (old) two-layer soil model employing the
extended force-restore method still included.

- Terrain and Surface Data – All external parameters of the model are available at various
resolutions for a pre-defined region covering Europe. For other regions or grid-spacings, the
external parameter file can be generated by a preprocessor program using high-resolution global
data sets.

Data Assimilation

- Basic Method – Continuous four-dimensional data assimilation based on observation nudging,
with lateral spreading of upper-air observation increments along horizontal surfaces. Explicit
balancing by a hydrostatic temperature correction for surface pressure updates, a geostrophic
wind correction, and a hydrostatic upper-air pressure correction.

- Assimilated Atmospheric Observations – Radiosonde (wind, temperature, humidity), air-
craft (wind, temperature), wind profiler (wind), and surface-level data (SYNOP, SHIP, BUOY:
pressure, wind, humidity). Optionally RASS (temperature), and ground-based GPS (integrated
water vapour) data. Surface-level temperature is used for the soil moisture analysis only.

- Radar derived rain rates – Assimilation of near surface rain rates based on latent heat
nudging. It locally adjusts the three-dimensional thermodynamical field of the model in such a
way that the modelled precipitation rates should resemble the observed ones.

- Surface and Soil Fields – Additional two-dimensional intermittent analysis:

- Soil Moisture Analysis – Daily adjustment of soil moisture by a variational method
(Hess, 2001) in order to improve 2-m temperature forecasts; use of a Kalman-Filter-like
background weighting.

- Sea Surface Temperature Analysis – Daily Cressman-type correction, and blending
with global analysis. Use of external sea ice cover analysis.

- Snow Depth Analysis – 6-hourly analysis by weighted averaging of snow depth obser-
vations, and use of snowfall data and predicted snow depth.

Code and Parallelization

- Code Structure – Modular code structure using standard Fortran constructs.

- Parallelization – The parallelization is done by horizontal domain decomposition using a
soft-coded gridline halo (2 lines for Leapfrog, 3 for the Runge-Kutta scheme). The Message
Passing Interface software (MPI) is used for message passing on distributed memory machines.

- Compilation of the Code – The compilation of all programs is performed by a Unix shell
script invoking the Unix make command. All dependencies of the routines are automatically
taken into account by the script.

- Portability – The model can be easily ported to various platforms; current applications are on
conventional scalar machines (UNIX workstations, LINUX and Windows-NT PCs), on vector
computers (NEC SX series) and MPP machines (CRAY-XT3, IBM-SP series, SGI ALTIX
series).

- Model Geometry – 3-d, 2-d and 1-d model configurations. Metrical terms can be adjusted
to represent tangential Cartesian geometry with constant or zero Coriolis parameter.
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Table 1.2: COSMO Documentation: A Description of the Nonhydrostatic Regional COSMO-
Model

Part I: Dynamics and Numerics

Part II: Physical Parameterization

Part III: Data Assimilation

Part IV: Implementation Documentation

Part V: Preprocessing: Initial and Boundary Data for the
COSMO-Model

Part VI: Postprocessing

Part VII: User’s Guide

1.3 Organization of the Documentation

For the documentation of the model we follow closely the European Standards for Writing and
Documenting Exchangeable Fortran 90-Code. These standards provide a framework for the
use of Fortran-90 in European meteorological organizations and weather services and thereby
facilitate the exchange of code between these centres. According to these standards, the
model documentation is split into two categories: external documentation (outside the code)
and internal documentation (inside the code). The model provides extensive documentation
within the codes of the subroutines. This is in form of procedure headers, section comments
and other comments. The external documentation is split into seven parts, which are listed
in Table 1.2.

Parts I - III form the scientific documentation, which provides information about the theo-
retical and numerical formulation of the model, the parameterization of physical processes
and the four-dimensional data assimilation. The scientific documentation is independent of
(i.e. does not refer to) the code itself. Part IV will describe the particular implementation
of the methods and algorithms as presented in Parts I - III, including information on the
basic code design and on the strategy for parallelization using the MPI library for message
passing on distributed memory machines (not available yet). The generation of initial and
boundary conditions from coarse grid driving models is described in Part V. This part is a
description of the interpolation procedures and algorithms used (not yet complete) as well
as a User’s Guide for the interpolation program INT2LM. Available postprocessing utilities
will be described (in the future) in Part VI. Finally, the User’s Guide of the COSMO-Model
provides information on code access and how to install, compile, configure and run the
model. The User’s Guide contains also a detailed description of various control parameters
in the model input file (in NAMELIST format) which allow for a flexible model set-up for
various applications. All parts of the documentation are available at the COSMO web-site
(www.cosmo-model.org).
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Section 2

Introduction

Processes in the atmosphere span horizontal scales from molecular to planetary, and they
span time scales from less than seconds to longer than annual scales. Because of the limited
space and time resolutions of atmospheric models, some important part of these physical
processes is not accounted for by the explicit solution in the model grid of the basic equations.
This concerns on the one hand all molecular processes as radiation, cloud microphysics and
laminar transport in the immediate vicinity of solid boundaries. On the other hand there
are processes as turbulence and convection. So-called cloud resolving models are able to
explicitly simulate at least part of the convective processes, but in present day numerical
weather prediction models both turbulence and convection are not resolved. All processes
not explicitly simulated by the model which are considered to be important for the model
results have to be dealt with in a special manner which is called parameterization.

Parameterization can be said to be the formulation of the ensemble effect of subgrid-scale
processes on the resolved variables. This is a basic assumption for all parameterizations.
The formulation is again done in terms of the resolved variables. Parameterization methods
rely on a simple modeling of the process under consideration, where at some point a closure
condition is required to link the parameterization to the explicitly resolved processes (see,
e. g., the chapter on convection, where the closure condition plays an especially important
role). For parameterizations to be well posed problems a gap in the space and time scales
between explicitly resolved and parameterized processes is required. If there is no scale gap,
a mixture of resolved and parameterized parts of a process will be present simultaneously in
the simulation. The separation between explicitly resolved and parameterized parts is likely
to depend on the actual atmospheric state. Under such circumstances the formulation of
a parameterization is extremely difficult. A typical example of this problem is convection.
The larger structures of convection (e. g. mesoscale convective complexes) can be resolved
by the grids of present day limited area models, but single updrafts and downdrafts of an
active cell are not resolved. But in contrast to the horizontal scales, the typical time-scale
of penetrating convection is very well resolved by the time-step of numerical models of the
atmosphere. Therefore, the assumption of a formulation of the ensemble effect of a subgrid-
scale process is not fulfilled in the case of convection.

In contrast to global models, the set of LM-parameterizations does not include a subgrid-scale
orography scheme to account for the form drag and the wave drag exerted by the subgrid-
scale part of the mountains. The drag effect is partly accounted for by the formulation of
the influence of subgrid-scale orography on the roughness length (see the section on external
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parameters). The influence of the wave drag on upper tropospheric flow is left to explicitly
resolved motions.

Part II of the LM documentation is organized as follows. In Section 3 the implemented
schemes for the parameterization of subgrid-scale turbulence are described and Section 4 ex-
plains the parameterization of the surface fluxes. Section 5 presents the schemes for describing
grid-scale clouds and precipitation and the moist convection is documented in Section 6. The
documentation of the parameterization of subgrid-scale cloudiness (Section 7) is not included
yet. The radiation scheme is documented in Section 8. The soil and vegetation model, which
is described in Section 10 (for the old 2-layer version) or Section 11 (for the multi-layer
version), resp., deals with the (explicit) prediction of temperature, water and ice content in
the soil. Additionally, the evapotranspiration from the surface of the earth is parameterized.
The derivation of data-sets of external parameters as required by the model (orography,
land-sea-mask, soiltype, roughness length, plant cover, leaf area index) from basic data-sets
(orography, soil texture, land cover) is explained in Section 14.

Part II – Physical Parameterization Section 2: Introduction
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Section 3

Subgrid Scale Turbulence Closure

The parameterization of small-scale turbulence links the resolvable scales and the nonresolv-
able fluctuating scales of motion. Turbulent fluxes provide an exchange of momentum, heat
and humidity between the earth’s surface and the free atmosphere and are thus of crucial
importance for a successful numerical simulation of atmospheric flows.

This Chapter first describes the basic formulation of the turbulent mixing terms in the model
equations for the general case of threedimensional turbulent fluxes. Then, the special case of
one-dimensional, i.e. exclusively vertical turbulent fluxes is discussed, which is based on the
assumption of horizontal homogeneity. The corresponding diagnostic closure scheme of LM
is described. An option for a full threedimensional treatment of turbulence, which may be
used for small-scale simulations, has been implemented lately and is under testing. Finally,
the parameterization of the surface fluxes in the Prandtl layer, which constitute the lower
boundary conditions of the atmospheric part of the model, is discussed.

3.1 Turbulent mixing formulation

The feedback of subgrid scale turbulent diffusion on the grid-scale variables is represented by
the source termsMTD

ψ in the model equations (cf. Part I, (3-143) - (3-150)). First, these terms
have to be transformed to the terrain-following ζ-coordinate system. From their definition
(cf. PartI, (3-69)), the mixing terms are calculated in terms of the Reynolds stress tensor T,
the turbulent flux H of sensible heat and the moisture fluxes Fx according to

MTD
u ≡ −1

ρ
(∇ ·T) · eλ , MTD

v ≡ −1

ρ
(∇ ·T) · eϕ , MTD

w ≡ −1

ρ
(∇ ·T) · ez

for the momentum equations and according to

MTD
T ≡ − 1

ρcpd
∇ · H , MTD

qx ≡ −1

ρ
∇ · Fx

for the heat equation and the equations for the water substances. In order to compute these
terms in the ζ-system, the turbulent fluxes will be expressed with physical vector and tensor
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components respective the unit base vectors of the orthogonal (λ,ϕ, z)-system:

T = τ11eλeλ + τ12eλeϕ + τ13eλez +

τ21eϕeλ + τ22eϕeϕ + τ23eϕez +

τ31ez eλ + τ32ez eϕ + τ33ez ez

(3.1)

H = H1eλ +H2eϕ +H3ez

Fx = F 1
x eλ + F 2

x eϕ + F 3
x ez .

Since the Reynolds stress tensor T is symmetric by definition, its components τ ij obey the
relation τ ij = τ ji. The divergence of these fluxes may be calculated in the terrain-following
system by applying the conservative formulation (cf. Part I, (3-120)). This yields the mixing
terms in the momentum equations as

MTD
u = − 1

ρ
√
G

1

a cosϕ

{
∂

∂λ

(√
Gτ11

)
+

∂

∂ϕ

(√
Gτ12 cosϕ

)}

− 1

ρ
√
G

∂

∂ζ

(
Jλ

a cosϕ
τ11 +

Jϕ
a
τ12 − τ13

)

MTD
v = − 1

ρ
√
G

1

a cosϕ

{
∂

∂λ

(√
Gτ12

)
+

∂

∂ϕ

(√
Gτ22 cosϕ

)}

− 1

ρ
√
G

∂

∂ζ

(
Jλ

a cosϕ
τ12 +

Jϕ
a
τ22 − τ23

)
(3.2)

MTD
w = − 1

ρ
√
G

1

a cosϕ

{
∂

∂λ

(√
Gτ13

)
+

∂

∂ϕ

(√
Gτ23 cosϕ

)}

− 1

ρ
√
G

∂

∂ζ

(
Jλ

a cosϕ
τ13 +

Jϕ
a
τ23 − τ33

)
.

The turbulent mixing term in the heat equation can be written as

MTD
T = − 1

ρcpd
√
G

1

a cosϕ

{
∂

∂λ

(√
GH1

)
+

∂

∂ϕ

(√
GH2 cosϕ

)}

− 1

ρcpd
√
G

∂

∂ζ

(
Jλ

a cosϕ
H1 +

Jϕ
a
H2 −H3

)
, (3.3)

and the impact of turbulent fluxes on the water substances is formulated as

MTD
qx = − 1

ρ
√
G

1

a cosϕ

{
∂

∂λ

(√
GF 1

x

)
+

∂

∂ϕ

(√
GF 2

x cosϕ
)}

− 1

ρ
√
G

∂

∂ζ

(
Jλ

a cosϕ
F 1
x +

Jϕ
a
F 2
x − F 3

x

)
. (3.4)

The parameterization of the turbulent flux Fψ of a scalar quantity ψ is based on K-theory,
which relates the subgrid scale flux to the gradient of ψ and a diffusion coefficient K for
transport. The general constitutive equation for the fluxes is of the form

Fψ = −Kψ · ∇ψ, (3.5)
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where Kψ is a dyadic coefficient for diffusion and −∇ψ takes the role of a thermodynamic
forcing function for the flux. We make use of a very simple structure of the tensor Kψ by

assuming a diagonal form in the z-system and distinguishing a coefficient Kh
ψ for horizontal

transports and a coefficient Kv
ψ for vertical transports:

Kψ = Kh
ψ eλeλ +Kh

ψ eϕeϕ +Kv
ψ ezez . (3.6)

Furthermore, the mixing coefficients are taken to be the same for all scalar quantities, i.e.
for heat, water vapour, liquid water and ice. Denoting these coefficients by Kh

h and Kv
h and

using Eq. (3-116, Part I) for the calculation of ∇ψ in the terrain-following coordinate system,
the constitutive relation (3.5) yields

H1 = − ρcpdπK
h
h

1

a cosϕ

(
∂θ

∂λ
+

Jλ√
G

∂θ

∂ζ

)

H2 = − ρcpdπK
h
h

1

a

(
∂θ

∂ϕ
+

Jλ√
G

∂θ

∂ζ

)
(3.7)

H3 = + ρcpdπK
v
h

1√
G

∂θ

∂ζ

for the physical components of the sensible heat flux H, where π is the Exner-scaled pressure
and θ is potential temperature (see Section 2.2). Correspondingly, the turbulent fluxes of the
moisture variables qx read

F 1
x = − ρKh

h

1

a cosϕ

(
∂qx

∂λ
+

Jλ√
G

∂qx

∂ζ

)

F 2
x = − ρKh

h

1

a

(
∂qx

∂ϕ
+

Jλ√
G

∂qx

∂ζ

)
(3.8)

F 3
x = + ρKv

h

1√
G

∂qx

∂ζ
.

In a similar way, a provision is made to consider anisotropic turbulence for momentum
transports by distinguishing the value of the diffusion coefficient for horizontal momentum
transport, Kh

m, from the value for vertical momentum exchange, Kv
m. The parameterization

of the Reynolds stress tensor is done in terms of a dyadic forcing function D̃, which is taken
to be the anisotropic symmetric part of the dyadic tensor ∇v:

D̃ = ∇v + (∇v)c − 2

3
∇ · vE = D − 2

3
∇ · vE .

Here, (∇v)c is the conjugate of ∇v, D = ∇v + (∇v)c is the deformation tensor and E is
the unit tensor. The constitutive equations for the elements τ ij of the Reynolds stress tensor
read

τ11 = −ρKh
m (D11 − 2D/3)

τ22 = −ρKh
m (D22 − 2D/3)

τ33 = −ρKv
m (D33 − 2D/3)

(3.9)

τ12 = τ21 = −ρKh
mD12

τ13 = τ31 = −ρKv
mD13

τ23 = τ32 = −ρKv
mD23 .
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Dij are the physical components of the deformation tensor with respect to the orthogonal
base vectors ei of the original z-system and D is the wind divergence from Eq. (3-122,
Part I). Since D is symmetric, Dij = Dji. In the terrain-following ζ-coordinate system, the
components Dij can be calculated from

D11 =
2

a cosϕ

(
∂u

∂λ
+

Jλ√
G

∂u

∂ζ
− v sinϕ

)

D22 =
2

a

(
∂v

∂ϕ
+

Jϕ√
G

∂v

∂ζ

)

D33 = − 2√
G

∂w

∂ζ
(3.10)

D12 =
1

a cosϕ

(
∂v

∂λ
+

Jλ√
G

∂v

∂ζ
+ u sinϕ+ cosϕ

∂u

∂ϕ
+ cosϕ

Jϕ√
G

∂u

∂ζ

)

D13 =
1

a cosϕ

(
∂w

∂λ
+

Jλ√
G

∂w

∂ζ

)
− 1√

G

∂u

∂ζ

D23 =
1

a

(
∂w

∂ϕ
+

Jϕ√
G

∂w

∂ζ

)
− 1√

G

∂v

∂ζ
.

The mixing terms MTD
ψ can now be calculated from (3.2) - (3.4) using the turbulent fluxes

according to (3.7) - (3.9), provided that the turbulent diffusion coefficients Kh
h , Kv

h, K
h
m and

Kv
m are known. Thus, the key to a turbulence closure scheme is the determination of these

mixing coefficients in terms of the grid scale variables.

As can be inferred from the equations above, the evaluation of the mixing terms MTD
ψ is

complex and computationally very expensive for the full threedimensional case. This general
case is not yet implemented in the model. At present, only a simplified one-dimensional
closure scheme is available. It makes use of the so-called boundary layer approximation by
neglecting all horizontal turbulent fluxes. This scheme is described in the next section.

3.2 1-D Diagnostic Closure

The diagnostic closure scheme described in this section has been adapted from the oper-
ational hydrostatic model EM and DM of DWD. It makes use of the so-called boundary
layer approximation by imposing horizontal homogeneity of variables and fluxes resulting
in a neglection of all horizontal turbulent fluxes. This approximation is applicable when
the horizontal scales of motion are much larger than the vertical scale, since in this case
the contributions from horizontal turbulent fluxes become negligible when compared to the
dominating vertical transports. The boundary layer approximation is usually justified for
model applications to meso-β scale flow systems.

Using this approximation, the mixing terms MψTD take a much simpler form. With H1 =
H2 = 0 and F 1

x = F 2
x = 0, the source terms due to turbulent vertical mixing in the heat

equation and in the equations for the water substances read

MTD
T =

1

ρ
√
G

∂

∂ζ

(
ρπKv

h√
G

∂θ

∂ζ

)
, (3.11)

MTD
qx =

1

ρ
√
G

∂

∂ζ

(
ρKv

h√
G

∂qx

∂ζ

)
. (3.12)
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The assumption of horizontal homogeneity also implies that the vertical velocity vanishes.
Thus, we set w = 0 with respect to the constitutive relations (3.9) for the stress tensor and
neglect the horizontal stresses by τ11 = τ22 = τ12 = 0. This yields the following form of the
mixing terms in the momentum equations:

MTD
u =

1

ρ
√
G

∂

∂ζ

(
ρKv

m√
G

∂u

∂ζ

)
, (3.13)

MTD
v =

1

ρ
√
G

∂

∂ζ

(
ρKv

m√
G

∂v

∂ζ

)
, (3.14)

MTD
w = 0 . (3.15)

The calculation of the vertical diffusion coefficients for momentum and heat is based on
the hierarchy level 2 approximation of the equations for the second order moments (see,
e.g. Stull (1988)) which are also formulated with the boundary layer approximation. In the
level 2 scheme, the coefficients Kv

m and Kv
h can be derived from a diagnostic form of the

equation for turbulent kinetic energy. This diagnostic form reveals an equilibrium between
the dissipation of turbulent kinetic energy and its production due to mechanical forcing by
vertical shear and thermal forcing by buoyancy.

A detailed theoretical formulation of the scheme is given by Müller (1981). The coefficients
Kv
m and Kv

h for vertical turbulent transport of momentum and heat are defined as

Kv
m = l2S3/2

m

√
M2 − αnShN2 , (3.16)

Kv
h = αnShK

v
m . (3.17)

The characteristic length scale l for vertical mixing is calculated according to a proposal by
Blackadar (1962),

l =
κz

1 + (κz)/l∞
, (3.18)

where κ is the von-Karman constant and l∞ is an asymptotic mixing length. The constant
parameter αn denotes the ratio of the diffusion coefficients for heat and momentum at neutral
thermal stratification, N2 is the squared Brunt-Väisälä frequency

N2 =
g

θv

∂θv
∂z

, (3.19)

where θv = Tv/π is virtual potential temperature, and M2 denotes the square of the vertical
wind shear:

M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

. (3.20)

Sm and Sh are stability functions which depend according to

Sm = 1 − α0Γ

Sh

Sh =
1 − b1Γ

1 − b2Γ
(3.21)
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on the stability parameter Γ, defined as

Γ =
Rf

1 −Rf
. (3.22)

Rf in (3.22) denotes the flux-Richardson number, i.e the ratio of the vertical heat flux and
the vertical flux of momentum. Rf can be calculated from the quadratic equation

Rf = c1

(
Ri+ c2 −

√
Ri2 − c3Ri+ c22

)
, (3.23)

where Ri denotes the gradient-Richardson number:

Ri =
N2

M2
=

g

θv

∂θv
∂z

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}−1

. (3.24)

The constant parameters α0, b1 and b2 in the definition (3.21) of the stability functions and
c1, c2 and c3 in the relation (3.23) for the flux-Richardson number are determined from
some universal constants of turbulence theory and from matching conditions to surface layer
scaling. They take different values for stable conditions (Ri > 0) and for unstable conditions
including the neutral case (Ri ≤ 0). We use the following values of these constants:

stable unstable

α0 = 3.7000 , 4.025

b1 = 2.5648 , 3.337

b2 = 1.1388 , 0.688

c1 = 0.8333 , 1.285

c2 = 0.2805 , 0.2305

c3 = 0.1122 , −0.1023 .

Eq. (3.23) reveals that the scheme does not give a physical meaningful solution for highly
stable stratification when the Richardson number exceeds a critical value. In this case it
is assumed that the diffusion coefficients for momentum and heat are proportional to their
values at neutral stability:

if Ri > Ric : Kv
m = km0l

2M2 Kv
h = αnkh0l

2M2 . (3.25)

The parameters in (3.25) and those from the mixing length formulation (3.18) have the
following values:

Ric = 0.38 ,

km0 = 0.010 ,

kh0 = 0.007 ,

αn = 1.0 ,

κ = 0.4 ,

l∞ = 500m.
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3.3 1-D TKE-Based Diagnostic Closure

The LM standard scheme for vertical turbulent transport is based on a second-order closure
at hierarchy level 2.0 (Mellor and Yamada (1974)), resulting in a traditional diagnostic K-
closure as described above. For the Prandtl-layer, a stability and roughness-length dependent
surface flux formulation according to Louis (1979) is applied (see Section 4.1). Results from
verification and model diagnostics, however, reveal a number of drawbacks:

• There is often insufficient vertical mixing in case of stable stratification during night-
time. This results in too cold and too shallow inversion layers, with a tendency for a
decoupling of the surface and the lower atmosphere.

• Also, at the top of the boundary layer there is insufficient mixing in many cases. Here,
stratiform PBL (planetary boundary layer) clouds tend to disperse too slowly.

• The scheme gives no solution for large Richardson numbers exceeding a critical value.
Thus, there is almost no physical mixing above the boundary layer, which contributes
to a too weak PBL entrainment.

• No distinction is made between the values of variables at the surface and in the rough-
ness height z0. This results in a too small diurnal cycle of surface temperature and too
strong evaporation from bare soils.

Instead of searching for remedies within the diagnostic K-closure, a new scheme based on
prognostic turbulent kinetic energy (TKE) has been developed. Specific features of the
scheme are:

(i) formulation in terms of liquid water potential temperature and total water content,

(ii) inclusion of subgrid thermal inhomogeneities and

(iii) application of a generalized averaging operator to include the interaction of the flow
with solid obstacles (roughness elements such as trees or buildings) within a grid box.

The latter option, however, is not applied operationally. The parameterization of surface-
layer fluxes has also been completely reformulated in the framework of the TKE-scheme (see
Section 4.2). Some details on the new turbulence formulation are described in the following
subsections.

3.3.1 General Concept

The vertical diffusion scheme is based on the second order moments of the basic equations.
In deriving these equations, however, a more general averaging operator is used which takes
solid roughness elements within a control volume (the grid box volume) into account. This
method has first been introduced by Raupach and Shaw (1981) for canopy-layer flow. Let
V0 be the volume of a rectangular control box, and rV = V/V0 the volume fraction which is
filled with air (the remaining portion is filled with solid obstacles). Averaging is then done
by a running volume mean (denoted by an overbar in the following) only for the part V of
V0. For the generic budget equation for a mass-specific quantity ψ,
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∂ρψ

∂t
+ ∇ · (ρvψ − aψ∇ψ) = Qψ , (3.26)

where aψ is the molecular diffusion constant and Qψ is the source function, the following
form of filtered budget equations results:

∂ρψ̂

∂t
+ ∇ · (ρv̂ψ̂ + Fψ − aψ∇ψ) + (Rψvol +Rψmol) = Qψ . (3.27)

Here, the mass-weighted mean ψ̂ = ρψ/ρ with the corresponding turbulent fluctuation ψ′′ =
ψ− ψ̂ is used for mass-specific variables. Fψ = ρv′′ψ′′ denotes the mean turbulent flux. Two
additional terms appear in (3.27) which are related to body-air interactions: A volume term

Rψvol describing the impact of spatial variations of the air-fraction rV , and a surface term

Rψmol which takes molecular fluxes to the solid body surfaces into account. They are defined
by

Rψvol = (ρv̂ψ̂ + Fψ − aψ∇ψ) · ∇(ln rV ) , (3.28)

Rψmol =
1

V

∫

S
(aψ∇ψ) · n dS , (3.29)

where the integration in (3.29) is along the solid body surface S and n is the unit vector
perpendicular to the surface. Using (3.26) and (3.27), the derivation of the second order
moments, i.e. the budget equations for the turbulent fluxes, is straightforward. The resulting
equations, however, will contain additional volume and surface terms corresponding to (3.28)
and (3.29). A special example of a 2-nd order equation is the budget of turbulent kinetic
energy (TKE) et = v′′ · v′′/2:

∂ρêt
∂t

+ ∇ · (ρv̂êt + Fet − µv′′ · ∇v) + (Ret

vol +Ret

mol) = −v′′ · ∇p− ρv′′v′′ · ·∇v̂ − ε . (3.30)

The volume and surface term are given in a similar way as in (3.28) and (3.29), and the
dissipation rate is denoted by ε = µ∇v′′ · ·∇v, where µ is the dynamic viscosity. In the
TKE-equation (3.30), the pressure correlation term may be expanded into

−v′′ · ∇p ≃ − 1

ρθv
Fθv · ∇p+ v̂ · ∇p′ (3.31)

θv is virtual potential temperature and Fθv = Fθ + {1 + (Rv/Ra − 1}Fqv − Fqc denotes
the buoyant heat flux, which is comprised of the turbulent heat flux Fθ, the flux of specific
humidity Fqv and the flux of specific cloud water content Fqc . The second term in the
pressure work function (3.31) represents the formation of TKE due to wake production from
obstacles within the flow. Note that the generalized averaging operator does not commute
with respect to partial spatial differentiation (i.e. ∇p′ 6= ∇p′ = 0). For ∇p′, the well know
isotropic form-drag parameterization is applied.
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For the derivation of the second order budgets, it is sufficient to use a somewhat simplified
set of basic model equations: Coriolis forces, radiation and precipitation are not considered
since the direct impact of these processes on turbulent fluxes is negligible. In order to avoid
source term correlations, it is also convenient to apply a thermodynamically filtered set of
equations where the phase transition rate due to cloud condensation/evaporation does not
occur explicitly. This is achieved by transforming from (θ, qv, qc) to liquid water potential
temperature θl = θ − (LV /cpd)qc and total water qw = qv + qc as dependent variables. Both
θl and qw are conserved during moist adiabatic vertical displacements. The resulting second
order moments will provide relations for the turbulent fluxes of θl and qw. In order to recover
the turbulent fluxes Fθ, Fqv and Fqc – which are required by the original model equations
– from the fluxes Fθl and Fqw of the second order scheme, a closure condition for phase
transitions is required to relate the variables (θ, qv, qc) in a unique way to (θl, qw). We use a
variant of the statistical cloud scheme of Sommeria and Deardorff (1977) for this purpose.
By this scheme, fluctuations in the thermodynamic variables are no longer independent, but
become coupled through instantaneous condensation or evaporation of cloud water. This
results in an equivalent coupling of the corresponding fluxes. For instance, the buoyant heat
flux in (3.31) is given by a linear relation between Fθl and AqF

qw ,

Fθv = AθF
θl +AqF

qw , (3.32)

where the factors Aθ and Aq depend on the saturation fraction rc of a grid volume. rc may
be interpreted as the fractional cloud cover and is also diagnosed by the scheme. Similar
linear relations hold for the calculation of Fθ, Fqv and Fqc in terms of Fθl and Fqw . The
major advantage of this approach is a consistent inclusion of the effects from sub-grid scale
condensation on the turbulent fluxes of heat and moisture.

3.3.2 An Extended level 2.5 Scheme for Vertical Diffusion

For the 5 model variables u, v,w, θl, and qw, the budgets for the corresponding second order
moments build a set of 15 prognostic equations. To arrive at a tractable version, a closure
on level 2.5 (in the notation of Mellor and Yamada (1982)) is applied. That is, local equilib-
rium is assumed for all moments except for TKE, where advection and turbulent transport
is retained. Furthermore, Rotta-type relaxation approximations (return-to-isotropy) for the
pressure covariance terms and Kolmogorov-Heisenberg closure conditions for the dissipation
terms are utilized (see e.g. Stull (1988)). The boundary layer hypothesis of horizontal ho-
mogeneity is applied as usual, since effects from 3-D turbulence can be neglected for the
present meso-β application of the model (these will be incorporated lateron). This leaves
only vertical fluxes in the system of equations, where – with the help of the Boussinesq ap-
proximation – the difference between the mass-weighted and the Reynolds averages becomes
obsolete: ρw′′ψ′′ ≃ ρw′ψ′. We arrive at a set of second order equations with a flux-gradient
representation for the turbulent fluxes in the form

w′ψ′ = −KH ∂ψ

∂z
, KH = qλSH , for ψ = θl, ql (3.33)

w′ψ′ = −KM ∂ψ

∂z
, KM = qλSM , for ψ = u, v (3.34)
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where the turbulent diffusion coefficients for heat (KH) and momentum (KM ) are computed
in terms of corresponding stability functions for scalars (SH) and for momentum (SM ), of
the turbulent length scale λ and of the turbulent velocity scale q =

√
2et. The stability

functions are determined by a set of two linear equations. For λ, the Blackadar mixing
length is assumed and q is predicted using the TKE-equation in the form

∂q2

∂t
+ v · ∇q2 − 1

ρ

∂

∂z

(
αT ρλq

∂q2

∂z

)
= 2KM

{(
∂u

∂z

)2

+

(
∂v

∂z

)2
}

+
2g

θv
w′θ′v −

q3

αMλ
. (3.35)

Here, αM and αT are model constants related to the parameterization of the dissipation term
and the flux-gradient representation of the turbulent TKE-transport, respectively. According
to (3.32) and (3.33), the buoyant heat flux in (3.35) is given by

w′θ′v = −KHΓv , with Γv := Aθ
∂θl
∂z

+Aq
∂qw
∂z

. (3.36)

Γv denotes the effective gradient of virtual potential temperature. For dry conditions (cloud
fraction rc = 0), Γv is given by the gradient of potential temperature, whereas for moist
saturated conditions (cloud fraction rc = 1) Γv is given by the gradient of equivalent potential
temperature. Thus, with increasing cloud fraction rc, the state of neutral thermal stability
is gradually shifted from dry adiabatic to moist adiabatic stratification. Thereby, higher
in-cloud values of turbulent kinetic energy and the corresponding increased vertical mixing
in case of a stratocumulus topped boundary layer are taken into account. Also, cloud-top
entrainment will be simulated directly without a need for further parameterizations.

Besides the inclusion of sub-grid scale condensation, there are two major extensions compared
to traditional level 2.5 schemes. The first is a consistent representation of interactions of
the flow with solid obstacles within a grid volume, both in the grid-scale equations and in
the second order equations. This concept is useful for various research purposes and allows
for instance to resolve canopy layer flows explicitly (flow through porous media). In the
current operational application of the model, however, this option is not used and it will
not be described further. The second extension concerns the inclusion of subgrid thermal
circulations. Inhomogeneities at the rigid surface will always give rise to differential heating
and cooling resulting in direct thermal circulation patterns of a length scale being smaller
than the grid scale but larger than that of small-scale turbulence. In such a situation, there
will be a conversion of kinetic energy related to the circulation patterns (CKE) into TKE
with a positive definite source term. This process will especially prevent the solution of the
TKE-equation to tend to zero in case of very stable thermal stratification and the well known
but unrealistic decoupling of the atmosphere and the surface can be avoided.

The key to get a formulation of this additional source term is the separation of the total
sub-grid scale spectrum of motion into a small-scale turbulent part and a large-scale part
associated with the thermal circulations. The covariance of two variables may then be de-
composed

φ′ψ′ = (φ′ψ′)L + (φ′ψ′)S (3.37)

into a corresponding large-scale part (. . .)L and a small-scale turbulent part (. . .)S . Using
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this decomposition, it is possible to derive 2nd-order budgets for both parts separately.
Formally, those band pass budgets differ from the total budgets only by conversion terms
describing scale interactions of the circulation and the turbulent scales of motion. With a
number of approximations and simplifications, it can be shown that the additional source
term in the TKE equation is mainly formed by the large scale part of the buoyant heat flux.
The simplified equations provide the relation

(w′θ′v)L ∝ τL
g

θv
θ′2v ∝ −τ2

L

g

θv

∂(ρw′θ′2v )L
ρ∂z

, (3.38)

where τL is the circulation time scale. This relation is obtained by considering the 2nd
order large-scale budget of temperature variance only. Due to thermal inhomogeneities at
the rigid surface, temperature variance will always be generated near the surface and then
be transported into the atmosphere. According to (3.38), the large-scale heat flux is positive
definite. Even in a stable boundary layer it is always directed upwards, but it will be over-
compensated by the downward small-scale turbulent fluxes near the surface. The vertical
integral of the total heat flux, however, will remain (slightly) positive, which gives the desired
impact in the TKE equation. In the present version of the scheme, we use the following
parameterization for the large-scale heat flux:

(w′θ′v)L = −Lpat

(
λ

q

)2 g

θv

∂(ρKHΓ2
v)

ρ∂z
. (3.39)

Lpat is a pattern length scale representing the dominant scale of thermal inhomogeneities at
the surface. Currently, Lpat is given a fixed value of 500 m for the model grid spacing of 7 km.
Lateron, this value will be replaced by a location dependent external parameter field. The
large-scale heat-flux parameterized by Eq. (3.39) is added to the small-scale one in (3.36) to
give the total subgrid-scale heat flux used in the TKE equation (3.35).

3.4 3-D TKE-Based Prognostic Closure

3.4.1 Introduction

The parameterization of subgrid-scale turbulent processes, also called a subgrid-scale (SGS)
model, is of particular meaning for highly resolved LES-like model simulations. Compared
with the grid resolution of the current operational application of LM (7 km), the more refined
grid resolution of about 2.8 km of the application LMK (LM-Kürzestfrist), which is under
development at DWD, should have also consequences to choose a more adequate turbulence
parameterization scheme. Such a scheme is expected to avoid the common boundary layer
approximation. It should take into account a three-dimensional SGS model as a natural
extension from a horizontally homogeneous scheme. Whether the three-dimensionality of the
scheme is already imparative for the present LMK grid resolution is still open to be answered,
but in any case this generalization is a good starting point for future grid refinement. In
order to come to a reasonable, first result with not too much effort, we take advantage of
an existing SGS model available from the LLM (96.5 m), which is a LES-like model closely
related to the LM (Herzog et al. (2002) and Herzog et al. (2002)). For the sake of working
economy, this three-dimensional scheme is essentially adopted and implemented in the LM
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code. Although proceeding in a straightforward manner, we have to take into account the fact
that no universal parameterization exists, but we meet always a specific dependence on the
given grid resolution. Apart from first adaptations to the LMK grid resolution further work
is open to be done in this line. It is important to note that this scheme is at the present stage
a dry scheme not yet considering cloud water. The following description documents this first
approach and gives the necessary technical explanation of the implementation background.

