Status WG1 / KENDAscope

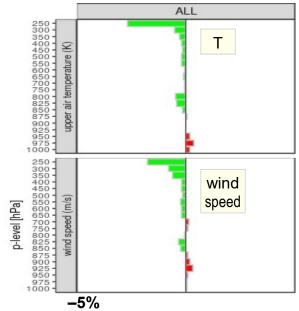
KENDAscope: KENDA from Surface to Cloud Observations Progressive Extension (Sept. 2020 – Aug. 2025)

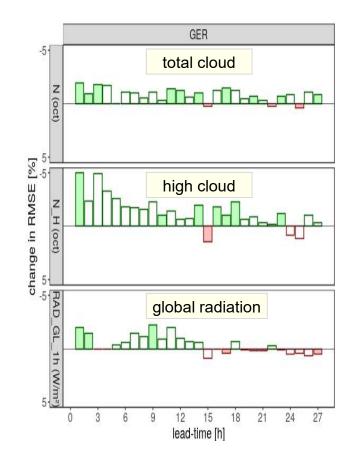
- Task 1: algorithmic developments
 - 1.1 refinements of reference KENDA (currently LETKF)
 - 1.2 Variational DA (EnVar, CEnVar, 4D-EnVar)
 - 1.3 Particle Filter
- Task 2: observations (from surface to clouds)
 - 2.1 Radar (Z + Vr)
 - 2.2 ground-based GNSS ZTD + STD
 - 2.3 all-sky IR + VIS radiances
 - 2.4 MTG IRS
 - 2.5 screen-level obs (T2M, RH2M)
 - 2.6 PBL profiling obs (wind lidar, MW radiometer, Raman lidar, drones, towers)
- Task 3: soil / surface (satellite soil moisture, SST, ...)

Status WG1 / KENDAscope

KENDAscope: KENDA from Surface to Cloud Observations Progressive Extension (Sept. 2020 – Aug. 2025)

- Task 1: algorithmic developments
 - 1.1 refinements of reference KENDA (currently LETKF)
 - 1)
 1.2 Variational DA (EnVar, CEnVar, 4D-EnVar)
 - 1.3 Particle Filter → success at improving ens. spread, tests with ICON-D2
- Task 2: observations (from surface to clouds)
 - 2.1 Radar (Z + Vr) → DWD: e.g. adjust for 2-mom. microphysics
 - 2.2 ground-b. GNSS ZTD + STD → tech. work tbd. before ICON-D2 impact exp. (limited resources)
 - 3) → 2.3 <u>all-sky IR + VIS radiances</u>
 - 2.4 MTG IRS → project started on 15 March 2021
 - 2) \rightarrow 2.5 <u>screen-level obs (T2M, RH2M)</u> \rightarrow e.g. in context of fog / low stratus
 - 4) → 2.6 PBL profiling obs (wind lidar, MW radiometer, Raman lidar, drones, towers)
- Task 3: soil / surface (satellite soil moisture, SST, ...)

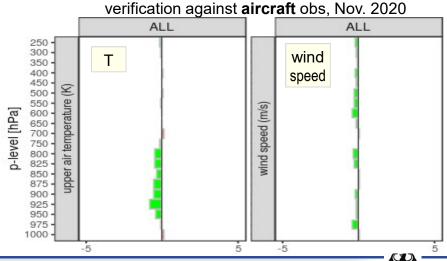



DWD: Refinements on reference KENDA

DWD (Hendrik Reich, Christoph Schraff, Klaus Stephan Elisabeth Bauernschubert, Christine Sgoff et al.)

- main changes in parallel suite for ICON-D2:
 - Nov. 2020 : use of obs located up to 200 hPa (instead of 300 hPa)
 - positive impact on wind + temperature in upper troposphere (200 – 300 hPa)

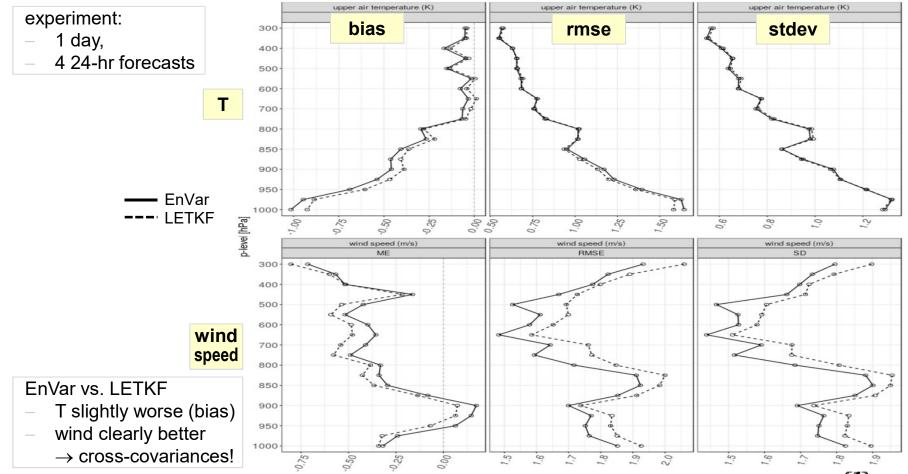
(some) positive impact mainly on high cloud in summer



DWD: Refinements on reference KENDA

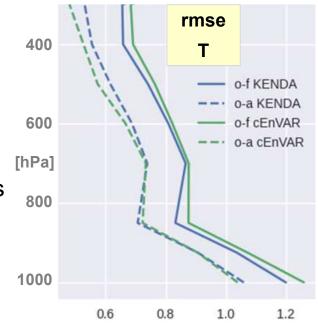
DWD (Hendrik Reich, Christoph Schraff, Klaus Stephan Elisabeth Bauernschubert, Christine Sgoff et al.)

- main changes in parallel suite for ICON-D2:
 - Nov. 2020: use of obs located up to 200 hPa (instead of 300 hPa)
 - Jan. 2021: assimilation of T2M + RH2M obs without bias correction
 - Feb. 2020 : ICON-D2 operational
 - Apr. 2021: LHN re-tuned to increase precip in ICON w. cp/cv bug fix + ecRad
 - Sept 2021 : use of superobbed high-resolution radiosonde ascents
- experiments with physics + LHN parameter perturbations in DA cycle



DWD: (C-)EnVar for ILAM

- EnVar: runs technically in a preliminary version (with DACE obs operators);
 - (Mareike Burba et al.) for testing and comparing to LETKF, need to use similar set of obs
 - → careful study obs processing chains & checks to reject obs (no VarQC, thinning, FG check..)
 - → using aircraft T obs only: differences in 1-step analysis exp. (mostly) understood

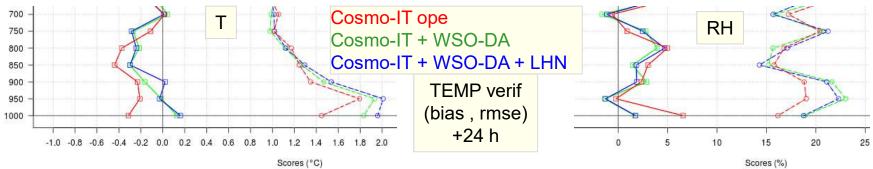


CEnVar: runs technically in a preliminary version
 (with ensemble-B from ICON-EU; with B from ICON-global yet to be checked)

next: use cropped ICON-EU ensemble fields for B-matrix

- (C)EnVar: still uses DACE observation operators developed for global DA
 - → include required properties of KENDA operators (based on COSMO routines) into the 'global'
 DACE routines (needed for TL + adjoint operator)
 - → implemented / being tested for aircraft obs (as a first obs type)

