Choosing the optimal sub-ensemble of boundary conditions using the cluster analysis

Pavel Khain, Alon Shtivelman, Itzhak Carmona, Eyal Amitai, Yoav Levi, Nir Stav Israel Meteorological Service

Thanks to: Chiara Marsigli, Andrea Montani, Jean-Marie Bettems, Pirmin Kaufmann, Andre Walser, Bojan Kasic, Cristian Simarro

COSMO General Meeting, September 2020

Overview

Since 2020: Development of a new COSMO 2.5km resolution 20 members ensemble over the Eastern Mediterranean Platform: ECMWF computer

BC: ECMWF 51 members ensemble (EC-ENS)

Goal: Ensemble which will is reliable and skillful

Sources of forecast uncertainty:

- Uncertainty in boundary conditions \rightarrow use of driving ensemble (EC-ENS)
- Uncertainty in model physics → Stoch. Pert. of Param. Tendencies (SPPT), parameter perturbations (PP)
- Uncertainty in initial conditions \rightarrow KENDA analysis perturbations.

Topic

1. Which 20 EC-ENS members to choose?

2. If we have time ... Does SPPT benefits? Does PP benefits?

Method

Suggest 12 methods for selection of driving EC-ENS sub-ensemble (20 members)

Questions:

- A. Choose **most different** (representative) 20 EC-ENS members or the **most close** to deterministic IFS?
- B. Which atmospheric fields will define the "distance" between members?
- C. Which forecast range will be used to calculated the distance?

The suggested methods are:

- 1. Most close to IFS, cape only, small domain, forecast range with maximum spread
- 2. Most close to IFS, cape and TCWV (50%-50%), small domain, forecast range with maximum spread
- 3. Most close to IFS, vorticity₅₀₀, larger domain, forecast range with maximum spread
- 4. Most close to IFS, vorticity₅₀₀ and MSL 50%-50%, larger domain, forecast range with maximum spread
- 5. Most close to IFS, Z₅₀₀ and MSL 50%-50%, larger domain, forecast range=96h
- 6. Representative, cape only, small domain, forecast range with maximum spread
- 7. Representative, cape and TCWV (50%-50%), small domain, forecast range with maximum spread
- 8. Representative, vorticity₅₀₀, larger domain, forecast range with maximum spread
- 9. Representative, vorticity₅₀₀ and MSL 50%-50%, larger domain, forecast range with maximum spread
- 10. Representative, Z₅₀₀ and MSL 50%-50%, larger domain, forecast range=96h
- 11. Representative, (*similar to LEPS*), fields: Z, QV, U, V at 500, 700, 850 hPa, larger domain, forecast range=96h
- 12. Random 20 members at each run

Focus on rain season: 22/12/2019-10/01/2020, 05/02/2020-16/02/2020

Twice daily COSMO runs (64 runs) of 51-members ensemble \rightarrow allow testing methods without more runs!

Verify the 12 methods and select the optimal one

Method: clarification

A. Run all 51 members

B. Try method 1

C. Try method 2,... and so on

Verify **those** and decide if this method is good

Distance between EC-ENS members

For field F, height (or pressure) level L and forecast range t, we calculated the mean and standard deviation for all the grid points and 51 ensemble members. The **normalized field** at each grid point i,j of ensemble member m is:

$$x_{i,j,m}(F,L,t) \rightarrow \hat{x}_{i,j,m}(F,L,t) = \frac{x_{i,j,m}(F,L,t) - \overline{x_{i,j,m}(F,L,t)}^{i,j,m}}{\sigma(F,L,t)}$$

Taking into account all the grid points i, j, fields F, height levels L and forecast ranges t, the "distance" between 2 ensemble members m_1 and m_2 is:

$$\Delta \hat{x}(m_1 \leftrightarrow m_2) = \sqrt{\frac{1}{N_i N_j N_F N_L N_t}} \sum_{i,j,F,L,t} \left(\hat{x}_{i,j,m_1,F,L,t} - \hat{x}_{i,j,m_2,F,L,t} \right)^2$$

 Molteni, F., Buizza, R., Marsigli, C., Montani, A., Nerozzi, F., Paccagnella, T., 2001: A strategy for High–Resolution Ensemble Prediction. Part I: Definition of Representative Members and Global Model Experiments. Quarterly Journal of the Royal Meteorol. Soc., No. 127, 2069-2094.

