

ICON-LEM SIMULATION OVER SOUTHERN-ITALY REGION AT 600M GRID RESOLUTION

D. Cinquegrana, M. Montesarchio, A. Zollo, E. Bucchignani *METE Lab*, *CIRA* – *Italian Aerospace Research Center, Capua CE Italy*

WG3a/b COSMO General Meeting

2-6 September 2024 – Deutscher Wetterdienst, Offenbach am Main, Germany

- Domain and Period definition
- ICON LAM Numerical Settings
 - ICON Configurations for comparison
 - Grid size, IC's soil and Turbulence models
- Description of Observational Data sources
- Results
 - Diurnal Cycles and Taylor Diagrams
 - Orography effects
 - Heat Fluxes Evaluation

DOMAIN AND PERIOD

Domain:

- Lazio-Campania Southern Italy regions
- ncells = 109860;
- Horizontal resolution = ~ 0,6 Km (R02B12)
- Vertical resolution:
 - levels: 65
 - First level: 20m; Top height: 22.000 m

Simulated Period:

- Heat waves hit Europe from June to August 2022
- July 2022: severe heat waves over Italy
- ICON forecast run from 18/7 to 24/7 2022

ICON model:

- exact local mass conservation and mass consistent tracer transport.
- The dynamical core is formulated on an icosahedral-triangular Arakawa C-grid.
- Time integration is performed with a two-time level predictor–corrector fully explicit scheme

Main ICON LAM settings :

BC's and IC's:

- IC: DWD Soil + IFS Analysis @ 18:00
- Forecast time: 30h
- BCs reads @ IFS forecast every 3h
- Timestep size= 6 s
- Terra Soil Tiles = 3
- Iterra_urb Parameters on
 - Icon 2.6.6 ver

Parameterization schemes

- Shallow convection parameterization active
- Deep and mid-level convection switched off
- Single moment cloud microphysics
- Diagnostic Kohler cloud cover

- Investigations on:
 - GRID effects
 - coarser grid at 1.1km (R02B11) **vs** 0.6 km (R02B12)
 - SOIL effects
 - IC's : IFS Soil + IFS Analysis @ 18:00 vs ICON soil
 - Turbulence models:
 - COSMO diffusion and transfer: TURBDIFF and TURBTRAN (Raschendorfer (2001))
 - (surface heat fluxes with three tiles (3) in TERRA)
 - Smagorinsky-Lilly model (Dipankar A., (2015)): 3D sub-grid model of Smagorinsky (1963) with the stability correction of Lilly (1962)
 - (surface heat fluxes with one tile (1) in TERRA)

Ground Stations

- Station selected in a box defined as [12.00, 14.75, 40.5, 41.5]
- o Model evaluation: comparison with ground observations downloaded from MISTRAL portal

Stations height difference (z_icon – z stations) [m] @ R02B12 grid

GRID	RMSE (z_icon vs z_stations) [m]
1000	72.0
600 mt	68.0

OROGRAPHY: 1KM VS 0.6KM (ZOOM ON NAPLES METROPOLITAN AREA)

Z [m]

- Comparison of:
 - T2m; rh2m; ws10m; wd10m;
 - REF (0.6 km; Icon Soil; 1D turb; TU on, tiles=3) vs:
 - REF-1km (1.0 km; Icon Soil; 1D turb; TU on; tiles=3)
 - LES (0.6 km; Icon Soil; 3D turb; TU on; tiles=1)
 - IFS (0.6 km; IFS Soil; 1D turb; TU on; tiles=3)
 - Taylor plots

SOIL: IFS vs ICON (REF)

TURBULENCE: LES vs 1D (REF)

WD10M

Taylor plot for T2M

- Filtering out stations higher than 200mt, clustered distribution
- Some preliminary investigations are followed...

•

8Ó0

• A preliminar investigation, supported metrics based on statistical correlation shows that a statistical significant relation is found among the stations altitude and the centered RMS error

Matrix of Correlation for each model investigated:

Columns for errors in Taylor graph, rows related variables related to heights parameters

• Highest relation found in LES models

- Check on surface Fluxes
 - Turbulent Heat transfer coefficient, CTH
 - Sensible HF, SHF
 - Latent HF, LHF

< 2000 mt

SENSIBLE HEAT FLUXES

Q > 0 when entering towad ground/soil/surface, i.e., atmosphere is warming soil. Q < 0 when flowing from surface to atmosphere.

< 2000 mt

< 200 mt

< 2000 mt

< 200 mt

- Comparison of ICON LAM configuration performed over a region in Southern Italy
 - 7-day simulation, considering a week with a severe heat wave in July 2022
 - Consideration on grid effects
 - Soil IC's
 - Turbulence model

THANK YOU FOR YOUR ATTENTION!