3.4.2 Physical conception of the SGS model

We start from the LM equation set, which is rewritten here, emphasising now the turbulent
flux terms in their three-dimensional form:

(
∂ui
∂t

)
= . . .− 1

ρ

∂τij
∂xj

(3.40)

(
∂T

∂t

)
= . . .− 1

cpdρ

∂hj
∂xj

(3.41)

(
∂qk

∂t

)
= . . .− 1

ρ

∂f q
k

j

∂xj
(3.42)

In the following the three-dimensionality of these terms is completely retained. τij (i, j =
1, 2, 3) are the six independent components of the turbulent momentum flux tensor, and

hj and fj
qk

are the vector flux components of heat and water, respectively. The fluxes are
specified by use of a first-order closure assumption, i.e. the fluxes are set proportional to the
local gradient multiplied by a local diffusion coefficient. From a formal point of view it is
possible to assume for the momentum flux tensor the following specification:

τij = −ρKij
m

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.43)

where, in accordance with Hinze (1975), who also gives a critical discussion about, the
diffusion coefficient is assumed to be a second-order tensor either. It is important to note
that the upper indices ij at the diffusion coefficient in (3.43) are not meant to be involved
in the common summation convention. In contrast to the SGS model formulation in the
LLM, where the diffusion coefficients are assumed isotropic, we want to take into account
here anisotropic properties. In that way we will at least distinguish between coefficients in
horizontal and vertical direction. Therefore, the momentum coefficients are set

KH
m := K11

m = K12
m = K22

m
′horizontal momentum′; (3.44)

KV
m := K13

m = K23
m = K33

m
′vertical momentum′. (3.45)
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For the scalar fluxes we stipulate as usual

hj = −cpdρπKj
h

∂Θ

∂xj
, f q

k

j = −ρKj
h

∂qk

∂xj
. (3.46)

π is the Exner function. Further notation of variables makes use of the usual meteorological
symbols. For both the fluxes in (3.46) the scalar or thermal diffusion coefficients have three
components each. We assume for them

KH
h := K1

h = K2
h

′horizontal heat′; (3.47)

KV
h := K3

h
′vertical heat′. (3.48)

In the present scheme we stipulate the following relation between horizontal and vertical
diffusion coefficients in accordance with Schlünzen (1988) and Dunst (1980). The horizon-
tal coefficients are determined from the vertical coefficients by use of an anisotropy factor
considering the aspect ratio between horizontal and vertical mesh with:

KH
m,h := r

√
(a cosϕ∆λ)2 + (a∆ϕ)2

∆z
KV
m,h ≈ r

√
2∆

∆z
KV
m,h. (3.49)

Tentatively, we assume r = 0.1, and ∆ ≈ 2.8km. In particular, we have assumed the ratio
between horizontal and vertical coefficients to be independent of stability. To determine the
horizontal from the vertical coefficients from this relation the vertical coefficient is specified
after Prandtl and Kolmogorov as follows:

KV
m = φm l (e)

1

2

KV
h = φh l (e)

1

2 (3.50)

Here, the length scale l is adopted from Blackadar (1962) as a height-dependent scale of
turbulence

l =
κz(

1 + κz
l∞

) . (3.51)

Apart from the still undetermined factors φm and φh, which are thought to be stability-de-
pendent, we need the determination of TKE

e =
1

2

(
u′iu

′
i

)
, (3.52)

in order to close the given system. For that purpose we invoke the prognostic TKE-equation
quoting Stull (1988), (p.152), which is written
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∂e

∂t
+ uj

∂e

∂xj
= δj3

g

Θv

(
u′jΘ

′
v

)
− (u′iu

′
j)
∂ui
∂xj

−
∂
(
u′je
)

∂xj
− 1

ρ

∂
(
u′jp

′
)

∂xj
− ǫ, (3.53)

where the usual summation convention is valid. To come to a useful prognostic equation from
(3.53), some parameterization of it is necessary to be done next. Using the flux-gradient spec-
ification and the distinction between horizontal and vertical diffusion coefficients according
to (ref3dtke-5), (ref3dtke-6) and (ref3dtke-8), (ref3dtke-9), we arrive at

∂e

∂t
+ uj

∂e

∂xj
= −KV

h N
2 +KH

mS
2
H +KV

mS
2
V +

+2

(
∂

∂x1

(
KH
m

∂e

∂x1

)
+

∂

∂x2

(
KH
m

∂e

∂x2

))
+ 2

∂

∂x3

(
KV
m

∂e

∂x3

)
− cǫ

e
3

2

l
. (3.54)

Obviously, the dissipation term ǫ of equation (3.53) has been specified in a form corresponding
to the last term on the right-hand side of (3.54), where cǫ is a tuning parameter still open
to be determined finally. Further, we have introduced the Brunt-Väisälä frequency squared,

N2 = g

Θv

∂Θv

∂z , in the buoyant production term. Due to the distinction between a horizontal

and a vertical diffusion coefficient the shear production term has been split up as follows.
From the general definition of the strain tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.55)

we define horizontal and vertical components from the deformation squared

S2 = 2SijSij (3.56)

as follows

S2
H = 2(S2

11 + S2
22) + 4S2

12, S2
V = 2S2

33 + 4(S2
13 + S2

23). (3.57)

to obtain then

S2 = S2
H + S2

V .

where this splitting-up is a logical association to the corresponding one of the diffusion
coefficients. Finally, both the turbulent TKE transport term, which is a triple-correlation
term, and the pressure correlation term in (3.53) are collected to form turbulent diffusion
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terms as seen above in (3.54). Instead of an explicit new turbulent diffusion coefficient for
TKE, it is crudely parameterized by twice the momentum coefficient (Stevens et al. (2000)).
Solving this TKE-equation as an additional slow mode prognostic equation of the entire
model system, the TKE involved in the Prandtl-Kolmogorov specification (3.50) is found. In
order to complete the determination of the vertical coefficients KV

m,h from (3.50), we need the
knowledge of the parameters φm and φh. They are to be determined as functions of stability
to obtain a stability-dependent Prandtl number:

Pr =
KV
m

KV
h

=
φm
φh

. (3.58)

In order to come to a reasonable solution, we start as an interlude from an updated version
of a SGS-model primarily introduced by Mellor and Yamada (1974) and provided for the
earlier operational DWD model EM and DM in a more appropriate form by Müller (1981).
In our context with the prognostic TKE equation above this approach is characterised to
fulfil an equilibrium limit case:

KV
mS

2
V −KV

h N
2 − cǫ

e
3

2

l
= 0. (3.59)

In this model the diffusion coefficients read

KV
m = l2σ3/2

m

(
S2
V − αnσhN

2
)1/2

,

KV
h = αnl

2σhσ
3/2
m

(
S2
V − αnσhN

2
)1/2

. (3.60)

The stability dependence is given here in terms of the σm and σh having

σm =
(1 − α0Γ)

σh
, σh =

(1 − b1Γ)

(1 − b2Γ)
. (3.61)

with

Γ =
Rf

(1 −Rf )
, Rf = c1

(
RiV + c2 −

√
Ri2V − c3RiV + c22

)
. (3.62)

For the constants see Section 3.2. The local Richardson number is given by

RiV =
N2

S2
V

, (3.63)
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and the turbulence length scale is taken from (3.51). Because of (3.60) the Prandtl number
reads here

Pr =
1

αnσh
. (3.64)

Due to the assumption of an equilibrium limit TKE equation for the given Mellor-Yamada
model the associated TKE is directly found from (3.59) as

e = c−2/3
ǫ σ3/2

m l2S2
V

(
1 − Pr−1RiV

)
. (3.65)

This value is used as an initial condition to start the integration of the prognostic TKE
equation from. Reminding the purpose of this SGS model once again, we now stipulate
its reasonable approximate connection with the more general TKE equation in such a way
that for the equilibrium limit case the Prandtl-Kolmogorov specification for the diffusion
coefficients (3.50) should coincide with the a-priori equilibrium specification (3.60), which
gives

φm l (e)
1

2 = l2 σ2/3
m (S2

V − αnσhN
2)1/2, (3.66)

and with (3.65)

φm = cǫ
1/3σm. (3.67)

Since the Prandtl number is given by (3.64), the associated expression for φh is as follows

φh = αnc
1/3
ǫ σmσh. (3.68)

This result is now used to be valid as a reasonable parameterization of φm and φh for the
general case solving the prognostic TKE equation with a stability-dependent Prandtl number
for (3.50).

3.4.3 Numerical approximation

Before the LM-specific numerical approximation of the SGS-model can be given, some ex-
planation about the following formulation is necessary. In Section 3.4.2, where the physical
conception is emphasized, important properties concerning spherical coordinates in the hor-
izontal as well as the special terrain-following vertical coordinate were deliberately ignored
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for the sake of clearness. Here, these aspects have to be taken into account, although their
consideration is made approximately. The metric terms both from the horizontal spherical
and the generalized vertical coordinate have been dropped. While this simplification may be
surely justified concerning the horizontal aspect, the vertical metric terms might be signifi-
cant at least in case of steeper mountain slopes. Nevertheless, we ignore the latter, too, for the
sake of convenience, because the difference approximation of these terms brings about a lot of
difficulties, which we want to evade in the first place. A more thorough treatment considering
metric terms neatly is still open and should be persued in line with more general formulations
of the LM documentation. For the following difference formulae we have strictly adopted all
the rules and definitions of differencing and averaging operators applied in the LM numerics
as documented in the first part of this documentation (Part I: Dynamics and Numerics; see
Doms and Schättler (2002)). This documentation is also obligatory upon the definition of all
model variables, symbols, general indexing etc. we have used and not explained expressively
here. Additionally, the placement of new variables and entities concerning the SGS-model
on the horizontal C-grid and the vertical Lorenz-grid is documented in Herzog et al. (2002),
but is self-evident with the governing rules of differencing and averaging. The main issue of
the scheme is seen to be a consistent implementation in the given dynamics and numerics
of the new dynamical core. This rests on two types of two-timelevel Runge-Kutta-schemes
(normal 3rd-order or TVD-variant of 3rd-order) combined with forward-backward-scheme
for the fast-mode equation part Förstner and Doms (2004) and Doms and Förstner (2004)).

For the relevant prognostic equations we have to incorporate here terms expressing the three-
dimensional divergence of a turbulent flux for all three space directions. For the momentum
equations they read in the appropriate difference form

(
∂u

∂t

)(n)

= . . .− 1

ρ(n)
λ

[
1

a cosϕ

(
δλτ11 + cosϕδϕτ12

)(n) − 1
√
G
λ

(
δζτ13

)(n,n+1)

]
(3.69)

(
∂v

∂t

)(n)

= . . .− 1

ρ(n)
ϕ

[
1

a cosϕ

(
δλτ12 + cosϕδϕτ22

)(n) − 1
√
G
ϕ

(
δζτ23

)(n,n+1)

]
(3.70)

(
∂w

∂t

)(n)

= . . .− 1

ρ(n)
ζ

[
1

a cosϕ

(
δλτ13 + cosϕδϕτ23

)(n) − 1
√
G
ζ

(
δζτ33

)(n,n+1)

]
.(3.71)

For the six turbulent stress components follows
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τ
(n)
11 = −ρ

(n)KH
m

(n)
ζ

a cosϕ
2δλu

(n) (3.72)

τ
(n)
12 = −ρ

(n)KH
m

(n)
ζ
λ,ϕ

a cosϕ

(
δλv

(n) + cosϕδϕu
(n)
)

(3.73)

τ
(n,n+1)
13 = −ρ

(n)
ζ
KV
m

(n)
λ

a cosϕ
δλw

(n) +

((
ρ(n)

√
G

)ζ
KV
m

(n)

)λ(
β+
d δζu

(n+1) + β−d δζu
(n)
)
(3.74)

τ
(n)
13 = −ρ

(n)
ζ
KV
m

(n)
λ

a cosϕ
δλw

(n) +

((
ρ(n)

√
G

)ζ
KV
m

(n)

)λ

δζu
(n), (3.75)

τ
(n)
22 = −ρ

(n)KH
m

(n)
ζ

a
2δϕv

(n) (3.76)

τ
(n,n+1)
23 = −ρ

(n)
ζ
KV
m

(n)
ϕ

a
δϕw

(n) +

((
ρ(n)

√
G

)ζ
KV
m

(n)

)ϕ(
β+
d δζv

(n+1) + β−d δζv
(n)
)
(3.77)

τ
(n)
23 = −ρ

(n)
ζ
KV
m

(n)
ϕ

a
δϕw

(n) +

((
ρ(n)

√
G

)ζ
KV
m

(n)

)ϕ

δζv
(n) (3.78)

τ
(n,n+1)
33 =

((
ρ(n)

√
G

)ζ
KV
m

(n)

)ζ

2

(
β+
d δζw

(n+1) + β−d δζw
(n)

)
. (3.79)

In a similar way the turbulent fluxes of sensible heat and moisture are considered

(
∂T

∂t

)(n)

= . . .− 1

ρ(n)

[
1

a cosϕ

(
δλh1 + cosϕδϕh2

)(n) − 1√
G

(
δζh3

)(n,n+1)

]
(3.80)

h
(n)
1 = −π

(n)ρ(n)KH
h

(n)
ζ
λ

a cosϕ
δλ

(
T

(n)

π(n)

)
(3.81)

h
(n)
2 = −π

(n)ρ(n)KH
h

(n)
ζ
ϕ

a
δϕ

(
T

(n)

π(n)

)
(3.82)

h
(n,n+1)
3 =

(
π(n)ρ(n)

√
G

)ζ
KV
h

(n)

(
β+
d δζ

(
T

(n+1)

π(n+1)

)
+ β−d δζ

(
T

(n)

π(n)

))
(3.83)

(
∂qk

∂t

)(n)

= . . .− 1

ρ(n)

[
1

a cosϕ

(
δλf

qk

1 + cosϕδϕf
qk

2

)(n) − 1√
G

(
δζf

qk

3

)(n,n+1)

]
(3.84)
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f q
k

1

(n)
= −ρ

(n)KH
h

(n)
ζ
λ

a cosϕ
δλq

k(n)
, (3.85)

f q
k

2

(n)
= −ρ

(n)KH
h

(n)
ζ
ϕ

a
δϕq

k(n)
, (3.86)

f q
k

3

(n,n+1)
=

(
ρ(n)

√
G

)ζ
KV
h

(n)
(
β+
d δζq

k(n+1)
+ β−d δζq

k(n)
)
. (3.87)

As can be seen, all horizontal turbulent diffusion terms are treated by forward-in-time dif-
ferences, and so those terms of vertical momentum fluxes arising from the consideration
of horizontal inhomogeneities. The rest of vertical diffusion terms is treated implicitly by
a Crank-Nicholson scheme. This leads together with the vertical advection terms to a tri-
diagonal vertical structure equation to be solved by a Gaussian elimination procedure.

In the following we add the numerics concerning the SGS-TKE model, starting from the
TKE-equation (3.58), but here in spherical coordinates and using the LM-specific vertical
coordinate. Due to a strict adaptation to the given LM numerics the spatial differencing is
straightforward. Concerning the time differencing, a “mixed” scheme is applied: horizontal
advection is approximated by a positive-definite advection scheme proposed from Lin and
Rood (1996), for vertical advection and vertical diffusion a partially implicit Crank-Nicholson
scheme is applied, and horizontal diffusion as well as source/sink-terms like shear production,
buoyant production/consumption, dissipation are treated by a time-forward scheme.

For the following analysis we start from the analytic formulation of the TKE-equation in
spherical coordinates

∂e

∂t
= −

[
1

a cosϕ

(
u
∂e

∂λ
+ v cosϕ

∂e

∂ϕ

)]
− ζ̇

∂e

∂ζ

+
1

a cosϕ

∂

∂λ

(
2Km

∂e

a cosϕ∂λ

)
+

1

a

∂

∂ϕ

(
2Km

∂e

a∂ϕ

)

+
1√
G

∂

∂ζ

(
1√
G

2Km
∂e

∂ζ

)

+KH
mS

2
H +KV

mS
2
V −KV

h N
2 − cǫ

e
3

2

l

(3.88)

with

S2
H = 2

[(
∂u

a cosϕ∂λ

)2

+

(
∂v

a∂ϕ

)2
]

+

(
∂u

a∂ϕ
+

∂v

a cosϕ∂λ

)2

(3.89)

S2
V = 2

(
1√
G

∂w

∂ζ

)2

+

(
∂w

a cosϕ∂λ
− 1√

G

∂u

∂ζ

)2

+

(
∂w

a∂ϕ
− 1√

G

∂v

∂ζ

)2

. (3.90)

The TKE-equation in difference form reads
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(
∂e

∂t

)(n)

= ADV PD
H
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+ADV PD

V
(n)

+ TDIFH
(n)

+
1

√
G
ζ
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[
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G
ζ
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)ζ(
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d δζe
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)]

+QS
(n)
k .

(3.91)

ADV
PD(n)
H and ADV

PD(n)
V are symbols of the horizontal and vertical advection terms for-

mulated by a positive definite advection scheme of Lin and Rood (1996).

The abbreviations above are defined as follows:

TDIFH
(n) =
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a cosϕ

(
2KH

m
(n)

λ δλe
(n)

a cosϕ

)
+
δϕ
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)
(3.92)

QS(n) = KH
m
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(n)
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√
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The local Richardson number reads

Ri =
g
(
Θv,k − Θv,k−1

)

S2
(
Θv,k + Θv,k−1

)(
zk+1 − zk−1

) , (3.96)

provided S2 = S2
H + S2

V ≥ S2
min > 0.

Some terms of equation (3.91) are summarized to

Σ(n) = ADV PD
H

(n)
+ADV PD

V
(n)

+ TDIFH
(n) +QS(n). (3.97)

For the vertical diffusion we use an implicit Crank-Nicolson scheme

Part II – Physical Parameterization Section 3: Subgrid Scale Turbulence Closure



3.4 3-D TKE-Based Prognostic Closure 30
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With the further definition of coefficients Ak, Bk, Ck and Dk of the tridiagonal matrix

Ak = β+
d A

d
k (3.99)

Bk =
1

∆t
−Ak − Ck (3.100)

Ck = β+
d C

d
k (3.101)

Dk =
1

∆t
e
(n)
k + Σ

(n)
k + β−d A

d
k

(
e
(n)
k − e

(n)
k−1

)
− β−d C

d
k

(
e
(n)
k+1 − e

(n)
k

)
(3.102)

and
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√
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(n)
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√
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k−1

, Cdk = − 2
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(
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(3.103)

we are able to write down a closed set of discretized TKE-equations forming a tri-diagonal

vertical structural equation set for determining e
(n+1)
k , which is the TKE at each vertical

half-level k (in accordance with program code indexing) and at the prognostic time level
n+ 1, where in the present version the upper and lower boundary condition e1 = eke1 = 0 is
involved:

B2e
(n+1)
2 +C2e

(n+1)
3 = D

(n)
2 , (3.104)

Ake
(n+1)
k−1 +Bke

(n+1)
k + Cke

(n+1)
k+1 = D

(n)
k for k ∈ [3, ke − 1], (3.105)

Akee
(n+1)
ke−1 +Bkee

(n+1)
ke = D

(n)
ke . (3.106)

To solve this system, a Gaussian elimination procedure is used. For this, the functions
Ak, Bk, Ck and Dk are known, because they are defined at time levels n and n + 1, re-
spectively. The equilibrium case (3.70) is used to determine the initial values of ek. These
values have been kept constant in time during the integration course over the two grid point
rows nearest to the lateral boundary.
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Section 4

Parameterization of the Surface
Fluxes

Mesoscale numerical modelling is often very sensitive to surface fluxes of momentum, heat
and moisture. These fluxes provide a coupling between the atmospheric part of the model
and the soil model. LM uses a stability and roughness-length dependent surface flux formu-
lation which is based on modified Businger relations (Businger et al. (1971)). Instead of the
commonly used iteration method, an analytic procedure according to Louis (1979) is applied
in the flux calculation for a much improved computational efficiency. This formulation was
further modified to achieve more realistic results for both highly stable and highly unstable
thermal stratification.

4.1 The Standard Bulk-Transfer Scheme

This Section describes a stability and roughness-length dependent surface flux formulation
based on Louis (1979). It is recommended to apply this scheme when using the 1-d diagnostic
turbulence scheme described in Section 3.2.

4.1.1 Formulation of the Surface Fluxes

The surface fluxes enter the atmospheric part of the model as the lower boundary conditions
for the turbulent momentum stresses τ13 and τ23 in the mixing terms MTD

u and MTD
v of the

equations for horizontal momentum [Eq.(3.2)], for the sensible heat flux H3 in the mixing
term MTD

T of the heat equation [Eq.(3.3)] and for the turbulent flux of water vapour, the
moisture flux F 3

qv in the mixing term MTD
qv of the prognostic equation for qv [Eq.(3.4)] at

the ground surface. The turbulent surface fluxes of the liquid and solid water substances are
set to zero.

The momentum fluxes at the earth’s surface are parameterized by a drag-law formulation:
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τ13
sfc = − ρCdm|vh|u

(4.1)

τ23
sfc = − ρCdm|vh| v

Here, u and v are the horizontal velocity components at the lowest grid level above the
surface and |vh| ≡ (u2 + v2)1/2 is the absolute wind speed at the same level. Cdm is the drag
coefficient for momentum exchange at the ground.

The surface flux of sensible heat is defined accordingly,

H3
sfc = − ρCdh |vh| (θπsfc − Tsfc ) , (4.2)

where Cdh is the bulk-areodynamical transfer coefficient for turbulent heat exchange at the
surface. θ and πsfc are, respectively, the potential temperature at the lowest grid level above
the earth’s surface and the scaled pressure at the ground. Tsfc is the ground temperature
which is either predicted by the soil model or can be specified by an external boundary field.

The parametric relation for surface flux of water vapour reads

(F 3
qv )sfc = − ρCdq |vh| (qv − qvsfc ) , (4.3)

where Cdq is the bulk-aerodynamical coefficient for turbulent moisture transfer at the surface.
qv is the specific humidity at the lowest grid level above the ground and qvsfc is the ground
level specific humidity. qvsfc is either predicted by the soil model or can be specified as an
external boundary field.

The transfer coefficients Cdm and Cdh are calculated diagnostically as described below. In the
present version of the model Cdq = Cdh is assumed.

4.1.2 Transfer Coefficients Over Land

Formally, the Monin-Obukhov similarity theory for the constant-flux or surface layer can be
used to derive the bulk transfer coefficients Cdm and Cdh. Let u∗ be the frictional velocity, θ∗
the surface-layer temperature scale, L the Monin-Obukhov length scale and ξ the L-scaled
height defined by

u∗ ≡
{(
τ13
sfc/ρ

)2
+
(
τ23
sfc/ρ

)2}1/4

θ∗ ≡ − 1

ρcpdπsfc

H3
sfc

u∗
(4.4)

L ≡ θu2
∗

κgθ∗
.

ξ ≡ z

L
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According to similarity theory, the vertical variation of wind speed and potential temperature
within the surface layer is related to the stresses and the heat flux by flux-profile relationships
in the form

d|vh|
dz

=
u∗
κz

Φm(ξ) (4.5)

dθ

dz
=

θ∗
κz

Φh(ξ) (4.6)

where the profile functions Φm and Φh depend on the dimensionless height parameter ξ only.

Based on field experiment data, Businger et al. (1971) and Dyer (1974) independently esti-
mated the functional form of the profile functions to be

Φm(ξ) =





1 + 4.7ξ if ξ > 0 (stable)

1 if ξ = 0 (neutral)

(1 − 15ξ)−1/4 if ξ < 0 (unstable)

(4.7)

Φh(ξ) =





αn(1 + 6.4ξ) if ξ > 0 (stable)

αn if ξ = 0 (neutral)

αn(1 − 9ξ)−1/2 if ξ < 0 (unstable)

(4.8)

As in Section 3.2, αn denotes the ratio of the transport coefficients for heat and momentum
at statically neutral stratification. Businger et al. (1971) derived the value αn = 0.74 from
the experimental data. An improved re-evaluation of these data by Högström resulted in a
value of 0.95 for αn. For the parameterization of the surface fluxes in LM we set αn = 1 for
simplicity.

Using the analytical form (4.7) and (4.8) for the profile functions, the flux-profile relation-
ships (4.5) and (4.6) may be integrated with height from z = z0 to z = h. z0 denotes the
aerodynamical roughness length and h is any height within the constant-flux layer. Usually,
the top height of the surface layer is in the range of 10m to 30m. In order to apply the
similarity theory to parameterize the surface fluxes, the lowest terrain-following grid level of
the model must be placed within the constant-flux layer. We then can identify h with the dif-
ference between the height of the lowest model level and the terrain height. The integration
of the momentum flux relation yields

|vh|
u∗

=
1

κ

{
ln

(
h

z0

)
+ Ψm

(
h

L
,
z0
L

)}
(4.9)

for the wind speed |vh| at height h, i.e. at the lowest grid level of the model. Ψm is an
integrated form of the profile function Φm. For the Dyer-Businger profile (4.7) Ψm has the
analytic form
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Ψm

(
h

L
,
z0
L

)
=





4.7 (h/L− z0/L) , if L > 0 (stable)

1.0 , if L = 0 (neutral)

−2 ln {(1 + x)/(1 + x0)}
− ln

{
(1 + x2)/(1 + x2

0)
}

+2 arctan x− 2 arctan x0 , if L < 0 (unstable)

with x = (1 − 15h/L)1/4 and x0 = (1 − 15z0/L)1/4.

From (4.9) and the parametric relation (3.24) for the surface stresses, the following equation
for the drag coefficient Cdm may be derived:

Cdm =
u2
∗

|vh|2
= κ2

{
ln

(
h

z0

)
+ Ψm

(
h

L
,
z0
L

)}−2

. (4.10)

A corresponding equation for Cdh results in a similar way from the integration of the heat flux
relation (4.6). Thus, on the condition that the stability, the heat flux and the stresses are
known in terms of L, θ∗ and u∗, the transfer coefficients can be calculated from any specified
set of profile functions Φm and Φh.

In practice, however, these equations have to be used in reverse: The heat flux and the
stresses have to be estimated from the wind and the temperature profile before (4.10) can
be applied. This is much more difficult because u∗ and θ∗ appear, hidden in L, on the right
hand side of (4.10). This equation in turn is required to calculate u∗ and θ∗. The resulting
coupled set of equations has no analytic solution and involves a computationally expensive
iterative approach.

One way around this problem is to simplify the flux-profile relationships and to use the
gradient Richardson number Ri as a stability parameter instead of L. Since Ri is based on
vertical gradients of potential temperature and wind speed, it is easily calculated directly
from the model variables (or experimental data).

For the parameterization of the surface fluxes in LM we apply a method that has been
proposed by Louis (1979). In this approach, the iterative solutions are approximated by
simple analytical functions which relate the transfer coefficients to the roughness length,
the height h within the surface layer and the bulk Richardson number RiB as a practical
stability parameter. RiB is a discrete analogue of Ri. For the lowest grid level of the model
with height h above the terrain height, it has the form

RiB =
g

θsfc

(θ − θsfc)(h− z0)

(u2 + v2)
. (4.11)

The Louis method states the following equations for the transfer coefficients which resemble
the basic functional form (4.10) from similarity theory:

Cdm = Cdm,n fm(RiB , h/z0) ,

(4.12)

Cdh = Cdh,n fh(RiB , h/z0, h/zh) .
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Here, the suggestion of Segami et al. (1989) is included as an extension of the original version
of the scheme by considering a roughness length zh for heat exchange in addition to z0. C

d
m,n

and Cdh,n are the transfer coefficients at neutral stratification, and fm and fh are stability
functions which approximate the iterative solutions for non-neutral conditions in the constant
flux layer. The transfer coefficients for the neutral case are given by

Cdm,n = κ2 {ln(h/z0)}−2 ,

(4.13)

Cdh,n = κ2 {ln(h/z0)}−1 {ln(h/zh)}−1 .

The roughness length for heat exchange is, in a simple approach, set to the minimum of z0
and a limiting value zh,max in order to avoid excessive heat exchange over rough terrain:

zh = min (z0, zh,max) . (4.14)

The functional form of fm and fh may be chosen to include the limiting cases of lami-
nar flow in a highly stable surface layer and of free convection at statically very unstable
stratifications. For these cases, the commonly used iterative method breaks down and the
Monin-Obukhov similarity theory does not hold either.

Especially, as was pointed out by Louis (1979), the laminar flow case may cause problems
in numerical models. The iterative solution based on the Dyer-Businger flux-profile relations
results in a critical Richardson number with the value Ric ≃ 0.2. Turbulent flows with Ri
beyond this value are expected to become laminar, i.e. the transfer coefficients will vanish.
However, this would completely decouple the atmosphere from the surface in a numerical
model, resulting in a detrimental impact on the low-level flow structure. Therefore, the
stability functions are chosen such that a critical Richardson number is not involved and
the transfer coefficients asymptotically approach zero with increasing static stability. This is
in accordance with recent theoretical and laboratory research which suggests that laminar
flows become turbulent at Ri ≈ 0.25 but that the termination of turbulence takes place at
much higher static stability with Ri ≈ 1; intermittent turbulence may occur at even higher
stabilities.

The analytical form of the stability functions fm and fh in LM follows the formulation in the
ECMWF-model (ECMWF (1991). In case of a statically stable surface layer these functions
are defined by (RiB ≥ 0)

fm =
1

1 + 2 bRiB (1 + dRiB)−1/2

(4.15)

fh =
1

1 + 3 bRiB (1 + dRiB)1/2

and in case of unstable stratification fm and fh are given by (RiB < 0)
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fm = 1 +
2 b |RiB |

1 + 3 b cCdm,n
{

(h/z0)1/3 − 1
}3/2√|RiB |

(4.16)

fh = 1 +
3 b |RiB |

1 + 3 b cCdh,n
{

(h/zh)1/3 − 1
}3/2√|RiB |

.

The limiting case of free convection with |vh| → 0 and RiB → −∞ is included in this
formulation: Using (4.16) the product Cdh|vh| in the parametric equation (4.2) for the surface
heat flux may be rewritten as

Cdh |vh| = Cdh,n


|vh| +

3 b |vh|2 |RiB |

|vh| + 3 b cCdh,n
{

(h/zh)1/3 − 1
}3/2

√
|vh|2|RiB |


 .

With (4.11) for the bulk Richardson number, this equation reveals the limiting value

lim
|vh|→0

Cdh |vh| =
{(g/θsfc)|θ − θsfc|(h− zh)}1/2

c
{

(h/zh)1/3 − 1
}3/2

(4.17)

and thus a nonzero heat flux for the case of free convection. A corresponding value can be
derived for the factor Cdm|vh| in the equations (4.1) for the stresses. However, as this factor
is multiplied by the horizontal wind components, the resulting surface flux of horizontal
momentum becomes zero.

The following values are used for the free parameters of the scheme:

κ = 0.4 ,

b = c = d = 5.0 ,

zh,max = 0.1m.

4.1.3 Transfer Coefficients Over Water

Over the sea surface, the same procedure as in the previous section is used to compute the
transfer coefficients Cdm and Cdh. The only exception is an approximation to the denominator
of the stability functions fm and fh for unstable stratification, which is based on the fact
that over water z0 and zh are usually very small when compared to the height h of the first
model layer adjacent to the surface. Thus, for Rib < 0 the functions fm and fh are replaced
by
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fm = 1 +
2 b |RiB |

1 + 3 b cCdm,n (h/z0)
1/2
√

|RiB |
,

(4.18)

fh = 1 +
3 b |RiB |

1 + 3 b cCdh,n (h/zh))
1/2
√

|RiB |
.

In contrast to the land surface, however, the surface roughness over water is a function of
surface conditions which vary with the wind speed. In LM, we use the modified Charnock-
formula

z0 =
αc
g

max(u2
∗, w

2
∗) (4.19)

with αc = 0.0123 to calculate the surface roughness length for momentum over open water.
For water surfaces covered with ice the constant value z0 = 0.001m is specified. w∗ is the
scaling velocity for free convection which is defined according to

w∗ =

{
g(h − z0)

ρcpdTsfc
H3
sfc

}1/3

in terms of the surface heat flux H3
sfc. The maximum of u2

∗ and w2
∗ is chosen in (4.19) to

avoid too small values of z0 for stability ranges close to the limit of free convection.

Inserting the drag-law formulation (4.1) to the definition of the friction velocity (4.4) and
the heat flux formulation (4.2) into the definition of the convective velocity scale yields

u∗
2 = Cdm,n|vh|2 fm(RiB , h/z0) ,

(4.20)

w∗
2 =





{
Cdh,n|vh|

3 |RiB | fh(RiB , h/z0 , h/zh)
}2/3

if RiB < 0 ,

0 if RiB ≥ 0 .

The direct use of (4.20) in the Charnock-formula (4.19) results in a complex relationship for
the sea surface roughness length because u∗ and w∗ depend also on z0. An iteration technique
could be applied to solve this equation. Such an expensive method is avoided by shifting the
iteration to the time integration: The z0-value from the previous time step t − ∆t is used
for the calculation of u∗ and w∗ with (4.20) at time level t; z0 is then easily calculated from
(4.19) and used in the next time step t+ ∆t to evaluate the new values of u∗ and w∗.

This procedure requires an estimate zi0 of the roughness length at initial time. The estimate
is taken from an empirical bulk-formula for the stresses in terms of the wind speed at screen
level height h10 = 10m, and from free convective scaling using the limiting value (4.17):

gzi0 = max





αc|vh|2

[(1/β10) + (1/κ) ln(h/h10)]
2 ,

(
αc|vh|2|RiB |

)3/2

c(gh)1/2





(4.21)
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This maximum condition is evaluated for unstable stratification with RiB < 0. For a stati-
cally stable surface layer, zi0 is calculated from the first term in (4.21). The constant param-
eter β10 is set to β10 = 0.042.

4.2 The New TKE-Based Surface Transfer Scheme

The new LM surface-layer scheme is intimately related to the TKE scheme described in
Section 3.3. Here, the surface layer is defined to be the layer of air between the earth surface
and the lowest model level. We subdivide the surface layer into a laminar-turbulent sub-
layer, the roughness layer, and a constant-flux or Prandtl layer above. The roughness layer
extends from the non-planar irregular surface, where the turbulent distance l = λ/κ (λ is the
turbulent length scale and κ is the von Karman constant) is zero, up to a level l = H, such
that l is proportional to the vertical height z within the Prandtl layer above. We choose H
to be equal to the dynamical roughness length z0. The lower boundary of the constant-flux
layer (and of the atmospheric model) is defined to be a planar surface at a turbulent distance
l = H from the surface. This subdivision allows to discriminate between the values of the
model variables at the rigid surfaces (predicted by the soil model) and values at the level
l = H, which are ’seen’ by the atmosphere.

For both layers, the fluxes are written in resistance form, where a roughness layer resistance is
acting for scalar properties but not for momentum. Specific interpolation schemes are used to
calculate the transport resistances of the layers. The new surface scheme does not make use of
empirical Monin-Obukhov stability functions, rather it generates these functions by the use
of the dimensionless coefficients of the Mellor-Yamada closure and the interpolation rules. As
the Mellor-Yamada closure has been comprehensively tested in numerous applications, the
estimates of its coefficients are fairly reliable. This tends to reduce the number of LM model
parameters to be tuned. However, a number of additional model parameters and external
parameters related to the roughness layer have been introduced. They describe the impact
of various types of the underlying surface on the vertical profiles functions and the transport
resistances of momentum, heat and moisture in more detail. These parameters have been
tuned in a number of parallel runs.
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Section 5

Grid-Scale Clouds and
Precipitation

Clouds and precipitation are of crucial importance in the water and energy cycle of the at-
mosphere. A good representation of clouds, precipitation and the cloud/radiation interaction
is thus essential for an accurate direct prediction of local weather elements.

The formation of clouds and the subsequent development of precipitation result from vari-
ous microphysical processes which are highly interactive and quite dependent on the ambient
thermodynamic conditions. Furthermore, the microphysical processes have a strong impact
on the thermodynamics and the overall hydrological cycle via both direct and indirect feed-
back mechanisms.

5.1 General Aspects

In a cloudy atmosphere, water substance can take on a wide variety of forms that develop
under the influence of three basic microphysical processes:

• Nucleation of particles

• Particle growth by diffusion

• Growth by interparticle collection and break-up

With respect to precipitation formation, these processes form a temporal sequence, where
nucleation precedes diffusion growth, which precedes growth by collection. Additional mi-
crophysical processes that have to be taken into account are

• Fallout of particles due to gravity diffusion (sedimentation)

• Melting of ice particles

• Ice enhancement due to fragmentation and splintering
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These individual processes may be studied separately in the laboratory or by theoretical
and numerical models. However, one should realize that in the life cycle of a natural cloud
several or all of the microphysical processes occur simultaneously. Thus, as the various forms
of water and ice particles coexist and interact with the overall cloud ensemble, the result of
the action of the microphysical processes is often synergistic, i.e. the result is more than a
simple summation of the individual processes.

Most microphysical processes are quite dependent on the particle size and shape. That is,
the size distribution of the particles may have a strong impact on the overall evolution of a
cloud. Whereas liquid-phase particles can be assumed to be spherical drops, the theoretical
formulation of ice-phase processes is complicated by the wide variety of shapes that ice crys-
tals may have. Furthermore, the various basic crystal habits may change with temperature
and humidity conditions. Generally, the understanding of ice-phase microphysics is by far
less complete than warm rain microphysics.

Besides the microphysical interactions, the thermodynamic structure of the atmosphere has
a dominating impact on the formation of clouds and precipitation. To initiate cloud particles
via nucleation, the air must first become supersaturated due to adiabatic or diabatic cooling
or due to mixing. Frequent thermodynamic forcings are by radiative cooling and by vertical
motions related to widespread mesoscale ascent in frontal systems or related to buoyant small-
scale thermals. Subsequent to cloud formation, these forcings will also drive the diffusion
growth of particles, but at the same time the microphysical processes will start to interact
with the cloud’s dynamical structure by various feedback mechanisms.

A prominent direct feedback is the release of latent heat associated with condensation, depo-
sition and riming, which alters the thermal stratification within the cloud and may intensify
the vertical motions due to an increase in buoyancy. This will in turn intensify the vapour
supply for diffusion growth. On the other hand, the loading of the air with growing particles
exerts an increasing drag force on the air which has a reverse effect on buoyancy and may
initiate cloud dissipation. Sedimentation redistributes the particles vertically and affects the
dynamics by water loading and by cooling due to melting as well as evaporation and subli-
mation in the sub-cloud layer. Especially, cooling of air due to the melting of ice particles
may result in the formation of an isothermal layer which cuts off the vapour supply from
vertical turbulent moisture fluxes. Advective and turbulent transports of particles across the
cloud edges will result in evaporation and sublimation, and the associated dynamical effects
from cooling due to consumption of latent heat can contribute to the overall cloud-scale
circulation. Additional indirect feedback mechanisms, which may be relevant for the cloud
evolution, result from cloud-radiation and cloud-turbulence interactions.

Depending on the environmental conditions, there is a variety of different paths for precipi-
tation formation, especially when the ice phase is involved. The main controlling parameters
are the availability of condensation and ice nuclei in the air mass where the cloud forms and
the stability of the thermal stratification. The latter determines whether the dynamical evo-
lution will be in form of a stratiform or of a convective cloud. However, there is a continuum
of cloud types between these two basic forms.

The primary interest in the numerical modelling of clouds and precipitation is the behaviour
of the overall ensemble of cloud particles, where it is generally unnecessary to keep track
of every individual particle. To retain the essentials of the microphysical processes, their
interactions within the cloud ensemble and the associated feedback mechanisms on the ther-
modynamics, it is convenient to group the various types of hydrometeors into several broad
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categories of water substance. A traditional grouping (Houze (1993)) is the following.

• Water Vapour
is the gaseous phase of water substance in the atmosphere.

• Cloud Water
is in the form of small suspended liquid-phase drops. Cloud droplets are smaller than
about 50 µm in radius and thus have no appreciable terminal fall speed relative to the
airflow.

• Precipitation Water
is in the form of liquid-phase spherical drops which are large enough to have a non-
negligible fall velocity. Precipitation water may be subdivided into drizzle (comprised
of drops with 50 – 250 µm radius) and rain (comprised of drops larger than 250 µm in
radius).

• Cloud Ice
refers to small ice crystals which have little or no appreciable terminal fall speed. These
particles may be in the form of pristine crystals that have been nucleated directly from
the water or the vapour phase, or they may be very small ice particles that have been
produced by ice enhancement processes.

• Precipitation Ice
is composed of ice particles that are large enough to have a non-negligible terminal
velocity. These particles may have various forms, e.g. large pristine crystals with dif-
ferent habits, larger fragments of ice particles, rimed particles, aggregates of crystals,
graupel or hail. To simplify the description, these particles are often grouped into only
a few categories of precipitation ice. Obviously, due to the variety of basic crystal forms
and habit changes during the particle growth, such groupings are arbitrary. However,
a commonly used scheme is to subdivide precipitation ice into

- snow, composed of rimed aggregates of ice crystals with fall speeds of about 0.3
– 1.5 m/s,

- graupel, referring to particles with spherical shape, higher density than snow and
fall speeds of about 1 – 3 m/s, and

- hail with very large particle terminal velocities (up to 50 m/s).

The various categories are interactive, i.e. the increase of water mass, due to a specific
microphysical process, in one category is at the expense of water content in another category.
Clearly, the change of total water mass resulting from the microphysical interactions must
be zero.

The mathematical description of the overall evolution of a cloud, in which any combination
of the water categories with corresponding microphysical processes may be present simulta-
neously in the context of the changing airflow, is based on budget equations for the water
substances. These equations allow to predict numerically the water mass in each category,
as it changes due to advection, turbulent diffusion, sedimentation and various microphysical
sources and sinks throughout the evolving cloud. The resulting system of equations is also
often referred to as a water-continuity model. Three basic strategies for water-continuity
modelling may be used to represent cloud microphysics in a numerical meteorological model.
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(a) Spectral water-continuity models
In this type of models, which are also termed detailed or explicit models, the hydro-
meteors are subdivided according to size within each category of water substance.
The number of particles with different sizes in category x is predicted using budget
equations for the number-density size-distribution function fx(m). fx(m)dm represents
the number of particles of type x per unit volume of air in an infinitesimal size range
from m to m + dm, where m is the particle mass. Clearly, any other quantity y(m)
being a unique function of m could be used as spectral size coordinate instead of m
(e.g. radius, diameter or surface area). The transformation between the distribution
functions is given by

fx(m)dm = fx(y)dy . (5.1)

The total number density Nx of particles in category x is calculated from the integral
over the spectral distribution,

Nx =

∫ ∞

0
fx(m)dm =

∫ ∞

0
fx(y)dy , (5.2)

and the total mass fraction qx results from the integration of the mass of the particles
in each size interval:

qx =
1

ρ

∫ ∞

0
mfx(m)dm =

1

ρ

∫ ∞

0
m(y)fx(y)dy . (5.3)

Thus, Nx and qx are related to the zero and first moment of the spectral distribu-
tion function fx(m). Since fx(m) is predicted, these quantities are diagnosed from the
particle distribution.

The detailed spectral method is the most direct approach to represent cloud micro-
physics in a dynamical model because many microphysical principles can be applied
directly to the calculation of the size distributions (e.g., the particle growth equations
for diffusion and the kinetic equation for interparticle stochastic collection). However,
the detailed method becomes very complex when the ice phase is included since various
crystal types including their interactions and their habit changes have to be considered.
The major disadvantage is computational. A large number of size categories (∼ 100)
for each type of hydrometeors is required to discretize accurately the corresponding
spectral budget equation. With the present computer limitations, such a sophistication
is impractical for application in threedimensional NWP-models.

(b) Bulk water-continuity models
A practical alternative to the spectral representation of cloud microphysics are bulk
or parameterized water-continuity models. The basic idea of this method is to assume
as few categories of water as possible and to predict directly the total mass fraction
qx in each category in order to minimize the number of equations and calculations. To
accomplish this simplification, the shapes and the size distributions of particles must
be assumed and the microphysical processes must be parameterized in terms of qx.

