

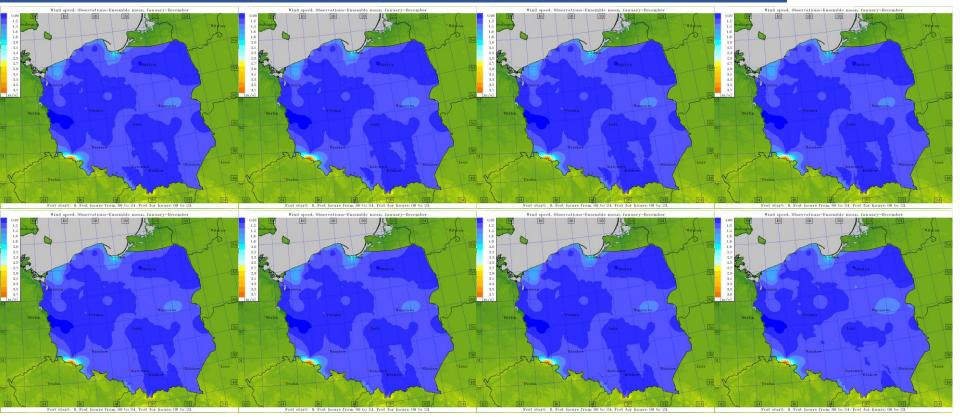
Andrzej Mazur, Grzegorz Duniec, Witek Interewicz Institute of Meteorology and Water Management – National Research Institute

1. Job done

2. Examples

3. Summary

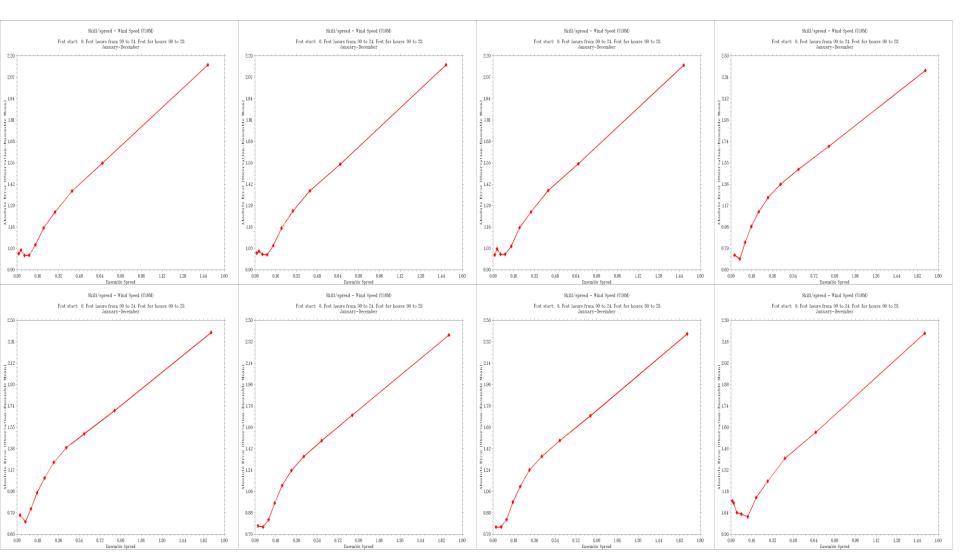
Status and activities in the frame of APSU-PP in IMGW Job done (1)


T1.3 Perturbations based on adapted Random Number Generator (RNG) – for the years 2011 – 2015, comparison (already operationally running) the "new" RNG with regular one as before.

T3.1 Perturbation of soil surface temperature and

T3.3 Combination of soil and upper air perturbation – further comparison of various perturbation methods vs. operational EPS vs. reference ("deterministic") forecasts and vs. measurements over the entire domain, for the years 2011-2015.

