# Assimilation and Bias Correction of 2-m Temperature Observations and some other Aspects about KENDA

Christoph Schraff Deutscher Wetterdienst, Offenbach, Germany

- assimilation and bias correction of T2M (& RH2M) synop obs *Elisabeth Bauernschubert*, Christine Sgoff, Christoph Schraff, Klaus Stephan, et al.
- on experimental use of Netatmo citizen data: T2M & RH2M
   Walter Acevedo, Christine Sgoff, Thomas Kratzsch, Roland Potthast
- steps towards (C)EnVar, port of observation operators to 'global' DACE routines
   Mareike Burba, Sven Ulbrich, Elisabeth Bauernschubert, Hendrik Reich,
   Stefanie Hollborn, Christoph Schraff, Harald Anlauf, et al.





# 2-m temperature + humidity obs: BC + assimilation *Elisabeth Bauernschubert, C. Sgoff, C. Schraff, K. Stephan* **Deutscher Wetterdienst**



须



low stratus case study: 1 Jan. 2020 , comparison to NWCSAF cloud type







**Deutscher Wetterdienst** 



1. model (at +1h) has cold bias

- 2. T2M model bias at + 1h against bias-corrected T2M obs  $\approx 0 \rightarrow BC$  works ok, i.e. it adjusts the obs to the cold bias of the model by making the obs colder
- 3. assimilating the bias-corrected cold T2M obs increases cold bias of model (FG) if verified against raw T2M obs or radiosonde / aircraft obs  $\rightarrow$  undesired positive feedback





**Deutscher Wetterdienst** 



assimilation of T2M + RH2M without bias correction:

- avoids increase of cold bias and even decreases T2M bias (averaged over all stations!!)
- still improves T2M + RH2M forecasts (against raw obs) (but loses small positive impact on low cloud / precip)





5



assimilation of T2M + RH2M without bias correction:

- test in winter / for low stratus (Nov. 2020)
- assimilation of T2M + RH2M w/o BC introduced (pre-/)operationally in ICON-D2
- working on revised bias correction (by relaxing area-averaged BC towards zero)



concept of non-linear bias correction

- predictors: time of day t, cloud cover N
- basis functions: **5 trigonometric** + **2 polynomial** fn.  $A(t, N) = (1, \sin st, \cos st, \sin 2st, \cos 2st, (9 - N), (9 - N)\sin st, (9 - N)\cos st, (9 - N)\sin 2st, (9 - N)\cos 2st)$
- bias is approximated by:  $bias(t, N) = A(t, N) \cdot c$
- need to specify / estimate coefficients c
- how to compute vector c and apply bias correction ?
  - bias correction :



 $bcor = -bias^{estimated} = -A \cdot c^{k-1}$ 

• BC: apply to each synop station separately  $\rightarrow c = c_{sta}$ 











COSMO GM, Telco, 31 Aug. - 11 Sept. 2020



concept of non-linear bias correction (NL-BC)

- BC  $\rightarrow bcor = -A \cdot c_{sta}$  : corrects for difference of obs model bias
- BC\_c1  $\rightarrow$   $bcor = -A \cdot (c_{sta} c_{domain})$  : subtracts large-scale (model?) bias from BC
- BC\_c2  $\rightarrow bcor = -(A \cdot c_{sta} bcor_{conv})$  : subtracts 'global' bias from BC where  $bcor_{conv}$  : conventional online BC

| non-linear bias correction     | BC           | BC_c1        | BC_c2        | BC_c3        |
|--------------------------------|--------------|--------------|--------------|--------------|
| station dependent              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| accounting for diurnal cycle   | $\checkmark$ | ( - )        | $\checkmark$ | $\checkmark$ |
| dep. on (observed) cloud cover | $\checkmark$ | ( – )        | $\checkmark$ | $\checkmark$ |
| online (dynamic)               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

• BC\_c3  $\rightarrow bcor = -A \cdot (c_{sta} - s \cdot (c_{domain} - c_{dom., clim}))$ where:  $c_{dom., clim}$ : pre-computed from an experiment w/o T2M, RH2M assimilation;  $0 \le s \le 1$ : tuning parameter for relaxation towards 'climatological' bias (BC\_c3 currently under testing)

: subtracts only difference of current to 'climatological' large-scale bias from BC





**Deutscher Wetterdienst** 



10

**Deutscher Wetterdienst** 



but diurnal cycle vs. noBC increased (feedback effect)





....