- Hybrid EnVar / 3DVar,
 i.e. with additional use of climatological B-matrix:
 - global climatological B-matrix is applicable
 - aim to develop regional clim. B-matrix: required very well-trained resources currently not available (due to other high-priority work, e.g. 4D-EnVar)


KENDA at COMET: COSMO-IT

(Francesca Marcucci, Valerio Cardinali)

impact experiments (convective summer periods):

- assimilation of satellite-derived soil moisture (WSO-DA)
 (WSO + T2M + RH2M obs influence both soil + low-level atmosphere in LETKF step)
- LHN (latent heat nudging)

status + next steps:

- WSO-DA: negative impact on low-level T, humidity otherwise neutral negative impact on surface verif; precip overestimated by LHN ≤ 12 h; COSMO-IT vs. obs: soil too wet, but RH2M too dry ...
- WSO-DA: decouple soil & atmosphere: no influence of T2m + RH2m on wsoil ana.
 of WSO obs on atmosphere

WSO-DA: compute CDF coeff. for COSMO-IT (calibration of obs); bias correction2

KENDA at COMET: ICON-IT

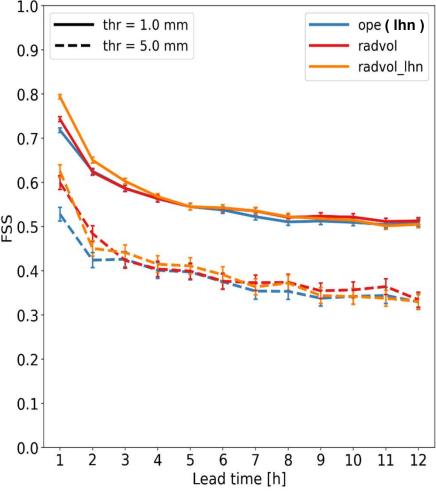

(Francesca Marcucci, Valerio Cardinali)

status + next steps:

- soil too dry up to now → add soil moisture nudging towards ICON-EU (4 UTC)
- further tests with LHN
- assimilation of 3-D radar reflectivity (+ radial winds)

Radar reflectivity & radial wind at arpae

Thomas Gastaldo, Virginia Poli


3-D Reflectivity Z in LETKF:

- Radar Z + LHN > Radar Z > LHN
- precip improved up to +3 h (significant) resp. + 9 h (not significant)
- other variables ~ neutral
- w/o LHN: less precip, drying of soil
- introduced operationally in spring 2021
- (further experiments:
 - discarding lowest elevation (ground clutter) € 0.5
 - use further (regional) radars,
 - precipitate excluded in control vector)

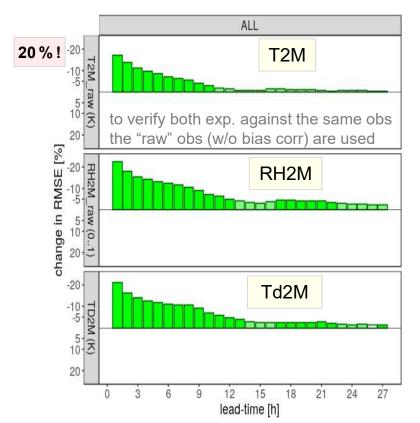
3-D Radial winds in LETKE:

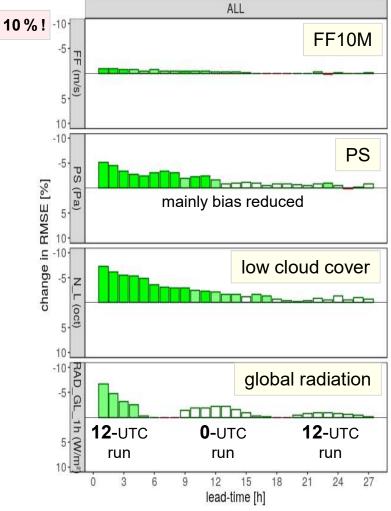
impact experiment: positive impact on tropospheric wind and temperature in first 4 - 6 h, neutral otherwise

FSS 22 km against rain-gauge adjusted radar 18/09 - 19/10/2020

2-m temperature + humidity obs: BC + assimilation

Elisabeth Bauernschubert, C. Sgoff, C. Schraff, K. Stephan

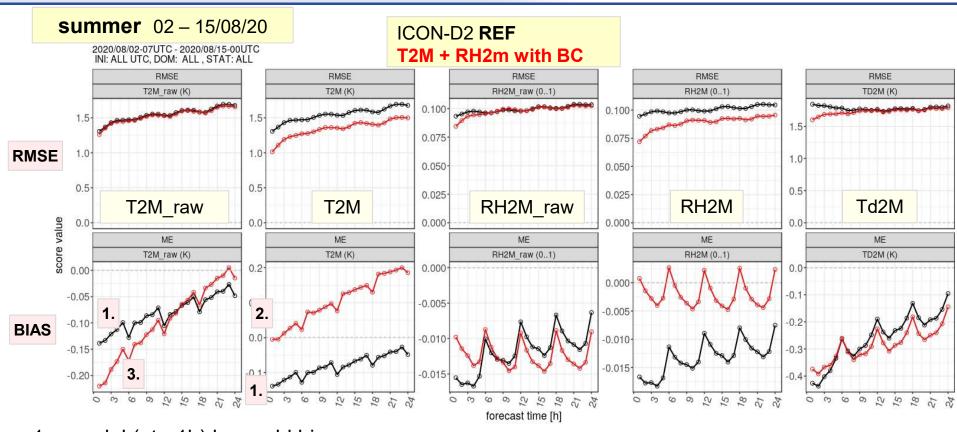




winter 21/12/19 - 08/01/20

change [%] of RMSE against synop

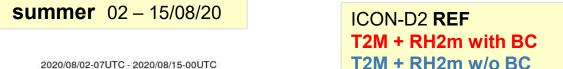
ICON-D2 with RH2M + T2M better w/o RH2M + T2M better

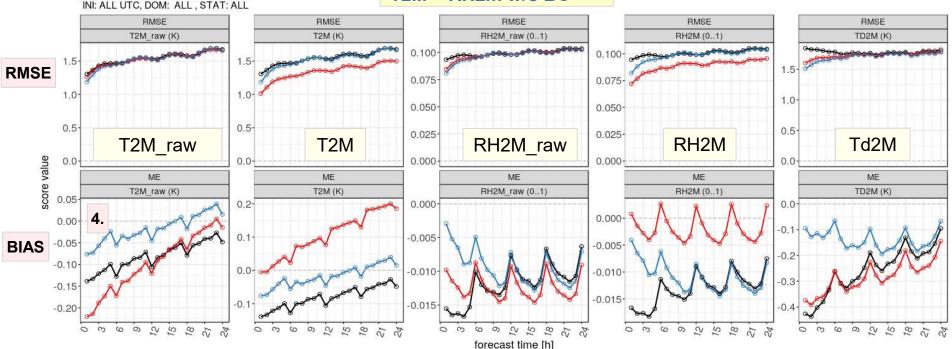


2-m temperature + humidity obs:

bias correction (BC) + assimilation

- 1. model (at +1h) has cold bias
- 2. T2M model bias at + 1h against bias-corrected T2M obs $\approx 0 \rightarrow BC$ works ok, i.e. it adjusts the obs to the cold bias of the model by making the obs colder
- 3. assimilating the bias-corrected cold T2M obs increases cold bias of model (FG) if verified against raw T2M obs or radiosonde / aircraft obs → undesired positive feedback