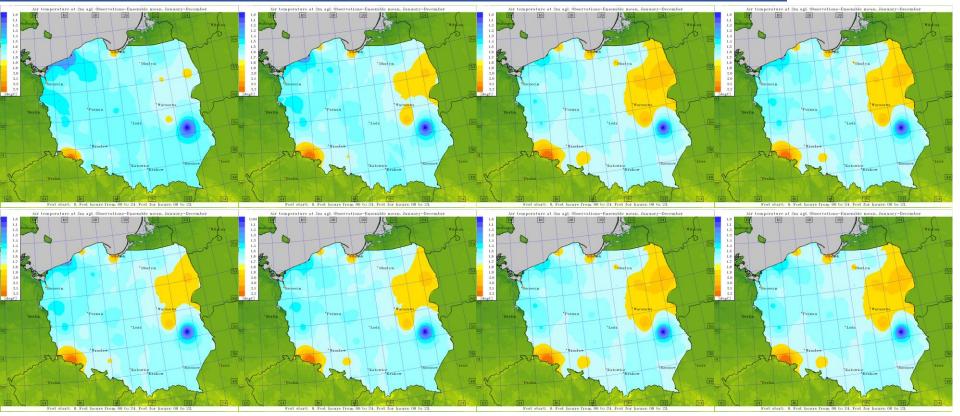
Status and activities in the frame of APSU-PP in IMGW **Examples (1)**



Spatial distribution of skill for wind speed. Top charts, perturbations left to right: all combined, laf, laf-efco, laf-c_soil. Bottom charts: c_soil, ef-c_soil, operational, efco. Avg. for 2011-2015

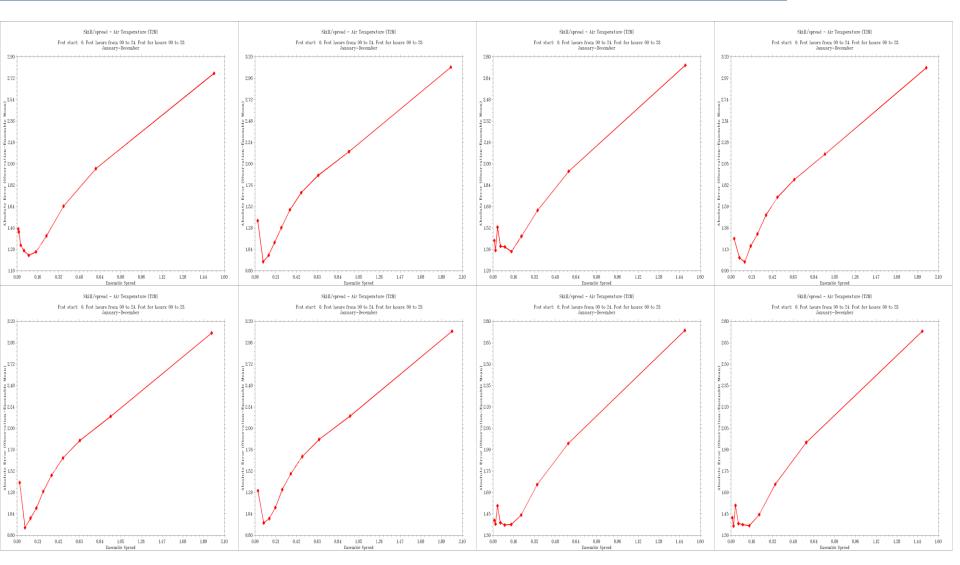
Pert. type	MAE	StD									
all	1.2521	1.6954	laf	1.2523	1.6957	laf-efco	1.2525	1.6959	laf-c_soil	1.2527	1.6970
c_soil	1.2566	1.7013	ef-c_soil	1.2584	1.7029	oper	1.2586	1.7031	efco	1.2877	1.7347

Status and activities in the frame of APSU-PP in IMGW **Examples (1)**



Spread/skill charts for wind speed. Top charts, left to right: all combined, *laf*, *laf-efco*, *laf-c_soil*. Bottom charts: *c_soil*, *ef-c_soil*, operational, *efco*. Avg. for 2011-2015