Marsigli, C., Montani, A., Nerozzi, F., Paccagnella, T., Tibaldi, S., Molteni, F., Buizza, R., 2001: A strategy for High–Resolution Ensemble Prediction. Part II: Limited–area experiments in four Alpine flood events. Quarterly Journal of the Royal Meteorol. Soc., 127, 2095-2115. No. 12: April 2012 4 Predictability and Ensemble Methods 76

Verification of T_{2m} , RH_{2m} , WS_{10m} for all the methods

Unbiased RMSE and ensemble spread-RMSE ratio of twice daily COSMO-ENS forecasts for the **winter-period**: T_{2m} (a1,a2), RH_{2m} (b1,b2) and WS_{10m} (c1,c2). The verification was performed against 81 automatic weather stations

Precipitation verification

80 100 150 200 [mm]

0.1 0.5

How good are the forecasts of objects locations?

How good are the forecasts of objects locations?

• Deterministic COSMO precipitation forecasts are good - location errors around 30-40 km

Khain, P, Levi, Y, Shtivelman, A, Vadislavsky, E, Brainin, E, Stav, N. Improving the precipitation forecast over the Eastern Mediterranean using a smoothed time-lagged ensemble. Meteorol Appl. 2020; 27:e1840. <u>https://doi.org/10.1002/met.1840</u>

• We would like the ensemble members to be as good as the deterministic COSMO

A quick method to evaluate the quality of precipitation objects prediction:

- Identification the local peaks in 2D precipitation map
- Search for one or two main peaks in both observed and simulated map
- For given forecast, identify the simulated peaks with the observed ones and calculate location errors

Example ("Tel-Aviv elevator disaster"):

How good are the forecasts of objects locations?

Spread-Skill

Reliability diagrams

Do the predicted probabilities of events correspond to their observed frequencies?

Reliability diagrams: area from diagonal

Do the predicted probabilities of events correspond to their observed frequencies?

Performance diagrams

Performance diagrams - averages

Precipitation – and the winner is ...

	Method	ODE Objects distance error of ensemble members	Spread- skill ratio	Brier Score Mean squared probability error	Reliability Do the predicted probabilities of events correspond to their observed frequencies?	ROC Ability to discriminate between events and non-events	TS or CSI General performance according performance diagram	Frequency bias frequency of forecast events vs. frequency of obs. events	тот
1	cape_sort	8	8	2	3	2	5	6	34
2	cape_tcw_sort	1	6	4	10	1	1	1	24
3	vortic_sort	6	5	5	6	6	4	5	37
4	vortic_tcw_sort	2	4	6	5	5	2	3	27
5	geo_msl_sort_96	4	11	3	2	3	3	4	30
6	cape_repr	7	1	12	11	12	12	12	67
7	cape_tcw_repr	11	2	11	12	11	7	11	65
8	vortic_repr	3	10	10	9	10	8	7	57
9	vortic_tcw_repr	12	7	7	8	8	11	10	63
10	geo_msl_repr_96	5	9	8	4	7	10	9	52
11	italy_repr_96	10	3	9	1	9	9	8	49
12	rand	9	12	1	7	4	6	2	41

How to choose the optimal 20 EC-ENS members?

Method 2: Choose EC-ENS members most close to IFS using CAPE and TCWV (50%-50%) over small domain, use the forecast range with maximum spread

Few more slides?

We found the optimum method but the members are not brilliant...

Does the chosen ensemble benefits?

Conclusion:

Although the single COSMO members are worse (in objects locations) their "ensemble scores" are better!

Possible explanation:

the story might be more complicated than just forecasting the location of the main objects?!

Summary

Since 2020: Development of a new COSMO 2.5km resolution 20 members ensemble over the Eastern

Mediterranean

Platform: ECMWF computer

BC: ECMWF 51 members ensemble (EC-ENS)

Discussed:

- Method to choose 20 EC-ENS members
- The difficulties to have benefit in precipitation forecast

Plan: KENDA