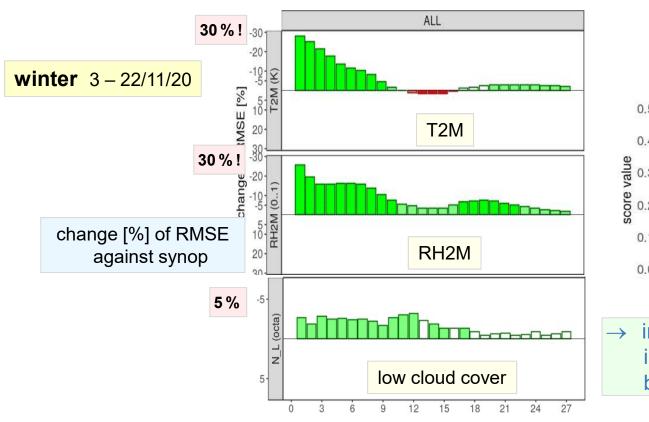

2-m temperature + humidity obs:

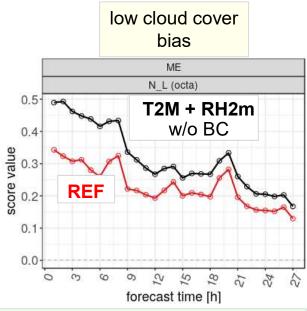
bias correction (BC) + assimilation

2020/08/02-07UTC - 2020/08/15-00UTC INI: ALL UTC, DOM: ALL, STAT: ALL

assimilation of T2M + RH2M without bias correction:

- avoids increase of cold bias and even decreases T2M bias (averaged over all stations!!)
- still improves T2M + RH2M forecasts (against raw obs) (but loses small positive impact on low cloud / precip)


2-m temperature + humidity obs:

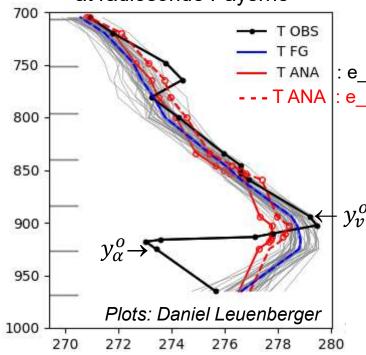

bias correction (BC) + assimilation

assimilation of T2M + RH2M without bias correction:

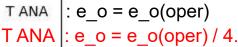
- test in winter / for low stratus (Nov. 2020)
- assimilation of T2M + RH2M w/o BC introduced (pre-/)operationally in ICON-D2 (Q1/21)
- working on revised bias correction (by relaxing area-averaged BC towards zero)

→ impact on low cloud: improves RMSE but increases overestimation

assimilation of T2M + RH2M w/o BC also operational at COMET



Low stratus, inversions and the role of ensemble covariances



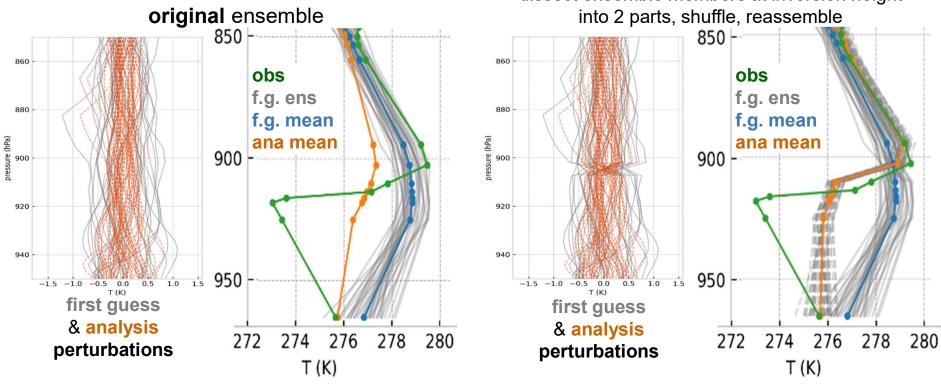
LETKF: problems in case of strong vertical gradients, missing low stratus in Swiss Plat. seen as serious problem at MeteoSwiss after introducing KENDA-1 / COSMO1(E)

temperature inversion at radiosonde Payerne

- decreasing obs errors by factor 4 should have fairly similar effect as increasing ensemble spread by 4
- does not help very much to improve analysis here, i.e. inversion not much enhanced – why?
- reason: across-inversion ensemble covariances $P_{ens(\alpha,\nu)}^{b, loc}$ (> 0) contradict

f.g. error 'correlation' $(y_v^o - y_v^b)(y_\alpha^o - y_\alpha^b)$ (< 0)

new diagnostics
$$\leftarrow$$
 developed by Olaf Stiller
$$J_{\alpha,v}^b = P_{ens(\cdot,v)}^{b,loc} \left(y_v^o - y_v^b\right) \left(y_\alpha^o - y_\alpha^b\right) s^{-1} < 0$$


Low stratus, inversions and the role of ensemble covariances

temperature inversion

plots by Claire Merker, MeteoSwiss (toy ETKF tool, only 1 model profile)

shuffled ensemble (idealized experiment):
dissect ensemble members at inversion height

- across-inversion covariances of shuffled ensemble (~ zero) do not contradict f.g. error 'correl.'
 (negative) → obs below and above do not work against each other → improved analysis
- ensemble covariances crucial in DA ightarrow motivates to investigate how PPP + LHNP affect them

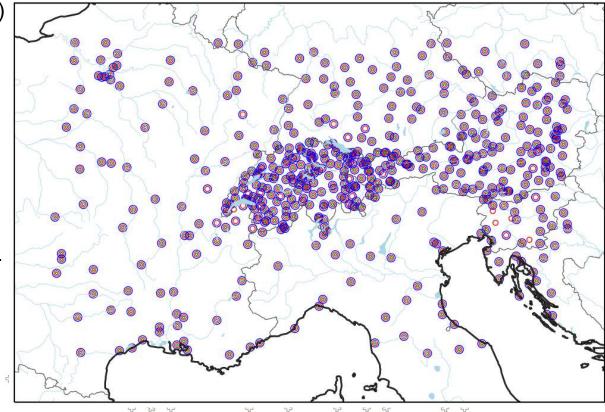
Task 1.0: Inversion and Fog Assimilation Daniel Leuenberger, Claire Merker, Marco Arpagaus

Findings of sensitivity studies on DA (with KENDA-1 / COSMO-1(E)):