Basically, bulk schemes rely on the assumption of a self-similar or limiting size distribu-
tion for the particles. That is, it is supposed that the evolution of a particle spectrum
can be approximated by varying the free parameters of an assumed specific mathemat-
ical function for the spectrum. Generally, these parameters are related to the moments
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of the size distribution function, which then have to be predicted by corresponding
budget equations. Thus, in contrast to the detailed method where the moments are
diagnosed from the predicted spectra, the shape of the spectrum is diagnosed from the
predicted moments in bulk schemes.

In case of usual bulk water-continuity models the mass fractions qx are the only de-
pendent variables. Consequently, the functions for the spectral shapes must have only
one free parameter. The non-precipitating water categories are usually supposed to
be monodisperse whereas the precipitation particles are assumed to be exponentially
distributed in size with respect to particle diameter D as spectral coordinate:

fx(D) = Nx
0 exp(−λxD) . (5.4)

For raindrops, (5.4) is called the Marshall-Palmer distribution, which has been obtained
by fitting experimental data (Marshall and W.M. (1948)). Numerical studies (Valdez
and Young (1985)) have reproduced this exponential nature of the raindrop size spec-
trum as a limiting distribution resulting from collection and breakup processes. In bulk
schemes, the exponential spectral shape is usually also supposed for various ice particle
categories.

Setting the intercept valueNx
0 to a constant value, the slope parameter λx is determined

from the predicted mass fraction qx by inverting the integral (5.3):

qx =
Nx

0

ρ

∫ ∞

0
m(D) exp(−λxD)dD . (5.5)

The assumption of a self-similar size distribution in the form (5.4) allows to parame-
terize the microphysical source and sink terms in the budget equations for the mass
fractions, taking the impact of the particle size distributions approximately into ac-
count.

(c) Multiple-moment water-continuity models
Obviously, the more moments of the particle spectra are predicted by budget equa-
tions, the more free parameters the assumed size distribution functions may have. This
will allow for a more accurate description of the evolving spectral distribution of the
hydrometeors than by traditional single-moment bulk schemes.

In double-moment schemes the number density Nx of particles in a water category x
is usually chosen as dependent model variable besides the mass fraction qx. Clearly,
this increases drastically the computational costs compared to single-moment schemes
because twice the number of prognostic variables and a much larger number of micro-
physical interactions have to be included. Nevertheless, this method is computationally
much cheaper than detailed spectral modelling while at the same time individual micro-
physical processes can be represented very accurately, as e.g. the collision-coalescence
mechanism (Lüpckes et al. (1989)). Double-moment schemes including the ice phase
have been proposed by Ikawa et al. (1991), Levkov et al. (1992) and Ferrier (1994).

The method can be extended to include higher order moments. Clark and Hall (1983)
use the mean radius of the particle distribution and Höller (1982) uses radar reflectivity
as a third dependent model variable to parameterize cloud microphysics in a triple-
moment scheme. At present, such schemes are computationally too expensive to be
applied in operational models.
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Bulk water-continuity schemes are extensively used in cloud and mesoscale models. The
essential features of this method are outlined in the following subsections. LM offers options
for a warm rain scheme, a one-category ice (snow) and a two-category ice (snow and cloud
ice) scheme. A three-category ice bulk scheme including graupel to allow for an explicit
simulation of deep convective clouds has been added recently. Also, for a later version of the
model, it is intended to implement a double-moment scheme to represent grid scale clouds
and precipitation more accurately.

5.2 Bulk Water-Continuity models in LM

As described above, the dependent variables in bulk water-continuity models are the total
mass fractions qx of various types x of hydrometeors. The interaction of microphysical pro-
cesses and their feedback to the flow field is represented by budget equations for the qx. The
generic budget equation in advection form reads (cf. (3.65), Part I)

∂ql,f

∂t
+ v · ∇ql,f − 1

ρ

∂Pl,f
∂z

= Sl,f − 1

ρ
∇ · Fl,f , (5.6)

where the indices l and f indicate liquid and solid forms of water substance. Sl,f represent
the corresponing cloud microphysical sources and sinks per unit mass of moist air, Fl,f are
the turbulent fluxes and Pl,f denotes the corresponding precipitation or sedimentation fluxes.
They are defined by

Pl,f = ρql,fvl,fT (5.7)

and depend on the mean fall velocities of the particles, i.e. their mean terminal velocities
vl,fT . In general, vl,fT is a nonlinar function of the mass fractions ql,f .

Using the traditional grouping of hydrometeors into broad classes of hydrometeors as de-
scribed in Section 5.1, we will distinguish between precipitating and non-precipitating par-
ticles. The non-precipitating water substance is made up of cloud water with mass fraction
qc, and of cloud ice with mass fraction qi. As both particle categories have neglegible fall
velocities, the sedimentation fluxes Pc and Pi are set to zero. With respect to the precipi-
tating particle categories, we consider rain with mass fraction qr and the two precipitation
phases snow and graupel, with mass fractions qs and qg, respectively. Since for precipitating
particles the sedimentation fluxes are much larger than the turbulent fluxes, we will neglect
the latter contribution (∇ · Fl,f ) in (5.6). Thus, the general budget equation (5.6) can be
split into two sets of equations, one for the non-precipitating and one for the precipitating
water categories:

non-precipitating categories (cloud water and cloud ice)

∂qc,i

∂t
+ v · ∇qc,i = Sc,i − 1

ρ
∇ · Fc,i , (5.8)

precipitating categories (rain, snow and graupel)

∂qx

∂t
+ v · ∇qx − 1

ρ

∂ρqxvxT
∂z

= Sx , (5.9)
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where x stands for r (rain), s (snow) and g (graupel).

At present, LM provides four bulk-water continuity schemes to parameterize precipitation
formation, which differ by the number of hydrometeor categories considered.

– A warm rain scheme with the dependent variables qc and qr.
As the ice phase is neglected, this scheme describes precipitation formation in warm
clouds. It is intended to be used in idealized test simulations only. Section 5.4 describes
details of the scheme.

– A snow scheme with the dependent variables qc, qr and qs.
This scheme describes precipitation formation in water and mixed phase clouds, where
clouds are assumed to exist at water saturation. Details of the scheme are outlined in
Section 5.5. This scheme was applied for operational NWP until September 2003.

– A cloud-ice scheme with the dependent variables qc, qi, qr and qs.
As an extension to the snow scheme, this parameterization consideres cloud ice as an
additional variable in the hydrological cycle and allows for the simulation of precipita-
tion formation in water, mixed phase and ice clouds. This scheme is used for operational
NWP since September 2003 and is described in detail in Section 5.6.

– A graupel scheme with the dependent variables qc, qi, qr, qs and qg.
As an extension to the cloud-ice scheme, this parameterization adds the graupel phase
to the hydrological cycle. The scheme is intended to be used in very-high resolution
simulations with explicit representation of deep moist convection only. Details are de-
scribed in Section 5.7.

When precipitation formation is switched off, the LM simulates warm non-precipitating
clouds by a reversible thermodynamic treatment of water vapour condensation and evapo-
ration of cloud water. The method used is a simple saturation adjustment and is described
in Section 5.3. The same method is used to calculate the condensation rate as part of the
microphysical source terms Sl,f occuring in all of the four LM precipitation schemes.

In the literature it has become common practice to classify bulk-water schemes according to
the total number of water categories considered (classes, including water vapour) or by the
number of ice hydrometeors considered. This classification for the LM precipitation schemes
is summarized in Table 5.2, together with the name of the corresponding subroutines.

Table 5.1: Parameterization Schemes for Grid-Scale Precipitation in LM

Parameterization Variables Subroutine Classes Ice Categories

Warm Rain Scheme qv, qc, qr kessler( pp) 3 0

Snow Scheme qv, qc, qr, qs hydor( pp) 4 1

Cloud-Ice Scheme qv, qc, qi, qr, qs hydci( pp) 5 2

Graupel Scheme qv, qc, qi, qr, qs, qg hydci pp gr 6 3

The first three schemes can be run in diagnostic or prognostic ( pp) mode, where these
terms refer to the treatment of the budget equations for the precipitation phases. The grau-
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pel scheme can be run prognostically only. In prognostic mode, the full budget equations
(5.9) for the precipitating hydrometeors are solved, whereas in diagnostic mode an approx-
imated quasi-stationary version is utilized. The prognostic treatment is recommended for
high-resolution simulations with grid spacings below ∼10 km. For coarse-grid simulations,
the approximate solution from the diagnostic treatment gives sufficient accuracy at low nu-
merical costs. The difference between diagnostic and prognostic treatment of precipitation
is oulined below.

5.2.1 Diagnostic Treatment of Precipitation

As a significant numerical-dynamical simplification to the budget equations (5.9) for the
precipitating categories (rain, snow), equilibrium in vertical columns can be assumed in case
of coarse-grid simulations: On the meso-α and meso-β scale the vertical velocity is very
small compared to the terminal fall velocities of rain and snow particles. Consequently, these
precipitation particles will fall through the atmosphere within a time that is smaller than the
characteristic time scale for horizontal transports – i.e., the particles will reach the ground
before entering the adjacent grid-point column. In this case, we can prescribe stationarity and
horizontal homogeneity for qr and qs and can neglect the impact due to vertical advection.
By this assumption the full prognostic budget equations (5.9) for rain and snow are reduced
to diagnostic relations which describe an equilibrium between the vertical divergence of the
precipitation fluxes and the sum of the source and sink terms of the various microphysical
processes α:

−1

ρ

∂Px
∂z

=
g√
γ

ρ0

ρ

∂Px
∂ζ

=
∑

α

Sxα , (5.10)

where the vertical derivative can also be formulated using the terrain-following coordinate ζ
of LM. Since the precipitation fluxes Px = ρqxvxT are unique functions of the mass fractions
qx, the source terms Sx can be reformulated in therms of Px. Thereby the precipitation fluxes
Px become the dependent (diagnostic) variables replacing the (prognostic) qx. At each time
step, the diagnostic budget equations (5.10) are integrated from the top of the model domain
to the surface, resulting in corresponding precipitation fluxes at the ground. The interaction
with water vapour and the (still prognostic) cloud phases qc and qi is calculated at each layer
by the source terms Sx during this integration.

Clearly, this condition of vertical equilibrium for the precipitating water categories limits
the scheme to applications on hydrostatic scales of motion. However, at these scales (using
grid spacings of about 10 km or larger) the numerical solution obtained by the reduced,
i.e. diagnostic budget equations for rain and snow, is nearly as accurate as a complete
threedimensional treatment (Ghan and Easter (1992)), but saves an enormous amount of
computation time and computer memory.

5.2.2 Numerical Solution for Diagnostic Schemes

In diagnostic mode, the various microphysical source and sink terms in the budget equations
of the hydrological cycle are evaluated at the present time-level (n−1 in case of the Leapfrog
scheme, or n in case of the two time-level scheme). These terms are then added to the other
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tendencies (e.g. due to advection) in the equations (5.8) for cloud water and cloud ice, and
correspondingly in the equations for water vapour and temperature. An exception is made
for the cloud water condensation rate Sc, which is calculated at the end of a time step using
the saturation adjustment technique (see Section 5.3). In case of the cloud ice scheme, the
evaluation is at the end of a time step by Marchuk-splitting following the calculation of the
condensation rate. This ensures positive definite solutions for cloud water and cloud ice.

In order to solve the equations for the precipitation fluxes (5.10) numerically, Px (Pr for rain
and Ps for snow) have to be integrated from the top of the model domain to the surface. The
integration is performed by a simple forward scheme where Px is defined at model half levels
k ± 1/2. The source terms Sxα due to various microphysical processes α are calculated at
main levels using the layer mean values of the thermodynamic quantities, i.e. (qc, qi, qv, T )k,
and the precipitation fluxes entering the layer from above:

(Sxα)k = Sxα
{

(qc, qr, qv, T )k , (Px)k−1/2

}
. (5.11)

The precipitation flux at the lower boundary of the layer then results from

(Px)k+1/2 = (Px)k−1/2 +
∑

α

(Sxα)k

(
ρ

ρ0

)

k

√
γ
k

g
. (5.12)

Stepping (5.12) from the top of the model atmosphere (k = 1), with (Px)1/2 = 0 as upper
boundary condition, to the lowest layer (k = Nζ) yields the precipitation rates at the surface.

Because cloud microphysics involves small time scales, all cloud water being available at
time level n− 1 can become depleted by a single microphysical process (e.g. riming) within
one timestep, especially when ∆t is relatively large. In order to allow all processes to act
simultaneously, we use a quasi-implicit formulation to calculate the sink terms for cloud
water (and cloud ice).

5.2.3 Prognostic Treatment of Precipitation

By increasing the model’s spatial resolution, the assumption of column equilibrium for the
precipitating constituents becomes more and more unrealistic. Assuming a characteristic
value of 5 m/s for the terminal fall velocity for rain and of 1 m/s for snow and a vertical
fall distance of typically 2500 m for frontal precipitation, the time scales for sedimentation
of rain and snow are estimated as 500 s and 2500 s, respectively. At 15 m/s wind speed, the
corresponding horizontal displacements are about 8 km for rain and 40 km for snow – an
effect that should be taken into account for grid spacings of about 10 km or smaller.

Horizontal transport is particularly important for the generation of lee-side precipitation,
which is not sufficiently recognized by using the diagnostic schemes. The diagnostic treat-
ment tends to largely overestimate the precipitation amount on mountain tops and to un-
derestimate the amount on the downstream lee-side. Using the prognostic version of the
scheme results in a significant reduction of the peak values as well as the area-mean values
of precipitation (Gaßmann (2002); Baldauf and Schulz (2004)) in mountaineous areas. We
suggest two physical reasons to be responsible for this beneficial impact. Advection of the
mixing ratios qx results in a large horizontal displacement before precipitation reaches the
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surface. Consequently, a larger spatial area is available for sub-cloud evaporation (particu-
larly in the dry lee-side region) than in the diagnostic scheme. Another reason contributing
to the reduction of precipitation amount is a weakening of the seeder-feeder mechanism: In
contrast to the prognostic scheme, all snow crystals must fall through the same vertical col-
umn where they are generated aloft when using the diagnostic scheme. This certainly gives
the maximum effect of precipitation enhancement due to the seeder-feeder process.

When going to the meso-γ scale, deep convection becomes resolved explicitly and all insta-
tionary effects of cloud development must be considered to simulate realistically the life-cycle
of deep convective cells. Especially, the vertical advection of the precipitation phases must
be taken into account since the air’s vertical velocity is in the same range as the fall velocity
of rain and snow.

In order to take these effects into account, the diagnostic equations for the precipitation
fluxes Px from the equation set (5.10) have to be replaced by full prognostic equations (5.9)
for the mixing ratios qx:

∂qx

∂t
+ v · ∇qx − 1

ρ

∂

∂z
(ρqxvxT ) = Sx ,

where x stands for r (rain), s (snow) or g (graupel). The transformation of the “diagnostic”
parameterization schemes of LM into “prognostic” ones using (5.9) requires three steps:

– The microphysical processes Sx have to be reformulated in terms of qx as dependent
model variables. In the following sections we will describe only the prognostic version
in detail and the conversion rates for the diagnostic version will be summarized at the
end of each section.

– An accurate and positive definite advection scheme has to be formulated. Since the
integration is from time-level n−1 to n+1 over a 2∆t interval in the standard Leapfrog
integration, the transport scheme should be able to cope with Courant numbers up to
2 (also, in the new 2-timelevel RK3 integration scheme, Courant numbers up to 1.8 are
aspired). In this respect, a semi-Lagrangian scheme for 3-d advection of precipitation
phases has been developed (Baldauf and Schulz (2004)).

– A numerically efficient treatment of the sedimentation term is required. Usually, quite
thin model layers are specified close to the ground, where (vertical) Courant numbers
can become larger than one.

Some detail of the numerical treatment of prognostic precititation schemes are summarized
below.

5.2.4 Numerical Solution for Prognostic Schemes

With the partitioning of water substance into water vapour (qv), the non-precipitating cate-
gories cloud water (qc) and cloud ice (qi), and the precipitating categories (qx), i.e. rain (qr),
snow (qs) and graupel (qg), the equations for the hydrological cycle in the atmosphere may
be formally written as
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∂T

∂t
= AT +

LV
cpd

(Sc + Sr) +
LS
cpd

(Si + Ss + Sg) ,

∂qv

∂t
= Aqv + Sv ,

∂qc,i

∂t
= Aqc,i + Sc,i , (5.13)

∂qx

∂t
= Aqx +

1

ρ

∂

∂z
(ρqxvxT ) + Sx .

The A-terms represent 3-d advective transport and other processes (e.g. turbulent diffusion
in the equations for T , qv and qc,i, (cf. (3.65), Part I, and (5.8)–(5.9)), the S-terms are the
sum of various microphysical conversion rates in each water category.

The numerical treatment of the set (5.13) is by the Marchuk or process time splitting method.
That is, first the transport terms A are integrated over a timestep, resulting in provisional
values for the prognostic variables. These intermediate values are then taken as input for a
second step, where the variables are updated due to the S-terms and due to sedimentation
of the precipitating categories qx. The numerical techniques used for the first “dynamical”
time step are outlined in Part I of the documentation.

The numerical treatment of the second “microphysical” step in the splitting, i.e. microphys-
ical source terms and sedimentation, turns out to be quite difficult. In case of precipitation
falling through thin model layers near the surface, the Courant number may become larger
than one. An explicit scheme with simple flux limiting would result in an unphysical increase
of qx in the lower layers, and an implicit scheme cannot be applied directly because the
sedimentation velocity is a nonlinear function of the mixing ratio. Also, a semi-Lagrangian
technique will be difficult to apply since the source terms have to be taken into account
to allow for microphysical interactions during fallout. For a first testversion of the prog-
nostic scheme, Gaßmann (2002) has developed an integration method based on symmetric
Strang process-splitting combined with local time-splitting for the sedimentation process (i.e.
smaller time-steps are applied only for those layers where the local Courant number exceeds
the stability limit).

Since this scheme turned out to be too time comsuming, it was replaced by a quasi-implicit
formulation with a predictor-corrector method to include the source-terms S in the sedimen-
tation algorithm (Gaßmann (2003)), allowing for microphysical interactions during fallout.
The recent version of the quasi-implicit scheme is described below.

The budget equation to solve for the precipitating categories in the second “microphysical”
step of the splitting of (5.13) reads

∂qx

∂t
=

1

ρ

∂

∂z
(ρqxvxT ) + Sx . (5.14)

Since the total density ρ of air does not change during this step, (5.14) can be rewritten in
the form

∂ρqx

∂t
=

∂

∂z
(ρqxvxT ) + ρSx . (5.15)

Let φ = ρqx denote the partial density of a precipitating hydrometeor category x, P = ρqxvxT
the corresponding precipitation flux, v = vxT (φ) the mean fall velocity of the quantity φ (see
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Sections 5.4–5.7 for the formulation of vxT (φ)), and S = Sx(φ) the microphysical source
terms. Then an implicit mass-conserving Crank-Nicolson discretization for (5.15) reads

φnew
k = φstart

k +
∆t

2∆zk

(
P new
k−1/2 − P new

k+1/2k + P start
k−1/2 + P start

k+1/2

)
+ (ρS)k∆t , (5.16)

where the superscript “start” denotes the start values of the current time step ∆t – i.e.
the result of the first dynamical integration step within the Marchuk-splitting – and the
superscript “new” denotes the final values at timelevel n + 1. Using the Leapfrog time-
integration scheme instead of the two-timelevel Runge-Kutta scheme, ∆t has to be replaced
by 2∆t. The index k is the level index, counting from top to bottom. Choosing a simple
upstream approximation for the fluxes at half-levels k±1/2 and estimating the fall velocities
with the values of φ from the corresponding main level above yields a one-sided difference
formulation:

φnew
k = φstart

k +
∆t

2∆zk

(
φnew
k−1v

new
k−1 − φnew

k vnew
k + φstart

k−1 v
start
k−1 − φstart

k vstart
k

)
+ (ρS)k∆t . (5.17)

Because we do not know the new value vnew
k at the vertical level k, we replace this unknown

value in F new
k = φnew

k vnew
k by the value of v computed from an average of already known new

φ values from the upper layer (k − 1) and from current layer k start values:

vnew
k = v

(
0.5φnew

k−1 + 0.5φstart
k

)
. (5.18)

With this assumption, we obtain:

φnew
k = yim

k

{
φstart
k +

∆t

2∆zk

(
φstart
k−1 v

start
k−1 + φnew

k−1v
new
k−1 − φstart

k vstart
k

)
+ (ρS)k∆t

}
, (5.19)

with the “implicit weight” yim
k = (1 + 0.5∆tvnew

k /∆zk)
−1 . To avoid negative values of φ

caused by the the explicit contributions in the sedimentation algorithm (5.19), a simple flux
limiter is applied:

φnew
k = yim

k

{
φstart
k + max

[
∆t

2∆z

(
φstart
k−1 v

start
k−1 + φnew

k−1v
new
k−1 − φstart

k vstart
k

)
,−φstart

k

]
+ (ρS)k∆t

}
.

(5.20)

At each gridpoint, the transport algorithm (5.20) can be solved explicitly from the top of
the model domain to the bottom. In order to take microphysical processes during fallout
into account, the source terms are included using a predictor-corrector method. In each layer
k, the algorithm (5.20) is first solved without the source term S, resulting in provisional
“predictor” values φ∗k for the partial density of precipitating hydrometeors:

φ∗k = yim
k

{
φstart
k + max

[
∆t

2∆z

(
φstart
k−1 v

start
k−1 + φnew

k−1v
new
k−1 − φstart

k vstart
k

)
,−φstart

k

]}
. (5.21)

These values are then used to calculate the microphysical conversion rates, i.e.

Sk = Sk(φ
∗
k, q

v
start, q

c,i
start, Tstart) , (5.22)
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where for the dependence on other variables the input values at timelevel “start” are eval-
uated. In a second “corrector” step, the variables φk are then updated according to (5.20),
using Sk from (5.22). The same values of S are used to update the other variables (T , qv

and qc,i) in (5.13) in this “microphysical” part of the Marchuk time split scheme, which is
done by a simple forward stepping.

5.3 Cloud Condensation and Evaporation

The simplest type of cloud is a warm non-precipitating cloud. To describe it with a bulk-
scheme, only two categories of water substance are required: water vapour with specific
humidity qv and cloud water with liquid water content qc. The only microphysical process
that has to be considered is condensation-evaporation. Denoting the corresponding source
rate by Sc, where Sc > 0 represents condensation of water vapour and Sc < 0 represents
evaporation of cloud water, the budget equations for the hydrological cycle in the atmosphere
read

∂T

∂t
= AT +

LV
cpd

Sc ,

∂qv

∂t
= Aqv − Sc , (5.23)

∂qc

∂t
= Aqc + Sc .

In (5.23), the Aψ-terms summarize the tendencies due to advection, diffusion and other
processes that are not related to cloud microphysics (see Eqs. (3-147) – (3-14), Part I).
Clearly, the total water content qT and the enthalpy related temperature Th, defined by

qT = qv + qc , Th = T +
LV
cpd

qv , (5.24)

are conserved with respect to phase transitions of water vapour and cloud water. Another
cloud-conservative variable that is frequently used in bulk modelling is the liquid-water
temperature Tl = T − LV q

c/cpd.

The parameterization of the condensation rate Sc is based on the assumption of saturation
equilibrium with respect to water within clouds. This closure condition is in accordance with
numerous measurements revealing that the in-cloud supersaturation is usually very small
(in general less than about 1%). Sc may then be calculated using the saturation-adjustment
technique: if a grid box becomes supersaturated during a time step, the temperature and the
concentration of the water vapour and cloud water are isobarically adjusted to a saturated
state, taking the latent heating into account. The resulting decrease (increase) in specific
humidity defines the amount of cloud water which is condensed (evaporated) in the time
step. In case of qc > 0 and subsaturation, the cloud water is instantaneously evaporated
until either qc = 0 or water saturation is achieved. The nucleation process is encompassed
by saturation adjustment, i.e. it is assumed that there is always a sufficient number of CCN
present to initiate the condensed water phase whenever the air becomes supersaturated.

By using saturation equilibrium as a closure condition for Sc, condensation-evaporation is
treated as a quasi-reversible process, where only two different thermodynamic states may
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occur: Either the saturated cloud case with qv = qvsw(T, p) and qc > 0, where qvsw(T, p) is the
specific humidity at saturation with respect to water, or the subsaturated no-cloud case with
qv < qvsw(T, p) and qc = 0. Consequently, the description of the thermodynamic state requires
only two dependent variables, e.g. qT and Th, instead of T , qv and qc. Cloud conservative
variables which filter the condensation rate from the set of model equations are sometimes
used in numerical models to save computation time and core memory.

The numerical procedure to compute the condensation rate is as follows. First, the budget
equations (5.23) are stepped for one time step yielding provisional values T̃ , q̃v and q̃c at
time level n+1. Then, the cloud-conservative variables qT and Th from (5.24) are calculated
using these provisional values. In the next step the provisional values will be adjusted due
to condensation and evaporation to yield the final values of T , qv and qc at time level n+ 1.
As the conservative variables do not change during the adjustment, we have

T +
LV
cpd

qv = T̃ +
LV
cpd

q̃v = T̃h ,

(5.25)

qv + qc = q̃v + q̃c = q̃T .

To distinguish the subsaturated and the saturated thermodynamic states, we first test for
the no-cloud case by setting qc = 0 and qv = q̃T in (5.25). This results in a preliminary
temperature T ∗ and a corresponding saturation specific humidity qv∗sw:

T ∗ = T̃ − LV
cpd

q̃c , qv∗sw = qvsw(T ∗, p) . (5.26)

(1) The subsaturated or just saturated no-cloud case is realized if q̃T ≤ qv∗sw. For this
condition, the final values of the variables are simply given by

T = T ∗ = T̃ − LV q̃
c/cpd ,

qv = q̃T , (5.27)

qc = 0 .

(2) The saturated cloud case is realized if q̃T > qv∗sw. For this condition, (5.25) results in a
transcendental equation for temperature:

T = T̃h −
LV
cpd

qvsw(T, p) .) (5.28)

The Newton iteration method is used to solve (5.28):

T ν =

T̃h −
LV
cpd

{
qvsw(T ν−1, p) − T ν−1

(
∂qvsw
∂T

)

T ν−1

}

1 +
LV
cpd

(
∂qvsw
∂T

)

T ν−1

, (5.29)

where ν = 1, · · · , N denotes the iteration index. The temperature at time level n is
used as an initial estimate for the iteration, i.e. T ν=0 = T n. Following the last iteration
step, the saturation specific humidity is not calculated from TN but extrapolated from
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its value for TN−1 using a linearly truncated Taylor series expansion. This is done to
satisfy thermal energy conservation for the approximate iterative solution. The final
values of the variables at time level n+ 1 are given by

T = TN ,

qv = qvsw(TN−1, p) + (TN − TN−1)

(
∂qvsw
∂T

)

TN−1

, (5.30)

qc = q̃T − qv .

By default, the number of iterations is set to one. Only in regions with large vertical
velocities, where larger deviations from the saturation equilibrium can occur within a
time step, the number of iterations is increased to N = 2.

Following the adjustment step defined by (5.27) and (5.30), the source term Sc due to con-
densation and evaporation can be calculated for diagnostic purposes, e.g. for integral area
mean budgets of water mass and latent energy, using the updated cloud water content:

Sc =
qc − q̃c

2∆t
. (5.31)

To apply the saturation adjustment technique to parameterize the condensation-evaporation
process, the specific humidity at water saturation has to be specified in terms of temperature
and pressure. qvsw is calculated from

qvsw(T, p) =
Rd
Rv

pvsw(T )

p − (1 −Rd/Rv)pvsw(T )
, (5.32)

where pvsw(T ) is the equilibrium vapour pressure over a plane surface of water. We apply
Teten’s empirical formula

pvsw(T ) = pv0 exp

(
aw
T − Tr)

T − bw

)
(5.33)

to calculate pvsw as function of temperature using the parameters pv0 = 610.78 Pa, Tr = 273.16
K, aw = 17.27 and bw = 35.86 K.

For later use in subsequent sections, the specific humidity qvsi at ice saturation and the
equilibrium vapour pressure pvsi(T ) over a plane surface of ice are also defined using the
equations

qvsi(T, p) =
Rd
Rv

pvsi(T )

p − (1 −Rd/Rv)p
v
si(T )

, (5.34)

pvsi(T ) = pv0 exp

(
ai
T − Tr)

T − bi

)
, (5.35)

where ai = 21.875 and bi = 7.66 K.

5.4 Warm Rain Scheme

In case of a warm precipitating cloud, rain is included as an additional category of water
substance (usually, drizzle is ignored). The mass fraction ql of liquid-phase water is thus
split into cloud water with mass fraction qc as nonprecipitating category and rain water with
mass fraction qr as precipitating category.
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5.4.1 The Set of Conservation Equations

The equations for the warm-rain bulk water-continuity scheme read

∂T

∂t
= AT +

LV
cpd

(Sc − Sev) ,

∂qv

∂t
= Aqv − Sc + Sev , (5.36)

∂qc

∂t
= Aqc + Sc − Sau − Sac ,

∂qr

∂t
= Aqr +

1

ρ

∂

∂z
(ρqrvrT ) − Sev + Sau + Sac .

As in the previous section, the Aψ-terms represent the tendencies due to all processes which
are not related to microphysics. The impact of turbulent diffusion on rain water is usually
neglected.

In (5.36), Sc denotes the rate of cloud water condensation and evaporation. The saturation
adjustment scheme described in Section 5.3 is used to calculate Sc. Pr is the precipitation
flux of rainwater due gravitational sedimentation of raindrops and Sev is the evaporation rate
of rainwater in subcloud layers (in-cloud diffusion growth of raindrops is ignored, i.e. vapour
is assumed not to condense directly onto raindrops). Sau denotes the increase of rainwater
with time due to autoconversion, which is the rate at which raindrops are initially formed
at the expense of cloud droplets growing to precipitation size by collection and/or vapour
diffusion. Sac is the accretion rate, which is the rate at which the rainwater mass fraction
increases as a result of the collection of cloud droplets by falling rain drops. Except for Sc,
all of these terms are defined to be positive quantities.

This three-category bulk water-continuity model has originally been proposed by Kessler
(1969). By parameterization of the source terms and the precipitation flux Pr in terms of the
dependent variables (i.e. T , p, qv, qc and qr), the scheme allows to represent numerically the
evolution of warm-cloud precipitation formation in space and time. Most of the bulk schemes
used today, including various extensions to take the ice-phase into account, are directly based
on the concepts introduced by Kessler. Thus, bulk water-continuity models are often referred
to as Kessler-type schemes.

According to the Kessler-scheme, cloud water is first generated by condensation. Once suffi-
cient cloud water has been produced, the collision-coalescence mechanism can result in the
initial formation of raindrops (autoconversion). The rainwater mass fraction can then be fur-
ther increased due to collection of cloud droplets by raindrops (accretion). Rainwater that
has been produced has a sedimentation flux relative to the air. If this flux becomes larger
than the upward flux of rainwater due to grid-scale vertical motion, rainwater may leave the
cloud and evaporate below cloud-base. Depending on humidity conditions in the sub-cloud
layer, the precipitation particles may evaporate completely or partially before reaching the
surface.

5.4.2 Parameterization of the Conversion Terms

In order to close the warm-rain scheme (5.36) the microphysical source/sink terms S and the
precipitation flux Pr of rain have to be formulated in terms of the dependent model variables
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(qc, qr, T and p). We will only summarize the basic assumptions for these parameterizations
since the warm-rain scheme is part of a one-category ice scheme which is described in more
detail in Section 5.5.

To calculate the source terms for rainwater, a number of key assumptions are made for the
raindrops. First, the precipitation particles are assumed to be exponentially distributed with
respect to drop diameter D:

fr(D) = N r
0 exp(−λrD) , (5.37)

where N r
0 is an empirically determined distribution parameter. A typical value of N r

0 is
N r

0 = 8 × 106 m−4. Given the Marshall-Palmer distribution (5.37), the slope parameter λr
can be calculated from the rainwater mixing ratio qr by calculating the integral (5.5), i.e.

ρ qr = N r
0

∫ ∞

0
m(D) exp(−λrD)dD = πρwN

r
0 λ

−4
r , (5.38)

where ρw is the density of water and m(D) = πρwD
3/6 is the mass of a raindrop with diam-

eter D. Second, the terminal fall speed vrT of individual raindrops is assumed to be uniquely
related to drop size. A frequently used empirical relation to approximate experimental data
is

vrpT (D) = vr0D
1/2 , (5.39)

with vr0 = 130 m1/2s−1. Given (5.39) and (5.37), the precipitation flux Pr of rain can then
be calculated in terms of the rainwater mixing ratio by evaluating the spectral definition of
the rainwater massflux

Pr =

∫ ∞

0
m(D)vrT (D)fr(D)dD . (5.40)

Using (5.7) as a definition for the mean fall velocity vrT of rainwater, we have from (5.40)
and (5.38) the following relation to calculate the mean fall velocity in terms of the rainwater
mass fraction (for use in the prognostic equation for qr):

vrT =
Pr
ρ qr

=
vr0Γ(4.5)

6
λ−1/2
r = (πρwN

r
0 )−1/8 v

r
0Γ(4.5)

6
(ρqr)1/8 . (5.41)

The parameterization of the accretional growth rate of rain is based on the continuous
model for drop growth by collection. If a drop of radius R, mass m and fall speed vT (R)
falls through a polydisperse population of smaller cloud droplets with radii r and fall speeds
vT (r), distributed in size according to a number density size distribution fc(r), then the
particle mass of the large drop is assumed to increase continually at a rate given by the
continuous collection equation

(ṁ)ac =
4πρw

3

∫
K(R, r)fc(r)r

3dr . (5.42)

K(R, r) is the collection kernel for hydrodynamic gravitational capture,

K(R, r) = Ec(R, r)π(R+ r)2[vT (R) − vT (r)] , (5.43)
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where Ec is the collection efficiency describing the efficiency with which a drop intercepts and
unites with the smaller drops it overtakes. Ec is largely determined by the relative airflow
around the falling drop. Smaller particles may be carried out of the path of the collector
drop (Ec < 1) or droplets not in the geometrical sweep-out volume may collide with the
large drop due to turbulence or electric effects (Ec > 0).

With respect to the parameterization of accretional growth of rain, the continuous collection
equation is used in an approximated form. In accordance with the definition of cloud water,
the fall velocity of the small droplets in (5.43) is set to zero. Since raindrops are much larger
than cloud droplets, the geometrical collision cross section π(R + r)2 may be approximated
by πR2. Furthermore, we assume that the collection efficiency Ec(R, r) can be replaced by
a constant mean value Er, which is usually taken to be close to one. Thus, the collection
equation (5.42) becomes

(ṁ)ac =
π

4
D2vrT (D)Erρq

c . (5.44)

The accretion rate, i.e. the depletion of cloud water due to collection by all raindrops, is then
given by integration of the individual growth rates (5.44) over the entire spectrum (5.37) of
raindrops,

Sac =
πN r

0Er
4

qc
∫ ∞

0
D2vrT (D) e−λrDdD . (5.45)

Performing the integration using the empirical relation (5.39) for the terminal velocities of
raindrops yields the accretion rate Sac in terms of the dependent model variable qc and qr:

Sac = cacq
c(ρqr)7/8 with cac =

15

32

√
π
Er

ρw
vr0(πρwN

r
0 )1/8 . (5.46)

Using the constant value Er = 0.8 for the mean collecting efficiency, we have the numerical
value cac = 1.72 for the rate coefficient.

In an analogous manner, the bulk rate of evaporation of rainwater mass from all raindrops
can be derived from the integral

Sev =
N r

0

ρ

∫ ∞

0
(ṁ)ev e

−λrDdD , (5.47)

where (ṁ)ev is the rate of evaporation by diffusion of water vapour away from a single
raindrop of diameter D falling through subsaturated air. Details on the diffusional growth
equation used in (5.47) and on various parameters to derive the final form of the rate equation
for Sac and Sev can be found in the next section and are not repeated here. The functional
form is

Sev = αev

(
1 + βev(ρq

r)3/16
)

(qvsw − qv) (ρqr)1/2 ,

where βev is set to a constant value of 9.1 and αev is approximated by the temperature
dependent function (in corresponding SI-units)

αev = 3.86 · 10−3 − 9.41 · 10−5 (T − T0) . (5.48)

A more empirical approach is necessary to describe the initial formation of rainwater mass
due to autoconversion of cloud droplets. The autoconversion rate Sau is usually assumed to
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be proportional to the amount of cloud water mass fraction above a threshold value qc0 and
inversely proportional to a time constant τr defining the speed of the conversion mechanism:

Sau = τ−1
r max(qc − qc0, 0) . (5.49)

Thus, whenever the cloud water content exceeds the autoconversion threshold qc0, it is con-
verted to form rainwater at an exponential rate. The constants qc0 and τr may be adjusted
to reflect the impact of the cloud condensation nuclei on precipitation formation in different
air-masses. The formulation (5.49) was originally postulated by (Kessler 1969) and mean-
while a number of other autoconversion formulas have been developed by various authors.
In the warm rain scheme used in LM, we apply (5.49) with the default values qc0 = 0 and
τr = 103 s.

5.4.3 Diagnostic Version

In the diagnostic version of the snow scheme, the prognostic equation for the rain water mass
fraction qr (5.36) is replaced by the column-equilibrium relation (5.10) for the precipitation
flux Pr:

g√
γ

ρ0

ρ

∂Pr
∂ζ

= −Sev + Sau + Sac . (5.50)

The discretization and integration of this diagnostic budget equation for Pr has been de-
scribed in Section 5.2.2. The microphysical conversion rates Sev and Sac are formulated with
Pr as the dependent model variable, using (5.62). The autoconversion rate is the same as in
the prognostic version. The modified rates read

Sac = cacq
cP

7

9
r ,

Sev = αev

(
1 + βevP

1

6
r

)
(qvsw − qv)P

4

9
r ,

where the coefficients are defined by (using Br from (5.60)):

cac =
3

7

Er

ρw
B

2

9
r , αev =

2πdv
1 +Hw

N r
0B

− 4

9
r , βev = 0.26

(
ρvr0
2ηa

) 1

2

Γ(2.75)B
− 1

6
r .

The rate coefficient for accrecion is set to cac = 0.24, βev is approximated by the constant
value βev = 8.05 and the rate coefficient αev for evaporation is approximated by the following
temperature-dependent function (all coefficients in corresponding SI units):

αev = 2.76 · 10−3 exp{0.055(T0 − T )} .

5.5 A One-Category Ice Scheme

The bulk water-continuity model described in this section is designed for applications on
the meso-β and meso-α scale to take microphysical processes in stratiform mixed-phase
cold clouds into account. The scheme has been adapted (with a slightly different numerical
treatment) from the operational hydrostatic models EM and DM.
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5.5.1 Basic Assumptions

For mixed-phase precipitating stratiform clouds, snow is included as an additional category
of water substance besides water vapour, cloud water and rain. Snow is assumed to be in the
form of rimed aggregates of ice-crystals that have become large enough to have an appreciable
fall velocity. Thus, water vapour and cloud water (with mass fraction qv and qc, respectively)
constitute the cloud phase and rain and snow (with mass fraction qr and qs, respectively)
constitute the precipitation phase. Since snow is the only category of solid forms of water
considered, the scheme may be referred to as one-category bulk ice-scheme.

Other ice species in the precipitation phase, as e.g. graupel and hail, are neglected. Such
particles are usually related to precipitation formation in meso-γ scale convective cloud
systems that are not resolved by mesoscale NWP models using a grid spacing of about 10
km. Within resolvable stratiform cloud types, graupel and hail are unlikely to be generated
by the comparatively weak dynamical forcings.