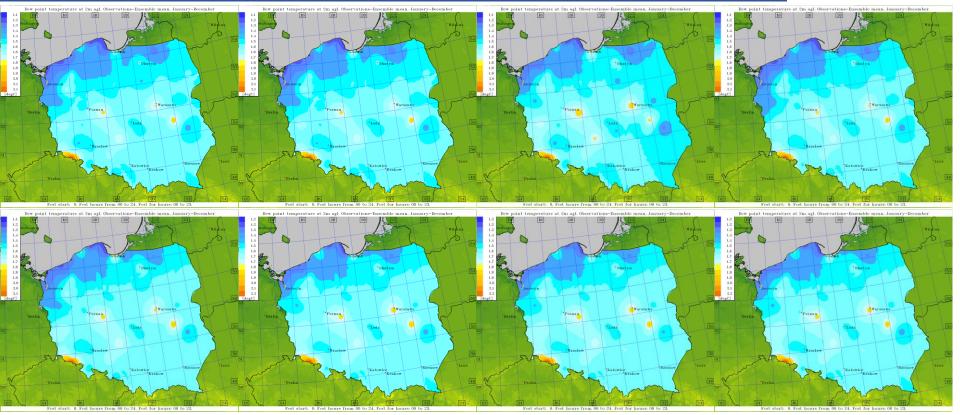
Status and activities in the frame of APSU-PP in IMGW **Examples (1)**



Spatial distribution of skill for air temp. Top charts, left to right: *efco*, operational, all combined, *laf-c_soil*. Bottom charts: *ef-c_soil*, *c_soil*, *laf*, *laf-efco*. Avg. for 2011-2015

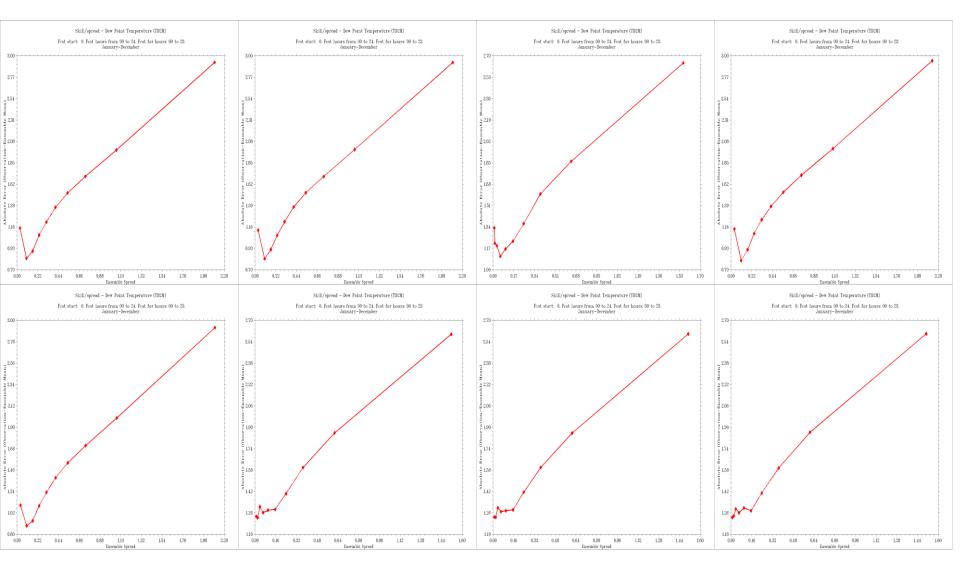
Pert. type	MAE	StD									
efco	1.5710	2.0495	oper	1.5889	2.0824	all	1.6202	2.1241	laf-c_soil	1.6048	2.1064
ef-c_soil	1.5870	2.0792	c_soil	1.5924	2.0846	laf	1.6203	2.1240	laf-efco	1.6204	2.1244