**Deutscher Wetterdienst** 







Deutscher Wetterdienst



#### summer 04/08 – 04/09/20



summary BC\_c2 vs. noBC:

 feedback effects of BC: overall increase of negative T2M bias avoided, however conditional diurnal biases increased;

#### → increased cold T2M bias at 12, 18 Z leads to increased cold bias up to 800 hPa

 indications of (slightly) improved model-compatibility of bcor T2M & balance (precip, T2M, RH2M, upper-air wind, upper-level T)







concept of non-linear bias correction (NL-BC)

• BC  $\rightarrow bcor = -A \cdot c_{sta}$  : corrects for difference of obs – model bias

- BC\_c1  $\rightarrow$   $bcor = -A \cdot (c_{sta} c_{domain})$  : subtracts large-scale (model?) bias from BC
- BC\_c2  $\rightarrow bcor = -(A \cdot c_{sta} bcor_{conv})$  : subtracts 'global' bias from BC
- BC\_c3  $\rightarrow bcor = -A \cdot (c_{sta} s \cdot (c_{domain} c_{dom., clim}))$ : subtracts only the difference of current to 'climatological' large-scale bias from BC

| non-linear bias correction     | BC           | BC_c1        | BC_c2        | BC_c3        |
|--------------------------------|--------------|--------------|--------------|--------------|
| station dependent              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| accounting for diurnal cycle   | $\checkmark$ | ( - )        | $\checkmark$ | $\checkmark$ |
| dep. on (observed) cloud cover | $\checkmark$ | ( - )        | $\checkmark$ | $\checkmark$ |
| online (dynamic)               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| no bias increase by feedback   | _            | $\checkmark$ | ✓ / —        | ?            |

- $\rightarrow$  bias correction can be quite tricky (at least if not enough anchor data)
- $\rightarrow$  open question whether / which BC will be introduced operationally





# 2-m temperature + humidity from Netatmo stations



#### Netatmo: privately owned automatic weather stations worldwide



- data set purchased in DE for 17 30 Sept. 2018
- observed: T2M, RH2M, pressure, wind speed / direction / gusts, precip
- 10000 stations  $\rightarrow$  5000 randomly selected  $\rightarrow$  3000 active (vs. 1200 synop in D2 area)
- plausibility control (altitude (at given lat / lon), T2M outliers (e.g. room temperature), etc.)
- every 5 min  $\rightarrow$  hourly averaging over last 15 min





# 2-m temperature + humidity from Netatmo stations



#### **Deutscher Wetterdienst**



- larger biases (mainly T2M), larger random error (O FG)
- bias correction important / beneficial, impact much smaller than from Synop

勿

(C-)EnVar for ILAM



- EnVar: runs technically in a preliminary version (with DACE obs operators);
  - (Mareike Burba et al.) for testing and comparing to LETKF, need to use similar set of obs
     → careful study obs processing chains & checks to reject obs (no VarQC, thinning, FG check..)
     → using aircraft T obs only: differences in 1-step analysis exp. (mostly) understood





- CEnVar: runs technically in a preliminary version (with ensemble-B from ICON-EU; with B from ICON-global yet to be checked)
  - C-EnVar for Romanian domain:
     DA cycle runs technically (only very few obs)
  - next step: in order to reduce data amount to be transferred:
    - o crop target domain from ICON-EU / -global fields,
    - test / adapt DACE to process and use them for B-matrix in CEnVar



• Hybrid EnVar / 3DVar,

i.e. with additional use of **climatological B-matrix**:

- **global** climatological B-matrix is applicable
- aim to develop **regional** clim. B-matrix: required very well-trained resources currently not available (due to other high-priority work, e.g. 4D-EnVar)







re-write of convective-scale forward **operators** (+TL +adjoint) for conventional obs:

- ongoing, for **aircraft** obs technically done, being tested (*Bauernschubert, Reich, Schraff*)
- general: namelist switch '**use global**': use 'global' DACE routines only for selected obs types
  - setting (temporarily) obs errors in MEC (also for cdfin-based verif.), overridden in LETKF
  - applying **blacklist** check, yet only for obs types processed by global routines
- aircraft: (code or namelist) adaptations of ('global') DACE operator for KENDA purposes: ٠
  - **pre-thinning** (for high-res. Mode-S, already includes optional conditions such as time (closeness to analysis time), number of active obs (wind + temperature), etc.)
  - **roll angle** called in MEC, with effect only on wind (not T as in global EnVar)
  - Namelist: lower limit of pressure above surface pressure (KENDA: 3 hPa)
  - **no flight track check** of COSMO operator (very few rejections): not (yet?) implemented, incl. associated thinning of AMDAR along flight tracks
  - **no redundancy check** any more (obsolete if thinning applied)
  - **interpolation**, global settings by namelist: vertically spline instead of linear in ln(p) (as in COSMO operators), horizontally bi-linear interpolation instead of nearest neighbour
- 10-day+ trial started: COSMO routines vs. DACE routines vs. global interpolation