Also, cloud ice in the form of small suspended crystals with negligible fall velocity is not
considered explicitly. Cloud ice particles consist of pristine crystals formed by ice nucleation
processes or of crystal fragments produced by some ice enhancement processes. Many ob-
servations show that most of the different nucleation modes and ice enhancement processes
operate at or near water saturation. The initially generated crystals will thus grow very
quickly by deposition in a water saturated environment due to the corresponding high ice
supersaturation. This growth is at the expense of cloud droplets which will evaporate partly
to maintain water saturation. The time constant for this initial growth of ice particles, the
Bergeron-Findeisen process, is generally much smaller than the characteristic dynamic time
scale of stratiform clouds.

We will thus assume that cloud ice is transformed instantaneously to snow particles. Con-
sequently, the cloud ice category is skipped in the parameterization scheme and the initial
formation of snow due to nucleation and subsequent depositional growth of cloud ice particles
at the expense of cloud water has to be parameterized.

5.5.2 The Set of Conservation Equations

Using these basic assumptions, the equations for the one-category ice bulk scheme read

∂T

∂t
= AT +

LV
cpd

(Sc − Sev) +
LS
cpd

Sdep

+
LF
cpd

(Snuc + Srim + Sfrz − Smelt) ,

∂qv

∂t
= Aqv − Sc + Sev − Sdep ,

∂qc

∂t
= Aqc + Sc − Sau − Sac − Snuc − Srim − Sshed , (5.51)

∂qr

∂t
= Aqr +

1

ρ

∂

∂z
(ρqrvrT ) − Sev + Sau + Sac + Smelt − Sfrz + Sshed ,

∂qs

∂t
= Aqs +

1

ρ

∂

∂z
(ρqsvsT ) + Snuc + Srim − Smelt + Sfrz + Sdep .

As in the previous sections, the Aψ-terms represent the tendencies due to all processes which
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Figure 5.1: Cloud microphysical processes considered in the one-category ice scheme

are not related to microphysics. LV and LS are, respectively, the latent heat of vapourization
and of sublimation and LF = LS − LV is the latent heat of fusion.

Besides the warm-rain microphysics discussed in Section 5.4, i.e. condensation and evapo-
ration of cloud water, autoconversion, accretion and evaporation of rain water, additional
conversion terms are considered by the scheme (5.51). These are related to microphysical
processes in mixed-phase cold clouds: Snuc is the rate of the initial formation of snow due to
nucleation and subsequent diffusional growth of pristine ice crystals. Sdep denotes the rate
of change of snow mass fraction resulting from diffusion growth of snow particles, where
Sdep > 0 in case of deposition and Sdep < 0 in case of sublimation. Srim is the riming rate,
which is the rate at which the snow mass increases due to the collection of supercooled cloud
droplets by falling snow particles. Smelt denotes the melting rate of snow to form rain and
Sfrz is the freezing rate of rain to form snow. Sshed is the rate at which water is shed by
melting wet snow particles collecting cloud droplets to produce rain. Except for Sc and Sdep,
all terms are defined to be positive quantities. Figure 5.1 shows the microphysical processes
considered in this parameterization scheme.

To close the set (5.51) of equations for the hydrological cycle, the various conversion terms S
describing microphysical processes must be formulated in terms of the dependent grid-scale
variables. The parameterization of these terms is discussed in the next section, except for the
cloud condensation rate Sc which is calculated as in Section 5.3. That is, clouds are assumed
to exist always at water saturation, independent of how low the temperature will actually
be.
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5.5.3 Parameterization of the Conversion Terms

To parameterize the conversion terms, cloud water is treated as a bulk phase without spectral
distribution, whereas size distribution functions are specified for the precipitation phases rain
and snow. These functions have only one free parameter. A Marshall-Palmer distribution is
assumed for rain and a Gunn-Marshall distribution is assumed for snow:

fr(D) = N r
0 exp(−λrD) , fs(D) = N s

0 exp(−λsD) . (5.52)

fr,s(D)dD defines the number of raindrops and snow particles, respectively, per unit volume
of air in the infinitesimal size interval (D,D + dD), where the spectral size coordinate D is
the diameter of a spherical water drop corresponding to particle mass m (i.e. the equivalent
diameter). The intercept parameters N r

0 and N s
0 are assumed to be empirically determined

constants. We use the values N r
0 = 8 × 106 m−4 for rain and N s

0 = 4 × 105 m−4 for snow.

The following relation holds between the mass m and the equivalent diameter D of raindrops
and snow particles,

m =
πρw
6

D3 , (5.53)

where ρw is the bulk density of liquid water. Raindrops are assumed to be spherical drops
with diameter D and the snow particles are interpreted as rimed aggregates of crystals in
the form of thin circular plates with diameter Ds. The equation

m = am(T ) (Ds)
2 (5.54)

is used to specify their mass-size relation where am(T ) is a temperature dependent form
factor given by

am(T ) =




amc − amv

[
1 + cos

{
2π(T − Tm1)

(T0 − T1)

}]
if T0 > T > T1,

amc else,
(5.55)

where T0 = 273.15 K, T1 = 253.15 K, Tm1 = 0.5(T0 + T1), amc = 0.08 kgm−2 and amv =
0.02 kg m−2 are constant parameters. This factor approximates the dependence of both the
aspect ratio and the density of a snow particle. According to (5.55), the snow aggregates will
attain their largest extension Ds at − 10◦C.

Using (5.53) and (5.54), the equivalent diameter and the plate diameter of snow particles
are related by

Ds = D
3

2

√
πρw

6am(T )
. (5.56)

For the terminal fall velocities of single raindrops and snow particles as functions of size we
use the following empirical relations (derived from measurements):

vrpT (D) = vr0D
1/2 , vspT (D) = vs0D

0.3 , (5.57)

where vr0 = 130 m1/2s−1 and vs0 = 9.356 m0.7s−1.
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Given the size distribution functions (5.52), the mass fractions qr and qs, the precipitation
fluxes Pr and Ps, and the mass-weighted spectral-mean fall velocities vrT and vsT of rain and
snow (from (5.7)) are defined by the integrals

ρ qr,s =

∫ ∞

0
m(D)fr,s(D)dD ,

Pr,s =

∫ ∞

0
m(D)vrp,spT (D)fr,s(D)dD , (5.58)

vr,sT =
1

ρ qr,s

∫ ∞

0
m(D)vrp,spT (D)fr,s(D)dD .

The integration yields the following relations for the slope parameters and the mixing ratios

ρ qr = Ar λ
−4
r , Ar = ρwπN

r
0 ,

ρ qs = As λ
−4
s , As = ρwπN

s
0 , (5.59)

for the slope parameters and the precipitation fluxes

Pr = Br λ
−4.5
r , Br = ρwπN

r
0v

r
0 Γ(4.5)/Γ(4) ,

Ps = Bs λ
−4.3
s , Bs = ρwπN

s
0v

s
0 Γ(4.3)/Γ(4) , (5.60)

and for the slope paramters and the terminal fall velocities

vrT = A−1
r Br λ

−1/2
r , vsT = A−1

s Bs λ
−0.3
s . (5.61)

A and B are constant parameters that have been introduced for convenience and Γ is the
Gamma-function. The free parameters λr and λs of the size distribution function can thus
be determined as unique functions of the mass fractions or the precipitation fluxes which in
turn are related by

ρ qr = ArB
− 8

9
r P

8

9
r , ρ qs = AsB

− 4

4.3
s P

4

4.3
s . (5.62)

In the prognostic version of the scheme, we use the mass fractions qr and qs as the depen-
dent model variables. (5.62) can be used to recalculate the microphysical conversion rates
described below in terms of the precipitation fluxes Pr and Ps, which are the dependent
variables in the diagnostic version of the scheme (see Section 5.5.4). Using (5.59) and (5.61),
the terminal fall velocities are formulated directly in terms of qr and qs:

vrT = crT (ρ qr)
1

8 , vsT = csT (ρ qs)
0.3
4 . (5.63)

The coefficients are defined by crT = A
− 9

8
r Br and csT = A

− 4.3
4

s Bs. With the parameters for
the size distribution and the particle fall velocities, we have the numerical values crT = 12.63
and csT = 2.87 (in corresponding SI-units). The relations (5.63) are required for the numer-
ical solution of the set (5.51) for the hydrolocical cycle using the sedimentation algorithm
described in Section 5.2.4.

In order to parameterize the various source and sink terms S, mass growth rates ṁ of
the precipitation particles referring to a specific microphysical process are formulated first.
The corresponding total rate of change is then given by integration over the entire spectral
distribution:

S =
1

ρ

∫ ∞

0
(ṁ)f(D)dD . (5.64)
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By analytic integration of (5.64), the conversion rate S can then be formulated in terms of
the dependent model variables.

An exception to this strategy are the autoconversion and the nucleation processes which
initiate the formation of precipitation. Empirical approaches are necessary to describe the
initial formation of rain and snow from the cloud water phase. Here, we assume that a
temperature dependent function ε(T ) determines which fraction of the cloud water content
qc above a threshold value qc0 will be converted into rain (autoconversion) and into snow
(nucleation). The corresponding production rates are assumed to be proportional to the
cloud water content,

Sau = τ−1
r {1 − ε(T )}max(0, qc − qc0) ,

(5.65)

Snuc = τ−1
s ε(T )max(0, qc − qc0) ,

where τr and τs are time constants defining the speed of the conversion processes. In the
present version of the scheme, the time constants are set to τr = 104 s and τs = 103 s, and a
cloud water threshold is ignored (qc0 = 0). The function ε(T ) follows the empirical relation

ε(T ) =





0 if T ≥ T0 ,

0.5

[
1 + sin

{
π(Tm2 − T )

(T0 − T2)

}]
if T2 < T < T0 ,

1 if T ≤ T2 ,

(5.66)

where the constant parameters are T0 = 273.15 K, T2 = 235.15 K, Tm2 = 0.5(T0 + T2). Eq.
(5.66) is based on the observed frequency distribution of water, ice and mixed-phase clouds
as given by Matveev (1984). Using this function in (5.65), the production rate of rain at
temperatures below 0◦C is gradually suppressed with decreasing temperatures, while the
nucleation rate of snow is enhanced. The autoconversion process disappears completely at
temperatures below −38◦C, where ε(T ) = 1. At such low temperatures, all supercooled cloud
water is made available for the nucleation process.

The parameterization of accretion and riming is based on the continuous model for particle
growth by collection (see Section 5.4.2). According to this model, the mass growth rates of
raindrops and snow crystals collecting cloud droplets are given by

(ṁ)ac =
π

4
D2Er(D) vrT (D) ρqc ,

(5.67)

(ṁ)rim =
π

4
D2
sEs(Ds) v

s
T (D) ρqc ,

where Er and Es are the collection efficiencies of rain and snow particles and the geometric
collision cross-section of snow crystals has been defined by the plate diameter Ds. In case
of melting ice particles at temperatures above the freezing point T0, it is assumed that the
cloud water collected will no longer freeze but is shed from the crystal to form a larger
drop. For this case, the riming growth rate in (5.67) is interpreted as a production rate
for raindrops due to shedding. Assuming constant spectral average values for the collection
efficiencies and integrating according to (5.64) yields the parameterized conversion rates due
to accretion, riming and shedding. For accretion, analogous to the autoconversion rate in
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Eq. (5.65), the additional temperature-dependent factor {1 − ε(T )} according to (5.66) is
applied. The conversion rates read:

Sac = {1 − ε(T )}cacqc(ρqr)7/8 ,

Srim =





1

am(T )
crim q

c(ρqs)
4.3
4 if T < T0 ,

0 if T ≥ T0 ,
(5.68)

Sshed =





0 if T < T0 ,
1

am(T )
crim q

c(ρqs)
4.3
4 if T ≥ T0 .

The rate coefficients cac and crim are defined by

cac =
15

32

√
π
Er
ρw
vr0Ar

1/8 , crim =
π

24
Esv

s
0Γ(4.3)As

− 0.3
4 . (5.69)

The collection efficiencies for raindrops and snow particles collecting much smaller cloud
droplets are usually close to unity. We use the constant mean values Er = 0.8 and Es =
0.875, resulting in the numerical values cac = 1.72 and crim = 1.97 for the rate coefficients.

With respect to evaporation of rain, deposition/sublimation and melting of snow, the pa-
rameterization is based on the following particle growth rates:

(ṁ)ev =
2πDdv
1 +Hw

F rv (D) ρ(qv − qvsw) ,

(ṁ)dep =
4πC(D)dv

1 +Hi
F sv (D) ρ(qv − qvsi) , (5.70)

(ṁ)melt =
4πC(D)lh

LF
F sv (D) (T0 − T ) , T > T0 .

The first two rates in (5.70) are the well-known Howell equations for diffusion growth which
take the impact of temperature differences between the particles and their environment by the
Howell-factors Hw (for water) and Hi (for ice) into account. Additionally, convective vapour
transport due to the fall velocity of the particles is considered by the ventilation factors F rv
and F sv . Within clouds, the diffusional rate of change of raindrops vanishes because of the
prescribed saturation equilibrium, i.e. raindrops may only evaporate below cloud base where
qv < qvsw. The mass growth rate of snow crystals, however, is always positive in cold clouds
since qv = qvsw > qvsi results in large supersaturations with respect to ice. The melting rate
results from the assumption of thermal equilibrium for the melting particle, i.e. the release
of latent heat is balanced by the heat transport between the particle and the surrounding
air.

In (5.70), dv is the molecular diffusion coefficient of water vapour, lh the thermal conductivity
of dry air and C the capacity of the snow crystals. C is assumed to be the capacity for thin
circular disks of diameter Ds, i.e. C = Ds/π. The Howell and the ventilation factors are
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defined by

Hw =
dvL

2
V

lhRvT 2
ρqvsw , Hi =

dvL
2
S

lhRvT 2
ρqvsi ,

F rv = 1 + 0.26

(
DvrT (D)ρ

2ηa

)1/2

, F sv = 1 + 0.26

(
Dsv

s
T (D)ρ

2ηa

)1/2

(5.71)

where ηa is the dynamic viscosity of dry air. The conversion rates due to diffusion and
melting result from the integration of the particle growth rates over the spectral distribution
according to (5.64). Since Sev and Smelt have been defined to be positive quantities, the
individual mass growth rates are multiplied by minus one prior to integration. Finally, the
equations for the parameterized rates are obtained as

Sev = αev

(
1 + βev(ρq

r)3/16
)

(qvsw − qv) (ρqr)1/2 ,

Sdep = αdep a
−1/2
m

(
1 + βdep a

−1/4
m (ρqs)

0.9
4.0

)
(qv − qvsi) (ρqs)5/8 , (5.72)

Smelt = αmelt a
−1/2
mc

(
1 + βmelt a

1/4
mc (ρq

s)
0.9
4.0

)
(T − T0) (ρqs)5/8 .

The factors α and β depend in a complex way on the distribution parameters but also on
temperature and air density. Formally, they are given by

αev =
2πdv

1 +Hw
N r

0 (Ar)
−1/2 ,

βev = 0.26

(
ρvr0
2ηa

)1/2

Γ(2.75)(Ar)
−3/16 ,

αdep =
4dv

1 +Hi

(πρw
6

)1/2
N s

0Γ(2.5)As
−5/8 , (5.73)

βdep = 0.26

(
ρvs0
2ηa

)1/2 (πρw
6

)1/4 Γ(3.4)

Γ(2.5)
As

− 0.9
4.0 ,

αmelt =
4lh
ρLF

(πρw
6

)1/2
N s

0Γ(2.5)As
−5/8 ,

βmelt = βdep .

The coefficients αev and αdep in (5.73) are approximated by the following temperature-
dependent functions (in corresponding SI units):

αev = 3.86 · 10−3 − 9.41 · 10−5 (T − T0) (5.74)

αdep = 1.09 · 10−3 − 3.34 · 10−5 (T − T0) (5.75)

The other coefficients from (5.73) are approximated by the following constant values (in
corresponding SI units): βev = 9.1, αmelt = 7.2 · 10−6, βmelt = βdep = 13.0.

Freezing of supercooled raindrops may occur due to heterogeneous nucleation. Two mecha-
nisms are taken into account: (1) immersion freezing resulting from various drop impurities
which become active as ice nuclei, and (2) contact freezing nucleation due to collection of
ice nuclei by falling drops. The source term Sfrz for the mixing ratio of snow in the budget
equations (5.51) is thus made up of two terms,

Sfrz = Siffrz + Scffrz , (5.76)
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where Siffrz denotes the contribution from immersion freezing and Scffrz is the contribution
from contact nucleation.

The parameterization of Siffrz is based on Bigg’s equation (Bigg (1953)) for the decrease of
the number Nu of unfrozen drops with volume Vd due to immersion nucleation per time
interval dt,

dNu

dt if
= −NuVdJ(Ts) , (5.77)

where Ts = T0 −T is the supercooling and J is the nucleation rate of frozen drops (i.e. snow
particles) given by

J(Ts) = Bif
(
eaifTs − 1

)
(5.78)

and the parameters aif = 0.66 K−1, Bif = 100.0 m−3s−1 have been determined by laboratory
experiments. Applying (5.77) to a spectral distribution fr(D) of raindrops and integrating
mass-weighted over the spectrum results in the following expression for the source rate of
snow mixing ratio due to immersion freezing of raindrops:

Siffrz = −1

ρ

(πρw
6

)∫ ∞

0
D3(∂fr(D)/∂t)ifdD

(5.79)

=
ρw
ρ

(π
6

)2
J(Ts)

∫ ∞

0
D6fr(D)dD .

Using the Marshall-Palmer size distribution (5.52) for fr(D), we finally obtain the parame-
terized rate equation as

Siffrz =
ρw
ρ

20π2N r
0J(Ts)λ

−7
r ,

or, by applying (5.59) to formulate Siffrz in terms of the mass fraction of rain as the dependent
model variable,

Siffrz = αif

(
eaif (T0−T ) − 1

)
(ρqr)7/4 . (5.80)

The parameter αif = (ρw/ρ)20π
2BifN

r
0 (Ar)

−7/4 is approximated by the constant value
αif = 9.95 · 10−5 in corresponding SI-units.

The activation of ice nuclei as contact freezing nuclei requires that they are collected by the
liquid phase. In case of supercooled raindrops it is being assumed that the collection is due
to gravitational sedimentation and that freezing occurs instantaneously at the moment of
contact. Denoting the number of nuclei active as contact nuclei at drop temperature T by
Ncf , the decrease in the size-distribution function fr(D) of raindrops may be formulated as

(
∂fr(D)

∂t

)

cf

= − fr(D)
π

4
D2Ecfv

r
T (D)Ncf , (5.81)

where Ecf is the mean collection efficiency of raindrops collecting ice nuclei. The correspond-
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ing source rate Scffrz of the snow mass fraction then results as the mass-weighted integral

Scffrz = −1

ρ

(πρw
6

) ∫ ∞

0
D3(∂fr(D)/∂t)cfdD

(5.82)

=
ρw
ρ

(
π2

24

)
Ncf

∫ ∞

0
D5vrT (D)fr(D)dD .

By integration of Eq. (5.82) using the Marshall-Palmer size distribution for fr(D) and the
relation (5.57) for the fall velocity of raindrops, we finally obtain the parameterized rate
equation as

Scffrz = αcfEcfNcf (ρq
r)13/8 . (5.83)

The parameter αcf = (ρw/ρ)(π
2/24)N r

0 v
r
0Γ(6.5)B

−13/9
r is approximated by the constant

value αcf = 1.55 ·10−3 in corresponding SI-units, where the collection efficiency has been set
to Ecf = 5.0 · 10−3.

In order to apply Eq. (5.83), the number density of contact nuclei active at a given tem-
perature and height must be specified. According to Young (1974) the activity spectrum is
formulated as

Ncf =

{
Ncf,0(270.16 − T )1.3 if T < 270.16 K,

0.0 if T ≥ 270.16 K
(5.84)

with a contact nuclei threshold temperature of −3◦C. The concentration of natural contact
nuclei active at −4◦C is estimated to be Ncf,0 = 2.0 · 105 m−3 at sea level. As contact nuclei
are predominately produced near the surface, Ncf,0 will in general decrease with height. In
lieu of observational data, the concentration of contact nuclei active at −4◦C is assumed to
decrease linearly from its surface value to a background concentration of Ncf,0 = 104 m−3 in
500 hPa.

5.5.4 Diagnostic Version

In the diagnostic version of the snow scheme, the prognostic equations for qr and qs in (5.51)
are replaced by the column-equilibrium relations (5.10) for the corresponding precipitation
fluxes Pr and Ps:

g√
γ

ρ0

ρ

∂Pr
∂ζ

= Sr ,
g√
γ

ρ0

ρ

∂Ps
∂ζ

= Ss .

The discretization and integration of these diagnostic budget equations for Pr and Ps has
been described in Section 5.2.2. The microphysical conversion rates S are formulated with
Pr and Ps as the dependent model variables, using (5.62). They read:
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Sac = {1 − ε(T )}cacqcP
7

9
r

Srim =





1

am(T )
crim q

cPs if T < T0

0 if T ≥ T0

Sshed =





0 if T < T0

1

am(T )
crim q

cPs if T ≥ T0

Sev = αev

(
1 + βevP

1

6
r

)
(qvsw − qv)P

4

9
r

Sdep = αdep a
− 1

2
m

(
1 + βdep a

− 1

4
m P

0.9
4.3
s

)
(qv − qvsi)P

5

8.6
s

Smelt = αmelt a
− 1

2
mc

(
1 + βmelt a

− 1

4
mcP

0.9
4.3
s

)
(T − T0)P

5

8.6
s

Siffrz = αif

(
eaif (T0−T ) − 1

)
P 14/9
r

Scffrz = αcfEcfNcfP
13/9
r

The autoconversion and nucleation rate are the same as in the prognostic version. The
coefficients in the modified source terms above are defined by (using Br and Bs from (5.60)):

cac =
3

7

Er
ρw
B

2

9
r

crim =
π

4
Es

αev =
2πdv

1 +Hw
N r

0B
− 4

9
r

αdep =
4dv

1 +Hi

(πρw
6

) 1

2

N s
0Γ(2.5)B

− 5

8.6
s

αmelt =
4lh
ρLF

(πρw
6

) 1

2

N s
0Γ(2.5)B

− 5

8.6
s

βev = 0.26

(
ρvr0
2ηa

) 1

2

Γ(2.75)B
− 1

6
r

βdep = 0.26

(
ρvs0
2ηa

) 1

2
(πρw

6

) 1

4 Γ(3.4)

Γ(2.5)
B

− 0.9
8.6

s

βmelt = βdep

αif = (ρw/ρ)20π
2BifN

r
0B

−14/9
r

αcf = (ρw/ρ)(π
2/24)N r

0 v
r
0Γ(6.5)B−13/9

r

The coefficients αev and αdep are approximated by the following temperature-dependent
functions (in corresponding SI units):

αev = 2.76 · 10−3 exp{0.055(T0 − T )} , (5.85)

αdep = 1.13 · 10−3 exp{0.073(T0 − T )} . (5.86)
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The other coefficients are approximated by the following constant values (in corresponding
SI units): cac = 0.24, crim = 0.69, βev = 5.98, αmelt = 3.90 · 10−6, βmelt = βdep = 10.50,
αif = 1.92 · 10−6 and αcf = 3.97 · 10−5.

5.6 A Two-Category Ice Scheme

The bulk water-continuity model described in this section is designed for applications on the
meso-β and meso-α scale to take microphysical processes in stratiform mixed-phase and ice
clouds into account. Compared to the one-category ice scheme, cloud ice is included as an
additional solid form of water substance besides snow. The parameterization scheme will be
referred to as cloud ice scheme.

5.6.1 Basic Assumptions

For mixed- and ice-phase stratiform clouds, cloud ice and snow are included as solid forms of
water substance besides the categories water vapour, cloud water and rain. Snow is assumed
to be in the form of rimed aggregates of ice-crystals that have become large enough to have
an appreciable fall velocity. Cloud ice is assumed to be in the form of small hexagonal plates
that are suspended in the air and have no appreciable fall velocity. Thus, cloud water and
rain water (with mass fraction qc and qr, respectively) constitute the liquid phase and cloud
ice and snow (with mass fraction qi and qs, respectively) constitute the solid phase.

Similar to the EM/DM scheme described in Section 5.5, other ice species in the precipitation
phase, as e.g. graupel and hail, are neglected. Also, equilibrium in vertical columns is assumed
for the precipitation phases rain and snow. These conditions limit the cloud ice scheme to
applications on hydrostatic scales of motion.

Most parameterization schemes for mixed phase clouds rely on an extended saturation ad-
justment technique proposed by Lord et al. (1984) to calculate simultaneously condensation
of cloud water as well as depositional growth of cloud ice at temperatures below the freezing
point. This method supposes that both cloud droplets and cloud ice particles are in ther-
modynamic equilibrium with respect to a hypothetical saturation vapour pressure which is
defined as a weighted mean of the equilibrium pressure of water and over ice in the temper-
ature range −40◦C < T < 0◦C. In this temperature range, the method will always result in
mixed phase clouds with an almost linear partitioning of the condensate in qi and qc, indepen-
dent of the dynamic conditions. Also, as the rapid growth of ice crystals in water saturated
mixed-phase clouds cannot be described adequately by this scheme, the Findeisen-Bergeron
process has to be parameterized completely.

To avoid such an artificial assumption, we formulate the depositional growth of cloud ice as a
non-equilibrium process and require, at all temperatures, saturation with respect to water for
cloud water to exist. Ice crystals which are nucleated in a water saturated environment will
then grow very quickly by deposition at the expense of cloud droplets. Depending on local
dynamic conditions, the cloud water will either evaporate completely or will be resupplied
by condensation. For strong dynamical forcings it is expected that water saturation will be
maintained, resulting in a mixed phase cloud. In case of a comparatively weak forcing, the
cloud will be readily transformed to an ice cloud existing at or near ice saturation (i.e. at
subsaturation with respect to water). The latter type of clouds cannot be simulated with the
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EM/DM scheme from Section 5.5.

An explicit treatment of the depositional growth of cloud ice requires assumptions on the
shape, size and number density of crystals. We assume a monodisperse size distribution for
cloud ice with mean crystal mass

mi = ρqiN−1
i , (5.87)

where Ni is the number of cloud ice particles per unit volume of air. Since only the mass
fraction qi is predicted in a single moment scheme, either mi or Ni must be specified in terms
of the dependent model variables. We chose to prescribe the number density of crystals as a
function of temperature because the mean crystal mass will change rapidly due to deposition
and sublimation. Ni, however, is also highly variable in space and time, depending on the
availability of ice nuclei and their modes of action as well as collection and ice multiplication
processes.

An estimate of Ni could be based on the classical Fletcher-formula (Fletcher (1962)) for the
number Na

in of ice nuclei which become activated at temperature T below the freezing point
T0:

Na
in = Na

0 exp{ 0.6 (T0 − T )} , Na
0 = 0.01m−3 . (5.88)

Eq. (5.88) represents an average of many measurements made at various locations using ex-
pansion chambers. Generally, these measurements did not distinguish between the nucleation
mechanisms (condensation, immersion, contact and deposition nucleation) and did not indi-
cate the effect of varying the humidity. The concentration of ice crystals measured in natural
cold clouds is very often found to be much higher than can be accounted for by the typical
concentration (5.88) of ice nuclei, especially at relatively low supercooling (T > −20◦C).
This is referred to as ice enhancement. The processes by which the concentrations of ice
particles become so highly enhanced are not certain. Some hypotheses are fragmentation of
crystals, ice splinter production in riming, contact nucleation and condensation nucleation.

To take the impact of ice enhancement implicitly into account, the number density of cloud
ice crystals as a function of temperature is parameterized by

Ni(T ) = N i
0 exp{ 0.2 (T0 − T )} , N i

0 = 1.0 · 102 m−3 . (5.89)

This approximation is based on aircraft measurements of the concentration of pristine crystals
in stratiform clouds using data of Hobbs and Rangno (1985) and (Meyers et al. 1992). For
a given temperature, the experimental data may scatter by about two orders of magnitude.
Nevertheless, we assume that (5.89) represents a meaningful average value for the cloud ice
crystal concentration in cold stratiform clouds. Clearly, a more physically based approach
must involve a double-moment representation of cloud ice including a budget equation for
the concentration of ice nuclei. This, however, is beyond the scope of our single-moment
cloud ice scheme.

Pristine cloud ice crystals are assumed to be in the form of thin hexagonal plates with
diameter Di and thickness hi, where the maximum linear dimension Di is smaller than about
200 µm. Thus, the particles will be in the constant aspect ratio growth regime. Assuming an
aspect ratio of h/Di = 0.2 and an ice density of 5 ·10−2 kgm−3 yields the following mass-size
relation for cloud ice particles,

mi = aimD
3
i , (5.90)

where aim = 130 kgm−3. A temperature dependency of the form factor aim is neglected.
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Snow is assumed to be in the form of densely rimed aggregates of dendrites with a maximum
linear dimension Ds, the diameter of snow particles. These particles are in the limiting (or
linear) growth regime. Based on data of Locatelli and Hobbs (1974), their mass-size relation
is approximated by

ms = asmD
2
s . (5.91)

In contrast to the one-category ice scheme, the form factor asm is assumed to be independent
of temperature for simplicity and is set to asm = 0.038 kg m−2.

Exponential size distribution functions for the precipitation categories rain and snow are
prescribed,

fr(D) = N r
0 exp(−λrD) , fs(Ds) = N s

0 exp(−λsDs) . (5.92)

where D is the equivalent diameter of raindrops. The size distribution functions (5.92) are
similar to those for the one-category ice scheme in Eq. (5.52), except that the diameter of
snow particles is used as spectral coordinate. An exponential nature of ice particle spectra
with respect to maximum linear dimension is supported by various in-situ measurements
using optical probes. The intercept parameters N r

0 and N s
0 are assumed to be empirically

determined constants. We use the typical values N r
0 = 8×106 m−4 for rain and N s

0 = 8×105

m−4 for snow.

For the terminal fall velocities of single raindrops and snow particles as functions of size the
following empirical relations (derived from measurements) are applied:

vrpT (D) = vr0D
0.5 , vspT (Ds) = vs0D

0.25
s , (5.93)

where vr0 = 130 m1/2s−1 and vs0 = 4.9 m0.75s−1. As in the EM/DM-scheme, a correction term
depending on air density (to take changes in the areodynamical drag forces into account) is
neglected.

5.6.2 The Set of Conservation Equations

Using these basic assumptions, the conservation equations of the two-category ice scheme
for water vapour, cloud water, cloud ice, rain and snow read

∂T

∂t
= AT +

LV
cpd

(Sc + Sr) +
LS
cpd

(Si + Ss) ,

∂qv

∂t
= Aqv + Sv ,

∂qc

∂t
= Aqc + Sc , (5.94)

∂qi

∂t
= Aqi + Si ,

∂qr

∂t
= Aqr +

1

ρ

∂

∂z
(ρqrvrT ) + Sr ,

∂qs

∂t
= Aqs +

1

ρ

∂

∂z
(ρqsvsT ) + Ss .

As in the previous sections, the Aψ-terms represent the tendencies due to all processes which
are not related to microphysics. For qi, this includes threedimensional advection, turbulent
diffusion and computational mixing, for the precipitating categories rain and snow only 3-d
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advective transport. LV and LS are, respectively, the latent heat of vapourization and of
sublimation.

The terms Sx describe the sources and sinks for a water category x (x = i denotes cloud
ice) due to various microphysical transfers between the hydrometeor species, and their sum
is zero. The following microphysical processes are taken into account:

Sv = −Sc + Sev − Sidep − Ssdep − Snuc

Sc = Sc − Scau − Sac − Scfrz + Simelt − Srim − Sshed

Si = Snuc + Scfrz + Sidep − Simelt − Siau − Saud − Sagg − Sicri (5.95)

Sr = Scau + Sac − Sev + Sshed − Srcri − Srfrz + Ssmelt

Ss = Siau + Saud + Sagg + Srim + Ssdep + Sicri + Srcri + Srfrz − Ssmelt

The symbols Sα denote specific transfer rates which are explained in the table below. Figure
5.2 sketches the microphysical processes considered in this two category ice scheme of LM.

Sc condensation and evaporation of cloud water
Scau autoconversion of cloud water to form rain
Sac accretion of cloud water by raindrops
Sev evaporation of rain water
Snuc heterogeneous nucleation of cloud ice
Scfrz nucleation of cloud ice due to homogeneous freezing of cloud water

Sidep deposition growth and sublimation of cloud ice

Simelt melting of cloud ice to form cloud water
Siau autoconversion of cloud ice to form snow due to aggregation
Saud autoconversion of cloud ice to form snow due to deposition
Sagg collection of cloud ice by snow (aggregation)
Srim collection of cloud water by snow (riming)
Sshed collection of cloud water by wet snow to form rain (shedding)
Sicri collection of cloud ice by rain to form snow
Srcri freezing of rain due to collection of cloud ice to form snow
Srfrz freezing of rain due heterogeneous nucleation to form snow

Ssdep deposition growth and sublimation of snow

Ssmelt melting of snow to form rain water

5.6.3 Parameterization of the Conversion Terms

The parameterization of the transfer rates proceeds in a similar way as has been outlined
in Section 5.5.3 for the one-category ice scheme. That is, the rate equations are obtained
by integration of individual particle growth rates over the spectral distribution whenever
possible.

Given the size distribution functions (5.92) and the fall velocities (5.93), we have – according
to (5.58) – the following relations for the slope parameters λ and the mixing ratios

ρ qr = Ar λ
−4
r , Ar = ρwπN

r
0 ,

ρ qs = As λ
−3
s , As = 2asmN

s
0 , (5.96)
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Figure 5.2: Cloud microphysical processes considered in the two-category ice scheme

for the slope parameters and the precipitation fluxes of rain and snow:

Pr = Br λ
−4.5
r , Br = ρwπN

r
0v

r
0 Γ(4.5)/Γ(4) ,

Ps = Bs λ
−3.25
s , Bs = N s

0v
s
0a
s
m Γ(3.25) , (5.97)

and for the slope paramters and the terminal fall velocities

vrT = A−1
r Br λ

−1/2
r , vsT = A−1

s Bs λ
−1/4
s . (5.98)

Ar, Br, As and Bs are constant parameters that have been introduced for convenience and
Γ is the Gamma-function. The free parameters λr and λs of the size distribution function
can thus be determined as unique functions of the mass fractions or the precipitation fluxes
which in turn are related by

ρ qr = ArB
− 8

9
r P

8

9
r , ρ qs = AsB

− 12

13
s P

12

13
s . (5.99)

In the prognostic version of the scheme, we use the mass fractions qr and qs as the depen-
dent model variables. (5.99) can be used to recalculate the microphysical conversion rates
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described below in terms of the precipitation fluxes Pr and Ps, which are the dependent
variables in the diagnostic version of the scheme (see Section 5.6.4). Using (5.96) and (5.98),
the terminal fall velocities are formulated directly in terms of qr and qs:

vrT = crT (ρ qr)
1

8 , vsT = csT (ρ qs)
1

12 . (5.100)

The coefficients are defined by crT = A
− 9

8
r Br and csT = A

− 13

12
s Bs. With the parameters

for the size distribution and the particle fall velocities from (5.92) and (5.93), we have the
numerical values crT = 12.63 and csT = 2.49 (in corresponding SI-units). The relations (5.100)
are required in the numerical solution of the set (5.94) for the hydrolocical cycle in prognostic
mode using the sedimentation algorithm described in Section 5.2.4.

The transfer rate Sc of cloud water condensation and evaporation is obtained by saturation
adjustment. Cloud ice being formed by nucleation in a supercooled water saturated environ-
ment will thus grow quickly by deposition due to the corresponding high ice supersaturation.
The formulation of ice nucleation and depositional growth of cloud ice as well as the other
transfer rates is described below.

(a) Nucleation and depositional growth of cloud ice

Recent field experiments show that ice nucleation is not likely to occur in regions of the at-
mosphere which are subsaturated with respect to water. In the present version of the scheme
we thus require water saturation for the onset of cloud ice formation above a temperature
threshold of Td = 248.15 K. For temperatures below that threshold, deposition nucleation
may occur for ice supersaturation.

To formulate heterogeneous nucleation, we simply assume that the number of ice forming
nuclei activated within a time step ∆t is given by Eq. (5.89). In this way, the various nu-
cleation mechanisms are not distinguished. We will also neglect nucleation whenever ice is
already present since this has been found to be of minor importance. Assuming that a small
initial crystal m0

i is formed within a nucleation time step, the rate of cloud ice formation
due to heterogeneous nucleation reads

Snuc =





1

ρ

m0
i

∆t
Ni(T ) if T < Td , q

i = 0 and qv ≥ qvsi ,

1

ρ

m0
i

∆t
Ni(T ) if Td ≤ T ≤ Tnuc , q

i = 0 and qv ≥ qvsw ,

0 else .

(5.101)

Tnuc is a nucleation threshold temperature which is set to 267.15 K. We use m0
i = 10−12 kg

for the initial mass of the cloud ice crystals.

Cloud ice may also be nucleated by homogeneous freezing of supercooled cloud droplets. It
is simply assumed that all cloud water freezes instantaneously whenever the temperature
falls below a threshold temperature Thn which is set to 236.15 K. The rate of homogeneous
nucleation of cloud ice due to freezing of droplets is then

Scfrz =

{
qc/∆t if T < Thn and qc > 0 ,

0 else .
(5.102)

Once being formed, the pristine crystals will grow by vapour deposition. The formulation of
this non-equilibrium process is based on the growth equation

(ṁi)dep = 4DiGi dv ρ (qv − qvsi) (5.103)
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of the mass mi of a cloud ice crystal with diameter Di. dv is the molecular diffusion coefficient
for water vapour, qvsi is the saturation specific humidity over ice and Gi = 1/(1+Hi) whereHi

is the Howell factor defined in (5.71). Using the mass-size relation (5.90) the total deposition
rate of all crystals, Sidep = Niṁi/ρ, may then be written as

Sidep = cidepNim
1/3
i (qv − qvsi) if qv > qvsi (5.104)

with cidep = 4Gidva
−1/3
m . The Howell factor varies relatively slowly with temperature and

pressure. To simplify the scheme, we use a representative value and set the rate coefficient
cidep to a constant value of cidep = 1.3 · 10−5 (in corresponding SI-units). The number density
Ni of cloud ice crystals is prescribed by Eq. (5.89) as function of temperature and the crystal
mass mi is diagnosed from qi and Ni. For temperatures close to the melting point the crystal
sizes can become very large due to the small number density. To avoid this, we limit the
crystal mass by a maximum value mmax

i , i.e.

mi = min(ρqi/Ni ,m
max
i ) , (5.105)

where mmax
i is set to 10−9 kg. This value corresponds to a maximum crystal diameter of

Dmax
i ≃ 200µm.

For cloud ice sublimation at ice subsaturation, we do not apply (5.104), but

Sidep = max{−qi/∆t , (qv − qvsi)/∆t} if qv < qvsi . (5.106)

(b) Autoconversion processes

The rate of autoconversion from cloud water to rain due to cloud droplet collection (Scau)
and of autoconversion of cloud ice to snow due to cloud ice crystal aggregation (Siau) is
parameterized by the simple relations

Scau = max{ccau (qc − qc0) , 0 } ,
Siau = max{ciau (qi − qi0) , 0 } . (5.107)

Currently we do not use any autoconversion threshold values (qc0 = qi0 = 0). The rate
coefficients are set to ccau = 4 · 10−4 s−1 for cloud water and ciau = 10−3 s−1 for cloud ice.

Besides autoconversion due to cloud ice aggregation, snow may also be formed initially due
to fast depositional growth of small crystals. The parameterization of this process is based
on the time-scale τs for cloud ice particles with mass mi to grow to snow crystal size with an
initial mass m0

s. Integration of the mass growth equation (5.103) in the form dmi = αm1/3dt
yields the time-scale

τs =
3

2α

{
(m0

s)
2/3 − (mi)

2/3
}
.