Status and activities in the frame of APSU-PP in IMGW **Examples (1)**

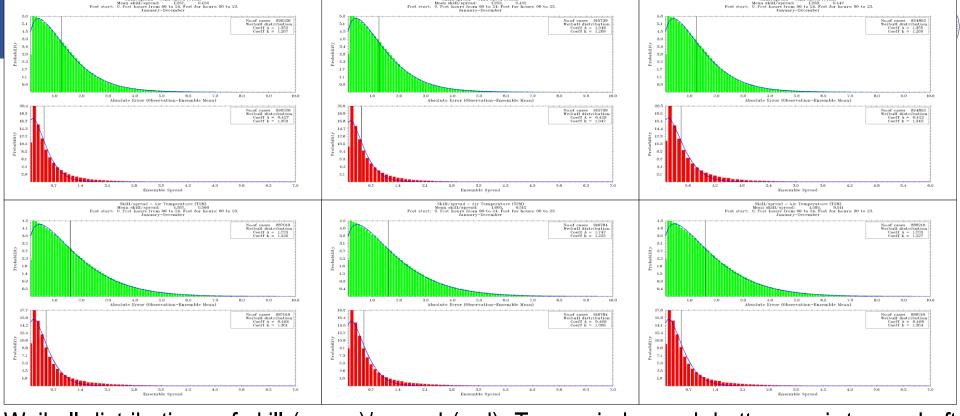


Spread/skill charts for air temp. Top charts, left to right: ef-c_soil, operational, efco, c_soil. Bottom charts: laf-c_soil, all combined, laf, laf-efco. Avg. for 2011-2015

Status and activities in the frame of APSU-PP in IMGW **Examples (1)**

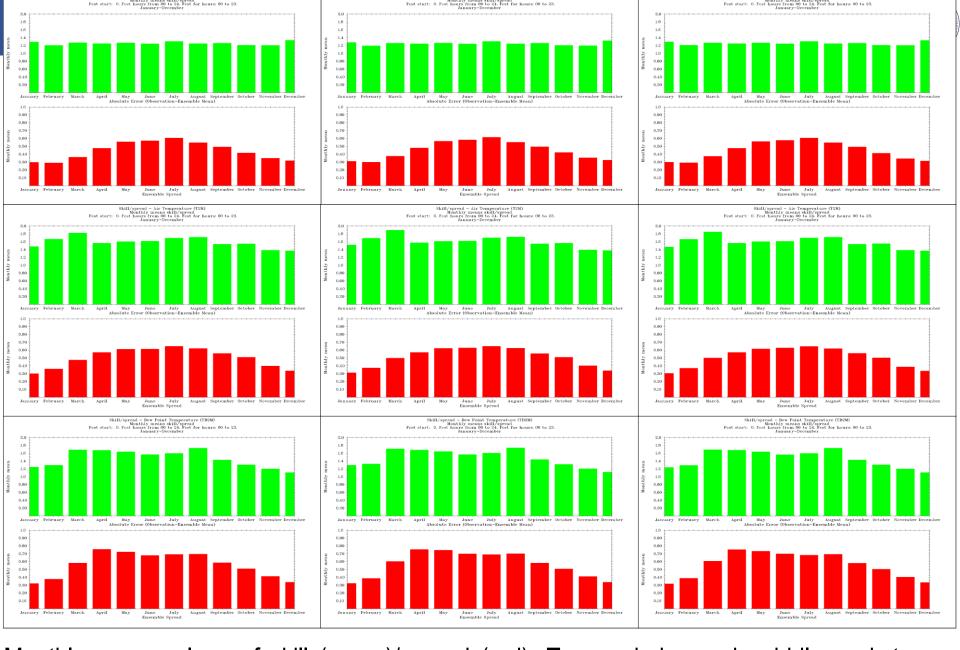


Spatial distribution of skill for dew point. Top charts, left to right: *ef-c_soil*, operational, *efco*, *c_soil*. Bottom charts: *laf-c_soil*, all combined, *laf*, *laf-efco*. Avg. for 2011-2015


Pert. type	MAE	StD									
ef-c_soil	1.4676	1.9719	oper	1.4677	1.9722	efco	1.4709	1.9683	c_soil	1.4765	1.9840
laf-c_soil	1.4799	1.9897	all	1.5049	2.0210	laf	1.5051	2.0210	laf-efco	1.5052	2.0213

Status and activities in the frame of APSU-PP in IMGW **Examples (1)**

Spread/skill charts for dew point. Top charts, left to right: *ef-c_soil*, operational, *efco*, *c_soil*. Bottom charts: *laf-c_soil*, all combined, *laf*, *laf-efco*. Avg. for 2011-2015


Weibull distributions of skill (green)/spread (red). Top – wind speed, bottom – air temp., Left to right: ef-c soil, laf-c soil, operational. Avg. for 2011-2015

$\mathbf{O} = \mathbf{O} = \mathbf{O}$												
	U10	DM		T2M				TD2M				
Skill Spread		read	Skill		Spr	ead	Skill		Spread			
Α	k	Α	k	Α	k	Α	k	Α	k	Α	k	
1.3519	1.2667	0.4246	1.3447	1.7381	1.2265	0.4707	1.3692	1.5505	1.2346	0.5374	1.3937	

(rather than exponential distribution, k <<1).

