

Representation of model error in COSMO and ICON

Part I: The SEM in COSMO-D2-EPS

Martin Sprengel, Tobias Heppelmann, Christoph Gebhardt

COSMO-GM 2020 WG 7

Outline

- 1. The stochastic error model (SEM)
- 2. Results from experiments
- 3. Current development
- 4. Summary

Aim of the Project

- Aim: Improve reliabilty of COSMO-D2-EPS and ICON-EPS
- How to: Improving inherent description of model error due to imperfect physics parametrization
- Method: develop a model η for the model error tendency using a stochastic partial differential equation (SPDE)
- use this model η_X to correct the tendencies from the NWP online for a set of variables X:

$$\frac{\Delta X}{\Delta t}(x,t) = \left[\frac{\Delta X}{\Delta t}(x,t)\right]_{\text{phys}} - \eta_X(x,t)$$

The Stochastic Error Model

Use the equation for spatially correlated noise^{a)}, however with flow-dependent coefficients to account for weather dependence:

$$\frac{\partial \eta_X(x,t)}{\partial t} = -\gamma(\tau_X)\eta_X(x,t)
+ \gamma(\tau_X)\nabla \cdot \left(\lambda^2(\tau_X)\nabla \eta_X(x,t)\right)
+ \sigma(\tau_X)\xi(x,t)$$
(1)

 $\tau_X = \tau_X(x, t)$ is the tendency of the predictor variable X

- γ damping
- Diffusion λ guarantees spatial correlation
- ξ standard normal random field; σ standard deviation

Model error tendencies $\hat{\eta}$ are determined using historical forecasts and analyses

^{a)}García-Ojalvo et al., Generation of spatiotemporal noise, *Phys. Rev. A* 1992

Evaluation of numerical experiments I

- I have conducted several numerical experiments
 - COSMO-D2-EPS in operational configuration w/o SEM
 - for a reference period of October 2018 (selected with Fraunhofer IEE)
- standard verification against SYNOP shows
 - Increase in spread as intended
 - However, also increased error
 - Ratio spread/skill improves especially for 10m wind (FF)
 - Further improvements needed to avoid increase in error
- analysis verification shows specific deficit in wind speeds at 100-600m height during nights with stable boundary layer
- reason seams to be linked to formation of nocturnal low-level jets

Evaluation of numerical experiments II

- detailed investigation of selected cases:
 - 1. nights of 12, 13, 14 Oct: clear days and nights
 - 2. nights of 23, 24, 25 Oct: passing of cold/warm front, storm
- analysis verification indicates forecast deficiencies especially in the first case
- how to discriminate between the cases automatically?

Bulk Richardson number

$$R_{B} = \frac{(g/T_{V})\Delta\theta_{V}\Delta z}{(\Delta U)^{2} + (\Delta V)^{2}}$$
 (2)

- *g* gravitational constant
- absolute T_v virtual temperature
- \blacksquare Δz layer thickness
- $\Delta\theta_{v}$ change in virtual potential temperature across layer
- ΔU , ΔV change in wind speed across same layer

Bulk Richardson number

$$R_{B} = \frac{(g/T_{V})\Delta\theta_{V}\Delta z}{(\Delta U)^{2} + (\Delta V)^{2}}$$
 (2)

Our settings:

- Best discrimination was found for layer of level 65-55 (10m-300m)
- thresholding

$$R = \begin{cases} 1 & R_B >= .25 \\ 0 & R_B \in (-.25, .25) \\ -1 & R_B <= -.25 \end{cases}$$
 (3)

Smoothing over box of 7x7 grid points

Richardson number: stable nights

Richardson number: unstable nights

Summary and next steps

Summary:

- first experiments look positive
- but need improvement for nights with stable boundary layer
- bulk Richardson number was found to effectively discriminate between (un)stable PBL

Next steps:

- add Richardson levels $R \in \{-1, 0, 1\}$ as predictors in addition to the tendency τ
- re-determine coefficients γ , λ , and σ as function of both τ and R
- implement the additional predictor R into COSMO
- perform new experiment