The rate of autoconversion Sdau due to depositional growth of cloud ice is then assumed to
be given by Sdau = qi/τs and we end up with

Sdau =
Sidep

1.5
{
(m0

s/mi)2/3 − 1
} . (5.108)

The initial mass m0
s of snow crystals is set to m0

s = 3.0 · 10−9 kg which corresponds to a
particle diameter of D0

s ≃ 300µm. For mi = mmax
i , about 65% of the cloud ice deposition

rate is available for snow formation due to depositional growth.
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(c) Collection mechanisms

The further mass increase of the precipitating water categories rain and snow due to collec-
tion of cloud water and cloud ice is formulated by using the continuous model for particle
growth. Accretion, riming and shedding are based on the mass growth equations (5.67) and
a corresponding equation is used for aggregation, i.e. the collection of cloud ice by snow
particles. Performing the integration over the particle spectra according to (5.64) yields the
following parameterized rate equations:

Sac = cacq
c(ρqr)7/8 , (5.109)

Srim =

{
crim q

c(ρqs)
13

12 if T < T0 ,

0 if T ≥ T0 ,
(5.110)

Sshed =

{
0 if T < T0 ,

crim q
c(ρqs)

13

12 if T ≥ T0 .
(5.111)

Sagg = cagg q
i(ρqs)

13

12 (5.112)

In these relations, the rate coefficients are defined by

cac =
15

32

√
π
Er

ρw
vr0Ar

1/8 ,

crim =
π

4
ĒcsN

s
0v

s
0Γ(3.25)As

− 13

12 , (5.113)

cagg =
π

4
ĒisN

s
0v

s
0Γ(3.25)As

− 13

12 .

The mean collection efficiency for raindrops collecting cloud droplets is set to Ēcr = 0.8, for
snow crystals collecting cloud droplets to Ēcs = 0.9 and for snow crystals collecting cloud
ice particles to Ēis = 0.5. By inserting the other parameters from Section 5.6.1 we obtain
the values cac = 1.72, crim = 46.4 and cagg = 25.8 for the rate coefficients in corresponding
SI-units.

Supercooled raindrops may also collide with cloud ice crystals. This will result in an instan-
taneous freezing of the drops which then are interpreted as snow particles. Two transfer
rates have to be considered in this case: first the decrease in cloud ice mass due to the colli-
sion/coalescence interaction with raindrops (−Sicri) and second the decrease in rainwater due
to freezing as a result from the collection of ice crystals (−Srcri). The sum of both transfer
rates, Sicri + Srcri, forms the corresponding source term for snow.

The parameterization of these transfer rates is based on the collection integrals

Sicri = −
(
∂qi

∂t

)

cri

=
π

4
Ēirq

i

∫ ∞

0
D2vrT (D)fr(D)dD ,

Srcri = −
(
∂qr

∂t

)

cri

=
πNi

4ρ
Ēir

πρw
6

∫ ∞

0
D5vrT (D)fr(D)dD ,

where we have assumed that the diameter of cloud ice crystals is much smaller than the
diameter of raindrops (which is not necessarily the case). Ēir denotes the collection efficiency
of raindrops collecting small ice particles. Evaluating these integrals yields the transfer rates
in the form

Sicri = cicri q
i (ρqr)7/8 , (5.114)

Srcri = crcri (mi)
−1qi (ρqr)13/8 . (5.115)
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The rate coefficients cicri and crcri are given by

cicri =
15

32

√
π
Ēir
ρw

vr0Ar
1/8 , crcri =

π

24
Ēirv

r
0Γ(6.5)Ar

−5/8 . (5.116)

We set the mean collection efficiency to Ēir = 0.8 and obtain the numerical values cicri = 1.72
and crcri = 1.24 · 10−3 for the rate coefficients in corresponding SI-units.

(d) Diffusional growth of rain and snow

The parameterization of the transfer rates for rain and snow due to vapour diffusion, i.e
evaporation of rain and deposition/sublimation of snow, is based on the mass growth equa-
tions (5.70) from Section 5.5 and uses also the formulation (5.71) for the ventilation factors.
The only difference is that we integrate over the size distribution (5.92) for snow, which is
formulated with respect to the linear dimension of the crystals, and that we approximate
the temperature dependent Howell factors by characteristic constant values. The parametric
transfer rates are obtained as

Sev = αev

(
1 + βev(ρq

r)3/16
)

(qvsw − qv) (ρqr)1/2 , (5.117)

Ssdep = csdep

(
1 + bsdep(ρq

s)5/24
)

(qv − qvsi) (ρqs)2/3 , (5.118)

The coefficients for evaporation of rain read

αev =
2πdv

1 +Hw
N r

0 (Ar)
−1/2 , βev = 0.26

(
ρvr0
2ηa

)1/2

Γ(2.75)(Ar)
−3/16 , (5.119)

and the corresponding coefficients for deposition/sublimation of snow are:

csdep =,
4dv

1 +Hi
N s

0As
−2/3 , bsdep = 0.26

(
ρvs0
2ηa

)1/2

Γ(21/8)A−5/24
s , (5.120)

where we use the numerical values αev = 3.1·10−3, βev = 9.0, csdep = 3.2·10−2 and bsdep = 14.7
(in corresponding SI-units) for the rate coefficients.

(e) Melting and freezing

Cloud ice particles are assumed to melt instantaneously when the ambient temperature rises
above 0◦C. All cloud ice present will be completely transformed to cloud water within a time
step ∆t and the conversion rate is simply

Simelt =

{
qi/∆t if T > T0 and qi > 0 ,

0 else .
(5.121)

The parameterization of the melting rate of snow is based on the stationary heat budget of
a snow particle. It is assumed that the release of latent heat from melting as well as from
condensation/evaporation is balanced by the heat flux between the particle and the ambient
air. The change in mass of a melting particle is then given by (if T > T0)

(−ṁ)melt =
4DsF

s
v (Ds)

LF
{ lh(T − T0) + LV dvρ(q

v − qvsw(T0)) } . (5.122)
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By interpreting the water mass formed by melting as the source term for rain and integrating
Eq. (5.122) over the size distribution of snow particles, we obtain the transfer rate due to
melting as

Ssmelt = csmelt

(
1 + bsmelt(ρq

s)5/24
)
{ (T − T0) + asmelt(q

v − qvsw(T0)) } (ρqs)2/3 . (5.123)

The rate coefficients are given by

csmelt =
4lh
ρLF

N s
0As

−2/3 , bsmelt = bsdep , asmelt =
ρLV dv
lh

, (5.124)

and are set to the constant numerical values csmelt = 1.48 · 10−4, bsmelt = 14.37 and asmelt =
2.31 · 103 (in corresponding SI units).

Besides freezing due to collection of cloud ice crystals, supercooled raindrops may also freeze
due to immersion and contact nucleation. The parameterization is based on the rate equations
derived in the one-category ice scheme, i.e.

Srfrz = Siffrz + Scffrz , (5.125)

where Siffrz denotes the contribution from immersion freezing and Scffrz is the contribution
from contact nucleation. These transfer rates are formulated by Eqs. (5.80) and (5.83) but
for computational efficiency we combine these two contributions in a single rate equation
according to

Srfrz = crfrz(max(T rfrz − T, 0))3/2(ρqr)27/16 , (5.126)

which gives a reasonable approximation to Eq. (5.125) over relevant temperature ranges. The
rate coefficient is set to crfrz = 1.68 (in corresponding SI-units) and a threshold temperature
T rfrz = 271.15 K for heterogeneous freezing of raindrops is used.

Because cloud microphysics involves small time scales, all cloud water or all cloud ice being
available at a given timelevel can become depleted by a single microphysical process (e.g.
riming) within one timestep, especially when ∆t is relatively large. In order to allow all
processes to act simultaneously, we use a quasi-implicit formulation to calculate the sink
terms for both cloud water and cloud ice.

5.6.4 Diagnostic Version

In the diagnostic version of the cloud-ice scheme, the prognostic equations for qr and qs in
(5.94) are replaced by the column-equilibrium relations (5.10) for the corresponding precip-
itation fluxes Pr and Ps:

g√
γ

ρ0

ρ

∂Pr
∂ζ

= Sr ,
g√
γ

ρ0

ρ

∂Ps
∂ζ

= Ss .

The discretization and integration of these diagnostic budget equations for Pr and Ps has
been described in Section 5.2.2. The budget equation for cloud ice is integrated by the two
time-level Lin and Rood scheme (cf. Part I, Section 4.1) In order to combine this scheme
where the integration is from time level n to n + 1, with the Leapfrog scheme where the
integration steps are from n− 1 to n+ 1, the microphysical source and sink terms described
above have to be evaluated at time level n+ 1, i.e. after a dynamical time step.
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For the diagnostic version, the microphysical conversion rates S are formulated with Pr and
Ps as the dependent model variables. They read:

Sac = cac q
c P

7

9
r

Srim =

{
crim q

c Ps if T < T0 ,

0 if T ≥ T0 ,

Sshed =

{
0 if T < T0 ,

crim q
c Ps if T ≥ T0 ,

Sagg = cagg q
i Ps

Sicri = cicri q
i P 7/9

r

Srcri = crcri (mi)
−1qi P 13/9

r

Sev = αev

(
1 + bevP

1/6
r

)
(qvsw − qv)P 4/9

r

Ssdep = csdep

(
1 + bsdepP

5/26
s

)
(qv − qvsi)P

8/13
s

Ssmelt = csmelt

(
1 + bsmeltP

5/26
s

)
{ (T − T0) + asmelt(q

v − qvsw(T0)) } P 8/13
s

Srfrz = crfrz(max(T rfrz − T, 0))3/2P 3/2
r

All other conversion rate are the same as in the prognostic version. The coefficients in the
modified source terms above are defined by (using Br and Bs from (5.99)):

cac =
3

7

Ēcr
ρw

B2/9
r

crim =
π

4asm
Ēcs

cagg =
π

4asm
Ēis

cicri =
3

7

Ēir
ρw

B2/9
r

crcri =
π

4
Ēir(5.5 · 4.5)B−4/9

r

αev =
2πdv

1 +Hw
N r

0B
− 4

9
r

βev = 0.26

(
ρvr0
2ηa

) 1

2

Γ(2.75)B
− 1

6
r

csdep =
4dv

1 +Hi
N s

0Bs
−8/13 (5.127)

bsdep = 0.26

(
ρvs0
2ηa

)1/2

Γ(21/8)B−5/26
s (5.128)

csmelt =
4lh
ρLF

N s
0Bs

−8/13 (5.129)

bsmelt = bsdep (5.130)

asmelt =
ρLV dv
lh

(5.131)

In contrast to the the one category ice scheme, temperature dependencies in the coefficients
are neglected at present. The coefficients are approximated by the following constant values
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(in corresponding SI units): cac = 0.24, crim = 18.6, cagg = 10.3, cicri = 0.24, crcri = 3.2 ·10−5,
αev = 1.0 · 10−3, βev = 5.9, csdep = 1.8 · 10−2, bsdep = 12.3, csmelt = 8.43 · 10−5, bsmelt = 12.05,

asmelt = 2.31 · 103 and crfrz = 3.75 · 10−2.

5.7 A Three Category Ice Scheme

to be completed
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Section 6

Parameterization of Moist
Convection

6.1 General Aspects

Cumulus convection has a major impact on the vertical structure of the temperature and
moisture fields of the atmosphere. However, convective processes operate on horizontal scales
which are much smaller than those resolved by large-scale and mesoscale NWP-models. Thus,
the only way to represent the overall effect of moist convection in these type of models is by
means of parameterization.

Some basic effects of moist convection have to be considered by cumulus parameterization
schemes. These are diabatic heating due to the release of latent heat resulting from cloud
condensation and from the formation and evaporation of precipitation and the vertical trans-
ports of heat, moisture and momentum in cumulus updrafts and downdrafts as well as in
the regions with compensating downward motions, which in turn interact with the cumu-
lus clouds by lateral exchange processes (entrainment and detrainment). All these processes
tend to stabilize the original thermally unstable stratification. Mesoscale circulations within
systems of organized convection, e.g. squall-lines and convective cloud clusters, can also be
important for the large-scale heat and moisture budgets. Most parameterization schemes,
however, neglect the impact of mesoscale circulations because they are presently not well
understood.

Various methods are presently applied for cumulus parameterization in mesoscale NWP
models such as Kuo-type, mass flux and adjustment approaches. For each of these basic
methods numerous parameterization schemes have been proposed in the literature. This
shows both the complexity of the processes to be considered and the uncertainty as to
whether moist convection can be correctly represented by means of parameterization.

For applications of LM to the meso-β scale, the mass flux scheme of Tiedtke (1989) has been
implemented. We plan to add additional options for other schemes (e.g. Kain and Fritsch
(1993)) in the near future.
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6.2 The Tiedtke Mass-Flux Scheme

The cumulus parameterization scheme according to Tiedtke (1989) uses a mass-flux approach
to represent moist convection in numerical models. The feedback of subgrid-scale vertical
fluxes of mass, heat, moisture and momentum in up- and downdrafts is calculated by using
a simple bulk cloud model. The basic concept of the scheme is outlined in this section. A
more detailed description of the physics and the numerics can be found in Tiedtke (1989)
and ECMWF (1991).

6.2.1 Formulation of the Convective Forcing

The prognostic equations for the grid-scale variables are obtained by averaging the microtur-
bulent equations for heat, moisture and momentum over the spatial scales which correspond
to the model grid spacing. Neglecting nonhydrostatic effects on the mesoscale as well as
changes in the mean vertical velocity, the thermodynamic forcing due to moist convection
can be formulated by the following tendencies, which have been denoted by MMC

ψ in the
model equations (cf. Part I, (3-143) - (3-150)).

cpdM
MC
T =

(
∂s

∂t

)

MC

= − 1

ρ

∂

∂z
{Mu(su − s) +Md(sd − s)}

+L(cu − ed − el − ep)

MMC
qv =

(
∂qv

∂t

)

MC

= − 1

ρ

∂

∂z
{Mu(q

v
u − qv) +Md(q

v
d − qv)} (6.1)

− (cu − ed − el − ep)

MMC
α =

(
∂α

∂t

)

MC

= − 1

ρ

∂

∂z
{Mu(αu − α) +Md(αd − α)}

In (6.1), s = cpdT +gz is the dry static energy, α denotes the horizontal wind components (u
or v) and the subscripts u and d indicate variables within the updrafts and the downdrafts,
respectively. The horizontal area for averaging has been assumed to be large enough to
contain an ensemble of cumulus clouds. However, the convective-scale eddy transports of dry
static energy, moisture and momentum from cumulus updrafts, downdrafts and the cumulus-
induced subsidence in the environmental air are not described in terms of contributions from
the individual ensemble components, but are represented by their average values using a one-
dimensional bulk cloud model after Yanai et al. (1973). This approximates the net effects of
an ensemble of clouds as resulting from a representative single cloud.

Additionally, it is assumed that the area fraction of updrafts and downdrafts is very small
such that the values of the variables in the environment can be approximated by the area
mean values. The following symbols are used in (6.1):

Mu updraft mass flux, defined by Mu = ρau(wu − w)
au area fraction of the updraft
wu vertical velocity in the updraft
Md downdraft mass flux, defined by Md = ρad(wd − w)
ad area fraction of the downdraft
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wd vertical velocity in the downdraft
su, sd dry static energy within the up- and downdraft, resp.
qu, qd specific humidity within the up- and downdraft, resp.
αu, αd horizontal wind components in the up- and downdraft, resp.
cu condensation in the updraft (area mean)
ed evaporation of precipitation in the downdraft (area mean)
el evaporation of cloud water in the environment (area mean)
ep evaporation of precipitation below cloud base (area mean)
L latent heat with L = LV (heat of evaporation) for T ≥ 0◦C and

L = LS (heat of sublimation) for T < 0◦ C

Column equilibrium is supposed for rain water formed in convective clouds. The budget
equation for the area mean value of the flux of convective precipitation (denoted by P ) then
reads

∂P

∂z
= − ρ (gp − ed − ep) , (6.2)

where gp denotes the conversion rate of cloud water to form rain. The precipitation rate at
the surface results from vertical integration of Eq. (6.2).

6.2.2 The Cloud Model

A simple one-dimensional cloud model is used to compute the convective tendencies in Eq.
(6.1). The updraft of the cloud ensemble is assumed to be in steady state. The budget
equations for mass, heat, moisture and momentum for the ascending air are

∂Mu

∂z
= Eu −Du

∂

∂z
(Musu) = Eus−Dusu + Lρcu

∂

∂z
(Muq

v
u) = Euq

v −Duq
v
u − ρcu (6.3)

∂

∂z
(Muq

c
u) = −Duq

c
u + ρ(cu − gp)

∂

∂z
(Muαu) = Euα−Duαu ,

where qcu is the cloud water content in the updrafts. A similar system of equations is applied
to calculate the variables within the downdraft of the cloud ensemble. The downdraft region
is assumed to be at saturation (being maintained at saturation by evaporation of rainwater)
and to contain no cloud water:

∂Md

∂z
= Ed −Dd

∂

∂z
(Mdsd) = Eds−Ddsd − Lρed

∂

∂z
(Mdq

v
d) = Edq

v −Ddq
v
d + ρed (6.4)

∂

∂z
(Mdαd) = Edα−Ddαd .
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The vertical integration of (6.3) from cloud base to cloud top and of (6.4) from the top of
the downdrafts to the surface yields the values of the variables within the updraft and the
downdraft, respectively, which can then be used to calculate the convective tendencies. To
perform the integration, we have to specify

• the mass flux Mu and the values of the variables su, q
v
u, q

c
u and αu at the cloud base

as lower boundary conditions,

• the mass flux Md and the values of the variables sd, q
v
d and αd at the top of the

downdrafts as upper boundary condition,

• the entrainment rates Eu and Ed and the detrainment rates Du and Dd of the up- and
downdrafts, respectively, as functions of the available grid-scale model parameters and

• a parameterization of the microphysical processes.

All assumptions made in this context can be generally regarded as closure conditions. How-
ever, only those assumptions which connect the intensity of cumulus convection directly
to the grid-scale forcing are usually referred to as closure conditions. These conditions are
related to the first three points above and are discussed in the Section 6.2.3. The parameteri-
zation of microphysical processes is specific to the cloud model (and thus a parameterization
within a parameterization) and briefly summarized below.

(a) Condensation/deposition within the updraft
The calculation of the condensation rate of water vapour in the ascending updraft
air is based on saturation adjustment. Whenever supersaturation occurs, the specific
humidity qvu is set back to the saturation value and the difference is interpreted as
the condensed cloud water. The release of latent heat is taken into account by this
procedure (see Section 5.3). At temperatures below the freezing point, saturation over
ice is assumed to diagnose the deposition rate.

(b) Evaporation of precipitation within the downdraft
The computation of ed is also based on the saturation adjustment technique. Down-
drafts are assumed to be at saturation which is maintained by evaporation of rainwater.
The associated evaporative cooling is taken into account in the heat equation.

(c) Formation of precipitation within the updraft
A simple parameterization is used to estimate the conversion of cloud droplets to
raindrops. The rate of formation of convective precipitation is set to

gp = Kp(z) q
c
u , (6.5)

depending linearly on the updraft cloud water content and a height dependent conver-
sion function Kp. The growth of rainwater due to collection (i.e. the accretion process)
is not taken into account explicitly. The conversion function is chosen to be of the form

Kp(z) =

{
0 if z ≤ zb + ∆zc,

βp if z > zb + ∆zc.
(6.6)

This functional form suppresses the formation of precipitation in a region ∆zc above
cloud base at height zb. In LM the parameters in (6.6) are set to βp = 2.0 · 10−3 s−1,
∆zc = 1500 m over water and ∆zc = 3000 m over land.
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(d) Evaporation of cloud water in the environment
Cloud water which has been detrained into the subsaturated environment is assumed
to evaporate immediately. Thus, el is set to

el =
1

ρ
Du q

c
u . (6.7)

(e) Evaporation of precipitation below cloud base
The evaporation rate of precipitation is calculated according to Kessler (1969) with
slightly modified coefficients. As the evaporation rate depends nonlinearly on the pre-
cipitation flux, we have to take into account that convective precipitation covers only a
area fraction Cp of a grid cell. Thus, the area mean of the evaporation rate is formulated
as

ep = Cpα1 (qvsw − qv)

√
(p/ps)1/2

α2

P

Cp
, (6.8)

where qvsw is the saturation specific humidity. The constants α1 and α2 are set to
α1 = 5.0·10−4 and α2 = 0.011. The correction factor (p/ps)1/2 considers approximately
the impact of air density on the fall velocity of the particles. In the original version
of the scheme the area fraction Cp of a grid cell covered with convective precipitation
was set to a constant value of 0.05. For LM, we let Cp depend on the mesh size ∆s by
using the heuristic relation

Cp = min(1.0,
√

∆s0/∆s) . (6.9)

∆s0 is a limiting horizontal scale which is set to 4 km.

6.2.3 Closure Assumptions

The Tiedtke mass-flux scheme discriminates three types of convection,

- penetrative convection,

- shallow convection and

- midlevel convection,

which are treated by different closure hypotheses. Only one type of convection may be present
at a grid point at a time. Thus, layered convection (i.e. midlevel convection above a layer of
shallow convection) can not be described by the scheme.

Both shallow and penetrative convection have their roots in the atmospheric boundary layer.
They differ, however, in vertical extend, which is predefined by the vertical extend of the un-
stable thermal stratification where convection is formed. Penetrative convection often occurs
in regions with large-scale convergence in the lower troposphere, while shallow convective
clouds can also be formed in case of slightly divergent flow. The latter are often driven by
evaporation from the ground or water surface.

Midlevel convection, on the other hand, has its roots not in the boundary layer but originates
at levels within the free atmosphere. Convective cells of this type often occur in rainbands
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at warm fronts or in the warm sector of extratropical cyclones. They are probably formed
by dynamically forced lifting of low-level air until it becomes saturated at the level of free
convection. Often a low-level temperature inversion exists which inhibits convection to be
initiated freely from the surface layer.

Depending on the presence of a specific type of convection, the following closure hypotheses
are applied.

(a) Updraft mass flux at cloud base
In case of shallow or penetrative convection, an equilibrium type of closure is applied by
imposing a moisture balance for the subcloud layer such that the vertically integrated
specific humidity is maintained in the presence of grid-scale, turbulent and convective
transports (Kuo-type closure). Using the source term MMC

qv from (6.1) in the budget
equation for the specific humidity qv, this balance may be formulated by

{Mu(q
v
u − qv) +Md(q

v
d − qv)}zb

= −
∫ zb

zs

(
ρv · ∇qv +

∂F q
v

∂z

)
dz , (6.10)

where zs is terrain height, zb is the height of the cloud base and F q
v

is the vertical
turbulent flux of specific humidity. Convection will only occur when the right hand side
of Eq. (6.10) is positive, i.e. when moisture convergence tends to increase the subcloud
moisture content.

In case of penetrative convection it is supposed that the advective forcing is the major
contribution to the moisture convergence. The closure condition (6.10) is well justified
over the tropical oceans where the boundary layer moisture content usually changed
little with time during convective activity, but little is known on how well it holds
for other areas. The quasi- steady moisture balance condition is also applied for shal-
low convection. The difference is that the moisture supply to cumulus clouds is now
largely through vertical turbulent transports driven by surface evaporation whereas
the contribution of grid-scale advective transports are either small or even negative.

In case of midlevel convection the updraft mass flux at cloud base is simply set equal
to the grid-scale vertical mass transport,

(Mu)zb
= (ρw)zb

. (6.11)

This implies that the amount of moisture which is vertically advected through cloud
base is made fully available for the formation of convective cells.

(b) Downdraft mass flux at the level of free sinking
Precipitation from deep convective cells is usually associated with downdrafts initiated
due to water loading and evaporative cooling during the life cycle of the clouds. In
the parameterization scheme downdrafts are considered to originate from cloud air
influenced by the mixing with environmental air at the level of free sinking (LFS).
The LFS is assumed to be the highest model level where a mixture of equal parts of
cloud air and saturated environmental air at wet-bulb temperature becomes negative
buoyant with respect to the environment. This procedure defines also the boundary
values for sd, q

v
d and αd at the top of the downdrafts. The downdraft mass flux at

zLFS, the height of the level of free sinking, is assumed to be directly proportional to
the updraft mass flux at cloud base. That is,

(Md)zLF S
= γd (Mu)zb

. (6.12)
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The coefficient γd is a disposable parameter which determines the intensity of the
downdrafts. In the present model version γd is set to a constant value of 0.3.

(c) Specification of entrainment and detrainment
Lateral transports across cloud boundaries is represented by entrainment and detrain-
ment. For the updraft, entrainment is assumed to occur via turbulent exchange of mass
(turbulent entrainment ETu ) and through organized inflow associated with large-scale
convergence (dynamic entrainment EDu ). Detrainment form the updraft is supposed to
be made up of contributions from turbulent mixing (turbulent Detrainment DT

u ) and
from organized outflow at cloud top (dynamic detrainment DD

u ). For the downdraft,
only turbulent entrainment and detrainment (ETd , DT

d ) is considered:

Eu = ETu + EDu ,

Du = DT
u + DD

u , (6.13)

Ed = ETd ,

Dd = DT
d .

The lateral turbulent mixing terms are parameterized according to

ETu = ǫuMu ,

DT
u = δuMu , (6.14)

ETd = ǫd|Md| ,
DT
d = δd|Md| ,

where ǫu = δu and ǫd = δd is assumed for the entrainment/detrainment parameters to
ensure that there is no vertical change of the updraft mass flux due to turbulent mixing
processes. By default, the fractional entrainment rate is set to ǫu = 1.0 · 10−4m−1

for penetrative and midlevel convection. For shallow convection, ǫu is set to ǫu =
3.0 · 10−4m−1. In case of deep convective clouds, however, turbulent entrainment is
only considered at lower cloud levels. For the upper levels ǫu is set to zero, assuming
that entrainment is very small.

Dynamic entrainment is parameterized on the assumption that organized lateral flow
into the cloud is directly proportional to the local grid-scale moisture convergence, i.e.

EDu = − ρ

qv
v · ∇qv . (6.15)

Organized entrainment is considered only in the lower part of the convective cloud
where large-scale convergence is encountered, i.e. below the level of maximum vertical
velocity. For shallow convection, dynamic entrainment is neglected.

Dynamic detrainment usually occurs in the upper regions of cumulus clouds, where
the rising air loses its buoyancy relative to the environment resulting in a deceleration
of the updraft vertical velocity and a corresponding organized lateral outflow. The
parameterization scheme approximates roughly the effect of overshooting cumuli by
assuming that only a fraction (1 − bu) of the updraft mass flux is made available for
lateral outflow in the layer kT that contains the zero-buoyancy level. The remaining
fraction bu is allowed to penetrate into the stable layer above (kT − 1) and to detrain
there:

DD
u =





(1 − bu)(Mu)k+1/2/∆zk if k = kT ,

bu(Mu)k+1/2 if k = kT − 1,

0.0 else.

(6.16)
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This formulation for dynamic detrainment is applied for all types of convective clouds.
bu is a disposable parameter which is set to 0.33. Because (6.16) is formulated in the
computational space (and originally for the relatively coarse vertical resolution of the
ECMWF global model), care must be taken when the vertical resolution is increased.

(d) Temperature and humidity parameters at cloud base
In order to integrate the updraft equations (6.3) using the above closure assumptions,
the variables T , qv, qc and α at cloud base must be specified as lower boundary condi-
tions.

For this, it is first checked whether free convection (shallow or penetrative) can occur
at a grid point. At the first model level above the surface (k = Nζ) an air parcel is
defined with the grid-scale values of temperature (plus a small excess value), specific
humidity and horizontal momentum. Lifting the parcel adiabatically allows to compute
its condensation level at k = kB. This level defines the cloud base, i.e. the level of free
convection, if the parcel becomes buoyant with respect to the environment. The parcels
values of T , qv, qc and α at cloud base k = NB are then used as boundary conditions
to integrate the updraft equations.

When the parcel is non-buoyant at the lifting condensation level, the grid point is
checked for the occurrence of mid-level convection. Starting from the model level k =
Nζ − 1, an air parcel with environmental properties is defined and lifted adiabatically
for one layer. If the parcel becomes buoyant, this layer is considered to be the cloud
base (k = kB) of mid-level convection. Again, the values of the lifted air parcel are
used as initial values to integrate vertically the updraft equations. When the parcel is
stable at the new level, the next model layer (k = Nζ−2) is checked for convection and
so on.

As a further condition for midlevel convection to occur, at k = kB the grid-scale vertical
velocity is required to be positive and the relative humidity must be larger than 90%.

6.2.4 Discretization and Numerical Solution

The flux divergence terms in the tendencies (6.1) for the grid-scale variables and in the cloud
equations (6.3) and (6.4) are evaluated at full model levels according to

−1

ρ

∂(Mψ)

∂z
=

l

ρk

Mk+1/2ψk+1/2 −Mk−1/2ψk−1/2

zk+1/2 − zk−1/2
, (6.17)

where M represents the updraft or the downdraft mass flux and ψ stands for the gridscale
variables, the updraft or the downdraft variables. The cloud variables ψu and ψd are defined
at model half levels and (6.17) is used as a simple forward scheme to integrate the updraft
and the downdraft equations.

In order to calculate the net upward and downward transports from (6.1), the half-level
values of dry static energy and of specific humidity must be specified. Tiedtke (1989) has
shown that the definition of grid-scale variables at half levels pose a problem. When half-level
values are defined by linear interpolation of full-level values, very noisy profiles may evolve
in time, particularly with regard to humidity. Much smoother profiles have been obtained
when the half-level values are derived by downward extrapolation from the next full level
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above along a saturated descent through that level:

Tk+1/2 = Tk +

(
∂T

∂z

)

hs
k

( zk+1/2 − zk ) ,

(6.18)

qvk+1/2 = qvk +

(
∂T

∂z

)

hs
k

( zk+1/2 − zk ) .

Here, hs = s+LV q
v
sw is the saturation moist static energy. The choice of a moist adiabat for

extrapolating is dictated by the conservation properties of moist static energy h. In case of
convection in the absence of downdrafts, h is only changed the flux divergence

(
∂h

∂t

)

MC

= −1

ρ

∂

∂z
{Mu(hu − h)} . (6.19)

As the lines of the saturation moist static energy hs through point (zk−1/2, Tk−1/2) and
the updraft moist static energy hu are almost parallel, apart from entrainment/detrainment
effects, the difference hu − h is little affected by vertical discretization.

6.3 The Kain-Fritsch Scheme

to be completed
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Section 7

Subgrid-Scale Cloudiness

to be completed
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Section 8

Parameterization of Radiative
Processes

8.1 General Aspects

Radiative processes control the overall energy balance of the earth-atmosphere system and
are the initial cause of diurnal and seasonal variations in the state of the atmosphere and at
the earth’s surface. The divergence of solar and thermal radiative fluxes in the atmosphere,
which interact strongly with the simulated cloud field and its inherent properties, contributes
considerably to the diabatic forcing in the prognostic model equations. At the earth’s surface
radiative fluxes constitute the major forcing for the thermodynamic state of the soil and the
interaction with the atmosphere via turbulent fluxes of heat and moisture.

To capture the impact of radiative processes in a NWP model the general complexity of the
radiative transfer problem needs to be considered in a simplified, parameterized approach.
The radiative transfer equation (RTE) in its original form describes the interaction between
directional radiances and the optically active constituents within the earth’s atmosphere and
at the surface. If the RTE were solved for radiances, fluxes, which are required by the NWP
model, could be obtained from the radiances via integration over solid angle. This approach
would not be feasible within the computational constraints of NWP and for this reason,
based on simplifying assumptions with regard to the directional distribution of radiances
the RTE is reformulated in terms of upward and downward fluxes leading to the so-called
two-stream methods (see below).

Another simplification that the parameterization of radiative transfer shares with that of
other diabatic processes is the assumption of a horizontally homogeneous plane-parallel at-
mospheric structure within each model grid box. This fundamental assumption allows the
reduction of the 3D-problem to the much simpler 1D-case of independent vertical columns,
allowing a column-by-column solution to the parameterization problem in grid space. For the
solution of the RTE this assumption is relaxed partially by allowing partial cloudiness within
each model layer, i. e. the distinction between optical properties of a cloud free part and an
adjacent cloudy part. Radiative fluxes may then be computed separately for the cloud free
and cloudy regions. It is generally assumed that cloud free and cloudy fluxes interact only
between adjacent layers but not within a given model layer. However, one should bear in
mind, that radiative transfer in reality is a 3-dimensional process and that the validity of the
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1D-approach becomes more than questionable for models with high horizontal resolution.

Due to the non-linear nature of the RTE its solution is strictly valid only for monochromatic
radiation, i. e. for infinitesimally small spectral intervals. This implies that in order to min-
imize computational errors the RTE should be solved for a huge number of small intervals
covering the energetically relevant part of the solar and thermal radiative spectrum and the
final fluxes would be obtained from a subsequent integration over wavelength. The computa-
tional burden of such a brute force approach would be enormous and therefore unacceptable
with regard to computational constraints of numerical weather prediction. For this reason
the problem is further simplified through the application of rather wide spectral intervals for
which the RTE is solved. Even though this so-called wide-band approach is generally used by
all NWP applications of radiative transfer schemes one should bear in mind that it creates
a potential source of non-negligible errors in the calculation of fluxes and heating rates.

Despite the above mentioned severe simplifications radiative transfer schemes are still com-
putationally expensive parts of the NWP system. In order to keep the computational costs
within acceptable limits, the full computation of fluxes including the interaction with opti-
cally active constituents in the atmosphere is performed at a reduced temporal frequency
compared to the normal model time step. In between full radiative time steps fluxes and
heating rates are kept constant or are only adjusted for temporal variations in the solar
zenith angle.

The radiative transfer scheme employed in the LM is described in detail in Ritter and Geleyn
(1992) (in the following abbreviated as RG92). Beyond the features described in RG92 the
current version of the scheme considers optical properties of ice clouds, which are based on
data provided by Rockel et al. (1991).

8.2 The RG92 Radiative Transfer Scheme: Spectral Intervals
and Optically Active Constituents

The radiative transfer scheme of RG92 is based on the so-called δ-two-stream solution of the
radiative transfer equation for plane-parallel horizontally homogeneous atmospheres. The
RTE is solved for 3 spectral intervals in the solar part and 5 spectral intervals in the thermal
part of the spectrum (cf. Table 8.1).

Table 8.1: Spectral intervals employed by the RG92 radiative transfer scheme

interval no. solar/thermal wavelength limits

1 s 1.53-4.64

2 s 0.70-1.53

3 s 0.25-0.70

4 t 20.0-104.5

5 t 12.5-20.0

6 t 8.33-9.01 & 10.31-12.5

7 t 9.01-10.31

8 t 4.64-8.33
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The division in solar and thermal spectral intervals allows a computationally more efficient
solution of the RTE depending on the need to consider either solar radiation at the top of
the atmosphere or thermal emission by optical constituents as sources of radiative fluxes.

Within each model layer the effect of the following optical constituents on the transfer of
radiation through that layer is considered:

• cloud water droplets

• cloud ice crystals

• water vapour

• ozone

• carbon dioxide and other minor trace gases

• aerosols

In the solar part of the spectrum Rayleigh scattering by air molecules is considered in addition
to the above mentioned constituents. Depending on the characteristics of each constituent
and the spectral wave length the interaction with radiative fluxes takes place in the form of
scattering, absorption and emission. Scattering and absorption are considered both at solar
and thermal wavelengths but emission is only relevant in the thermal part of the spectrum.

8.3 Basic Equations

The reader is referred to RG92 for a detailed description of the employed equations and the
underlying assumptions. Here, we will only provide information directly related to the code
of the radiation scheme as used by the LM.

For the δ-two-stream solution of the RTE three components of the radiative fluxes, namely
the diffuse upward and downward fluxes and the parallel, direct solar flux are considered.
Based on the assumption that the atmosphere can be subdivided in layers of constant optical
properties as discussed by Geleyn and Hollingsworth (1979), flux components directed out-
ward of any given layer can be written as linear combinations of the corresponding flux com-
ponents entering the layer. With the introduction of black body differential flux components,
i. e. the difference between the black body radiation ΠB and the diffuse flux components
F1 (upward) and F2 (downward): F̃1,j = ΠBj − F1,j and F̃2,j = ΠBj − F2,j we may write a
linear equation system for each layer j:




Sj+1

F̃2,j+1

F̃1,j


 =




a1 0 0

a2 a4 a5

a3 a5 a4







Qj

F̃2,j

F̃1,j+1


 (8.1)

with

Sj+1: parallel solar radiative flux at bottom of layer j and

Qj =

{
Sj

Π(Bj+1 −Bj)

solar

thermal
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The layer transmittance, reflectance and emittance coefficients ai are functions of the optical
properties of each layer and described in RG92 and the black body radiation is computed
based on the corresponding temperature at the layer boundaries. The solution of the equation
system requires approriate boundary conditions. In the solar case, the incoming parallel solar
radiation for a given zenith angle µ0 at the top of the atmosphere forms the upper boundary
condition for the direct component and the diffuse downward flux component is zero. In
the thermal case, the upper boundary condition consists of the vanishing diffuse downward
component only. At the lower boundary the reflectivity of the surface, specified as albedo for
parallel and diffuse downward radiation (AS(µ0) and Ads) provides the appropriate condition
in the solar case, i. e.:

F̃1,N+1 = −F1,N+1 = −AS(µ0) SN+1 −AdS F2,N+1

Here we assume a directional dependance of the surface albedo for parallel radiation, but no
directional information is retained after the reflection of the solar beam at the surface.

The lower boundary condition for the thermal case results from the thermal surface albedo
(1 −Es) and emissivity Es applied to the downward diffuse flux component and the surface
black body radiation ΠBs, i. e.:

F̃1,N+1 = (1 − Es) F̃2,N+1 respectively

F1,N+1 = (1 − Es) F2,N+1 + Es ΠBs

Once the linear equation system with corresponding coefficients and boundary conditions
is established for a given spectral interval, the system is solved by a dedicated Gauss
elimination-backsubstitution method, which exploits the sparsity of the coefficient matrix
for computational efficiency.

8.4 Partial Cloudiness

Clouds which form the most important optical constituent in the atmosphere may cover
part or all of any given model layer depending on the current atmospheric state. Apart
from the specification of their optical properties, which take into account cloud phase, i. e.
liquid water or ice, the solution of the RTE in the presence of clouds requires information
about geometrical properties of the cloud fraction. In the RG92 scheme it is assumed that
clouds in adjacent model layers overlap completely, whereas random overlap occurs if clouds
in different layers are seperated by at least one cloud-free layer between them. This is in
agreement with observations, as a strong spatial correlation exists in the vertical direction
for contigous cloud systems like a deep convective cloud, whereas little correlation is found
in situations of seperated cloud decks at different altitudes. The overlap assumptions can be
expressed in geometry factors as described in Geleyn and Hollingsworth (1979). Based on
these geometry factors (8.1) can be rewritten for both cloudy and cloud-free flux components
with optical properties associated to the corresponding matrix coefficients accordingly.
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8.5 Spectral Integration

The distinction between solar and thermal intervals simplifies the right hand side of the
linear system, but the number of spectral intervals is by far too small to account for non-
linear effects due to the extreme variation of optical properties of gases as function of wave
length. As the absorption/emission properties of gases may change by several orders of
magnitude within a certain spectral interval, gross errors would occur, if the RTE was solved
for gaseous optical properties that were simply averaged over the corresponding spectral
domain. In order to alleviate the non-linearity problem the transmission function τ (ugas) for
each spectral interval and gaseous absorber is approximated by a series of exponentials as
function of the amount of the considered gas ugas, i. e.:

τ(ugas) ∼=
I
∑

i

wi e
−ki ugas

This so-called exponential sum fitting technique generates for each gas and spectral interval
pseudo-absorption coefficients ki and associated weigthing coefficients wi. Solving the RTE
for each permutation of gaseous absorption coefficients and associated weights in conjunction
with the non-gaseous optical properties of each layer provides flux results, which are then
weighted and accumulated to obtain the overall result for each interval. Finally the fluxes
obtained for the individual spectral intervals are accumulated to obtain the total radiative
flux and the corresponding heating rates are derived from the vertical flux divergence within
each model layer. The advantage of this approach compared to a direct solution at high
spectral resolution and subsequent spectral integration results from the fact that the number
of pseudo-absorption coefficients required for an adequate approximation of the transmission
functions is rather small compared to the number of spectral intervals that would be needed
for the direct method. For further details the reader is refered to RG92.