Skill/spread values – closer to Fisher-Tippett's distribution with shape coeff. k > 1

Scale coeff. A is bigger (3x to 10x) for skill (wide) than for spread (sharp).

Monthly mean values of skill (green)/spread (red). Top – wind speed, middle – air temp., bottom – dew point. Left to right: *ef-c_soil*, *laf-c_soil*, operational. Avg. for 2011-2015

Status and activities in the frame of APSU-PP in IMGW

Job done (2)

T4.1 Calibration (simple mean vs. MLR vs. ANN post-processing)

T4.2

- Specific products from ensemble outputs further computations and continuation (for operation perturbation method and actual current forecasts) of assessment of effectiveness of ANN method;
- skill/spread computation for 2011-2015 in terms flashrate/thunderstorms as non-standard product from EPS;
- Assessment of feasibility of space-lag (or cross-) correlation method for both "basic" elements, like T2M, U10M, TD2m etc. and HIW (visibility range, flashrate...)

Examples (2)

T4.1 Calibration (simple mean vs. MLR vs. ANN post-processing)

2.2496

2.2352

2.2286

2.1933

2.1816

2.1744

2.1461

2.1249

14.1 Cambration (Simple mean vs. MLIX vs. Aiviv post-processing)													
			U10M			T2M		TD2M					
	#preds	ME	MAE	SD	ME	MAE	SD	ME	MAE	SD			
SM	20	-0.2740	1.7197	2.4009	-0.2148	2.2060	3.4159	-0.1021	2.0905	2.9148			
	20	0.1979	1.5285	2.2626	-0.1781	2.0795	3.2027	-0.3465	2.0960	2.8986			
MI D.	21	0.1980	1.5257	2.2605	-0.1789	2.0581	3.1663	-0.3481	2.0924	2.8958			
MLR;	22	0.2015	1.5248	2.2602	-0.1618	2.0634	3.1688	-0.3478	2.0924	2.8959			
1 year	24	0.1960	1.5330	2.2481	-0.1615	2.0565	3.1586	-0.3496	2.0911	2.8891			
	25	0.7887	1.6092	2.4244	-0.0476	2.0516	3.1462	-0.1959	2.0534	2.8539			
	20	0.0390	1.5432	2.2527	-0.3411	2.0866	3.2109	-0.2922	2.0788	2.8869			
	21	0.0389	1.5399	2.2504	-0.3470	2.0633	3.1759	-0.2920	2.0750	2.8839			

-0.3347

-0.3349

-0.1483

-0.0319

0.0378

-0.0301

-0.0075

0.0408

GM 2020

2.0651

2.0610

2.0430

1.6391

1.6262

1.5936

1.5671

1.5594

3.1770

3.1674

3.1378

2.2287

2.1986

2.1883

2.1167

2.0851

-0.2915

-0.2933

-0.2061

-0.0551

0.0176

0.0201

0.0944

-0.0139

2.0751

2.0740

2.0572

1.8376

1.8375

1.7880

1.7461

1.6966

2.8840

2.8780

2.8491

2.6156

2.6087

2.5685

2.4458

2.3420

13

MLR;

