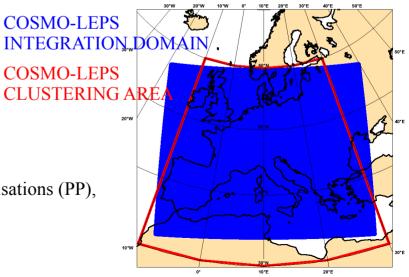


COSMO-LEPS: updates

I. Cerenzia, A. Montani

Arpae Emilia-Romagna Servizio IdroMeteoClima, Bologna, Italy ECMWF, Reading, UK


Operational suite: status

The operational suite runs at ECMWF HPC as time critical application managed by Arpae-SIMC (Ines and help by Andrea)

The computer time is provided by the COSMO partners which are ECMWF member states (CH, D, GR, I)

Configuration:

- ensemble size: 20 members
- IC/BCs from ECMWF ENS members (only 00 and 12UTC ENS runs are considered) using cluster analysis and soil IC from ICON-EU
- horizontal / vertical resolution: 7 km / 40 ML
- forecast range: +132h
- starting times: 00 and 12UTC
- COSMO model version: 5.03 in single-precision
- convection scheme: Tiedtke
- perturbations in turbulence scheme and in physical parameterisations (PP),
 but no SPPT
- ecflow suite

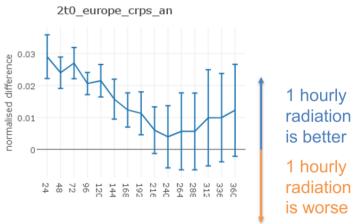
Performed updates in 2019

No scientific updates to the COSMO-LEPS suite in 2018-2019

Maintenance

- Work flow migration from XCDP to ECFLOW (November 2018)
- Transition to new MARS dissemination (January 2019)
- INT2LM version updated to 2.05 (February 2019)
- Transition to new version ENS ECMWF (June 2019)
- Runtime issues
- User requests

Upgrade ENS ECMWF (June 2019)


https://www.ecmwf.int/en/forecasts/documentation/evolution-ifs/cycles/summary-cycle-46r1

Improved ENS ensemble initialization:

- as removes need to use +/- symmetry to get from 25 EDA perturbations to 50 ensemble members
- New continuous data assimilation (decouples observation cut off time from the start of the assimilation)
- More efficient and more coupled soil moisture analysis
- New microwave channels assimilated and improved geostationary radiances

Physics ENS

- 1-hour radiation update frequency
- 2D CAMS aerosol climatology has been replaced by a new 3D climatology (limited impact)
- Improvement in the snow scheme by correctly computing the rain amount that can refreeze

Upgrade ENS ECMWF (June 2019)

https://www.ecmwf.int/en/forecasts/documentation/evolution-ifs/cycles/summary-cycle-46r1

For Europe

→ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
▲▲ △
▼ △▲△ △ △
△▲▲
**
AAAA
Δ. ΔΔΔ
**

ΔΔΔΔ Δ

Symbol legend: for a given forecast step...

- ▲ 46r1 better than 45r1 statistically significant with 99.7% confidence
- △ 46r1 better than 45r1 statistically significant with 95% confidence
- 46r1 better than 45r1 statistically significant with 68% confidence
- not really any difference between 45r1 and 46r1
- 46r1 worse than 45r1 statistically significant with 68% confidence
- ▼ 46r1 worse than 45r1 statistically significant with 95% confidence
- ▼ 46r1 worse than 45r1 statistically significant with 99.7% confidence

Upgrade ENS ECMWF (June 2019)

https://www.ecmwf.int/en/forecasts/documentation/evolution-ifs/cycles/summary-cycle-46r1

For Europe

EM RMSE CRPS E								MSE,	<u>C</u> F	RPS	
Analysis	Geopotential	100	***	***	Observations	Geopotential	100	▼ ▽	Δ	▼	Δ
		250	***	***			250				Δ
		500	***	***			500	△▲▲		▲▲ △	Δ
		850	***	▽ ▲▲▲▲△△△			850	▼∆∆∆∆		▼ ∆▲△	Δ
		830				Temperature	100	<u></u>	ΔΔΔΔ	△▲▲░▲	Δ
	Mean sea level pressure		^ ^ ^^^^	***			250	AAA A	ΔΔΔ	***	ΔΔΔ
	Temperature	100					500	***	△▲	***	△▲
		250	***				850	ΔΔΔ	100	Δ░ΔΔΔ	
		500	***	****		Wind speed	100	***		***	Δ
		850	**	ΔΑΑΑΛΛΛΑ			250	**	7888	***	Δ
	Wind speed	100	***	▼ ▲▲▲▲△△△			500	***		***	
		250	▲▲ ▲△△△	**			850		Δ		
						Relative humidity	200	*****	***	****	****
		500	***	***			700	**			
		850	**	▲▲▲ ▲△		2m temperature		**	1	***	***
	Relative	200	▲ △△ ▲ △△	***		2m dew-point		***		***	**
	humidity					Total cloud cover		△▲▲◎		****	ΔΔ ΔΔΔ
		700	**	▲▲△		10m wind				***	** 0 0000
	2m temperature		*****	*****		24h precipitation		⊽		ΔΔΔΔ	
-	i					I.	_				

Symbol legend: for a given forecast step...

- ▲ 46r1 better than 45r1 statistically significant with 99.7% confidence
- △ 46r1 better than 45r1 statistically significant with 95% confidence
- # 46r1 better than 45r1 statistically significant with 68% confidence not really any difference between 45r1 and 46r1
- 46r1 worse than 45r1 statistically significant with 68% confidence
- ▼ 46r1 worse than 45r1 statistically significant with 95% confidence
- ▼ 46r1 worse than 45r1 statistically significant with 99.7% confidence

Issues and User requests

Run time issues

- Connection to the user server for the upload of results (broken or overloaded)
- Connection with new DWD server for downloading ICON-soil: COSMO-LEPS fed with IFS-soil between 2019/06/04-25
- Other rarer cases (missing BC/IC, workflow errors)

User requests

- Migration to product in Grib2 (DWD)
- New fornitures (UNINA?)

Updates foreseen in 2019-2020

Maintenance

- Upgrade of several modules (Magics, Metview, python, grib_api, libsim, fieldextra) due to ECWMF system session (18 September 2019)
- Complete migration from grib api to eccodes (libsim, fieldextra) (within 2019)
- Work flow migration from XCDP to ECFLOW of esuite (within 2019)
- Upgrade of COSMO version from 5.03 SP to 5.06 SP (as soon as it will be available)

Upgrade

- Extension of COSMO-LEPS domain towards East to include Israel (increment of ~45% cost and time, challenging implementation)
- Lagged ensemble (ENS 06UTC,12UTC for LEPS starting at 12UTC; ENS 18UTC,00UTC for LEPS starting at 00UTC) (= SBU, simple implementation)
- SPPT (in COSMOv5.06 SP) (small increment of cost and time, simple implementation)
- Starting experimentation for migration to ICON-LAM

Thank you for your attention!