8.6 Input to the Radiation Parameterization Scheme

The computation of radiative fluxes is performed at half-levels of the NWP model. For
the source term in the RTE this requires the specification of layer boundary temperatures
which are obtained from the prognostic layer mean temperatures via interpolation. Optical
properties are required as layer mean properties and are computed from relevant prognostic
and/or diagnostic model variables like specific humidity, cloud water and ice content and
cloud fraction. Some layer properties, like ozone, carbon dioxide and aerosols are specified
as climatological estimates. In particular the spatially variable aerosol distribution is derived
from a climatology provided by Tanre et al. (1984). The actual layer mean values of optically
relevant substances are converted to radiative properties like optical depth, single scattering
albedo and backscattered fraction through the use of empiral relations described in RG92.
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Section 9

Parameterization of Sub-Grid Scale
Orographic (SSO) Effects

9.1 Introduction

When the domain of the operational 7-km COSMO model at DWD was expanded in order to
cover almost all Europe (COSMO-EU domain, see Schulz 2006), it turned out that the surface
pressure in the model forecasts becomes systematically biased. In particular, in wintertime
high pressure systems tend to develop a positive pressure bias, by 1-2 hPa after 48 h, low
pressure systems a negative bias (“highs too high, lows too low”). At the same time the
wind speed tends to be overestimated by up to 1 m/s throughout the entire troposphere.
The wind direction near the surface shows a positive bias of some degrees.

The combination of these deficiencies leads to the hypothesis that in the model there is
too little surface drag, causing an underestimation of the cross-isobar flow in the plane-
tary boundary layer. Consequently, the solution would be to increase the surface drag in
the model. This may be accomplished, for instance, by introducing an envelope orography
(Wallace et al. 1983, Tibaldi 1986), but this has unfavourable effects e. g. for the simulated
precipitation, or by including sub-grid scale orographic (SSO) effects, which were neglected in
the COSMO model before. The SSO scheme by Lott and Miller (1997) was selected for this.
Its implementation in the operational COSMO-EU model at DWD is described by Schulz
(2008). It is also included e. g. in the global models at ECMWF or DWD and works here
well.

9.2 The Sub-Grid Scale Orography Scheme

The SSO scheme by Lott and Miller (1997) deals explicitly with a low-level flow which is
blocked when the sub-grid scale orography is sufficiently high. For this blocked flow separation
occurs at the mountain flanks, resulting in a form drag. The upper part of the low-level flow
is lead over the orography, while generating gravity waves.

In order to describe the low-level flow behaviour in the SSO scheme a non-dimensional height
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Hn of the sub-grid scale mountain is introduced:

Hn =
N H

|U | (9.1)

where H is the maximum height of the mountain, U the wind speed and N the Brunt-
Väisälä frequency of the incident flow. The latter is computed by

N =

√
g

θ

∂θ

∂z
(9.2)

where θ is the potential temperature, g the acceleration of gravity and z the height coordinate.

A small Hn will mean that there is an unblocked regime, all the flow goes over the mountain
and gravity waves are forced by the vertical motion of the fluid. A large Hn will mean that
there is a blocked regime, the vertical motion of the fluid is limited and part of the low-level
flow goes around the mountain. The SSO scheme requires four external parameters, which
are the standard deviation, the anisotropy, the slope and the geographical orientation of the
sub-grid scale orography. They are computed following Baines and Palmer (1990) from the
same raw data set of orographic height which is also used for computing the mean orographic
height in the model. This is currently the GLOBE data set (GLOBE-Task-Team 1999) which
has a resolution of approximately 1 km.

Figure 9.1: Left: 10-m wind (m/s) and mean sea level pressure (hPa) (isolines) simulated by the

reference COSMO-EU without SSO scheme, 26 Feb. 2008, 00 UTC + 00h. Right: Difference of 10-

m wind (m/s) between COSMO-EU with and without SSO scheme (SSO - REF), same date. The

difference flow is usually pointing in opposite direction than the flow itself (over land), indicating that

the flow is slowing down due to the SSO scheme.

The two components of the SSO scheme, i. e. the blocking and the gravity wave drag, can
both be individually adjusted, or even be switched off, by a tuning parameter. Generally,
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these two SSO parameters need to be adjusted depending on the mesh size of the model.
For this study, the same two parameter values were chosen in COSMO-EU (mesh size 7 km)
as in the DWD global model GME (mesh size 40 km). This setting yields already good and
satisfying results.

9.3 Effect of the SSO Scheme on the COSMO Model

In order to demonstrate the effect of the SSO scheme on COSMO-EU two continuous nu-
merical parallel experiments, running analogously to the operational analyses and forecasts,
were carried out: A reference experiment of COSMO-EU without SSO scheme (called REF),
and an experiment of COSMO-EU with SSO scheme (called SSO).

Figure 9.2: Left: Mean sea level pressure (hPa) and geopotential at 500 hPa (gpdm) (isolines) si-

mulated by the reference COSMO-EU without SSO scheme, 26 Feb. 2008, 00 UTC + 24h. Right:

Difference of mean sea level pressure (hPa) between COSMO-EU with and without SSO scheme (SSO

- REF), same date.

Figure 9.1 shows the mean sea level pressure for the REF experiment in the Northwestern
part of the model domain on 26 Feb. 2008, 00 UTC, at the beginning of the forecast, de-
picting a low pressure system over the Atlantic ocean, which was travelling eastward across
Scandinavia during the next few days. The streamlines of the 10-m wind encircle the pres-
sure system, with highest wind speeds southwest of the core, where the pressure gradient
is high, and generally lower wind speeds over land. Differences in the 10-m wind between
the two experiments (SSO - REF) are mainly found over land. The difference flow is usually
pointing in opposite direction than the flow itself, well seen for instance over the British
Isles, indicating that the flow is slowing down due to the SSO scheme.

Figure 9.2 shows the mean sea level pressure for the REF experiment in the full model
domain on 26 Feb. 2008, 00 UTC + 24h. The low pressure system is clearly visible in the
North, in the Southern half of the domain, the mediterranean area, there stretches a region
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of prevailing high pressure. The geopotential at 500 hPa is overlaid as isolines showing the
wave over Northern Europe. After 24h the low pressure system has already moved further
eastward. Pressure differences between the two experiments started to develop in a sort of
dipole structure, the low pressure system in the North is filling up more efficiently in the
SSO experiment compared to the REF experiment, the high pressure region in the South is
weakening. This development continues during the further course of the forecasts while the
low pressure system is moving eastward.

This case study shows that the SSO scheme, particularly by increasing the form drag, en-
hances the cross-isobar flow in the planetary boundary layer, which as a consequence helps
filling up low pressure systems and weakening high pressure systems.
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Section 10

The Soil and Vegetation Model
TERRA

The coupling between the atmosphere and the underlying surface is modeled by a stability
and roughness-length dependent surface flux formulation. These surface fluxes constitute the
lower boundary conditions for the atmospheric part of the model. Their calculation requires
the knowledge of the temperature and the specific humidity at the ground. The task of
the soil model is to predict these quantities by the simultaneous solution of a separate set
of equations which describes various thermal and hydrological processes within the soil. If
vegetation is considered explicitly, additional exchange processes between plants, ground and
air have to be taken into account.

In LM, the soil model TERRA from the operational hydrostatic model EM and DM has
been implemented. In contrast to EM/DM now the impact of plants on evaporation from
the ground is taken into account by a Penman-Monteith type formulation.

10.1 Introduction

For land surfaces, the soil model TERRA provides the surface temperature and the specific
humidity at the ground. The ground temperature is calculated by the equation of heat con-
duction which is solved in an optimized two-layer model using the extended force-restore
method (Jacobsen and Heise (1982)). The soil water content is predicted for two, three or
more layers by the Richards equation. Evaporation from bare land surfaces as well as tran-
spiration by plants are derived as functions of the water content, and - only for transpiration
- of radiation and ambient temperature.

Most parameters of the soil model (heat capacity, water storage capacity, etc.) strongly de-
pend on soil texture. Five different types are distinguished: sand, sandy loam, loam, loamy
clay and clay. Three special soil types are considered additionally: ice, rock and peat. Hy-
drological processes in the ground are not considered for ice and rock. Potential evaporation,
however, is assumed to occur over ice, where the soil water content remains unchanged.

For practical purposes, the soil model is split into two parts: In the first part evapotran-
spiration is computed (TERRA1). The second part (TERRA2) deals with heat and water
transfer in the soil and with the prediction of soil temperature and soil water content. The
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soil model is described for short in the following. For detailed information on the parame-
terization and calculation of the various source and sink terms in the prognostic equations
for soil moisture and temperature, please refer to the comprehensive description of TERRA
in the Documentation of the EM/DM system by Majewski and Schrodin (1995).

10.2 Hydrological section

The hydrological part of TERRA predicts the water contents of various stores of water at
the surface and in the soil. These are the interception store (which contains all surface water
including dew on plants), the snow store (containing snow but also frozen surface water and
rime) and two or more layers of soil. To calculate the mass budget of water in these stores,
a number of exchange and transport processes have to be considered.

The coupling of the soil and the atmosphere is by precipitation and by the formation of
dew and rime as a source of water as well as by evaporation and transpiration as a sink of
water. As an additional sink the loss of soil water by runoff is taken into account. Exchange
and transport of water between the stores is assumed to occur via infiltration, percolation
and capillary movement as well as by melting and freezing of water in the snow and in the
interception store, respectively.

The governing equations for the mass budget of the various water stores may then be for-
mulated as

ρw
∂Wi

∂t
= Pr + Ei −Ri − Ii , (10.1)

ρw
∂Ws

∂t
= Ps + Es −Rs − Is , (10.2)

ρw∆z1
∂η1

∂t
= Eb + T1 −R1 + F1,2 + Is + Ii , (10.3)

ρw∆zk
∂ηk
∂t

= Tk −Rk + Fk,k+1 − Fk−1,k , (10.4)

where the suffixes i and s denote the interception and the snow store, respectively. The suffix
1 stands for the first hydrologically active soil layer below the surface and the suffix k for
additional soil layers below the first layer, i.e k = 2, . . . ,Nhl. A climatological soil moisture
layer Nhl + 1 below the lowest active layer is also specified to provide the lower boundary
conditions. For this climatological layer, either the soil moisture content or the water flux
between layers Nhl and Nhl + 1 can be prescribed with fixed values. Figure 10.1 shows a
sketch of the hydrological processes considered by the soil model.

The total number Nhl of active soil layers may be arbitrarily specified, but for the application
in LM Nhl is restricted to 2 or 3. For the present version of the model the default number
of hydrological soil layer is Nhl = 2 and the water flux between the lowest active soil layer
and the adjacent climatological layer is set to zero. The various symbols and terms in Eqs.
(10.1)-(10.4) have the following meaning:

Wi, Ws water content of interception and snow store, resp.
η1, ηk water content of soil layers
∆z1, ∆zk thickness of soil layers
Pr, Ps precipitation rate of rain and snow, resp.
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Figure 10.1: Hydrological processes considered by the soil model TERRA

Ri, Rs runoff from interception and snow store, resp.
R1, Rk runoff from soil layers
Ii, Is infiltration from interception and snow store, resp.
Ei, Es evaporation from interception and snow store, resp.
Eb evaporation from bare soil surface
T1, Tk transpiration by plants
Fk,k+1 flux between soil layers k and k + 1
ρw density of water

Vertical water fluxes are defined to be positive when they are directed towards the earth’s
surface, i.e upwards in the soil and downwards in the atmosphere. A basic assumption of the
soil model is that the interception store can only contain water if the snow store is empty and
vice versa. That is, snow and interception water may not be present simultaneously and the
corresponding water contents will be uniquely related to the surface temperature Tb (Wi = 0
for Tb < T0 and Ws = 0 for Tb > T0 where T0 is the freezing point).

The parameterization of the surface fluxes in the atmospheric part of the model is by drag-
law formulations (see Section 6.3) and the parametric relation for the surface flux of water
vapour reads (Eq. (4.3))

(F 3
qv )sfc = − ρCdq |vh| (qv − qvsfc ) , (10.5)

where qv is the specific humidity at the lowest grid level above the ground and qvsfc is the

ground level specific humidity (F 3
qv )sfc is abbreviated with Fq in Fig. 10.1). To apply this
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lower flux boundary condition, qvsfc must be specified. We assume that all surface fluxes of
moisture predicted by the soil model sum up to a total moisture flux given by Eq. (4.3).
Taking the sign convention into account, we have

Eb +

k=Nhl∑

k=1

Tk + Ei + Es = −(F 3
qv )sfc . (10.6)

From (10.5) and (10.6), the ground level specific humidity can be calculated according to

qvsfc = qv − 1

ρCdq

(
Eb +

k=Nhl∑

k=1

Tk + Ei + Es

)
. (10.7)

A detailed description on the parameterization of the various source and sink terms on the
right hand sides of Eqs. (10.1) - (10.4) as well as the numerical method of solution is given
in the Documentation of the EM/DM system. In the following, evaporation from bare soil
and plant transpiration is described as the parameterization of these processes was changed
compared to the EM/DM system.

10.2.1 Bare soil evaporation

The rate of evaporation from bare soil, Eb, is computed using the assumption Eb = Min(Ep;
Fm), where Ep is potential evaporation and Fm the maximum moisture flux through the
surface that the soil can sustain (Dickinson (1984)). The potential evaporation is given by
(compare equation (10.5)):

Ep = −ρCdq |vh| [qv − qsat(Tsfc)] . (10.8)

According to Dickinson (1984) the following parameterization formulae for the determination
of Fm results from tuning based on computations with a high resolution soil model (providing
a number of cumbersome expressions and constants):

Fm = CkD
s1

(z0z1)1/2
, (10.9)

where s0 is the average soil water content in the total active layer divided by the volume of
voids in the soil (pore volume,ηpv), z0 is the corresponding depth of the total active layer
and z1 the depth of the surface soil layer.

Ck = 1 + 1550
Dmin

Dmax
· B − 3.7 + 5/B

B + 5
, (10.10)

Dmin = 2.5 · 10−10m2/s , (10.11)

Dmax = BΦ0K0/ρwm , (10.12)

with the soil water suction (negative potential) at saturation Φ0 = 0.2m and the fraction of
saturated soil filled by water ρwm = 0.8. The parameters B and K0 depend on the soil type.

D = 1.02Dmaxs
B+2
1 (s0/s1)

Bf , (10.13)

Bf = 5.5 − 0.8B[1 + 0.1(B − 4)log10
K0

KR
] , (10.14)

with KR = 10−5m/s. s1 is the water content of the surface soil layer divided by ηpv.
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10.2.2 Plant transpiration

The computation of plant transpiration Tp basically follows Dickinson (1984). In the version
adopted here we assume the moisture flux between the plant foliage and the air inside the
canopy to equal the flux between the air inside and the air above the canopy. We addi-
tionally assume the foliage temperature to be equal to the surface temperature. Then the
transpiration can easily be computed by taking into account both the resistance for water
vapour transport from the foliage to the canopy air (foliage resistance rf ) and the resistance
for water vapour transport from the canopy air to the air above the canopy (atmospheric
resistance ra):

Tp = ρa [qa − qsat(Tsfc)] (ra + rf )
−1 . (10.15)

Here ra is given by r−1
a = Cdq |vh| = CA, and r−1

f is parameterized by r−1
f = r′CF = CV ,

with CF = σLAIr
−1
la , r−1

la = C ′u
1/2
∗ , and r′ = rla(rla + rs)

−1. σLAI is the leaf area index and
the resistance r′ describes the reduction of transpiration by the stomatal resistance rs. The
functional form of this resistance is adopted from Dickinson (1984):

r−1
s = r−1

max + (r−1
min − r−1

max) [FradFwatFtemFhum] . (10.16)

The functions F describe the influence on the stomatal resistance of radiation (Frad), soil
water content (Fwat), ambient temperature (Ftem), and ambient specific humidity (Fhum),
respectively. These functions take the value 1 if optimum conditions are present, and they
are 0 for unfavorable conditions. The F-functions take the following forms:

Frad = Min(1;
PAR

PARcrit
) , (10.17)

where PAR is the photosynthetically active radiation and PARcrit a tuning parameter.

Fwat = Max(0;Min(1;
ηroot − ηPWP

ηTLP − ηPWP
)) , (10.18)

here ηroot is the water content of the soil averaged over the root depth rd:

ηroot =
1

rd

z=rd∫

z=0

η(z)dz , (10.19)

ηPWP is the permanent wilting point, ηTLP is the turgor loss point.

Ftem = Max(0;Min(1; 4
(T − To)(Tend − T )

(Tend − To)2
)) , (10.20)

where T is the soil surface temperature, To = 273.15K, and Tend is a tuning parameter.

Fhum = 1 − min(1;max(0; 4(
∆q

qsat
− FRsat))) . (10.21)

We use rmin = 90s/m, rmax = 1000s/m, PARcrit = 100W/m2, Tend = 313.15K, and
FRsat = 0.75. The parameters ηpv, and ηPWP depend on the soil texture. Other parameters
required are the leaf area index, the fraction of the ground covered by plants, and the root
depth rd.
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If we replace the resistances ra and rf by the corresponding transfer coefficients CA and CV
we arrive at the following formula for the total transpiration rate:

Tp = EpCV (CA + CV )−1 . (10.22)

Once the total transpiration rate Tp has been computed, the extraction of water is distributed
to the soil layers k according to

Tk = Tp
∆zroot,k
rd

ηk
ηroot

, (10.23)

where ∆zroot,k is the depth of layer k which is filled by roots.

10.3 Thermal section

The thermal part of the soil model TERRA uses a two-layer model to predict the tem-
peratures at the layer interfaces. These are the temperature of the soil surface (Tb), the
temperature of the snow surface (Ts) and the temperature at the interface between the first
and the second soil layer (Tm). As a lower boundary condition for the temperature Tc at the
interface between the second layer and a lower climatological layer of deep soil, Tc = const is
assumed. Between the layer interfaces, a linear temperature profile is prescribed. Thus, the
mean temperature of the snow store is given by 0.5(Ts + Tb), the mean temperature of the
first layer by 0.5(Tb+Tm) and the mean temperature of the second soil layer by 0.5(Tb+Tc).

In order to predict the layer mean temperatures by budget equations, various heat fluxes
between the soil and the atmosphere and between the soil layers have to be taken into
account. Additionally, the heat fluxes resulting from melting of falling snow, from freezing
of rain, from freezing of water in the interception store and from melting of ice in the snow
store must be considered. The following prognostic equations are used for the layer mean
temperatures:

cs ∆zs
2

∂

∂t
(Ts + Tb) = rsRnet +Hs + LSEs −Gsb +Gf , (10.24)

c∆zth,1
2

∂

∂t
(Tb + Tm) = (1 − rs)Rnet +Hb + LVEi + Vtr + Vb

+Gmb +Gsb , (10.25)

c∆zth,2
2

∂

∂t
(Tm + Tc) = Gcm −Gmb . (10.26)

Because of the lower boundary condition, ∂Tc/∂t = 0 in Eq. (10.26). The various symbols
and terms in Eqs. (10.24) - (10.26) have the following meaning:

cs, c volumetric heat capacity of snow and soil, resp.
∆zs thickness of snow layer
∆zth,1,∆zth,2 thickness of upper and lower soil layer, resp.
rs fraction of land covered by snow
Rnet surface budget of radiation fluxes
Hs sensible heat flux over snow
Hb sensible heat flux over bare soil
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LV , LS , LF latent heat of vapourization, sublimation and fusion
Gsb heat flux between snow store and soil
Gf heat flux due to melting and freezing
Gmb heat flux between upper and lower soil layer
Gcm heat flux between lower soil layer and deep soil
Vtr latent heat flux due to transpiration
Vb latent heat flux due to evaporation from bare soil
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Figure 10.2: Thermal processes considered by the soil model TERRA

Figure 10.2 shows a sketch of the processes considered in the thermal part of the soil model.
The calculation of the soil layer thicknesses ∆zth,1 and ∆zth,2 and of the soil heat fluxes Gmb
and Gcm is based on the Extended Force Restore (EFR) method. The EFR-technique is an
optimized two-layer model to solve the equation of heat conduction. It is assumed that the
driving atmospheric processes (the sum of radiation, sensible and latent heat fluxes at the
earth surface) can be described by a harmonic function of time. For two arbitrary tuning
time periods τ1 and τ2, the EFR-method exactly solves the equation of heat conduction for
the temperatures at the surface and at depth ∆zth,1.

This method prescribes the layer depths and the heat fluxes as a function of soil parameters
(the thermal conductivity λ and the volumetric heat capacity c), the time periods and the
vertical temperature differences. The layer depths are given by

∆zth,1 = D1(1 + x)−1 , (10.27)

∆zth,2 = ∆zth,1(αsβ
−1
m − 1) , (10.28)

where D1 is the penetration depth of a temperature wave for the frequency ω1 = 2π/τ1. The
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parameter x is given by the ratio of the two periods τ1 and τ2 via x2 = τ1/τ2. D1, αs and
βm are defined by

D1 =
√

2λ/cω1 ,

αs = ω1(1 + x+ x2) ,

βm = ω1x
√
x+ x2 exp{−x/(1 + x)} .

Basically, both the thermal conductivity λ and the volumetric heat capacity c of the soil
depend on soil moisture but time independent values of λ and c are required by the EFR-
method. Thus, an average water content η is prescribed for their calculation:

η = 0.5(ηfc + ηwilt) (10.29)

η is held fixed and depends only on soil type via the field capacity ηfc and the permanent
wilting point ηwilt. Using (10.29), the following parametric relations are applied to calculate
λ and c:

λ = λ0 + {0.25 + 0.3∆λ(1 + 0.75∆λ)−1}∆λ fλ , (10.30)

c = c0 + ρwcwη , (10.31)

where c0, λ0 and ∆λ are parameters depending on soil type and cw is the specific heat
capacity of water. The factor fλ in Eq. (10.30) has the functional form

fλ = min

{
4η

ηpv
, 1 +

(
4η

ηpv
− 1

)
1 + 0.35∆λ

1 + 1.95∆λ

}
(10.32)

and depends on the pore volume ηpv of the soil.

The default values for the time periods are set to τ1 = 24 h and τ2 = 5τ1. This yields the
following form for the soil heat fluxes Gcm and Gmb:

Gcm = −
√
λ c/τ1 {0.68(Tm − Tc)} , (10.33)

Gmb = −
√
λ c/τ1 {1.28(Tc − Tm) + 1.58(Tb − Tc)} . (10.34)

Given the heat fluxes from Eqs. (10.33) and (10.34), the set of prognostic equations for Ts,
Tb and Tc is solved by using an implicit numerical scheme. For details on this scheme and
on the parameterization of the other source and sink terms in Eqs. (10.24) - (10.26), please
refer to the Documentation of the EM/DM system.
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Section 11

The Multi-Layer Soil and
Vegetation Model TERRA ML

11.1 Introduction

The coupling between the atmosphere and the underlying surface is modeled by a stability
and roughness-length dependent surface flux formulation. These surface fluxes constitute the
lower boundary conditions for the atmospheric part of the model. Their calculation requires
the knowledge of the temperature and the specific humidity at the ground. The task of the
soil model is to predict these quantities by the simultaneous solution of a separate set of
equations which describes various thermal and hydrological processes within the soil.

In this chapter the multi-layer version of the soil model (TERRA ML) is described. The
main differences of this version in comparison to the older version (TERRA) are:

– The EFR-method (Jacobsen and Heise (1982)) for the temperature prediction is re-
placed by a direct solution of the heat conduction equation.

– The effect of freezing/thawing of soil water/ice is included.

– The process of snow melting is changed.

– A time dependent snow albedo is introduced.

The multi-layer concept avoids the dependence of layer thicknesses on the soil type. Addi-
tionally, it avoids the use of different layer structures for the thermal and the hydrological
section of the model.

Most parameters of the soil model (heat capacity, water storage capacity, etc.) strongly de-
pend on soil texture. Five different types are distinguished: sand, sandy loam, loam, loamy
clay and clay. Three special soil types are considered additionally: ice, rock and peat. Hy-
drological processes in the ground are not considered for ice and rock. Potential evaporation,
however, is assumed to occur over ice, where the soil water content remains unchanged.

The soil model consists of two parts. In the first part the computation of bare soil evaporation
and plant transpiration is performed. In the second part the equation of heat conduction and
the Richards equation are solved. Also, melting of snow is computed here. In a former version
of TERRA ML, the convection subroutine was called after finishing the first part, using the
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evaporation rate computed by the soil model. And the second part of the soil model used
the grid-scale and convective precipitation rates as input to the hydrological computations.
In view of the short timestep of LM, the two parts have now been combined into a single
subroutine, which is called before the convection scheme.

The process of freezing/thawing of soil water/ice is accomplished by a diagnostic change of
water/ice content and of temperature using energy and water budget considerations. This
avoids an iterative solution of the thermodynamic and hydraulic equations which are coupled
by the freezing/thawing process. The small timestep of LM justifies this simple method.

11.2 Layer Structure and Sign Convention of the Multi-Layer

Soil Model

In principle the layer structure of the multi-layer soil model (Fig. 11.1) can be chosen arbi-
trarily. But interactions with the provision of initial data for temperature and for soil water
content have to be taken into account.

Figure 11.1: Layer structure of the soil model
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At present for the solution of the heat conduction equation the following depths of half levels
(layer boundaries) are used: zh,k = 0.01 · 3(k−1) (m) with k = 1, 2, . . . , kesoil,th + 1, where
kesoil,th = 7 is the number of active soil layers. This gives a total active depth of 7.29 m to
the soil. The depths of the main levels (layer centres) are given by zm,k = 0.5 · (zh,k + zh,k−1)
with k = 1, 2, . . . , kesoil,th + 1, where zh,0 = 0. The 8th layer is the so-called climate layer,
where the annual mean near surface air temperature is prescribed as a boundary value. The
thicknesses of the layers are defined by ∆zk = zh,k − zh,k−1.

For the solution of the Richards equation in the hydrological section the same layers as in
the thermal section are used, but we restrict the number of active layers to kesoil,hy = 6.
Instead of a climate layer with prescribed water content a flux boundary condition is used:
At the lower boundary of the 6th layer at a depth of 2.43 m only the downward gravitational
transport is considered. Capillary transports are neglected here.

In this documentation the vertical fluxes are defined to be positive when they are directed
towards the soil surface, i. e. upwards in the soil and downwards in the atmosphere. This is
in accordance with the model’s program code.

11.3 Hydrological Processes

The hydrological section of the soil model predicts the liquid water contents of various reser-
voirs of water at the surface and in the soil. These are the interception reservoir (which
contains all surface water including dew on plants and on the soil), the snow reservoir (con-
taining snow but also frozen surface water and rime) and the specified number of soil layers.
In order to calculate the mass budgets of water in these reservoirs, a number of exchange
and transport processes have to be considered, as shown in Fig. 11.2.

The coupling of the soil and the atmosphere is by precipitation and by the formation of dew
and rime as a source of water as well as by evaporation and transpiration as a sink of water.
As an additional sink the loss of soil water by runoff is taken into account. Exchange and
transport of water between the reservoirs is assumed to occur via infiltration, percolation and
capillary movement as well as by melting of snow and by freezing of water in the interception
reservoir.

The governing equations for the mass budgets of the various water reservoirs may be formu-
lated as

ρw
∂Wi

∂t
= α · Pr + Ei − Iperc −Rinter, (11.1)

ρw
∂Wsnow

∂t
= Psnow + Esnow − Isnow −Rsnow, (11.2)

ρw
∂Wl,k

∂t
= δ1,k[Eb + Isnow + Iperc + (1 − α)Pr −Rinfil]

+ Fk,k+1 − (1 − δ1,k)Fk−1,k + Trk −Rk + Sk, (11.3)

ρw
∂Wice,k

∂t
= −Sk, (11.4)

where ρw is the density of water. The suffixes i and snow denote the interception and the
snow reservoir, respectively. δ1,k is the Kronecker symbol being 1 for k = 1 and 0 for k 6= 1.
The suffix 1 stands for the first layer (k = 1) below the surface. The other symbols and terms
in (11.1) to (11.4) have the following meanings:
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Figure 11.2: Hydrologic processes considered in the soil model

Wi,Wsnow water content of interception and snow reservoir, resp. [m H2O]
Wl,k liquid water content of soil layers [m H2O]
Wice,k ice content of soil layers [m H2O]
Ei, Esnow evaporation from interception and snow reservoir, resp. [kg/(m2 s)]
Eb evaporation from bare soil [kg/(m2 s)]
Trk water extraction by roots [kg/(m2 s)]
Pr, Psnow precipitation rate of rain and snow, resp. [kg/(m2 s)]
α factor for distributing rain between interception reservoir

and infiltration [-]
Iperc, Isnow infiltration contributions from percolation and from

melting snow, resp. [kg/(m2 s)]
Rinter, Rsnow, Rinfil runoff from interception and snow reservoir

and from limited infiltration rate, resp. [kg/(m2 s)]
Rk runoff from soil layers [kg/(m2 s)]
Fk,k+1 gravitational and capillary flux of water between

layers k + 1 and k [kg/(m2 s)]
Sk source term of liquid water by thawing soil ice

Out of all terms on the right hand sides of (11.1) to (11.4) only the two precipitation compo-
nents Pr and Psnow are given by the atmospheric part of the model. All other terms have to
be determined in the context of the soil model. At the end of the present section, all terms
with the exception of runoff and infiltration from the snow store, and the source terms of liq-
uid water by melting of soil ice (Rsnow, Isnow, Sk) will be known. These last three terms will
be determined in the context of the treatment of snow (Section 11.4.3) and soil ice (Section
11.5).
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In addition to the water content values given in m H2O, at some places the fractional water
content wl,k = Wl,k/∆zk will be used. These values are denoted by lowercase letters. More-
over, the total water content is given by the sum of the liquid part (index l) and the frozen
part (index ice), where Wk = Wl,k +Wice,k and analogous for the fractional water content.
The process of freezing/thawing in the soil will be described in Section 11.5.

As a basic assumption of the soil model the interception reservoir can only contain water if
the snow reservoir is empty and vice versa. That is, snow and interception water may not
be present simultaneously and the corresponding water contents will be uniquely related to
the surface temperature Tsfc (Wi = 0 for Tsfc < T0 and Wsnow = 0 for Tsfc > T0, where T0

is the freezing point).

The parameterization of the surface fluxes in the atmospheric part of the model is based on
drag-law formulations and the parametric relation for the surface flux of water vapour reads
(see Section 4, Eq. 4.3)

(F 3
qv )sfc = ρCdq |vh|(qv − qvsfc), (11.5)

where qv is the specific humidity at the lowest grid level above the ground and qvsfc is the
ground level specific humidity. To apply this lower flux boundary condition, qvsfc must be
specified. We assume that all surface fluxes of moisture parameterized by the soil model sum
up to a total moisture flux given by (11.5). Taking the sign convention into account, we have

Eb +

kesoil,hy∑

k=1

Trk +Ei + Esnow = −(F 3
qv )sfc. (11.6)

From (11.5) and (11.6), a fictitious ground level specific humidity can be calculated according
to

qvsfc = qv +
1

ρCdq
(F 3

qv )sfc. (11.7)

11.3.1 Evapotranspiration

In this section the parameterization of evaporation Ei from the interception reservoir Wi,
evaporation Esnow from the snow reservoir Wsnow and the bare soil evaporation Eb from the
uppermost soil layer W1, as well as the plant transpiration Trk are described. The starting
point for all components of total evapotranspiration is the potential evaporation Epot which
follows from the drag-law formula (11.5):

Epot(Tsfc) = ρCdq |vh|(qv −Qv(Tsfc)), (11.8)

where Tsfc is the temperature of the respective surface (interception or snow reservoir or
uppermost soil model layer) and Qv denotes the saturation specific humidity.

(a) Evaporation from the Interception and the Snow Reservoir, Formation of
Dew and Rime

The parameterization of evaporation from the interception and the snow reservoir, respec-
tively, takes into account a partial coverage of the soil surface by interception water or by
snow. The fractional areas are computed by

fi = Max
[
0.01 ; 1.0 − eMax(−5.0;−Wi/δi)

]
(11.9)
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with δi = 0.0010 m for interception water and by

fsnow = Max [0.01 ; Min(1.0 ; Wsnow/δs)] (11.10)

with δs = 0.015 m for snow.

If Wi > 0 and if Epot(Tsfc) < 0 indicates upward directed potential evaporation at soil
surface temperature Tsfc then interception water is evaporated limited by the total content
of the interception reservoir Wi:

Ei = Max
[
−ρw

∆t
Wi ; fiEpot(Tsfc)

]
. (11.11)

Similarly, if Wsnow > 0 and if Epot(Tsnow,sfc) < 0 the evaporation rate of snow is

Esnow = Max
[
−ρw

∆t
Wsnow ; fsnowEpot(Tsnow,sfc)

]
. (11.12)

Formation of dew is simulated if Epot(Tsfc) > 0 and Tsfc > T0. In this case

Ei = Epot(Tsfc). (11.13)

The formation of rime is simulated if Epot(Tsnow,sfc) > 0 and Tsnow,sfc < T0. Here

Esnow = Epot(Tsnow,sfc). (11.14)

(If Wsnow ≡ 0, Tsnow,sfc ≡ Tsfc.)

(b) Bare Soil Evaporation

Evaporation from bare soil is not considered for soil type rock. For soil type ice, potential
evaporation according to (11.8) is used for Eb, but no change of water content of the soil is
accounted for. For all other soil types the following method is used: If Epot(Tsfc) < 0, the
evaporation rate of bare soil Eb is parameterized using the assumption

Eb = (1 − fi) · (1 − fsnow) · (1 − fplnt) ·Min[−Epot(Tsfc) ; Fm] (11.15)

where Fm is the maximum moisture flux through the surface that the soil can sustain (Dick-
inson (1984)), fplnt is the fractional area covered by plants (given as an external parameter
field), and the potential evaporation is given by (11.8). The pameterization formulae for the
determination of Fm result from tuning a two layer soil model with the results of a high
resolution soil model (resulting in a number of cumbersome expressions and constants). The
tuning is based on average values of soil water content su normalised by the volume of voids
(wPV ) for an uppermost layer zu of 0.1 m thickness and for the soil water content st for a
total active layer zt of 1 m thickness:

su,t =

∑nu,t

k=1Wk

wPV
∑nu,t

k=1 ∆zk
, (11.16)

In our version we approximate Dickinson’s layers by using nu = 3 and nt = 5, corresponding
to thicknesses of zu = 0.09 m and zt = 0.81 m, respectively. The water flux Fm is given by

Fm = ρwCkD
st

(zuzt)1/2
, (11.17)
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where Ck is calculated by

Ck = 1 + 1550
Dmin

Dmax
· B − 3.7 + 5/B

B + 5
(11.18)

with
Dmin = 2.5 · 10−10m2/s (11.19)

Dmax = BΦ0K0/ρwm , (11.20)

where the soil water suction (negative potential) at saturation Φ0 = 0.2m and the fraction
of saturated soil filled by water ρwm = 0.8. The parameters B and K0 depend on the soil
type (see Table 11.1). D is

D = 1.02Dmaxs
B+2
u (st/su)

Bf . (11.21)

Bf is given by

Bf = 5.5 − 0.8B

[
1 + 0.1(B − 4)log10

K0

KR

]
, (11.22)

with KR = 10−5m/s.

(c) Plant Transpiration

Plant transpiration is not considered for soil types ice and rock. For the other soil types
the following method is used: If Epot(Tsfc) < 0, transpiration by plants is parameterized,
basically following Dickinson (1984). In the version adopted here we assume the moisture
flux between the plant foliage and the air inside the canopy to be equal to the flux between the
air inside and the air above the canopy. We additionally assume the foliage temperature to
be equal to the surface temperature. Then the total transpiration Tr can easily be computed
by taking into account both the resistance for water vapour transport from the foliage to
the canopy air (foliage resistance rf ) and the resistance for water vapour transport from the
canopy air to the air above the canopy (atmospheric resistance ra):

Tr = fplnt · (1 − fi) · (1 − fsnow) · Epot(Tsfc)ra(ra + rf )
−1 (11.23)

ra is given by r−1
a = Cdq |vh| = CA and r−1

f is parameterized by r−1
f = r′CF = CV , with

CF = fLAIr
−1
la , r−1

la = C ′u
1/2
∗ , and r′ = rla(rla + rs)

−1. fLAI is the leaf area index and
the resistance r′ describes the reduction of transpiration by the stomatal resistance rs. The
functional form of this resistance is adopted from Dickinson (1984):

r−1
s = r−1

max + (r−1
min − r−1

max) [FradFwatFtemFhum] (11.24)

At present we use rmin = 150 s/m, rmax = 4000 s/m. The functions F describe the influence
on the stomatal resistance of radiation Frad, soil water content Fwat, ambient temperature
Ftem, and ambient specific humidity Fhum, respectively. These functions take the value 1 if
optimum conditions are present, and they are 0 for unfavourable conditions. The F -functions
take the following forms:

Frad = Min

(
1 ;

RadPAR
RadPAR,crit

)
, (11.25)

where RadPAR is the photosynthetically active radiation and RadPAR,crit = 100 W/m2 is a
tuning parameter.

Fwat = Max

[
0 ; Min

(
1 ;

wl,root − wPWP

wTLP − wPWP

)]
, (11.26)
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here wl,root is the liquid water content fraction of the soil averaged over the root depth zroot

wl,root =
1

zroot

z=zroot∫

z=0

wl(z)dz , (11.27)

wPWP is the permanent wilting point of plants (see Table 11.1), and wTLP is the turgor loss
point of plants, which is parameterized after (Denmead and Shaw 1962)

wTLP = wPWP + (wFC − wPWP ) · (0.81 + 0.121arctg(Epot(Tsfc) − Epot,norm)) , (11.28)

where wFC is the water content at field capacity (Table 11.1) and Epot,norm = 4.75 mm/d.

Ftem = Max

[
0 ; Min

(
1 ; 4

(T2m − T0)(Tend − T2m)

(Tend − T0)2

)]
, (11.29)

where T2m is the temperature in 2 m above the soil surface and Tend = 313.15 K is a tuning
parameter. At present Fhum = 1 is used.

If we replace the resistances ra and rf by the corresponding transfer coefficients CA and CV
we arrive at the following formula for the total transpiration rate Tr:

Tr = fplnt · (1 − fi) · (1 − fsnow)Epot(Tsfc)CV (CA +CV )−1. (11.30)

Once the total transpitation rate Tr has been computed, the extraction of water is distributed
to the soil layers k according to

Trk = Tr
∆zroot,k
zroot

wl,k
wl,root

, (11.31)

where ∆zroot,k is the part of layer k, which is filled by roots.