- LETKF: problems in case of strong vertical gradients & bad first guess ensembles
- virtually no improvement with increasing FG spread, relaxsing RH QC, etc.
- some improvement of analysis with
 - improving FG structure (→ better representation of gradients in analysis)
 - assimilation of more frequent T/RH profiles
- → need for better first guess
 - improved model (e.g. ICON ☺)

→ Task 2.5: Assimilation of T2M + RH2M obs

Daniel Leuenberger, Claire Merker, Marco Arpagaus

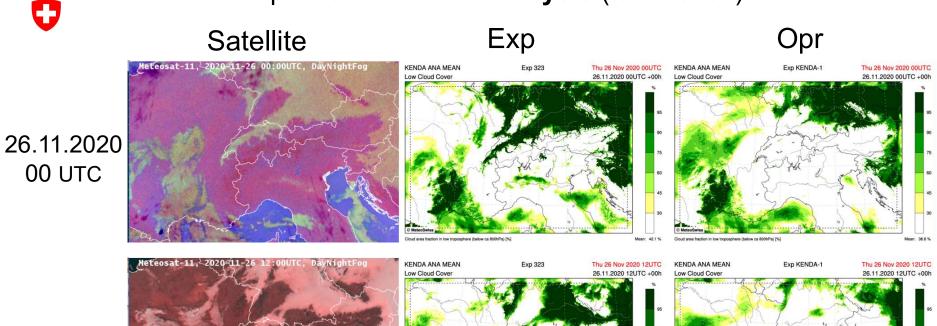


O

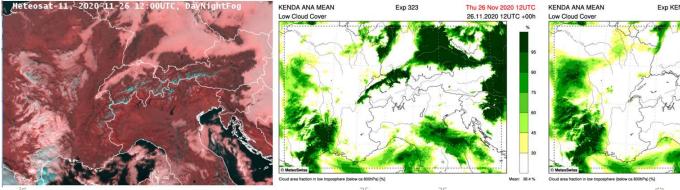
assimilation of T2M + RH2M obs

- Period: 21. 30.11.2020 (10d)
- e-suite KENDA-1 and COSMO-1E (00 and 12UTC)
- settings according to DWD
- relaxation of COSMO QC threshold for RH: qcvf(4) = 1.5
- exp: with T2M + RH2M assim.ref : operational

locations of active observations



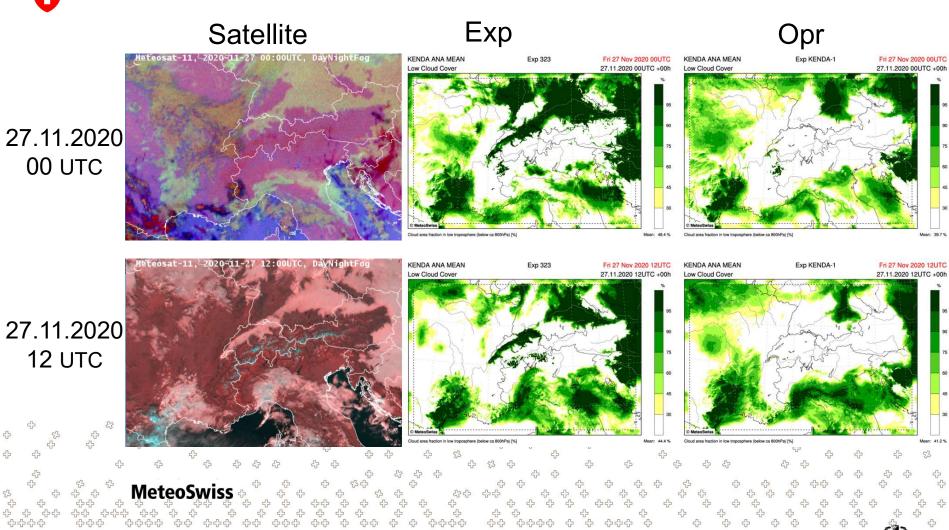
Assimilation of T2M + RH2M obs in case of strong inversion / low stratus



impact on KENDA-1 analysis (low clouds)

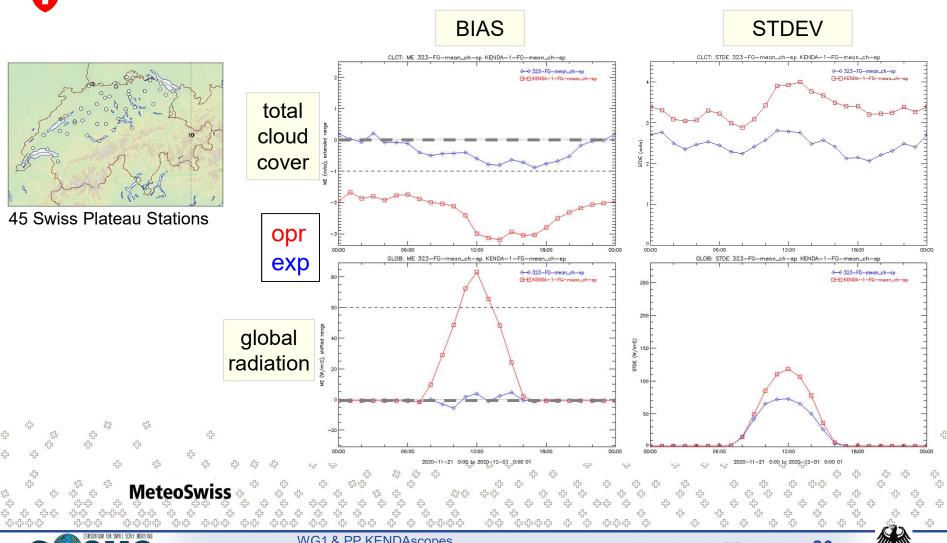
26.11.2020 **12 UTC**

MeteoSwiss



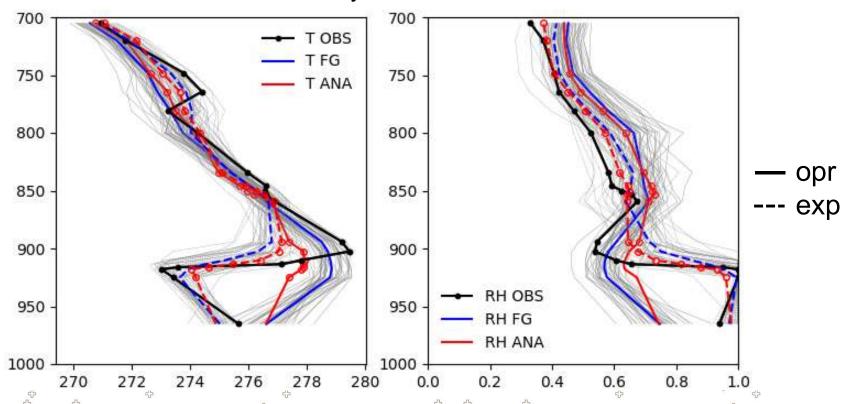
Assimilation of T2M + RH2M obs in case of strong inversion / low stratus

impact on KENDA-1 analysis (low clouds)