ANN

08-21-2020

22

24

25

20

21

22

24

25

0.0443

0.0433

-0.0379

0.0847

-0.1389

-0.0845

0.0981

-0.0395

1.5378

1.5467

1.5528

1.5833

1.5652

1.5297

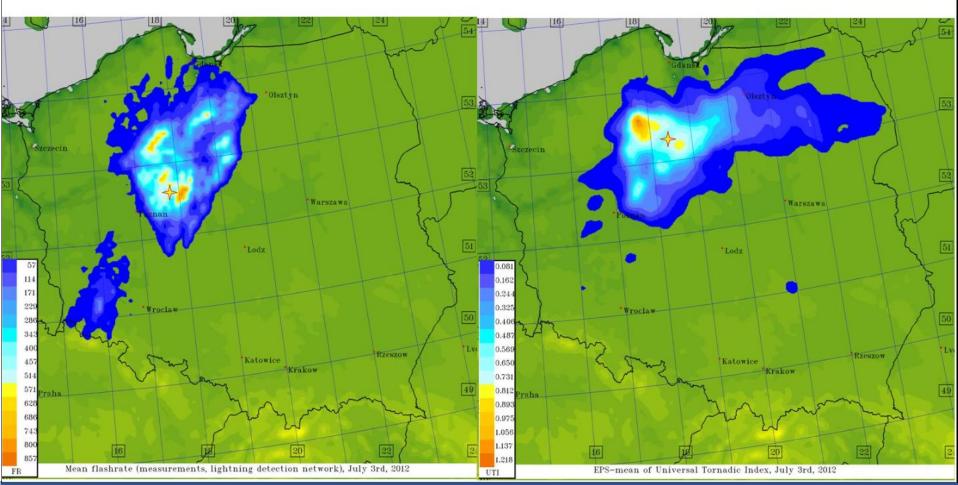
1.4874

1.4882

2 years

Status and activities in the frame of APSU-PP in IMGW Job done (2)

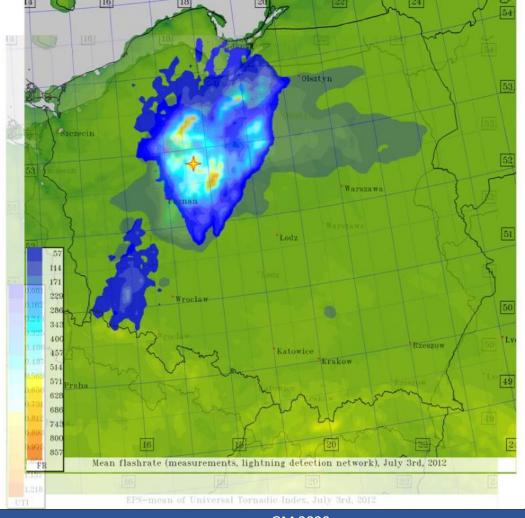
T4.2

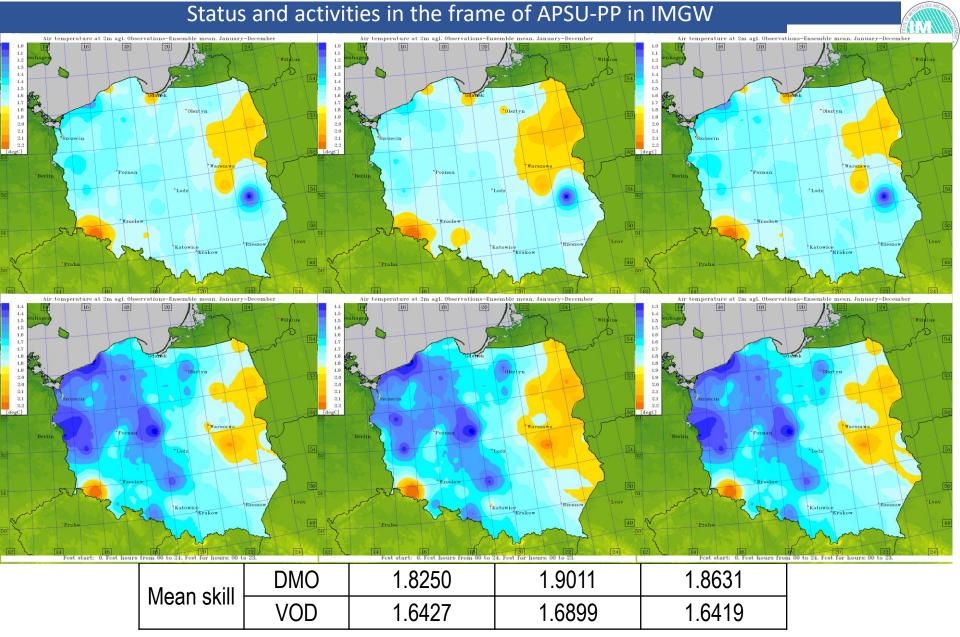

- Specific products from ensemble outputs further computations and continuation (for operation perturbation method and actual current forecasts) of assessment of effectiveness of ANN method;
- skill/spread computation for 2011-2015 in terms of flashrate/thunderstorms as non-standard product from EPS;
- Assessment of feasibility of space-lag (or cross-) correlation method for both "basic" elements, like T2M, U10M, TD2m etc. and HIW (visibility range, flashrate...)