11.3.2 Interception Reservoir, Infiltration of Rain and Runoff from Inter-
ception Reservoir

When it rains, the interception reservoir is used to collect a small amount of water. This
water can be evaporated at the potential rate. The maximum capacity of this reservoir is
estimated depending on the fractional area of plants by

Wi,max = Wi,0(1.0 + 5.0 · fplnt) , (11.32)

with Wi,0 = 5 · 10−4 m. If Wi > 0, part of the intercepted water will percolate to the
uppermost soil layer according to

Iperc =

{
0 : Tsfc ≤ T0

Wi
′ ρw

τperc
: Tsfc > T0

, (11.33)

where W ′
i is a provisional new value of the interception reservoir content taking into account

evaporation:

W ′
i = Wi + Ei

2∆t

ρw
(11.34)

The time constant τperc has to be chosen such that τperc ≥ 2∆t. Actually we use τperc = 1000
s.
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If Pr > 0 and Tsfc > T0, the interception reservoir content increases by the fraction αPr,
while the remainder

Irain = (1 − α)Pr (11.35)

is available for infiltration. The parameter α depends on the ratio between the actual inter-
ception reservoir content Wi and its maximum content Wi,max. We parameterize α by

α = Max

[(
1.0 − W ′

i

Wi,max

)1/2

;
(Wi,max −W ′

i )ρw/(2∆t) + Iperc
Pr

]
(11.36)

The first term of the maximum function is based on the concept developed by Crawford
and Linsley (1966), whereas the second term avoids a reduction of the interception reservoir
content as long as Pr > 0. Aditionally α is restricted to a value ≤ 1.

Remark: To avoid numerical noise, presently a strongly reduced maximum water content
of the interception reservoir Wi,0 = 1 · 10−6 m is used. Therefore, the fraction αPr of the
total precipitation cannot be intercepted but is (nearly) completely used as runoff. To avoid
this unrealistic water loss for the upper soil layer the limitation of the interception reservoir
actually has to be combined with α = 0.

The maximum infiltration rate is given by a simplified Holtan-equation (e. g. Hillel (1980)):

I ′max =

{
0 : Tsfc ≤ T0

fr Soro[Max(0.5 ; fplnt)Ik1(wPV − w1)/wPV + Ik2] : Tsfc > T0

(11.37)

fr considers the reduction of Imax if soil ice exists in the uppermost soil layer:

fr = 1 − wice,1
wPV

(11.38)

Additionally I ′max is limited by the available pore volume of the uppermost soil layer:

Imax = Min(I ′max ;
wPV − w1

2∆t
∆z1 ρw) (11.39)

At present the influence of the subgrid-scale orographic variations is neglected (Soro = 1). It
is Ik1 = 0.002 kg/(m2 s) and the infiltration parameter Ik2 depends on soil type (see Table
11.1). If Iperc + (1 − α)Pr exceeds Imax, a contribution to surface runoff is given by

Rinfil =

{
Iperc + (1 − α)Pr − Imax : Iperc + (1 − α)Pr > Imax

0 : otherwise
(11.40)

Now a provisional new value W ′
i of the interception reservoir content is computed by

W ′
i = Wi + (αPr + Ei − Iperc)

2∆t

ρw
. (11.41)

If W ′
i > Wi,max, a second contribution to runoff is determined by

Ri,m = Max[0.0 ; W ′
i −Wi,max)]

ρw
2∆t

(11.42)

If, on the other hand, W ′
i < ǫ = 1.0·10−6 m, this water is no longer considered as interception

reservoir. But in order to keep the mass budget correct, it is considered as runoff:

Ri,ǫ =

{
W ′
i ρw/2∆t : W ′

i < ǫ

0 : otherwise
(11.43)
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Now the runoff from the interception reservoir is given by

Rinter = Ri,m +Ri,ǫ, (11.44)

and the total runoff from all these processes is

Ri = Rinfil +Rinter . (11.45)

Special cases

1. If Pr > 0 in cases where snow is present (Wsnow > 0), we use α = 0, as there is no
storage of liquid water in the snow. This leads to all rain going into runoff, as in this
case also Tsfc ≤ T0.

2. If Pr > 0, Wsnow = 0 and Tsfc < T0 (the case of freezing rain), we treat Pr as snowfall,
i. e., first we set Ps = Pr and then Pr = 0.

3. If Ps > 0 and Tsfc > T0 we treat Ps as rain, i. e., first we set Pr = Ps and then Ps = 0.

The last two special cases have to be considered in the upper boundary condition for the
solution of the heat conduction equation for the case of snowfree soil.

11.3.3 Vertical Soil Water Transport and Runoff from Soil Layers

Vertical soil water transport and runoff from soil layers are not considered for soil types ice
and rock. For the other soil types, the water budget of the soil layers depends on the boundary
values at the upper and the lower boundary of the soil model, on the water extraction by
evapotranspiration, on gravitational and capillary transports and on the runoff formation.

(a) Vertical Soil Water Transport

In this subsection we deal with the vertical water transport between the soil layers. Neglecting
the effects of evapotranspiration and runoff formation, the one-dimensional equation for the
liquid water budget reads

∂wl
∂t

=
1

ρw

∂F

∂z
, (11.46)

where wl is the liquid water fraction defined by the liquid water content Wl (m H2O) in the
layer of thickness ∆z:

wl =
Wl

∆z
(11.47)

Vertical water transports are due to gravity and capillary forces, and they are expressed by
the general Richards equation (e. g. Hillel (1980)) for the soil water flux F :

F = −ρw
[
−Dw(wl)

∂wl
∂z

+Kw(wl)

]
(11.48)

Hydraulic diffusivity Dw(wl) and hydraulic conductivity Kw(wl) depend on the water con-
tent. According to Rijtema (1969) they are expressed by

Dw(wl) = D0 exp

[
D1(wPV − w̄l)/(wPV − wADP )

]
(11.49)
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and

Kw(wl) = K0 exp

[
K1(wPV − w̄l)/(wPV − wADP )

]
(11.50)

Here w̄l is the weighted mean of the liquid water content on half levels. The determination
of this weighted mean is of critical importance to the magnitude of the fluxes, as there
are large changes of hydraulic diffusivity and of hydraulic conductivity with water content.
At present we use a mean weighted by the respective layer thicknesses. The four constants
D0,D1,K0,K1 depend on soil type (see Table 11.1).

At the lower boundary (at zh,kesoil,hy
), we use Dw = 0, which means that only the downward

gravitational transport is considered. At the upper boundary, the infiltration Is+ Ii replaces
the flux (11.48).

Table 11.1: Hydraulic and thermal parameters of the different soil types

1 2 3 4 5 6 7 8

soil type ice rock sand sandy loam loamy clay peat

loam clay

volume of voids wPV [1] - - 0.364 0.445 0.455 0.475 0.507 0.863

field capacity wFC [1] - - 0.196 0.260 0.340 0.370 0.463 0.763

permanent wilting point
wPWP [1]

- - 0.042 0.100 0.110 0.185 0.257 0.265

air dryness point wADP [1] - - 0.012 0.030 0.035 0.060 0.065 0.098

minimum infiltration rate
IK2 [kg/(m2 s)]

- - 0.0035 0.0023 0.0010 0.0006 0.0001 0.0002

hydraulic diffusivity
parameter D0 [10−9 m2/s]

- - 18400 3460 3570 1180 442 106

hydraulic diffusivity
parameter D1 [1]

- - -8.45 -9.47 -7.44 -7.76 -6.74 -5.97

hydraulic conductivity pa-
rameter K0 [10−9 m/s]

- - 47900 9430 5310 764 17 58

hydraulic conductivity pa-
rameter K1 [1]

- - -19.27 -20.86 -19.66 -18.52 -16.32 -16.48

heat capacity ρ0c0
[106 J/(m3 K)]

1.92 2.10 1.28 1.35 1.42 1.50 1.63 0.58

heat conductivity

λ0 [W/(K m)] 2.26 2.41 0.30 0.28 0.25 0.21 0.18 0.06

∆λ [W/(K m)] 0.0 0.0 2.40 2.40 1.58 1.55 1.50 0.50

exponent B [1] 1.0 1.0 3.5 4.8 6.1 8.6 10.0 9.0

This treatment of the liquid water transport presumes that no ice exists in any of the soil
layers (for the treatment of freezing and thawing processes in the soil layers see Section 11.5).
If ice is present, a large liquid water gradient can occur between neighbouring layers, but
the water transport can be significantly reduced if a large part of one of the layers is mostly
filled by ice. This behaviour is considered by defining a scaled fraction of the liquid water
content w′

l:

w′
l =

wl
1 −wice

(11.51)
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This scaled liquid water content replaces the water content wl in (11.48), (11.49) and (11.50).
But the scaling only accounts for changes in the gradient of liquid water due to the presence
of ice. Therefore, additionally we restrict the flux to the non-frozen parts of the layers by
multiplying the hydraulic coefficients by the reduction factor

rk+1/2 = 1 − Max(wice,k, wice,k+1)

wPV
(11.52)

Complete overlapping of the frozen parts of the two layers involved is assumed.

Because of the very thin uppermost soil layer, a semi-implicit solution of (11.46) has to
be used to predict the water content from timestep n to timestep n + 1. As usual, the
implicit formulation is simplified by only using the water content of timestep n for the
determination of the hydraulic diffusivity Dw(wl) and hydraulic conductivity Kw(wl). Then
the discretization of (11.46) in time using (11.48) and (11.51) leads to

w
′n+1
l = w

′n
l + ∆t

{
β
∂

∂z

[
Dn
w(w

′

l)
∂w

′n+1
l

∂z

]
+ (1 − β)

∂

∂z

[
Dn
w(w

′

l)
∂w

′n
l

∂z

]
− ∂Kn

w(w
′

l)

∂z

}

(11.53)
The parameter β governs the degree of implicitness. The vertical discretization of (11.53)
results in a three-diagonal linear system of the form

Akw
′n+1
k−1 +Bkw

′n+1
k + Ckw

′n+1
k+1 = Dk , (11.54)

which can easily be solved by standard methods.

(b) Runoff from Soil Layers

Runoff from any soil layer k occurs if the total water content wk of the layer exceeds field
capacity wFC and if the divergence of the fluxes (11.48) in this layer is negative. In this case

Rk = − wk − wFC
wPV − wFC

(
∂F

∂z

)

k

∆zk (11.55)

This treatment has to be modified in the case of presence of ice in the respective layers. But
this remains to be done.

11.4 Thermal Processes

This section deals with the thermal processes in the soil and in the snow pack (if Wsnow > 0)
and predicts the mean temperatures of the active soil layers and of an existing snow layer
(Fig. 11.3). As the temperature of the water content of the interception reservoir is assumed
to be equal to the soil surface temperature, no separate heat budget equation is necessary
for this reservoir.

The basic equation for the temperature prediction is the heat conduction equation

∂Tso
∂t

=
1

(ρc)

∂

∂z

(
λ
∂Tso
∂z

)
, (11.56)
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where Tso is soil temperature, ρc is heat capacity, and λ is heat conductivity. The lower
boundary condition for the solution of (11.56) is provided by a climatological temperature
prescribed in layer kesoil,th+1. This temperature is constant in time. At the upper boundary
the coupling between soil (or snow) and atmosphere is by radiation and by sensible and latent
heat fluxes. A heat flux is parameterized between snow and soil if Wsnow > 0, providing the
upper boundary condition for the soil and the lower boundary condition for the snow.

In addition, the effects of melting of falling snow, freezing of rain, freezing of water in the
interception reservoir, melting of snow in the snow reservoir, freezing/thawing of water/ice
in the soil layers have to be considered. All these effects will be dealt with in the following
sections.

Figure 11.3: Energetic processes considered in the soil model

11.4.1 Temperature Prediction for Snowfree Soil

In this section we deal with the simplest case of solving the heat conduction equation. A
snowfree soil is assumed, and all the effects connected with freezing/thawing of water/ice
are neglected. These effects will be introduced step by step in later sections.

(a) Determination of Parameters

The volumetric heat capacity ρc is determined taking into account the respective values for a
dry soil (ρ0c0 Table 11.1), for water (ρwcw = 4.18·106 J/(m3 K)) and for ice (ρwcice = 2.10·106

J/(m3 K)):

ρc = ρ0c0 + ρwcwwl + ρwcicewice (11.57)
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In contrast to the heat capacity the determination of the heat conductivity at present takes
into account only the liquid water content of the soil:

λ = λ0+

(
0.25 +

0.3∆λ

1 + 0.75∆λ

)
∆λMin

{[
4wm
wPV

]
;

[
1 +

(
4wm
wPV

− 1

)
1 + 0.35∆λ

1 + 1.95∆λ

]}
(11.58)

This formula approximates some data given by Benoit (1976) and by van Wijk and de Vries
(1966). The respective values for λ0 and ∆λ are given in Table 11.1. At present an average
soil water content wm, which is kept constant, is assumed in this parameterization:

wm = 0.5(wFC + wPWP ) (11.59)

Besides this simplification, additionally the modification of the soil heat conductivity in the
case of presence of soil ice is not considered.

(b) Upper Boundary Condition

At the upper boundary of the soil the heat flux λ∂T/∂z is replaced by the atmospheric
forcing Gsfc, i. e., the sum of the radiation budget and the sensible and the latent heat flux.
This results in the following form of (11.56)

(
∂Tso
∂t

)

k=1

=
1

ρc∆z1

[
λ

(Tso)k=2 − (Tso)k=1

zm,2 − zm,1
+Gsfc

]
. (11.60)

The forcing at the soil surface Gsfc is given by

Gsfc = cpĤ
3
sfc + L(F 3

qv )sfc +Qrad,net +GP +Gsnow,melt , (11.61)

where the sensible heat flux is known from the surface layer parameterization (see Section
4, Eq. 4.2)

Ĥ3
sfc = ρCdh|vh|(θπsfc − Tsfc) . (11.62)

The latent heat flux is determined using the evapotranspiration computed in the hydrological
section of the soil model by (11.5) and (11.7). Qrad,net is the net radiation budget at the soil
surface as given by the radiation parameterization. GP accounts for the effects of freezing
rain and melting snowfall, respectively. The water budget part of these processes was treated
already in Section 11.3.2. The thermal consequences are accounted for by the following
determination of GP :

1. If the soil surface temperature is below the freezing point (Tsfc < T0) and Pr > 0, we
have GP = Lf · Pr.

2. If the soil surface temperature is above the freezing point and Psnow > 0, we have
GP = −Lf · Psnow.

The term Gsnow,melt (see Section 11.4.3) accounts for the possible influence on the soil tem-
perature by snow melt processes.
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(c) Transfer Coefficient Limitation

As long as the energetic inertia of the model layers in atmosphere or soil is large compared to
the magnitude of the changes in state by forcing fluxes, a new balanced state can be achieved
within a limited number of forecast time steps. Because of the thin soil layers close to the
surface an abrupt change of the surface fluxes can cause overshooting reactions which could
lead to numerical instability.

An overshooting reaction in temperature for the uppermost soil layers can be alleviated
by introducing a situation dependent upper limit to the turbulent fluxes exchanged between
atmosphere and soil. The constraint fluxes must ensure that the temporal change of tempera-
ture in the topmost soil layer (which has the smallest inertia of all soil layers) does not exceed
a prescribed temperature limit ∆Tso,max. Equation (11.60) then reads in time-discretisized
form

|Gsfc −G(1)| ≤ ρc∆z1
∆Tso,max

∆t
(11.63)

In the following a modification of this equation caused by the presence of snow is disregarded.
Then (11.61) can be written as

Gsfc = cpĤ
3
sfc + L(F 3

qv )sfc +Qrad,net . (11.64)

Introducing (11.64) in (11.63) we have

|cpĤ3
sfc + L(F 3

qv )sfc +Qrad,net −G(1)| ≤ ρc∆z1
∆Tso,max

∆t
, (11.65)

(11.65) poses an upper limit on the total heat flux divergence for the uppermost layer.
Substituting (11.5) and (11.62) in (11.65) and using additionally Cdq = Cdh = Cd we obtain

|Cd|vh|ρ(c∆Tas + L∆qas) +Qrad,net −G(1)| ≤ ρc∆z1
∆Tso,max

∆t
, (11.66)

where ∆Tas = (θπsfc − Tsfc) and ∆qas = (qv − qvsfc) and θ and qv are, respectively, the
potential temperature and the specific humidity at the lowest grid level above the earth’s
surface.

In order to isolate the transfer coefficient Cd in (11.66) a distinction between heating and
cooling situations for the topmost layer has to be introduced.

Heating of the soil: The sum of all contributions on the left hand side of (11.66) is positive
even before taking the absolute value. In this case (11.66) can be rewritten as

Cd|vh|ρ(c∆Tas + L∆qas) ≤ ρc∆z1
∆Tso,max

∆t
−Qrad,net +G(1) , (11.67)

If turbulent fluxes would provide a positive contribution to the energy budget of the soil
and thereby enhance the overall heating in situations when atmosphere and soil are not in
balance (e. g. after the data assimilation step) a limitation of the transfer coefficient can
alleviate the problem. In this situation, we may solve (11.66) for Cd to obtain the following
constraint for the transfer coefficient:

Cd ≤ ρc
∆Tso,max

∆t ∆z1 −Qrad,net +G(1)

|vh|ρ(c∆Tas + L∆qas)
(11.68)
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Cooling of the soil: Let us now consider a cooling of the soil, i. e. the sum of all contributions
on the left hand side of (11.66) is negative before taking the absolute value. In this case we
may rewrite (11.66) as

Cd|vh|ρ(c∆Tas + L∆qas) +Qrad,net −G(1) ≥ −ρc∆z1
∆Tso,max

∆t
, (11.69)

and subsequently

Cd|vh|ρ(c∆Tas + L∆qas) ≥ −Qrad,net +G(1) − ρc∆z1
∆Tso,max

∆t
. (11.70)

If the total unconstrained flux divergence leads to a cooling in conjunction with an energy
gain by turbulent surface fluxes, the turbulent fluxes are already contributing to a reduction
of the soil cooling and should not be constrained.

However, in the case when energy transfer by turbulent fluxes is directed from the soil to
the atmosphere a reduction of the turbulent transfer coefficients may provide the required
modification of the soil temperature tendency. Solving (11.70) for Cd, we obtain the following
constraint for the transfer coefficient:

Cd ≤ −ρc∆Tso,max

∆t ∆z1 −Qrad,net +G(1)

|vh|ρ(c∆Tas + L∆qas)
(11.71)

The threshold value for the temperature increment in the uppermost soil layer will be set
to 2.5 K, a fairly large value bearing in mind that the typical model timestep is less than a
minute.

(d) Lower Boundary Condition

As stated already in the introduction to the section on the thermal section, the lower bound-
ary condition is provided by prescribing a climatological temperature in layer kesoil,th + 1,
which is constant in time. An annual mean field of the near surface air temperature, which
is provided on a global 0.5◦ x 0.5◦ grid is interpolated to the LM grid. This method is jus-
tified by the very small annual cycle of the temperature at the upper boundary of the layer
kesoil,th + 1, which is of the order of 5 to 10% of the amplitude at the earth’s surface, if
kesoil,th = 7 as in the present version.

(e) Implicit Solution of the Heat Conduction Equation for the Soil Layers

As in the case of the equation for the soil water transport, the heat conduction equation has
to be solved implicitely because of the very thin upper layer. Therefore, the discretization in
time of (11.56) is given by

T n+1
so = T nso +

∆t

ρc

{
β
∂

∂z

[
λ
∂T n+1

so

∂z

]
+ (1 − β)

∂

∂z

[
λ
∂T nso
∂z

]}
, (11.72)

where the parameter β governs the degree of implicitness. The vertical discretization of
(11.72) results in a three-diagonal linear system, which can be solved by standard methods.
This procedure also provides a solution for the soil surface temperature Tsfc at z = 0. But
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sometimes spurious oscillations in this temperature occur after abrupt changes of the surface
energy budget (11.61). Therefore, we replace the soil surface temperature by (Tso)k=1, the
mean temperature of the first soil layer.

11.4.2 Temperature Prediction for Snow and for Snow-Covered Soil

In the case of a (partially) snow-covered soil, the vertical mean of the snow temperature
Tsnow has to be predicted. The snow surface temperature Tsnow,sfc is then diagnosed from
the soil surface temperature Tsfc and the mean snow temperature by linear extrapolation
Tsnow,sfc = 2Tsnow − Tsfc. The prognostic equation for the mean temperature of the snow
deck is given by

∂Tsnow
∂t

=
1

(ρc∆z)snow
(Gsnow,sfc −Gsnow +Gmelt) , (11.73)

where Gsnow,sfc is the atmospheric forcing at the snow surface, Gsnow is the heat flux from
the snow to the soil, and Gmelt stands for all melting processes connected to the snow deck.

(a) Time-Dependent Snow Albedo

An ageing function 0 ≤ Sage ≤ 1 for snow albedo is considered. The snow albedo is calculated
by

αs = αs,maxSage + αs,min(1 − Sage) (11.74)

with αs,max = 0.7 and αs,min = 0.4. The value of Sage is 1 for ’fresh’ snow and approaches 0
for old snow. The variation of Sage with time consists of a constant ageing and a regeneration
by falling snow:

∆Sage = Sage

[
Psnow
Pnorm

− ∆t

τα

]
(11.75)

Psnow is the snowfall rate, Pnorm = 5 mm/24h. The ageing-function is communicated between
the snow analysis and the forecast model. If no snow exists, Sage = 1 is prescribed.

(b) Prognostic Density of Snow

(ρc∆z)snow is the heat capacity of the snow with a prognostic snow density ρsnow. Two
processes are considered: An ageing (increasing compactness) of snow dependent on the
snow temperature, and a decrease of density due to falling snow dependent on the ambient
air temperature. The prognostic value of snow density ρn+1

snow is given by

ρn+1
snow =

{
ρsnow,ageW

n
snow + ρsnow,freshPsnow

∆t

ρw

}
/znorm . (11.76)

W n
snow is the snow water equivalent at the beginning of the time step ∆t. The ageing is

accounted for by

ρsnow,age = ρsnow,max + (ρnsnow − ρsnow,max) exp
−Cage∆t

τρ (11.77)

where

Cage = 0.2 + (0.4 − 0.2)
(Tsnow − Tmin)

T0 − Tmin
, (11.78)
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with a time-constant τρ = 1d, freezing point T0 and Tmin = 258.15. ρnsnow is the snow density
at the beginning of the time step.

The density of fresh falling snow is determined by

ρsnow,fresh = ρs,f,min + (ρs,f,max − ρs,f,min)
Tlow − Tmin
T0 − Tmin

(11.79)

where ρs,f,min = 50 kg/m3, ρs,f,max = 150 kg/m3, and Tlow is the temperature of the lowest
atmospheric model level. Finally

znorm = W n
snow + Psnow

∆t

ρw
(11.80)

The whole range of snow densities is restricted to ρsnow,min = 50 kg/m3 and ρsnow,max = 400
kg/m3.

(c) Snow Depth

The depth of the snow deck is given by

∆zs =
ρw
ρsnow

Wsnow

fsnow
(11.81)

The fractional area fsnow covered by snow is given by (11.10). A minimum value of ∆zsnow,min =
0.01 m is prescribed. Extreme snow depths which can be found in some regions of the model
cannot be properly accounted for by this concept. Therefore, for thermal processes in snow
a maximum snow depth of 1.5 m is prescribed.

(d) Boundary Conditions for Snow and Soil Surfaces, Heatflux through the Snow
Deck

At the snow surface, the boundary condition is the same as at the soil surface (11.61). Only
the evapotranspiration has to be replaced by the snow surface evaporation, which is given
either by (11.12) in the form

Esnow = Max
[
−ρw

∆t
Wsnow ; Epot(Tsnow,sfc)

]
, (11.82)

or by (11.14). The evaporation has to be multiplied by the latent heat of sublimation. This
gives the latent heat flux in W/m2. Therefore, when using (11.12) in the upper boundary
condition for (11.73), the fractional area covered by the snow deck has to be omitted.

The heat flux through the snow deck is parameterized by

Gsnow = λsnow
Tsnow,sfc − Tsfc

∆zsnow
(11.83)

The thermal conductivity λsnow is parameterized depending on the time dependent snow
density ρsnow:

λsnow = λice

{
ρsnow
ρw

}1.88

(11.84)
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where λice = 2.22 W/(mK) is the heat conductivity of ice.

The upper boundary condition (11.61) at the soil surface has to be changed to

Gsfc = (1 − fsnow) ·
(
cpĤ

3
sfc + L(F 3

qv )sfc +Qrad,net

)
+ fsnow ·Gsnow (11.85)

in order to account for the influence of the snow deck.

(e) Implicit Solution of the Heat Conduction Equation for the Snow Deck

Because of the possibly very thin (0.01 m) snow deck an implicit solution for the temper-
ature prediction of the snow deck is necessary. The general forecast equation for the mean
temperature of the snow deck is

∂Tsnow
∂t

= F (T ) , (11.86)

where the function F (Tsnow) stands for the forcing terms Gsfc,snow and Gsnow in (11.73).
The implicit solution is accomplished by averaging the function F over the old and the new
time step

T n+1
snow = T n−1

snow + 2∆t

[
(1 − β)F (T n−1

snow) + βF (T n+1
snow)

]
. (11.87)

Approximating

F (T n+1
snow) ≈ F (T n−1

snow) +

(
∂F

∂Tsnow

)n−1

(T n+1
snow − T n−1

snow) (11.88)

we get

T n+1
snow = T n−1

snow +
2∆tF (T n−1

snow)

1 − 2∆tβ(∂F/∂Tsnow)n−1
(11.89)

If T ′
snow is the preliminary temperature at time n+1 as given by the explicit forecast, then

T n+1
snow = T n−1

snow +
T ′
snow − T n−1

snow

1 − 2∆tβ(∂F/∂Tsnow)n−1
. (11.90)

An estimation of the different contributions to the forcing terms being part of the function
F shows the sensible and latent heat fluxes as well as the heatflux through the snow deck
to provide the largest contributions. Differentiation with respect to time of the relations for
the turbulent fluxes and for the heat flux through the snow deck leads to the following form

∂F

∂Tsnow
= −gρCh(cp + LsdQsat/dT ) + λsnow/∆zsnow

(ρc∆z)snow
, (11.91)

where dQsat/dT is the slope of the saturation curve. Operationally β = 1.0 is used.

11.4.3 Melting of Snow

If a snow deck is present, the temperature prediction step in soil and snow provides prelimi-
nary values only. If the snow surface temperature or the soil surface temperature exceed the
freezing point, they are reduced to freezing point and melting of snow is considered.
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Figure 11.4: Preliminary and final snow temperature profile per time step, Case 1

Case 1:
The preliminary snow surface temperature T n+1

snow,sfc,p exceeds the freezing point, whereas

the soil surface temperature T n+1
sfc is below the freezing point.

Case 1 is graphically shown in Fig. 11.4. Starting at the preliminary snow surface tempera-
ture, the temperature is reduced to the final temperature Tsnow,sfc,f = T0. The soil surface
temperature Tsfc is held constant. Energy considerations provide the amount of melted snow:
The thermal energy of the snow deck before melting is given byE1 = ρwciceWsnow(Tsnow,sfc,p+
Tsfc)/2. The melting reduces the snow water content to Wsnow −∆W1, this requires the en-
ergy Em = ρwLf∆W1. The melted snow carries the amount of energy Ew = ρwcice∆W1T0,
and after melting the energy of the snow is E2 = ρwcice(Wsnow−∆W1)(T0 +Tsfc)/2. Energy
conservation requires E1 = E2 +Em+Ew. This relation can be solved to provide the change
of the water content of the snow deck:

∆W1 = Wsnow · Tsnow,sfc,p − T0

T0 − Tsfc + 2Lf/cice
(11.92)

Because of the large value 2Lf/cw ≈ 160 K no provision has to be made for a complete melt-
ing of the snow deck in this step. Actually, T0 is replaced by a somewhat lower temperature
T0 − ǫ with ǫ = 10−6 K in order to avoid temperatures of exactly the freezing point. The
mean snow temperature is changed by the amount ∆Tsnow,1 = 0.5(Tsnow,sfc,p − T0).

Case 2:
If the preliminary soil surface temperature T n+1

sfc,p exceeds the freezing point, the preliminary
snow surface temperature Tsnow,sfc,p can be either > T0 or < T0 (only the second case is
shown in Fig. 11.5).

First a heat transfer from the soil to the snow deck is performed. The mean temperature
of the uppermost soil layer (Tsfc,p ≡ Tk=1) is reduced to T0. This makes available the
energy (ρc∆z)k=1(Tsfc,p − T0) for increasing the mean snow temperature from the value
Tsnow,p = 0.5(Tsfc + Tsnow,sfc,p) to Tsnow,p2 = 0.5(T0 + Tsnow,sfc,p2) = Tsnow,p + ∆Tsnow,2,
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Figure 11.5: Preliminary and possible final snow temperature profile per time step, Case 2

where

∆Tsnow,2 =
(ρc∆z)k=1

(ρc∆z)snow
(Tsfc,p − T0). (11.93)

Accordingly, the new snow surface temperature is

Tsnow,sfc,p2 = 2[Tsnow,p + ∆Tsnow,2] − T0, (11.94)

If this redistribution results in Tsnow,sfc,p2 > T0, a melting step follows. The energy re-
quired for melting the total snow deck is Emt = LfρwWsnow. The energy available from
a reduction of the mean snow temperature to the freezing point is Eav = 0.5(ρc∆z)snow
(Tsnow,sfc,p2 − T0). This provides a further contribution to the change of the mean snow
temperature ∆Tsnow,3 = 0.5(Tsnow,sfc,p2 − T0). The fraction mfr = Min{1;Eav/Emt} of the
snow deck will be melted, and ∆W2 = mfr ·Wsnow. If Eav > Emt, the remaining energy goes
into warming the uppermost soil layer by the amount ∆Tsoil = (Eav − Emt)/(ρc∆z)k=1.

Infiltration and runoff

In the situation of a frozen soil surface as in Case 1 (and generally for soil types 1 and 2)
infiltration of water is not possible. The total amount ∆W1 of melted snow is considered
as runoff. In the situation of Case 2 a splitting of the amount ∆W2 of melted snow into
infiltration and runoff is governed by the parameter

Rfr = Max

{
0.0 ; Min{1.0 ;

wk=1 − wFC
wPV − wFC

}
}

(11.95)

This yields

Isnow = ρw(1 −Rfr)∆W2/2∆t (11.96)

Rsnow = ρw(∆W1 +Rfr∆W2)/2∆t (11.97)

Influence on the prediction of soil and snow temperatures
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The heatflux Gmelt describing the thermal effects on the tendency of the mean snow tem-
perature of the melting snow is given by

Gmelt = (ρc∆z)snow(∆Tsnow,1 + ∆Tsnow,2 + ∆Tsnow,3)/2∆t. (11.98)

The influence on the temperature of the uppermost soil layer is given by

Gsnow,melt = (ρc∆z)k=1∆Tsoil/2∆t. (11.99)

11.5 Freezing/Thawing Processes in the Soil

The exact treatment of freezing/thawing processes of water/ice in the soil requires an it-
erative solution of the heat conduction and the Richards equations in the soil, as they are
coupled through these processes. But because of the very short timestep of LM, a simpler
diagnostic approach seems to be sufficient.

Freezing/thawing processes in the soil layers are considered after finishing steps a) solution
of the heat conduction equation and b) melting of snow. If by these processes the predicted
preliminary temperature Tso,p falls below (exceeds) a prescribed threshold temperature T∗,
freezing (thawing) is considered.

The simplest approach would be to use the freezing point as a threshold temperature. But
tests showed a much too strong influence on the near surface temperatures of the freez-
ing/thawing process. It is well known from soil physics that a considerable amount of un-
frozen water can remain in a soil even at temperatures well below the freezing point. Warrach
(2000) uses a relation for the maximum of the unfrozen volumetric water content wl,max in
the soil based on a suggestion by Flerchinger and Saxton (1989). The unfrozen (i. e. liquid)
water content depends on the temperature and on the hydrologic characteristics of the soil:

wl,max = wPV

[
Lf (Tso − T0)

TsogΨs

]−1/b

. (11.100)

Here g is the gravitational acceleration, Ψs is the air entry potential at saturation, and b is
the pore-size distribution index ((Brooks and Corey 1966)). After Cosby et al. (1984) the air
entry potential Ψs and the pore-size distribution index b are determined by the soil type,

Ψs = Ψ0 · 101.88−1.3fs (11.101)

b = 2.91 + 15.9fc , (11.102)

where Ψ0 is -0.01 m, and fs and fc are the fractions of sand and of clay in the soil, respectively.
Table 11.2 shows for the different soil types the fractions fs and fc (the remaining part of
the soil fractions is assumed to be silt), the air entry potential Ψs calculated by (11.101) and
the pore-size distribution index b calculated by (11.102). There are non values available for
peat. Tentatively we use the same values as for sand.

Equation (11.100) can be transformed to calculate the equilibrium temperature T∗ as function
of the water content wl at the beginning of the current time step:

T∗ = T0

[
1 − gΨs

Lf

(
wPV
wl

)b]−1

. (11.103)
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Table 11.2: Soil-type dependent parameters for the determi-
nation of the soil ice/water content. See text for details.

fs fc Ψs(m) b

sand 0.90 0.05 - 0.0513 3.705

sandy loam 0.65 0.10 - 0.1084 4.50

loam 0.40 0.20 - 0.2291 6.09

loamy clay 0.35 0.35 - 0.2661 8.47

clay 0.15 0.70 - 0.4842 14.04

This equilibrium temperature is used as a threshold temperature for the initiation of freez-
ing/thawing processes in the soil.

The energy difference, which is proportional to the temperature difference Tso,p - T∗, is used
to melt ice or to freeze liquid water, that is

∆E = (ρc)∆z(Tso,p − T∗) . (11.104)

This energy amount is used to determine the change of the water/ice content by

∆Wl,max = −∆Wice,max =
∆E

Lfρw
(11.105)

This computed maximum value for the change of the water and ice contents, respectively,
has to be restricted by the available amounts:

∆wice = −Min {−∆wice,max;Min [−(w − wl,max − wice)]} if ∆wice,max < 0,(11.106)

∆wice = Min { ∆wice,max;Max[ (w − wl,max − wice)]} if ∆wice,max > 0(11.107)

These equations can be used to calculate the source term Sk in (11.3).

Sk = −ρw
∆Wice,k

∆t
. (11.108)

The final temperature Tso can be calculated through the relation

Tso = T∗ + (∆wice − ∆wice,max)
(Lfρw)

(ρc∆z)
. (11.109)
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Section 12

Fresh-Water Lake Parameterization
Scheme FLake

In this section, a brief description of the lake model (parameterisation scheme) is presented. A
detailed description of the model, that is termed FLake, is given in Mironov (2008), where an
overview of previous studies, an extensive discussion of various parameterisation assumptions
and of the model disposable constants and parameters, and references to relevant publications
can be found (see also the FLake web page http://lakemodel.net).

FLake is a bulk model capable of predicting the vertical temperature structure and mixing
conditions in lakes of various depth on the time scales from a few hours to many years.
The model is based on a two-layer parametric representation of the evolving temperature
profile and on the integral budgets of energy for the layers in question. The structure of the
stratified layer between the upper mixed layer and the basin bottom, the lake thermocline,
is described using the concept of self-similarity (assumed shape) of the temperature-depth
curve (Kitaigorodskii and Miropolsky (1970)). The same concept is used to describe the tem-
perature structure of the thermally active upper layer of bottom sediments and of the ice and
snow cover. Using the integral approach, the problem of solving partial differential equations
(in depth and time) for the temperature and turbulence characteristics is reduced to solving
a number of ordinary differential equations for the time-dependent quantities that specify
the evolving temperature profile. These are the mixed-layer temperature and the mixed-layer
depth, the temperature at the water-bottom sediment interface, the mean temperature of the
water column, the shape factor with respect to the temperature profile in the thermocline,
the temperature at the upper surface of lake ice, and the ice thickness. Optionally, the bottom
sediment module can be switched on to account for the interaction between the lake water
and the bottom sediment. Then, two additional quantities are predicted, viz., the depth of
the upper layer of bottom sediments penetrated by thermal wave and the temperature at
that depth. Provision is made to explicitly account for the layer of snow above the lake ice.
Then, prognostic equations are carried for the temperature at the snow upper surface and
for the snow thickness. FLake has been favourably tested against observational data through
single-column numerical experiments. Further information about FLake, including an on-line
version of the model (Kirillin et al. (2011)), can be found at http://lakemodel.net.

In what follows, a short summary of FLake is presented, more specifically, of its simplified
configuration currently used within COSMO (Mironov et al. (2010)). The bottom-sediment
module is switched off and the heat flux through the water-bottom sediment interface is set

Part II – Physical Parameterization Section 12: Fresh-Water Lake Parameterization Scheme FLake



131

to zero. Snow over lake ice is not considered explicitly; the effect of snow is accounted for
implicitly through the temperature dependence of the surface albedo with respect to solar
radiation.

The following quadratic equation of state of the fresh water is utilised:

ρw = ρr

[
1 − 1

2
aT (θ − θr)

2

]
, (12.1)

where ρw is the water density, ρr = 999.98 ≈ 1.0 · 103 kg·m−3 is the maximum density of the
fresh water at the temperature θr = 277.13 K, and aT = 1.6509 · 10−5 K−2 is an empirical
coefficient. According to Eq. (12.1), the thermal expansion coefficient αT and the buoyancy
parameter β depend on the water temperature,

β(θ) = gαT (θ) = gaT (θ − θr), (12.2)

where g = 9.81 m·s−2 is the acceleration due to gravity.

The following two-layer parametric representation of the evolving temperature profile is
adopted (Kitaigorodskii and Miropolsky 1970):

θ =

{
θs at 0 ≤ z ≤ h

θs − (θs − θb)Φθ(ζ) at h ≤ z ≤ D.
(12.3)

Here, θs(t) is the temperature of the upper mixed layer of depth h(t), θb(t) is the bot-
tom temperature, i.e. the temperature at the water-bottom sediment interface z = D,
and Φθ ≡ (θs − θ) / (θs − θb) is a dimensionless “universal” function of dimensionless depth
ζ ≡ (z − h) / (D − h) that satisfies the boundary conditions Φθ(0) = 0 and Φθ(1) = 1. With
rare exceptions, the arguments of variables dependent on time t and vertical co-ordinate z
(positive downward) are not indicated in what follows.

According to Eq. (12.3), h, D, θs, θb, and the mean temperature of the water column,

θ ≡ D−1

∫ D

0
θdz, (12.4)

are related through

θ = θs − Cθ(1 − h/D)(θs − θb), (12.5)

where Cθ is the shape factor with respect to the temperature profile in the thermocline,

Cθ =

∫ 1

0
Φθ(ζ)dζ. (12.6)

It should be emphasised at once that the exact form of the shape function is not required
within the framework of the integral approach used to develop FLake. It is not Φθ but the
shape factor Cθ that enters the model equations.

The equation for the mean temperature of the water column (i.e. the equation of the total
heat budget obtained by integrating one-dimensional heat transfer equation over z from 0
to D) reads

D
dθ

dt
=

1

ρwcw
[Qs + Is −Qb − I(D)] , (12.7)
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where cw = 4.2 · 103J·kg−1·K−1 is the specific heat of water, Qs and Is are the values of
the vertical turbulent heat flux Q and of the heat flux due to solar radiation I, respectively,
at the lake surface, and Qb is the heat flux through the lake bottom. The radiation heat
flux Is that penetrates into the water is the surface value of the incident solar radiation flux
from the atmosphere multiplied by 1−αw, where αw is the albedo of the water surface with
respect to solar radiation. The surface flux Qs is a sum of the sensible and latent heat fluxes
and the net heat flux due to long-wave radiation at the air-water interface.

The equation of heat budget of the mixed layer reads

h
dθs
dt

=
1

ρwcw
[Qs + Is −Qh − I(h)] , (12.8)

where Qh is the heat flux at the bottom of the mixed layer.

In the case of the mixed-layer stationary state or retreat, dh/dt ≤ 0, the bottom temperature
is assumed to remain constant,

dθb
dt

= 0. (12.9)

In the case of the mixed-layer deepening, dh/dt > 0, the following equation is used:

1

2
(D − h)2

dθs
dt

− d

dt

[
Cθθ(D − h)2(θs − θb)

]
=

1

ρwcw

[
CQ(D − h)(Qh −Qb) + (D − h)I(h) −

∫ D

h
I(z)dz

]
, (12.10)

where

Cθθ =

∫ 1

0
dζ

∫ ζ

0
Φθ(ζ

′)dζ ′ (12.11)

is a dimensionless parameter, and

CQ = 2Cθθ/Cθ (12.12)

is the shape factor with respect to the heat flux.