Assimilation of T2M + RH2M obs in case of strong inversion / low stratus

impact on KENDA-1 first guess (surface stations)



impact on KENDA-1: vertical structure

Radiosonde Payerne, 26.11.2020 00UTC

MeteoSwiss

Assimilation of T2M + RH2M obs in case of strong inversion / low stratus

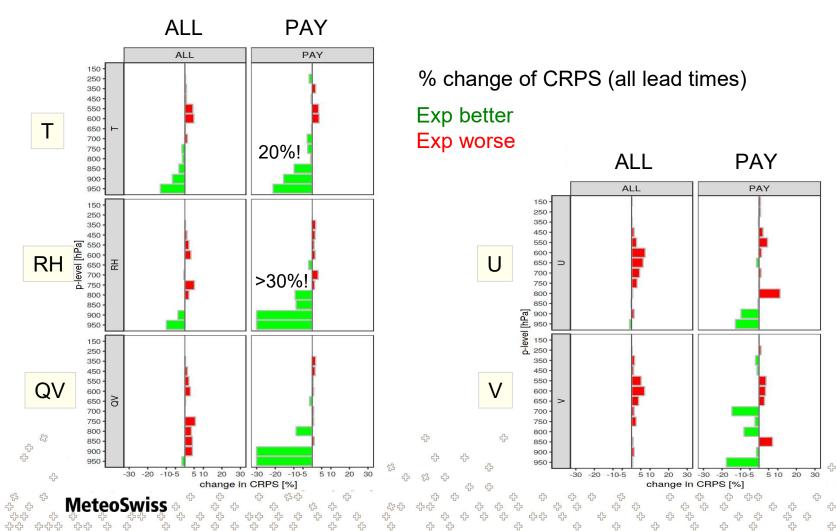
impact on forecasts (surface stations)

Probabilistic Results

P arameter	Spread/Error	RPSS	BSS (low thr.)	BSS (high thr.)
Precipitation (6h)	similar Virtuall	slightly better		
Cloud amount	better	much better	much better	much better
Temperature	better	much better	much better	similar
Dewpoint	better	much better	much better	much better
Wind speed	similar	slightly better	slightly better	similar
Gusts	similar	slightly better	slightly better	better

Control

Parameter	RMSE	Bias	STDE
Precipitation	similar	similar	similar
Cloud Cover	better	better	better
Global Radiation	slightly better	better	slightly better
Sunshine Duration	better	better	better
Temperature	better	slightly better	better
Dewpoint	better	better	better
Relative Humidity	much better	much better	much better
Wind Speed	similar	similar	similar
Wind Gusts	similar	similar	similar
Wind Direction	similar	similar	similar
Station Pressure	similar	similar	similar
Sea Level Pressure	slightly better	slightly better	slightly better
Parameter	Freq. Bias	POD	FAR
Precipitation > 0.2 mm/6h VITUALLY NO Precipitation > 5 mm/6h	slightly worse o rain in worse	this per	slightly worse
Cloud Cover > 2.5 okta	worse	better	similar
Cloud Cover > 6.5 okta	better	better	slightly better
Wind Gusts > 12.5 m/s	similar	similar	similar



Assimilation of T2M + RH2M obs in case of strong inversion / low stratus

impact on EPS forecasts (radiosondes)

Assimilation of T2M + RH2M obs summary

- strong vertical gradients: challenge for the model & DA system → bad FG + ana
- assimilation of T2m + RH2m a game changer
 - better representation of T2m + RH2m, better FG for assimilation of radiosonde
 - fog much better represented in analysis
 - positive impact up to +24h (in investigated 10-day period)
 - no clear negative side effects so far, potential problems with surface inversions
 ... and cloud overestimation ?

outlook

- assimilation of T2m + RH2m
 - extended tests for autumn / winter, operationalize in autumn if successful
 - tests in other season, deploy operationally in all seasons if successful
 - put more efforts on station selection + quality control
- use more obs: wind lidar, Raman lidar, MWR, meteodrones, RAOB descents
- ICON

Task 2.3: **All-sky** assimilation of **SEVIRI** satellite data

Clear-sky data assimilation \rightarrow (mainly) info on temperature, humidity

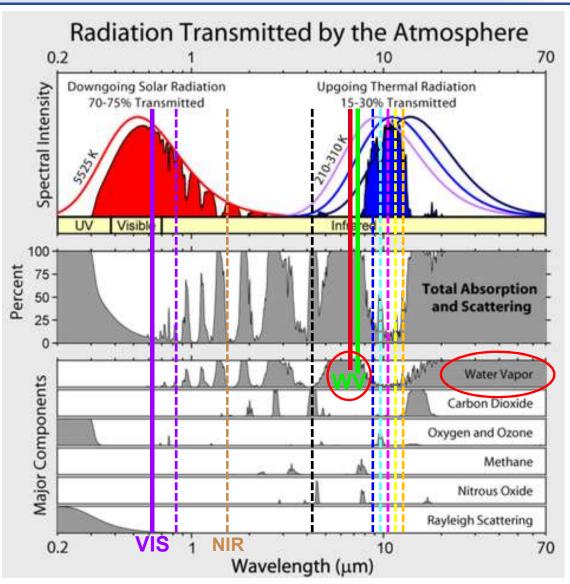
All-sky data assimilation (as developed for ICON-KENDA) → (mainly) info on cloud

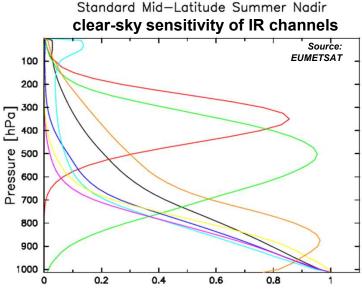
Infrared (IR) water vapour (WV) radiance (as brightness temperature BT)
 Annika Schomburg,

Liselotte Bach, Christina Stumpf, Christoph Schraff, Roland Potthast, Robin Faulwetter, Christina Köpken-Watts, Thorsten Steinert, Hendrik Reich, Thomas Deppisch, Felix Fundel, et al.

Visible (VIS) reflectance

Lilo Bach, Thomas Deppisch,

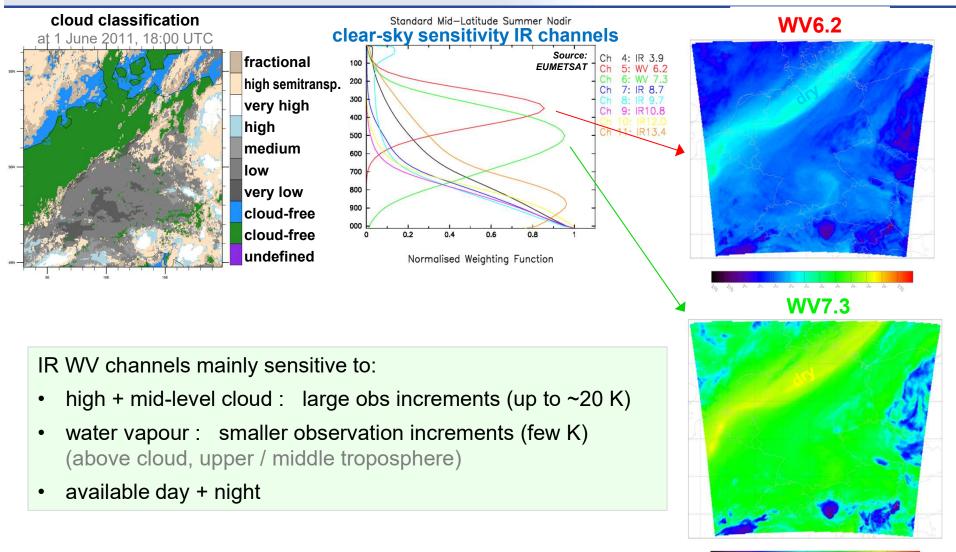

Christina Stumpf, Leonhard Scheck, Robin Faulwetter, Michael Bender, Annika Schomburg, Christina Köpken-Watts, Christoph Schraff, Alberto de Lozar, Thomas Kratzsch, Roland Potthast,...