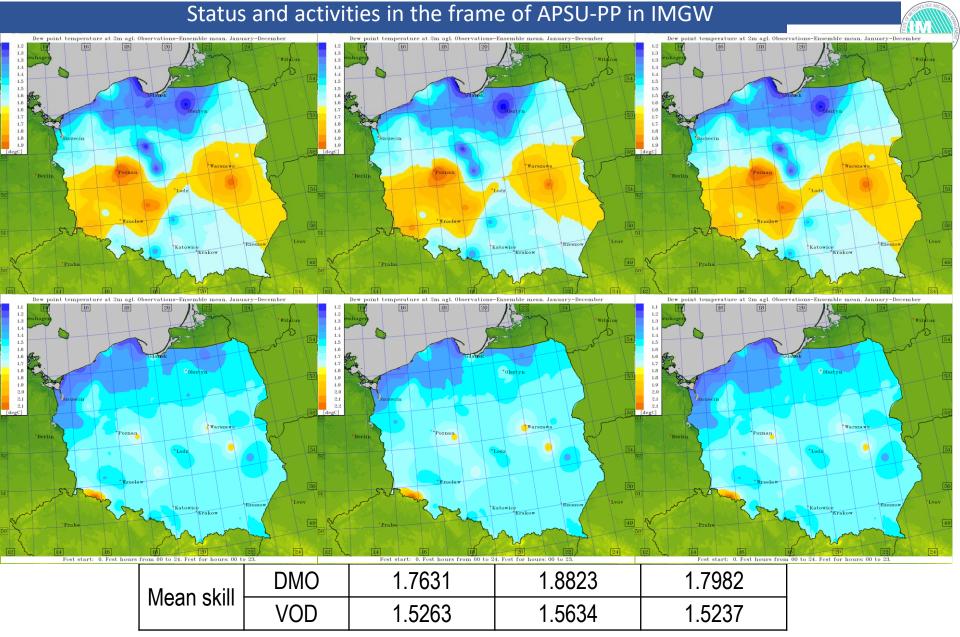
Status and activities in the frame of APSU-PP in IMGW **Examples (2)**

Space lag (cross-) correlation – reminder

 Calculate coordinates of "centres of mass" (asterisks) for both distribution patterns (obs. vs. fcst)


Status and activities in the frame of APSU-PP in IMGW


Examples (2)


Space lag (cross-) correlation – reminder

Compute vector of displacement of fcst to obs. as a difference of the two above
 Displace linearly every value of fcst by the vector of displacement

Spatial distribution of skill for air temperature – DMO (upper) and using VOD procedure (lower), mean values for 2011-2015. From left to right: *ef-c_soil*, all combined, operational.

Spatial distribution of skill for dew point – DMO (upper) and using VOD procedure (lower), mean values for 2011-2015. From left to right: *ef-c_soil*, all combined, operational.

08-21-2020 GM 2020 18

Status and activities in the frame of APSU-PP in IMGW Summary

T1.3 Perturbations based on adapted Random Number Generator (RNG) –

comparison the "new" RNG with regular one.

T3.1 Perturbation of soil surface temperature and ...

T3.3 Combination of soil and upper air perturbation – comparison of various

perturbation methods vs. operational EPS vs. reference forecasts and vs. measurements over the entire domain.

All of the above for the entire period of 2011–2015 – calculations DONE! JCR publication based on T3.3 – accepted © (Acta Geophysica;

https://doi.org/10.1007/s11600-020-00467-4

- T4.1/2 Calibration and ...
- Specific products from ensemble outputs further computations and continuation (for operation perturbation method and actual current forecasts) of assessment of effectiveness of ANN method ongoing;
- Skill/spread computation in terms of flashrate/thunderstorms and visibility range as non-standard products from EPS computed for 2011–2015;
- Assessment of feasibility of space-lag (or cross-) correlation method for both "basic" elements, like T2M, U10M, TD2m etc. and HIW (visibility range, flashrate...) computed for 2011–2015

And thereby hangs a tale...

William Shakespeare, "As You Like It"