If h = D, then both θs and θb are equal to the mean temperature of the water column that is
computed from Eq. (12.7). Recall that the bottom heat flux Qb is set to zero in the present
model configuration.

During convective mixed-layer deepening, h is determined from the following entrainment
equation:

−Qh
Q∗

+
Cc2
w∗

dh

dt
= Cc1. (12.13)

Here, Q∗ and w∗ are generalised convective scales of heat flux and of velocity, respectively,
that account for the volumetric character of the solar radiation heating,

Q∗ = Qs + Is + I(h) − 2h−1

∫ h

0
I(z)dz, w∗ = [−hβ(θs)Q∗/(ρwcw)]1/3 , (12.14)
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and Cc1 = 0.17 and Cc2 = 1.0 are dimensionless constants.

The depth of a stably or neutrally stratified wind-mixed layer is determined from the follow-
ing relaxation-type rate equation:

dh

dt
=
he − h

trh
. (12.15)

Here, trh is the relaxation time scale estimated as

trh =
he

Crhu∗
, (12.16)

where u∗ = |τs/ρw|1/2 is the surface friction velocity, τs being the surface stress, and Crh =
0.03 is a dimensionless constant. The equilibrium mixed-layer depth he is computed from

(
fhe
Cnu∗

)2

+
he
CsL

+
Nhe
Ciu∗

= 1, (12.17)

where f = 2Ω sinφ is the Coriolis parameter, Ω = 7.29 · 10−5 s−1 is the angular velocity of
the Earth’s rotation, φ is the geographical latitude, L = u3

∗/[β(θs)Q∗/ρwcw] is the Obukhov
length, N is the buoyancy frequency below the mixed layer, and Csn = 0.5, Css = 10, and
Csi = 20 are dimensionless constants. A generalised formulation of the Obukhov length that
accounts for the vertically distributed character of the solar radiation heating is used. A
mean-square buoyancy frequency in the thermocline,

N =

[
(D − h)−1

∫ D

h
N2dz

]1/2

, (12.18)

is used as an estimate of N in Eq. (12.17).

The equilibrium mixed-layer depth is limited from below by the depth of a convectively mixed
layer whose deepening driven by the surface cooling (Qs < 0) is arrested by the volumetric
radiation heating (I > 0). The equilibrium depth hc of such layer is computed from

Q∗(hc) = Qs + Is + I(hc) − 2h−1
c

∫ hc

0
I(z)dz = 0, (12.19)

where a finite solution hc < ∞ exists if −Qs/Is < 1. If Eq. (12.17) predicts a very shallow
stably-stratified equilibrium mixed layer to which the mixed layer (whose current depth h
exceeds he) should relax, then it is required that he ≥ hc. This limitation is imposed if
the mixed-layer temperature θs exceeds the temperature θr of maximum density of fresh
water and Q∗(h) > 0 [a negative Q∗(h) indicates that the mixed layer is convective, so that
Eq. (12.13) should be used to compute h].

The approach used to describe the temperature structure of the lake ice is conceptually
similar to the approach used to describe the temperature structure of the lake thermocline.
The following parametric representation of the evolving temperature profile within the ice is
adopted [cf. Eq. (12.3)]:

θ = θf − (θf − θi)Φi(ζi), (12.20)

where z is the vertical co-ordinate (positive downward) with the origin at the ice-water
interface, hi(t) is the ice thickness, θf=273.15 K is the fresh-water freezing point, and θi(t)
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is the temperature at the ice upper surface. Dimensionless “universal” function Φi ≡ [θf −
θ(z, t)]/[(θf − θi(t)] of dimensionless depth ζi ≡ −z/hi(t) satisfies the boundary conditions
Φi(0) = 0, and Φi(1) = 1.

The equation of the heat budget of the ice layer reads

d

dt
{ρicihi [θf − Ci(θf − θi)]} − ρiciθi

dhi
dt

=

Qs + Is − I(0) + κi
θf − θi
hi

Φ′
i(0). (12.21)

where ρi = 9.1 · 102 kg·m−3, ci = 2.1 · 103 J·kg−1·K−1 and κi = 2.29 J·m−1·s−1·K−1 are the
density, the specific heat and the heat conductivity of ice, respectively, Qs and Is are the
values of Q and I, respectively, at the ice upper surface z = −hi(t), and Φ′

i(0) = dΦi/dζi at
ζi = 0. The radiation heat flux Is that penetrates into the ice interior is the surface value of
the incident solar radiation flux from the atmosphere multiplied by 1 − αi, where αi is the
ice surface albedo with respect to solar radiation. The dimensionless parameters Ci is the
shape factor with respect to the temperature profile within the ice,

Ci =

∫ 1

0
Φi(ζi)dζi. (12.22)

Equation (12.21) serves to determine θi when this temperature is below the freezing point
θf , i.e. when no melting at the ice upper surface takes place. During the ice melting from
above, θi remains equal to θf .

During the ice growth or ice melting from below (these occur as θi < θf ), the ice thickness
is computed from the following equation:

Lf
dρihi
dt

= Qw + κi
θf − θi
hi

Φ′
i(0), (12.23)

where Lf = 3.3 · 105· J·kgi−1 is the latent heat of fusion, and Qw is the heat flux in the
near-surface water layer just beneath the ice. If the right-hand side of Eq. (12.23) is negative
(this may occur due to a negative Qw), ice ablation takes place.

During the ice melting from above, the following equation is used:

Lf
dρihi
dt

= −(Qs + Is) +Qw + I(0), (12.24)

that holds as the atmosphere heats the ice upper surface and θi is equal to θf .

The evolution of the temperature profile beneath the ice is described as follows. The temper-
ature at the ice-water interface is fixed at the freezing point, θi = θf . The mean temperature
of the water column is computed from Eq. (12.7), where Qs and Is are replaced with Qw
and I(0), respectively. If the bottom temperature is less than the temperature of maximum
density, θb < θr, the mixed-layer depth and the shape factor with respect to the temperature
profile in the thermocline are kept unchanged, dh/dt = 0 and dCθ/dt = 0, and the bottom
temperature is computed from Eq. (12.5). If the entire water column appears to be mixed at
the moment of freezing, i.e. h = D and θs = θb, the mixed-layer depth is reset to zero, h = 0,
and the shape factor is reset to its minimum value, Cθ = Cminθ . As the bottom temperature
reaches the temperature of maximum density, its further increase is prevented and θb is kept
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constant equal to θr. If h > 0, the shape factor Cθ is kept unchanged, and the mixed-layer
depth is computed from Eq. (12.5). As the mixed-layer depth approaches zero, Eq. (12.5)
is used to compute the shape factor Cθ that in this regime increases towards its maximum
value, Cθ = Cmaxθ (estimates of Cminθ and Cmaxθ are given below). If h = 0, the heat flux
from water to ice is estimated from

Qw = −κw
θb − θs
D

max
[
1,Φ′

θ(0)
]
, (12.25)

where κw = 5.46 · 10−1 J·m−1·s−1·K−1 is the molecular heat conductivity of water, and
Φ′
θ(0) = dΦθ/dζ at ζ = 0. If h > 0, Qw = 0.

The shape factor with respect to the temperature profile in the thermocline is computed
from

dCθ
dt

= sign(dh/dt)
Cmaxθ − Cminθ

trc
, Cminθ ≤ Cθ ≤ Cmaxθ , (12.26)

where sign is the sign function [sign(x) = −1 if x ≤ 0 and sign(x) = 1 if x > 0]; Cminθ =
0.5 and Cmaxθ = 0.8 are minimum and maximum values of the shape factor, respectively.
The shape factor Cθ evolves towards its maximum value during the mixed-layer deepening,
and towards its minimum value during the mixed-layer stationary state or retreat. The
adjustment occurs on a relaxation time scale trc estimated as

trc =
(D − h)2N

Crcu
2
T

, uT = max(w∗, u∗), (12.27)

where Crc = 0.003 is a dimensionless constant, and the mean-square buoyancy frequency in
the thermocline is given by Eq. (12.18). Notice that Eqs. (12.26) and (12.27) are used during
the period of open water. During the period of ice cover, a different procedure is used as
outlined above.

The dimensionless parameter Cθθ defined through Eq. (12.11) is given by

Cθθ =
11

18
Cθ −

7

45
, (12.28)

and the quantity Φ′
θ(0) that enters Eq. (12.25) is given by

Φ′
θ(0) =

40

3
Cθ −

20

3
. (12.29)

The shape factor with respect to the temperature profile within the ice is computed from

Ci =
1

2
− 1

12
(1 + Φ∗i)

hi
hmaxi

. (12.30)

where hmaxi = 3 m and Φ∗i = 2. The quantity Φ′
i(0) that enters Eqs. (12.21) and (12.23) is

given by

Φ′
i(0) = 1 − hi

hmaxi

. (12.31)

The exponential approximation of the decay law for the flux of solar radiation is used,

I(t, z) = Is(t)
n∑

k=1

ak exp[−γk(z + hi)], (12.32)
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where Is is the surface value of the incident solar radiation flux multiplied by 1−α, α being
the albedo of the water surface or of the ice surface with respect to solar radiation, n is
the number of wavelength bands, ak are fractions of the total radiation flux for different
wavelength bands, and γk are attenuation coefficients for different bands. The attenuation
coefficients are piece-wise constant functions of z, i.e. they have different values for water and
ice but remain constant within these media. At present, the simplest one-band approximation
is used with γ = 3 m−1 for water and γ = 107 m−1 for ice. With these values, the vertically
distributed heating is basically confined to the uppermost metre of the water column of ice-
free lakes (95% of solar radiation is absorbed there), and no solar radiation penetrates into
the interior of ice-covered lakes so that the solar heating is confined to the ice surface.

The following parameterisation of the ice surface albedo with respect to solar radiation is
adopted:

αi = αmaxi −
(
αmaxi − αmini

)
exp [−Cα (θf − θi) /θf ] , (12.33)

where αmaxi = 0.6 and αmini = 0.1 are maximum and minimum values of the ice albedo,
respectively, Cα = 95.6 is a fitting coefficient. Equation (12.33) is meant to implicitly account,
in an approximate manner, for the presence of snow over lake ice and for the seasonal
changes of αi. During the melting season, the ice surface temperature is close to the fresh-
water freezing point. The presence of wet snow, puddles, melt-water ponds and leads on the
surface of melting ice results in a decrease of the area-averaged surface albedo. The water
surface albedo with respect to solar radiation, αw, is taken to be constant equal to 0.07.

The two time level Euler scheme is used for time advance of FLake prognostic variables.
Numerous comment lines are put into the source code to give details of the scheme imple-
mentation. In order to be used within COSMO, FLake requires a number of two-dimensional
external-parameter fields. These are, first of all, the fields of lake fraction (area fraction of
a given numerical-model grid box covered by the lake water) and of lake depth. The gen-
eration of lake-fraction and lake-depth external parameter fields is discussed in section 14.
Other external parameters of FLake are set to their default values constant in space and
time. Those parameters are handled internally within COSMO and are not part of COSMO
IO. Although provision is made to explicitly account for the snow layer above the ice (see
Mironov 2008, for details), the use of snow module of FLake in NWP and climate mod-
elling is not recommended until it is comprehensively tested. Thermal interaction between
the water column and the bottom sediments is an issue for shallow lakes only. Experience
suggests that for lakes deeper than about 5 m the heat flux through the bottom can safely
be neglected. If the interaction between the water column and the bottom sediments should
be accounted for, empirical information is required to estimate the depth of the thermally
active layer of bottom sediments and the climatological temperature at that depth. Such
information is rarely available. For NWP, a recommended choice at present is to switch off
the bottom-sediment module of FLake.
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Section 13

Parameterization of Sea Ice

13.1 Introduction

The presence of sea ice on the ocean’s surface has a significant impact on the air-sea in-
teractions. Compared to an open water surface the sea ice completely changes the surface
characteristics in terms of albedo and roughness, and therefore substantially changes the sur-
face radiative balance and the turbulent exchange of momentum, heat and moisture between
air and sea.

In order to deal with these processes the COSMO model includes a sea ice scheme (Mironov
and Ritter 2004). Its implementation in the operational COSMO-EU model at DWD is
described by Schulz (2011). The COSMO-EU model domain covers almost all Europe using
a mesh size of 7 km, in particular it includes the entire Baltic Sea and parts of the White
Sea and Barents Sea (Schulz 2006). Therefore, it is relevant to use an appropriate sea ice
scheme in this model.

13.2 The Sea Ice Scheme

The sea ice scheme by Mironov and Ritter (2004) accounts for thermodynamic processes,
while no rheology is considered. It basically computes the energy balance at the ice’s surface,
using one layer of sea ice. From this the evolution of the ice surface temperature Tice and the
ice thickness Hice are deduced. These two prognostic variables allow for a thermodynamically
coupled treatment of sea ice in the COSMO model as lower boundary condition for the
atmosphere. In particular, the scheme allows for very low surface temperatures which can
be significantly lower than the water temperature below the ice.

The sea ice surface temperature Tice is computed by the surface energy balance equation:

∆Tice

∆t
=

1

cHice

[
QA +QI

ρice Cice

]
(13.1)

where QA is the sum of all atmospheric energy fluxes at the ice’s surface (solar and thermal
radiation plus sensible and latent heat flux), QI is the vertical conductive heat flux through
the ice layer of thickness Hice, ρice = 910 kg m−3 is the ice density, Cice = 2100 J kg−1 K−1

the ice heat capacity, c = 0.5 a shape factor and t the time.
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The internal heat flux QI through the ice layer is computed by

QI = −λice
Tice − Tbot

Hice
(13.2)

where λice = 2.3 W m−1 K−1 is the ice heat conductivity and Tbot the temperature at the
bottom of the ice layer. It is set constant to Tbot = −1.7◦C which is assumed to be the
freezing temperature of salty sea water.

In the case of Tice = 0◦C and QA ≥ 0 W m−2 all available energy at the ice’s surface is used
for melting, leading to a reduction of the sea ice thickness Hice according to

∆Hice

∆t
= − QA

ρice Lf
(13.3)

where Lf = 0.334 · 106 J kg−1 is the latent heat of freezing. In this case the heat flux QI is
neglected.

In all other cases the evolution of Hice is governed by the following equation:

∆Hice

∆t
=

QI

ρice Lf
(13.4)

This means that the internal ice heat flux QI is balanced by the amount of energy involved
in the phase transitions between liquid and frozen water at the bottom of the sea ice layer,
i. e. the interface between ice and water. If for instance Tice < −1.7◦C, this will lead to an
ice heat flux QI which is directed upward from the water into the ice layer. The source of
this heat flux is assumed to be the latent heat of freezing of an equivalent amount of water,
which while freezing will lead to a growing sea ice thickness Hice.

13.3 The Sea Ice Distribution

The horizontal distribution of the sea ice cover in the model domain is governed by the data
assimilation scheme. This means that the sea ice scheme can not create new sea ice points,
it can not start freezing the water by itself.

For instance, in the model chain at DWD first the remote sensing based sea ice mask from
NCEP (National Centers for Environmental Prediction, USA) is provided by the sea surface
temperature (SST) analysis to the global model GME. This GME sea ice mask is then again
interpolated by the SST analysis to the COSMO-EU grid. During this last interpolation
an additional high-resolution sea ice mask is used to improve the ice distribution on the
COSMO grid in particular in the Baltic Sea. This high-resolution sea ice mask is issued by
BSH (Bundesamt für Seeschifffahrt und Hydrographie, Germany) and is updated every few
days.
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Section 14

External Parameters

14.1 Introduction

External parameters are mainly used to describe the status of the earth’s surface (orography,
land-sea-mask, etc.). In general, two different types of parameters have to be distinguished
here:

a) the primary data, which are directly available from data sets offered by specialized
institutions (e.g. orography or dominant land use of a grid element), and

b) the secondary data, which have to be derived from the primary data in order to serve
the needs of the model (e.g. plant cover has to be derived from the dominant land use).

Some of the external parameter fields are generally constant (e.g. orography). Other fields
are treated as constant during a forecast run, but they depend on the time of the year (plant
characteristics). For these latter parameters the actual values are determined by interpolation
in time between maximum and minimum values. This interpolation is done in connection
with the provision of initial and boundary conditions. The maximum and minimum values
of the respective characteristic parameters are provided as constant fields.

This section describes the input data sets and the methods to derive the fields required by
LM. Most of the primary data needed can be downloaded from the Internet, some special
data sets have to be purchased.

14.2 Primary data

The primary data are orography, dominant land use, dominant soil type, and annual mean
near surface temperature. Whereas orography can directly be used as a lower boundary
condition for LM, dominant land use and dominant soil type have to be transformed to the
data required by LM.
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14.2.1 Orography

The GTOPO30 data set of the height of land surfaces used for LM is provided by the
U.S. Geological Service (see: http://edcdaac.usgs.gov/gtopo30/gtopo30.asp). The Dig-
ital Elevation Model (DEM) has a truly global coverage of 30 arc seconds resolution in a
geographic projection. This makes a total of 21600 × 43200 data points. Ocean points are
assigned a value of -9999. The accuracy of the heights strongly depends on the source of the
different regional DEM’s used for this global compilation. Characteristic rmse-values range
from 18 m (for areas where digital terrain elevation data are available, that is roughly 50%
of the global land area) to 304 m (for the area of Peru, 0.1% of the global land area). Over
Greenland the data are known to be affected by a rather large bias. The data set is available
free of charge, it can be downloaded from the Internet.

A data set similar to GTOPO30 is GLOBE, a DEM provided by the National Geophysical
Data Center (see: http://www.ngdc.noaa.gov/mgg/topo/globe.html). This is also a truly
global 30 arc seconds data set. Because in Central Europe the differences between GTOPO30
and GLOBE are small and unsystematic, the change to use GLOBE was not made in LM,
although in the global model GME GLOBE is used because of the Greenland-problem.

The transformation of either of the data sets to the LM-grid is done by a simple averaging
of the available DEM-values in the respective LM grid-cell to describe the mean height of
the grid-cell. At the same time the subgrid-scale variance of orography is computed, which
is required for the determination of the roughness length.

For the external parameters of the new operational applications LME and LMK at DWD the
GLOBE data set is used. Fig. 14.1 as an example shows the orography used for LMK with a
resolution of 0.025◦ (about 2.8 km) for the highest part of the Alps. For LMK the resolution
of the data set is three times higher than the model resolution. Therefore orographic details
are clearly represented in the model resolution.

Figure 14.1: LMK-orography for part of the Alps
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14.2.2 Dominant land cover

For land cover two data sets are used:

a) The Global Land Cover Characteristics (GLCC) data set is provided by the U.S.
Geological Service (see: http://edcdaac.usgs.gov/glcc/glcc.asp). The data set
covers most of the global land surfaces, the main exception is Antarctica. The resolution
is 1 km on the Interrupted Goode Homolosine projection. The determination of land
cover types is based on 1 year (April 1992 to March 1993) 1 km AVHRR-data. 24
different land cover types are interpreted from the AVHRR-data. The accuracy of the
automatic interpretation was tested by classifying manually randomly chosen areas on
the basis of AVHRR-data against Landsat- and Spot-data. This revealed an accuracy
estimate of roughly 65% correct pixels. The data set is available free of charge, it can
be downloaded from the Internet or copied by anonymous ftp.

b) The CORINE data set of land cover is based on a European Union initiative. It is
available for (most of) the former 15 nations of the European Union in 250 m resolution
on a Lambert azimuthal equal area projection. As the resolution of this data set is
higher and as the quality seems to be very good, CORINE replaces the GLCC data
set where it is available.

The Global Landcover 2000 Database (European Commission, Joint Research Centre;
GLC2000, see: http://www-gvm.jrc.it/glc2000) is used in a re-evaluation of plant pa-
rameters. The data set with a resolution of 1 km covers the whole globe with the exception
of Antarctica in a geographical latitude/longitude projection. The data set is based on the
evaluation of NDVI-measurements of the SPOT4-satellite for the period 01 January to 31
December, 2000. Presently this data set is used for the determination of plant parameters
for the GME and for the new operational applications at DWD, LME and LMK.

14.2.3 Dominant soil type

The dominant soil type data set is taken from the Digital Soil Map of the World
(DSMW) CD-ROM (see: http://www.fao.org/ag/agl/agll/dsmw.HTM), which is based on
the FAO/UNESCO Soil Map of the World (FAO-Unesco (1974)). The data set has a resolu-
tion of 5 arc minutes in a geographic projection. In order to get the data set, the CD-ROM
has to be purchased from FAO (token fee). From the description of the Soil Map of the World
it is worth to notice that

a) there is a great variety of soil classifications in the different nations of the world, from
which a common definition had to be compiled, and that

b) there are large areas in the world were no systematic classification of soils was per-
formed yet. In the latter areas, only occasional or reconnaissance field observations are
available. Here soil types and their boundaries were deduced from land forms, geology,
vegetation and climate information and partly from general information. This seriously
restricts the accuracy of the data.

The main characteristic information used is the soil texture of the upper 30 cm of the soil.
Three classes are distinguished, reflecting the relative proportions of clay (grain fraction less
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Table 14.1: Correspondence between numbers, accompanying soil
characteristics and short names

No. soil characteristic name

1 Glacier/Ice ’ice’

2 Lithosols ’rock’

3 Coarse textured ’sand’

4 Coarse to medium textured ’sandy loam’

5 Medium textured ’loam’

6 Medium to fine textured ’loamy clay’

7 Fine textured ’clay’

8 Histosols ’peat’

than 2 µm), silt (2 to 50 µm) and sand (50 to 2000 µm). The classes are: Coarse textured
(less than 18% clay and more than 65% sand), medium textured (less than 35% clay and
less than 65% sand), fine textured (more than 35% clay). These texture classes are assigned
the soil types sand, loam and clay, respectively. In addition to the texture, the FAO Soil
Map of the World distinguishes between 106 soil units. From these soil units only six generic
terms are used for special evaluation. These are the codes for ’Inland water’, ’Glacier/Ice’,
’Lithosols’, ’Salt’, ’Histosols’, and ’Dunes’. The code ’Inland water’ in combination with ’sea’
is used to define a land-sea-mask, ’Glacier/Ice’ defines a separate soil type ice, ’Lithosols’
define the soil type rock, and ’Histosols’ the soil type peat. ’Salt’ and ’Dunes’, which do not
provide a texture code, are associated with a coarse texture. Table 14.1 provides the soil
types used. The search-algorithm is based on the frequency of occurrence of the different
soil types in the respective grid element. But in view of the comparably coarse 5’-resolution
of the FAO-data, normally there is only one soil type in one grid-element. Irrespective of
this restriction similar fractions of coarse and medium textured or medium and fine textured
soils are classified by intermediate types (sandy loam and loamy clay, respectively).

As an example, for the same region as in Fig. 14.1, in Fig. 14.2 the classified soil type is shown
for the LMK-grid. In this case the resolution of the data set is more than three times coarser
than the model resolution (∼ 2.8 km). Therefore, the figure mainly depicts the resolution
of the data set instead of the model resolution. It should be noted that - although a rather
large number of model grid points are assigned the type ’ice’ in the Alps - there are no model
grid points which are assigned the type ’rock’.

14.2.4 Deep soil temperature

At the lower boundary of the active soil layers a temperature field has to be prescribed for
the multi-layer soil model. Here the annual mean near surface temperature is used. The data
set is provided by the University of East Anglia in 0.5◦ resolution for the whole globe except
Antarctica (see: http://www.cru.uea.ac.uk/cru/data/hrg.htm; New et al. (1999)). In the
program providing the initial and boundary data for LM, the data set is interpolated from the
respective GME-field, a height-correction of −0.7◦C/100m is applied to reduce temperatures
from the GME-orography to the LM-orography.
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Figure 14.2: LMK soil types for part of the Alps

14.3 Secondary data

Secondary data have to be derived from the primary data to serve the needs of the model.
In most cases association tables are used to relate the variables required by the model to the
primary data.

14.3.1 Land fraction

The land fraction - or the land-sea-mask - is determined in two steps.

1) Three sets of primary data provide information, whether the respective pixel is land
or water (orography, dominant soiltype, dominant land cover). This information is
evaluated by counting the land pixels of the respective LM grid-element as a fraction
of all pixels of this element. The GTOPO30 data set distinguishes between land points
and the open sea. For the open sea a code -9999 is given, whereas for inland water
the height of the lake surface above sea level is provided. Therefore, the evaluation
of GTOPO30 only provides the coastlines of the open sea. The dominant soil type
provides different codes for the open sea and inland water, a complete land fraction
data set can be determined, but this data set suffers from the low resolution of the
primary data. The land cover data set gives a complete differentiation between land,
open sea and inland water, respectively.

2) After the evaluation of all three primary data sets three distributions of land fraction
are available. Priority is given to the land fraction derived from the land cover data.
But conflicts may occur if an LM grid-element is classified as land (land fraction ≥ 0.5),
but no soil type is available. Such points have to be re-evaluated manually.
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14.3.2 Roughness length

Roughness length over land in LM depends on two contributions, namely, the subgrid-scale
variance of orography and the land-use. The subgrid-scale variance of orography σ2 is com-
puted in connection with the mean orography of the grid element. Then the roughness length
contribution is parameterized according to z0,var = a0σ

2 arctan(∆x/b0) with a0 = 10−5m
and b0 = 2.5m, ∆x is the average grid length. The roughness length z0,i of the different land
cover classes is given in Tables 14.3, 14.4 and 14.5 at the end of this chapter. All i values
in the respective LM grid-element of area F are logarithmically averaged, weighted by their
respective areas Fi according to

z0,lu = h · exp


− F

I∑
i=1

Fi/ (lnh− ln z0,i)


 (14.1)

Here h = 30m is an average height of the Prandtl-layer. The two contributions are added to
obtain the total value of the roughness length z0 = z0,var + z0,lu.

Over sea points the roughness length is not an external parameter but rather a variable
computed on the basis of the Charnock-formula z0,water = α0u

2
∗/g with αo = 0.0123. Over

ice-covered sea points the roughness length is assigned a constant value of 0.001m.

14.3.3 Plant characteristics

The characteristic parameters of plants have to be determined from the dominant land cover.
The parameters required by the soil model in LM are

i) the fractional area covered by plants,

ii) the leaf area index, and

iii) the root depth.

Apparently all these parameters depend on the time of the year. But normally only typical
data for certain land cover classes are given, and for some classes there are no data available.
Additional problems arise because different primary data sets are used. The basic table
of characteristic plant parameters for a total of 59 land cover classes was compiled at the
University of Osnabrück (Lieth and Esser, personal communication; see also Heise et al.
(1988)). This table is used to define the characteristic values for the land cover classes of
the primary data. In order to broadly simulate an annual course of the data, maximum
plcmax, laimax and minimum values plcmin, laimin for plant cover plc and leaf area index lai
are used and a simple analytical annual course depending on latitude and height is prescribed
to interpolate between maximum and minimum values. This has to be done depending on
the actual initial Julian Day Jd of the forecast. Therefore this determination is performed in
the program which provides the initial and boundary data for LM. The following procedure
is applied there:
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a) Using the maps in WMO (1970) the starting Julian Day (Vs) of the vegetation period
and the length (in days) of the vegetation period Vl were estimated. The criterion was
a monthly mean near surface temperature exceeding 5 − 10◦C. These estimates were
approximated by the following two formulae:

Vs = max (1.0, 3(|ϕ| − 20◦)) and

Vl = min (365, 345 − 4.5(|ϕ| − 20◦)) .

b) A height-reduction factor fh(Φs) = exp(−5 · 10−9 ·Φ2
s) with the geopotential height of

the earth’s surface Φs reduces the vegetation effect with increasing surface height.

If p denotes either plant cover or leaf area index, the interpolation in time is performed by

p(ϕ, Jd,Φs) = pmin + (pmax − pmin) · fv · fh(Φs), (14.2)

where
fv = max (0.0,min (1.0, C · sin(π · max (0.0, (Jd − Vs) /Vl))) . (14.3)

The constant C = 1.12 defines the length of the period for which fv = 1. For the root
depth rdepth only very sparse and inconsistent data are available. This parameter does not
only depend on the plant species but also on the structure of the soil. Because of these
ambiguities the roots are treated more or less as a tuning parameter for plant transpiration.
The time dependent values for LM are computed by

zroot = min
(
rdepth, zr,min + (zr,max − zr,min) f

2
v

)
, (14.4)

where zr,min = 0.12m and zr,max = 0.70m.

As there is evidence that some of the values in Tables 14.3 and 14.4 are not realistic, especially
the leaf area index seems to be too large for a number of species, a re-evaluation has taken
place. This re-evaluation, based on the GLC2000 data set, considers plant parameters given
in the EU-project ELDAS and a correspondence table between the GLC2000 plant types
and the IGBP plant classification. The associations are given in Table 14.5.

14.3.4 Wooded areas

Although wooded areas are accounted for in the determination of secondary data (see the
association tables), a special treatment of two different effects might be advisable for wooded
areas. One effect is the influence on snow albedo of forests. For a given value of snow water
equivalent the snow albedo for wooded areas is much lower than for areas covered by low
vegetation only. The second aspect is the transpiration rate of wooded areas. As shown by
different field campaigns, irrespective of the dense vegetation cover, the high leaf area index
values and sometimes large rooting depths, for similar values of soil water content forests
show lower transpiration rates compared to other vegetation types. This can be accounted
for by increasing the minimum stomata resistance of forests. To provide for the inclusion of
these effects, two additional fields were recently added to the set of external parameter fields.
These additional fields are the fractions of the grid element covered by deciduous forest and
by evergreen forest, respectively.
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14.3.5 Thermal and hydraulic parameters of the soil

In LM all thermal and hydraulic parameters of the soil are uniquely related to a set of
8 different soil types. Therefore, only soil types have to be available on the LM-grid. The
relevant parameters are taken from the association table available in the model code. The
corresponding table is listed in Section 11.3.3, Tab. 11.1. These parameters are compiled
from a lot of different literature sources and older model versions, partly the sources are no
longer available. A consistent re-determination of these parameters seems to be advisable.

14.4 Final remarks

Presently the operational applications and the applications under development use different
data sets for the external parameters. Additionally, different association tables are used
to deduce plant parameters required by the model as external parameters, the secondary
parameters, from the primary parameters (data sets). Therefore Table 14.2 summarises these
data sets. Note that the parameter files provided for LME and LMK also have a different
rotated pole than the ones provided for the other LM applications.

The program-system which is used at DWD for processing the primary data is available
for COSMO members. A detailed documentation of the usage of the program-system is
also available. But it is important to note that the change of external parameters requires
a careful procedure. All changes which alter the evapotranspiration (plant cover, leaf area
index, root depth and soil type) interfere in the water (and thermal) budget of the soil.
Especially with the multi-layer soil model the active depth of the soil has a large storage
capacity. As a consequence, the time required to adjust to new evapotranspiration is very
long (some months). A good time for change is late winter, when plants are not active and
the soil is normally filled by water. It is advised against changing external parameters in
summer. For the same reason the interpolation of soil temperature and soil water content
from LM applications using different models for the soil processes can lead to unwanted
spinup problems in the LM soil model.

Table 14.2: Summary of the data sets used in different model versions (August 2005)

Ext. parameter file Model / Application

G
T

O
P

O
3
0

G
L
O

B
E

G
L
C

C

C
O

R
IN

E

G
L
C

2
0
0
0

invar.i128a GME X X

invar.i192a GME X X

lm d1 28000 241x193.g1 X X X

lm d1 21000 321x257.g1 X X X

lm d1 14000 481x385.g1 LM IMGW, LM HNMS X X X

lm d1 07000 961x769.g1 LM DWD, aLMo, LAMI X X X

lm d2 07000 381x379.g1 X X X

lm d3 02800 561x921.g1 X X X

lm d5 07000 965x773.g1 LME (DWD) X X

lm d0 02800 1605x1605.g1 LMK (DWD) X X
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Table 14.3: Characteristic parameters for plants: GLCC-data set

root

No. Land use class z0 depth plant cover leaf area index

[m] [m] Max Min Max Min

1 urban and built up land 1.00 0.60 0.10 0.05 4.70 0.10

2 dryland cropland and pasture 0.10 1.00 0.90 0.45 5.00 0.20

3 irrigated cropl. and pasture 0.10 0.60 1.00 0.50 5.60 0.20

4 mixed dryland/irrigated .... 0.10 0.80 0.90 0.45 5.30 0.20

5 cropland/grassland mosaic 0.07 1.00 0.90 0.45 5.90 0.35

6 cropland/woodland mosaic 0.25 1.00 0.90 0.45 6.10 1.20

7 grassland 0.03 0.60 1.00 1.00 4.50 0.50

8 shrubland 0.20 1.00 0.40 0.10 4.00 0.10

9 mixed shrubland/grassland 0.15 1.00 0.60 0.10 4.00 0.10

10 savannah 0.15 2.00 0.80 0.20 3.00 1.00

11 deciduous broadleaf forest 1.00 1.00 1.00 0.00 6.00 0.00

12 deciduous needleleaf forest 1.00 0.60 1.00 0.00 6.00 0.00

13 evergreen broadleaf forest 1.00 1.00 1.00 1.00 9.00 9.00

14 evergreen needleleaf forest 1.00 0.60 1.00 1.00 8.00 8.00

15 mixed forest 1.00 0.80 1.00 0.50 7.00 2.25

16 water bodies 0.0002 0.00 0.00 0.00 0.00 0.00

17 herbaceous wetland 0.05 0.40 0.80 0.40 3.00 1.00

18 wooded wetland 0.20 0.40 0.90 0.10 4.00 1.00

19 barren or sparsely vegetated 0.05 0.30 0.05 0.02 1.00 0.50

20 herbaceous tundra 0.05 0.10 0.30 0.00 2.10 0.00

21 wooded tundra 0.20 0.10 0.40 0.20 3.20 0.50

22 mixed tundra 0.10 0.10 0.35 0.10 2.60 0.25

23 bare ground tundra 0.03 0.00 0.00 0.00 0.00 0.00

24 snow or ice 0.01 0.00 0.00 0.00 0.00 0.00
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Table 14.4: Characteristic parameters for plants: CORINE data set

root

No. Land use class z0 depth plant cover leaf area index

[m] [m] Max Min Max Min

1 continuous urban fabric 1.00 0.60 0.05 0.05 4.70 0.10

2 discontinuous urban fabric 1.00 0.60 0.20 0.05 4.70 0.10

3 industrial/commercial units 1.00 0.60 0.05 0.05 4.70 0.10

4 road and rail networks 0.10 0.10 0.05 0.05 4.70 0.10

5 port areas 1.00 0.10 0.05 0.05 4.70 0.10

6 airports 0.10 0.10 0.30 0.10 4.50 0.50

7 mineral extraction sites 0.10 0.10 0.05 0.05 1.00 0.50

8 dump sites 0.10 0.10 0.05 0.05 1.00 0.50

9 construction sites 1.00 0.60 0.10 0.05 1.00 0.50

10 green urban areas 0.25 1.00 1.00 0.80 5.80 1.40

11 sport and leisure facilities 0.03 0.60 1.00 0.80 5.80 1.40

12 non-irrigated arable land 0.10 1.00 0.90 0.45 5.00 0.20

13 permanently irrigated land 0.10 0.60 1.00 0.50 5.60 0.20

14 rice fileds 0.10 0.60 1.00 0.00 4.50 0.00

15 vineyards 0.30 0.60 0.90 0.30 4.00 0.10

16 fruit trees and berry plant. 0.80 0.60 1.00 0.00 6.00 0.00

17 olive groves 1.00 0.60 1.00 0.50 5.00 3.00

18 pastures 0.10 0.60 1.00 0.50 4.50 0.50

19 annual crops 0.50 0.80 1.00 0.50 5.00 0.20

20 complex cultivation patterns 0.15 1.00 0.90 0.20 5.30 0.20

21 agriculture (principally) 0.15 1.00 0.90 0.30 5.30 0.20

22 agro-forestry areas 0.25 1.00 0.90 0.45 6.10 1.20

23 broadleaf forest 1.00 1.00 1.00 0.00 6.00 0.00

24 coniferous forest 1.00 0.60 1.00 1.00 8.00 8.00

25 mixed forest 1.00 0.80 1.00 0.50 7.00 4.00

26 natural grassland 0.03 0.60 1.00 1.00 4.50 0.50

27 moors and heathlands 0.05 0.40 0.80 0.40 3.00 1.00

28 sclerophyllus vegetation 0.50 0.60 0.80 0.65 4.30 3.00

29 transitional woodland-shrub 0.60 0.90 0.70 0.40 5.50 1.10

30 beaches, dunes, sand 0.02 0.30 0.10 0.05 1.00 0.50

31 bare rocks 0.10 0.00 0.00 0.00 0.00 0.00

32 sparsely vegetated areas 0.05 0.30 0.05 0.02 1.00 0.50

33 burnt areas 0.05 0.30 0.05 0.02 0.50 0.50

34 glaciers and perpetual snow 0.01 0.00 0.00 0.00 0.00 0.00

35 inland marshes 0.03 0.60 1.00 1.00 4.50 0.50

36 peat bogs 0.05 0.40 0.80 0.40 3.00 1.00

37 salt marshes 0.03 0.60 0.80 0.80 3.00 1.00

38 salines 0.02 0.00 0.00 0.00 0.00 0.00

39 intertidal flats 0.01 0.00 0.00 0.00 0.00 0.00

40 water courses 0.0002 0.00 0.00 0.00 0.00 0.00

41 water bodies 0.0002 0.00 0.00 0.00 0.00 0.00

42 coastal lagoones 0.0002 0.00 0.00 0.00 0.00 0.00

43 estuaries 0.0002 0.00 0.00 0.00 0.00 0.00

44 sea and ocean 0.0002 0.00 0.00 0.00 0.00 0.00
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Table 14.5: Characteristic parameters for plants: GLC2000 data set

root

No. Land use class z0 depth plant cover leaf area index

[m] [m] Max Min Max Min

1 evergreen broadleaf forest 1.00 1.00 0.80 0.80 2.40 1.40

2 deciduous broad closed 1.00 1.00 0.90 0.75 3.40 1.00

3 deciduous broadleaf open 0.15 2.00 0.80 0.70 2.00 1.00

4 evergreen needleleaf forest 1.00 0.60 0.80 0.80 3.80 1.30

5 deciduous needleleaf forest 1.00 0.60 0.90 0.75 3.80 1.00

6 mixed leaf trees 1.00 0.80 0.90 0.75 3.40 1.10

7 fresh water flooded trees 1.00 1.00 0.80 0.80 2.40 1.40

8 saline water flooded trees 1.00 1.00 0.80 0.80 2.40 1.40

9 mosaic tree/natural veget. 0.20 1.00 0.80 0.70 1.50 0.60

10 burnt tree cover 0.05 0.30 0.50 0.50 0.60 0.40

11 evergreen shrubs closed/open 0.20 1.00 0.80 0.70 1.50 0.60

12 deciduous shrubs closed/open 0.15 2.00 0.80 0.70 2.00 1.00

13 herbaceous veget.closed/open 0.03 0.60 0.90 0.75 3.10 1.00

14 sparse herbaceous or grass 0.05 0.30 0.50 0.50 0.60 0.40

15 flooded shrubs or herbaceous 0.05 0.40 0.80 0.70 2.00 1.00

16 cultivated and managed 0.07 1.00 0.90 0.50 3.30 0.70

17 mosaic crop/tree/net veget. 0.25 1.00 0.80 0.65 2.10 1.00

18 mosaic crop/shrub/grass 0.07 1.00 0.90 0.50 3.30 0.70

19 bare areas 0.05 0.30 0.50 0.20 0.60 0.40

20 water 0.0002 0.00 0.00 0.00 0.00 0.00

21 snow and icea 0.01 0.00 0.00 0.00 0.00 0.00

22 artificial surface 1.00 0.60 0.20 0.10 1.00 0.10

23 undefined - - - - - -
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