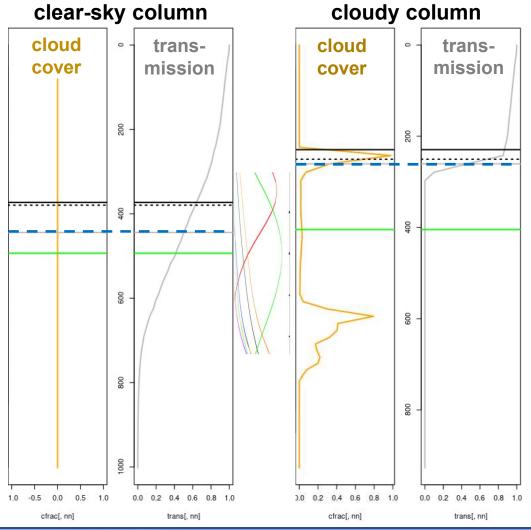
All-sky assimilation of SEVIRI data: Available channels (on Meteosat MSG)

Normalised Weighting Function

Ch 4: IR 3.9 Ch 5: WV 6.2 Ch 6: WV 7.3 Ch 7: IR 8.7 Ch 8: IR 9.7 Ch 9: IR10.8 Ch 10: IR12.0 Ch 11: IR13.4



All-sky assimilation of SEVIRI IR WV radiances: Available channels



All-sky assimilation of SEVIRI IR **WV** radiances: Vertical height assignment

vertical height assignment: examples (WV7.3)

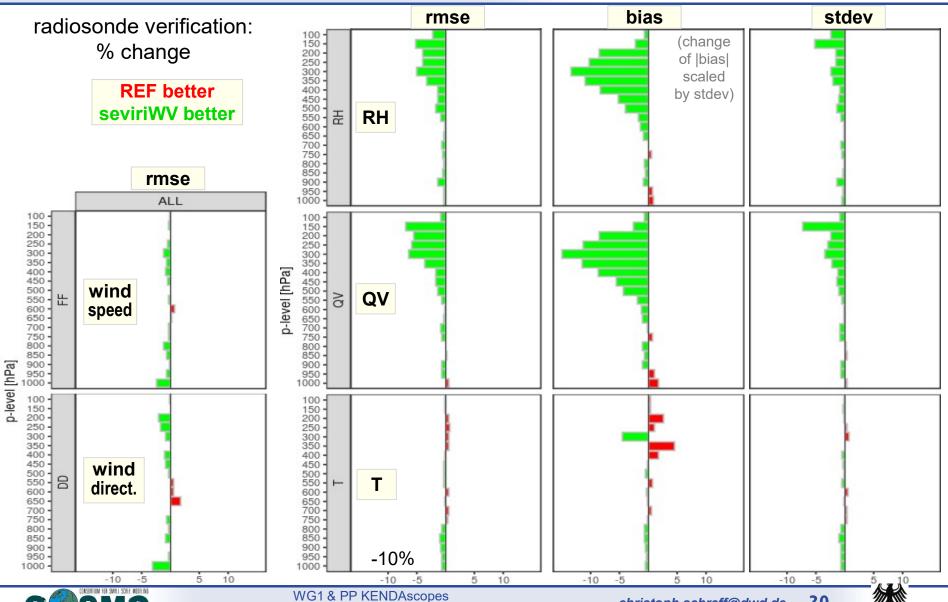
- assigned height where transmission = 0.5
- by this approach, assigned height is different for each ensemble member
- in LETKF, choose max. height from all members
 (→ highest cloud, max. sensitivity, max. obs. increment)
- in experiments so far, slightly different height assignment applied

All-sky assimilation of SEVIRI IR **WV** radiances: Impact experiments

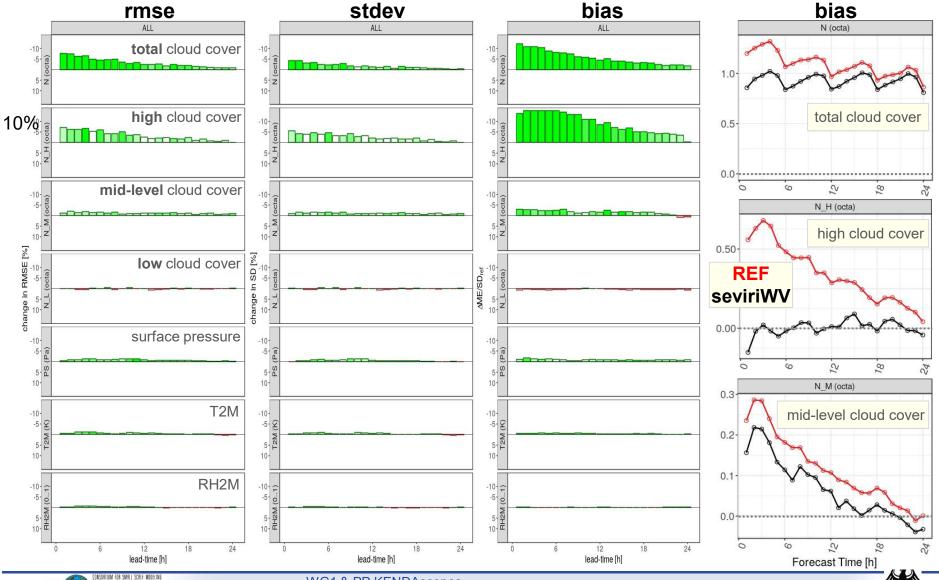
experimental setup

- all-sky
- no bias correction
- observation error: constant 6 K for both channels
 - → very small influence of clear-sky WV info
- thinning: every 4th pixel (in both horiz. directions); 1 scan per hour
- 3 25 August 2020 (23 days)
- REF : like operational ICON-D2 (obs incl. 3-D radar, T2M + RH2M, LHN)

seviriWV: REF + all-sky WV



All-sky assimilation of SEVIRI IR WV radiances: Impact experiments


Deutscher Wetterdienst

All-sky assimilation of SEVIRI IR **WV** radiances: Impact experiments

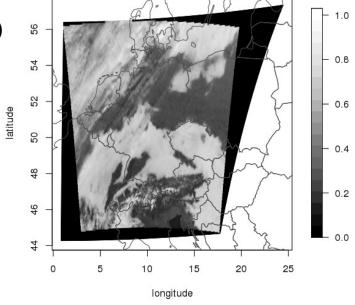
All-sky assimilation of SEVIRI IR **WV** radiances: Status & next steps

assimilation of all-sky SEVIRI WV brightness temperature in ICON-D2:

- strong positive impact on upper-level humidity + high cloud (mid-level cloud), mostly due to a systematic overestimation of high-cloud in first forecast hours, which is corrected by SEVIRI radiances
- small positive impact also on other variables (incl. precip), no show stopper
- recent experiment with revised specification of observation error (smaller for cloud-free, larger for large cloud impact, i.e. better matching mean |O – FG|): further slight improvement, to be further revised
- bias correction
- observation operator: slant path, super'modding'
- test further periods, combination with SEVIRI VIS

All-sky assimilation of SEVIRI VIS reflectance: Introduction

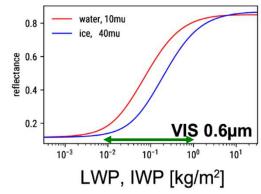
Observations

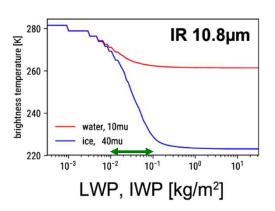

- imager channel in the visible spectral range (0.6 μm)
- SEVIRI instrument on geostationary MSG (0°/0°)
 horizontal resolution: 6 km x 3 km (Central Europe)

What is reflectance?

percentage of solar irradiation that is reflected by clouds and the earth's surface

- availability limited to day time
- also sensitive to (surface albedo \rightarrow) snow cover (Alps!), volcanic ash, Saharan dust


All-sky assimilation of SEVIRI VIS reflectance: Motivation



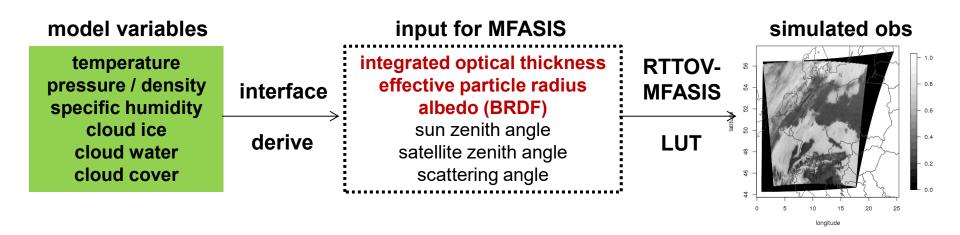
- Why assimilate VIS how does VIS differ from IR?
 - sensitive also to low cloud / boundary layer clouds (convective initiation, low stratus)
 - sensitive to a much larger range of LWP / IWP than IR

except for very small LWP / IWP (thin cirrus)

- sensitive to cloud properties (VIS)
 - cloud water mass
 - cloud optical properties
 - ... and cloud positions, water vapour, surface albedo

rather than to temperature-humidity mixture / cloud top temperature (IR)

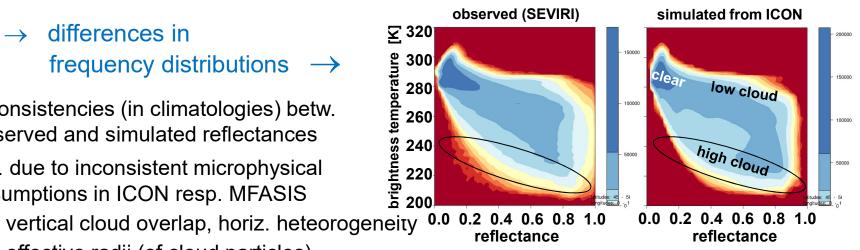
- no (direct) info on cloud top height; available only at daytime
- Which forecast impact can we expect / hope for?
 - cloud positions → convective initiation, precipitation; low stratus
 - cloud optical depth \rightarrow solar radiation at surface \rightarrow e.g. solar power forecasting
 - processes related to solar radiation, e.g. surface fluxes



All-sky assimilation of SEVIRI VIS reflectance: Observation operator

- RTTOV-MFASIS observation operator
 - fast & accurate radiative transfer method MFASIS (Scheck, 2016)
 - → DA in operations conceivable for the first time
 - Look-Up Table (LUT) approach; vertical integrals instead of vertical distribution

- treatment of cloud variables: avoid interpolation (nearest neighbor)
- ongoing developments: NIR channel,
 - aerosol (to be accounted for)
 - neural networks (instead of LUT)



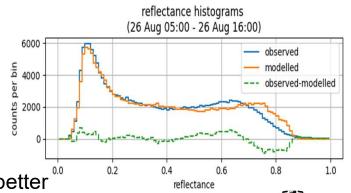
All-sky assimilation of SEVIRI VIS reflectance: Bias issues

differences in bias frequency distributions \rightarrow

inconsistencies (in climatologies) betw. observed and simulated reflectances e.g. due to inconsistent microphysical assumptions in ICON resp. MFASIS

effective radii (of cloud particles)

→ consistence: adapt ICON + MFASIS so effective radii from ICON microphysics (param in 1-mom. / predicted in 2-mom.) also used in ICON radiation + MFASIS


collab. w. physics experts

close (!)

→ adapt / tune ICON vs. satellite obs, to get better cloud frequency distrib.

- → calibration (SEVIRI VIS 8 % too dark MODIS (ag. moon) \rightarrow scale obs by 1.08
- → bias correction for conditional bias. polynomial in reflectance (weighted by sun zenith angle)

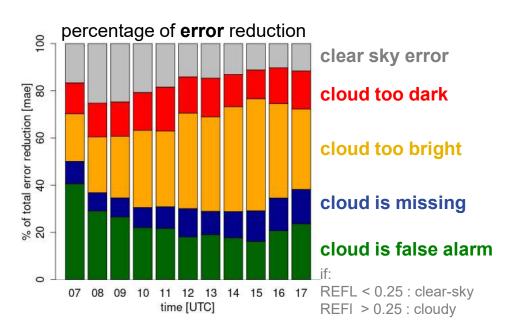
→ apply small correction to every single simulated obs such that simulated and observed histograms match better

All-sky assimilation of SEVIRI VIS reflectance: Impact experiments (all-sky): setup

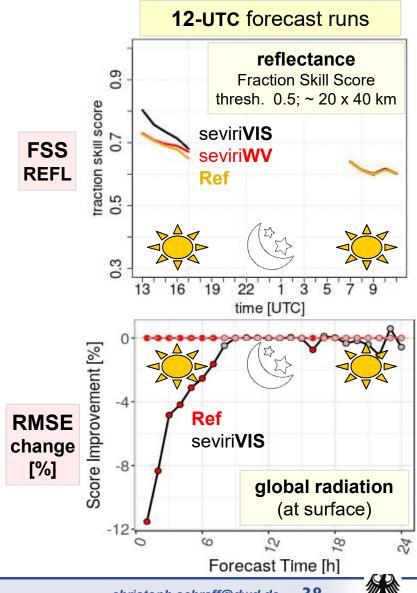
mixture of snow & clouds

- quality control, e.g.: sun zenith angle > 75°, obs > 1.5 rejected (missing 3-D effects)
 - snow cover, Saharan dust, volcanic ash flagged by NWC-SAF cloud mask (misinterpretation as cloud)
- calibration, no bias correction
- observation error: 0.2 (fixed)
- 1 scan per hour
- superobbing to 12 km (to balance number of remote sensing and conventional obs + to reduce representativity error & double penalty issues)
- no vertical localization (because no info on vertical position / extent of cloud from VIS)
- 3 26 August 2020 (24 days)
- REF : like operational ICON-D2 (w. cp/cv bug fix, ecRad; obs incl. 3-D radar, T2M + RH2M, LHN)

seviriVIS: REF + all-sky VIS

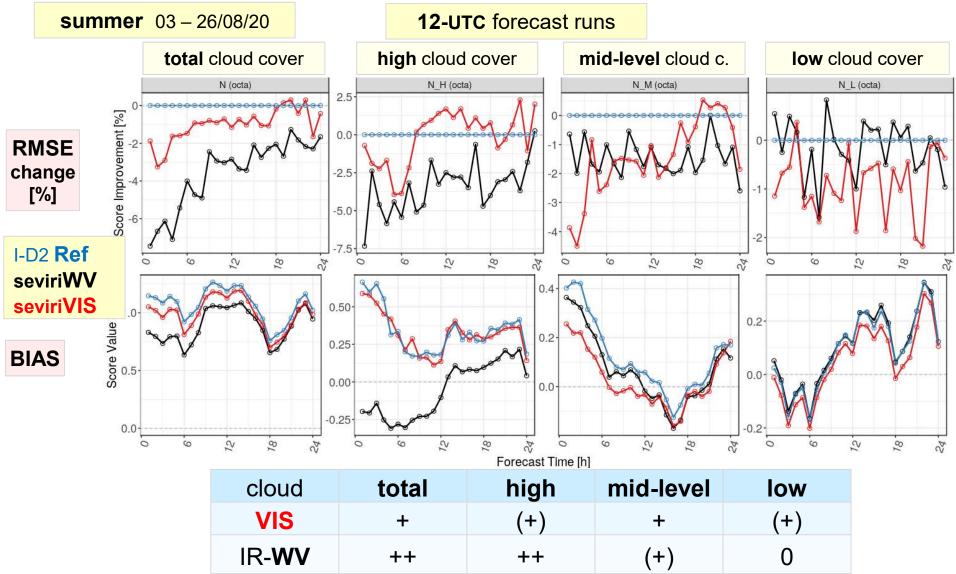

Saharan dust

All-sky assimilation of SEVIRI VIS reflectance: Impact experiments (all-sky): results



first guess reflectance

 \rightarrow MAE reduced by ~ 30 %


- → ambiguous reasons for errors,
 - e.g. cloud too bright:
 - wrong water phase (water)
 - too much water mass
 - too small particles
 - too many particles

All-sky assimilation of SEVIRI VIS reflectance: Impact experiments (all-sky): results

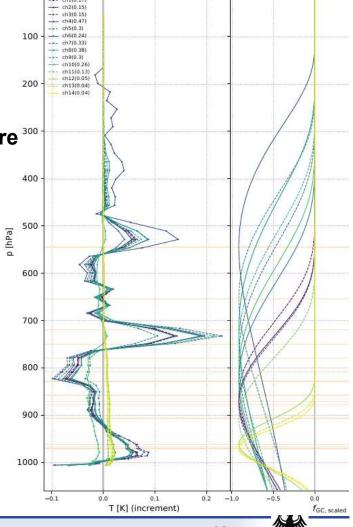
All-sky assimilation of SEVIRI VIS radiances: Status & next steps

assimilation of all-sky SEVIRI VIS reflectance in ICON-D2:

- positive impact on reflectance, (mid-level + low) cloud, global radiation + other surface variables (T2M, RH2M) in 12-UTC forecast runs
- little impact on other variables (incl. precip) and in 0-, 6-, 18-UTC forecast runs
- results depend highly on consistency betw. simulated and observed reflectance histograms and on model version
 - → further work on bias correction, tuning, experiments ...
- introduction in SINFONY-RUC & ICON-D2 parallel suites pursued in near future

Task 2.6: Ground-based remote sensing: Microwave Radiometer (MWR)

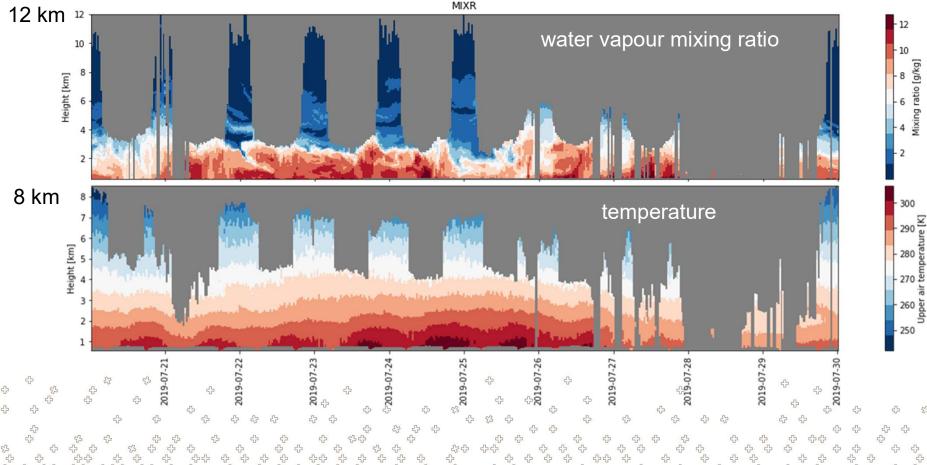
MeteoSwiss: Claire Merker, Daniel Leuenberger, Alexander Haefele, Maxime Hervo, Marco Arpagaus


DWD: Jasmin Vural, Moritz Löffler, Christine Knist, Annika Schomburg

- 3 MWR in Swiss Plateau, 1 at Lindenberg (DE)
- passive remote sensing instrument
- brightness temperature, directly assimilated:

7 V-band channels (51.26 - 58.0 GHz): mainly temperature ³⁰⁰
 7 K-band channels (22.24 - 31.4 GHz): mainly humidity
 in low – mid troposphere

- assimilation experiments ongoing
- errors partly reduced in observation space (vs. MWR)
 but impact in synop / radiosonde verif mixed negative
- → tune observation error variances
- → use less channels (← interchannel obs error correlations)
- → use new instruments with better quality


Task 2.6: Ground-based remote sensing: Raman Lidar (at Payerne)

Bas Crezee, Daniel Leuenberger, Giovanni Martucci, Alexander Haefele, Marco Arpagaus

- vertical profiles of temperature + WV mixing ratio, averages over 30 min
- almost bias-free, only up to cloud base

Task 2.6: Ground-based remote sensing: Raman Lidar (at Payerne)

Bas Crezee, Daniel Leuenberger, Giovanni Martucci, Alexander Haefele, Marco Arpagaus

forecast impact in trial 20 – 30 July 2019 (obs error: 1 K; 1 g/kg)

	First Gue	Forecast	
	Surface	Profile (PAY only)	Surface
Temperature	neutral	better	neutral
RH / TD	better	better < 600hPa	better
Radiation / Cloud Cover	worse	-	worse
Brightness Temperature	-	Moisture-sensitive channels better	-
Precip	-	-	better

next steps:

- obs error tuning (Desroziers stats)
- further tests / seasons

